JP3880333B2 - Absorption refrigeration equipment - Google Patents

Absorption refrigeration equipment Download PDF

Info

Publication number
JP3880333B2
JP3880333B2 JP2001155198A JP2001155198A JP3880333B2 JP 3880333 B2 JP3880333 B2 JP 3880333B2 JP 2001155198 A JP2001155198 A JP 2001155198A JP 2001155198 A JP2001155198 A JP 2001155198A JP 3880333 B2 JP3880333 B2 JP 3880333B2
Authority
JP
Japan
Prior art keywords
solution
temperature regenerator
low
potential energy
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001155198A
Other languages
Japanese (ja)
Other versions
JP2002349984A (en
Inventor
修行 井上
利男 松原
智芳 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2001155198A priority Critical patent/JP3880333B2/en
Publication of JP2002349984A publication Critical patent/JP2002349984A/en
Application granted granted Critical
Publication of JP3880333B2 publication Critical patent/JP3880333B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、吸収冷凍装置に係り、特に、希溶液流路に制御弁を設け、低ポテンシャルエネルギ単独の運転を可能にした吸収冷凍装置に関する。
【0002】
【従来の技術】
通常の吸収冷凍機において、熱源熱量を調整するのは、冷水負荷信号又は冷水温度信号に基づいている。二重効用吸収冷凍機において、高温再生器と吸収器との差圧及び位置ヘッドが、高温再生器から吸収器に溶液を流す駆動力となる。一般に、定格条件における駆動力にて、必要な流量となるように、流路抵抗を調整し、オリフィス等を入れている。このように、高温再生器の圧力が変化すると、前記駆動力が変化するので、高温再生器の流出量が変化する。この流出量に見合うように流入量を調整している。
従来から、高温再生器出口部の液位を検出し、液位がある範囲で保持できるように、高温再生器への流入量を調整したり、あるいは流出量を調整したりしており、種々の溶液流路が提案されている(例えば、特公昭58−23541号公報参照)。
【0003】
また希溶液ラインに、吸収冷凍機外部の単一排熱源から供給される流体と希溶液ラインを流れる吸収希溶液とを熱交換する排熱回収用熱交換器を介装した複合冷房装置も提案されている(特開平7−218015号あるいは特開平7−218018号各公報参照)。
コージェネレーションシステムでは、電気と共に、比較的温度の低い温水が供給される。この温水は、温度があまり高くなく、低ポテンシャルエネルギに分類され、給湯又は暖房に利用されることが多い。最近は、吸収冷凍機の熱源として冷房に利用することも多くなってきている。
コージェネレーションシステムの中で、この温水は、エンジンの冷却(ジャケット温水)あるいはエンジン排気からの熱回収、あるいは、燃料電池の場合の冷却用として得られる。低ポテンシャルエネルギ単独で、吸収冷凍機を運転する場合もあるが、前述の複合冷房装置のように、高ポテンシャルエネルギと共に用い、必要とする高ポテンシャルエネルギの量を減らそうという使い方も提案され、採用され出している。
【0004】
ところで、これらの吸収冷凍装置は、いずれも、冷水負荷が小さく、高ポテンシャルエネルギが不要となるような負荷状態でも、通常は、高ポテンシャルエネルギを用いないと高温再生器の内圧が低く、高温再生器から吸収器に溶液を戻すことができないため、高ポテンシャルエネルギと低ポテンシャルエネルギの同時使用が必要で、両者同時の発停となり、単独使用ができないという問題点があった(特開平7−218015号公報)。
この問題を解決するものとして、特開平7−218018号が提案されているが、溶液の流れを三方弁で選択的に切替えているため、切替時の変動が大きくなりがちである。特に、高ポテンシャルエネルギを止め、低ポテンシャル単独運転に移る時には、高温熱交換器、高温再生器の濃度を低下させ、流動停止中の結晶防止をする必要があり、移行のための時間がかかる等の問題点があった。
【0005】
【発明が解決しようとする課題】
本発明は、上記従来技術の問題点を解決し、冷水負荷が小さく、高ポテンシャルエネルギが不要となるような負荷状態の時に、低ポテンシャルエネルギの単独使用を簡単な装置構成の変更によって可能にする吸収冷凍装置を提供することを課題とする。
【0006】
【課題を解決するための手段】
上記課題を解決するために、本発明では、吸収器、低温再生器、高温再生器、凝縮器、蒸発器、低温溶液熱交換器、高温溶液熱交換器、溶液ポンプ、冷媒ポンプ及びこれらの機器を接続する溶液流路と冷媒流路を備え、熱源として低ポテンシャルエネルギと高ポテンシャルエネルギとを用いる吸収冷凍装置であって、前記溶液流路と冷媒流路には、冷房サイクルと暖房サイクルの切替機構を有し、前記溶液流路は、溶液ポンプにより希溶液を希溶液分岐点から、一部は低温再生器に、残部は高温再生器に導く流路とし、前記低温再生器は、低ポテンシャルエネルギによる加熱機構と、高温再生器で発生した冷媒蒸気による加熱機構とを備え、該低温再生器内の溶液の流れに沿って、低ポテンシャルエネルギによる加熱機構を上流側に、高温再生器からの冷媒蒸気による加熱機構を下流側に配し、希溶液を分岐点から高温再生器に導く流路中に、溶液循環量を制御する弁を設け、該弁に、冷房負荷が小さく高温再生器に高ポテンシャルエネルギを用いる必要がない場合には、該弁を閉止又は閉止付近に制御する制御機構を設けると共に、前記高温再生器には、高ポテンシャルエネルギ調節機構を、前記低温再生器には、低ポテンシャルエネルギ調節機構を備え、該低ポテンシャルエネルギを優先的に用い、熱源が不足するときに高ポテンシャルエネルギを用いて、冷房能力又は暖房能力を制御する制御機構を有し、前記低ポテンシャルエネルギ調節機構が、低温再生器の加熱部に導入又は散布する溶液流量を調節する溶液弁であることを特徴とする吸収冷凍装置としたものである。
【0008】
【発明の実施の形態】
前記のように、本発明は、低温熱交換器と高温熱交換器との間の希溶液流路に分岐点を有し、一部の溶液を低温再生器に、残部を高温熱交換器を経由して高温再生器に導くサイクルにおいて、低温再生器の加熱部の上流側に低ポテンシャルエネルギによる加熱機器を配すると共に、前記分岐点と高温熱交換器の間に、溶液循環量を制御する弁を設け、高温再生器へ高ポテンシャルエネルギを用いる必要がない冷房負荷の場合は、該弁を閉止又は閉止付近に制御する制御機構を有するものである。
次に、本発明を、図1〜図4に示す吸収冷凍装置のフロー構成図を用いて説明する。なお、図1と図2は、本発明を説明するための参考例であり、図3と図4は、本発明の装置例である。
【0009】
図1〜図4において、Aは吸収器、GLは低温再生器、GHは高温再生器、Cは凝縮器、Eは蒸発器、XLは低温熱交換器、XH、XHa、XHbは高温熱交換器、SPは溶液ポンプ、RPは冷媒ポンプ、Fはフロート、Laは低ポテンシャルエネルギを用いる加熱機構、Lbは高温再生器からの冷媒蒸気を用いる加熱機構、V1〜V6は切替弁、1は冷暖房負荷に接続する冷水配管、2は冷却水配管、3、4は熱源配管、5は温度センサ、6は制御器、7は熱源熱量調整弁、8は循環量制御弁、9はインバータ回転数制御器、11〜16は冷媒流路、21〜31は溶液流路、20は分岐点である。
図1を用いて、この吸収冷凍装置の運転操作について説明すると、この装置の通常の高ポテンシャルエネルギを用いて加熱する冷房運転においては、冷媒を吸収した希溶液は、吸収器Aから溶液ポンプSPにより低温熱交換器XLの被加熱側を経た後、希溶液分岐点20より、一部は低温再生器GLに、残部は高温熱交換器XHの被加熱側を通り流路23から高温再生器GHに導入される。高温再生器GHでは希溶液は加熱熱源により加熱されて冷媒を蒸発して濃縮され、濃縮された濃溶液は流路26を通り高温熱交換器XHで熱交換され、流路27から低温再生器GLからの濃溶液25と合流する。
【0010】
分岐点20より流路24を通り低温再生器に導入された希溶液は、低温再生器で低ポテンシャルエネルギを用いて加熱する加熱機構La及び高温再生器からの冷媒蒸気により加熱される加熱機構Lbにより、加熱濃縮された後、流路25で高温再生器からの濃溶液と合流した後、低温熱交換器XLの加熱側を通り、流路28から吸収器Aに導入される。
高温再生器GHで蒸発した冷媒ガスは、冷媒流路13を通り、低温再生器GLの熱源として用いられたのち凝縮器Cに導入される。凝縮器Cでは、低温再生器GLからの冷媒ガスと共に冷却水により冷却されて凝縮し、流路12から蒸発器Eに入る。蒸発器Eでは、冷媒が冷媒ポンプRPにより、流路11により循環されて蒸発し、その際に蒸発熱を負荷側の冷水から奪い、冷水を冷却し、冷房に供される。
蒸発した冷媒は、吸収器Aで濃溶液により吸収されて、希溶液となり溶液ポンプで循環されるサイクルとなる。
【0011】
このような吸収冷凍装置において、吸収器Aから高温再生器GHに溶液を送る溶液ポンプSPをインバータ9により、回転数可変とし、さらに、中間点20から高温再生器GHまでの希溶液ライン中に、溶液制御弁8を設ける。
通常の運転では、高温再生器GHへの溶液制御弁8を全開(あるいは所定の開度)とし、高温再生器GHの液面をフロートFで検出し、制御するように溶液ポンプSPの回転数を調節する。
溶液ポンプの回転数は、基本回転数を高温再生器の冷媒飽和温度(又は相当温度、あるいは圧力)で決め、これにフロートFで微調整するなどの方法もとられる。
温度センサ5の検出値が所定値より低下したとき、負荷が小さいと判断して、高ポテンシャルエネルギの供給を停止し、低ポテンシャルエネルギの単独運転とする。
【0012】
また、低ポテンシャルエネルギ単独運転中、温度センサ5の検出値が所定値より上昇したとき、負荷が大きくなったと判断して、高ポテンシャルエネルギの供給を再開し、低ポテンシャルと高ポテンシャルエネルギの併用に戻る。
なお、低ポテンシャルエネルギ(温水)の供給温度により、単独運転による冷凍能力が変化する(温水温度上昇で能力大。温水温度下降で能力小)ので、前述の判断に用いる所定値を、温水温度の関数としてもよい。この場合、ポテンシャルのエネルギが無い場合(高ポテンシャル単独運転)も含め、単一のロジックで、高ポテンシャルエネルギの供給停止の制御ができる。
負荷の大小は、冷水出入口温度差の所定値との比較、あるいは、直接冷水負荷(冷水出入口温度差×冷水流量)を算出し、所定値と比較する等の方法がとられる。
【0013】
冷房負荷を温度センサ5で検出して、小さく高ポテンシャルエネルギを使用せずに低ポテンシャルエネルギを単独で使用する場合には、溶液制御弁8を全閉あるいは閉止近くとし、高温再生器GHへの流量を、高温再生器GHから吸収器Aに溶液を戻せる流量(通常、アクチュアルヘッドのみとなる)以下として、運転する。この際、低温再生器GLには、溶液流量を多く流したいので、溶液ポンプSPの回転数制御を高温再生器の液面ではなく、所定の回転数にする。
また、冷水負荷に応じて、溶液ポンプの回転数を調節することもできる。
このように、本発明では、低温再生器に低ポテンシャルエネルギによる加熱機構Laを設けると共に、溶液制御弁を設けているので、高温再生器GHと切り離して低温再生器GLのみを単独で運転することができるようになった。
図2は、図1の吸収冷凍装置において、分岐点20を低温熱交換機XLの前に配し、高温再生器への希溶液を加熱する高温再生器をXHa、XHbの2段用いて、高温再生器からの濃溶液で加熱することとしたものであり、図1と同様の作用・効果を有する。
【0014】
図3、図4は、それぞれ図1、図2に対応し、図1、図2に暖房サイクルにも適用可能なように、冷房サイクルと暖房サイクルの切替機構を設け、該機構が、前記高温再生器GHからの冷媒蒸気を蒸発器E又は吸収器Aに導く冷媒流路14に設けた蒸気弁V1とするか、前記蒸発器E下部の液を吸収器A又は吸収器につながる溶液流路21に導く冷媒流路15に設けた弁V2とするか、前記濃溶液25を、低温熱交換器XLをバイパスさせて、吸収器Aに導く溶液流路29に設けた弁V3とするか、又は、前記低温再生器GLの発生蒸気を蒸発器E又は吸収器Aに導く冷媒流路16に設けた弁V3’としたものである。
また、温水単独運転のときの、容量制御法として、熱源投入量を、低温再生器GL加熱部への溶液導入量で調節する弁V5を有している。該V5を三方弁として、温水温度が溶液温度より低い時、熱が外部温水3に逃げるのを防ぐため、溶液流路30を設け、溶液の導入位置を切替えてもよい。V5は三方弁の代りに、散布量を直接制御する二方弁としてもよく、また、散布をバイパスし、下部にブローする二方弁であってもよい。また、SPの回転数を調節して散布量を制御する方法もとれる。また、温水温度が溶液温度より低い時、温水熱源3が低温再生器GLをバイパスする弁V6を設けてもよい。
【0015】
さらに、暖房サイクルのとき、蒸発器Eで冷媒の凝縮をさせる方式では、凝縮温度に対し、溶液温度は少なくとも沸点上昇分は温度が高くなっており、低温再生器GLで温水から溶液に熱を与え、蒸気を発生させるのが難しくなる。
例えば、溶液濃度と溶液の平衡温度の関係を、LiBr水溶液を例に下記に示す。
【表1】

Figure 0003880333
【0016】
排熱としての温水は、90℃程度が最高温で、通常80℃程度まで利用する。冷房サイクル時、55wt%〜62wt%程度の溶液を、暖房サイクル時には、40wt%近くまで希釈する必要があり、このため、希釈用冷媒を多量に装置内に持っておく必要がある。
本発明では、低温再生器GLからの溶液流路25からバイパス管31を接続し、このバイパス管に弁V4を設けて蒸発器Eに溶液を散布し、上述の関係を変えるものであり、例えば、低温再生器GLの溶液濃度と蒸発器Eに散布する溶液濃度とをほぼ同じにすると、沸点上昇分をほとんど解消できる。
【0017】
例えば、55wt%のLiBr水溶液とすると、
濃度55wt%
低温再生器 飽和温度(露点)40.4℃ 溶液温度75℃
蒸発器 飽和温度(露点)35.4℃ 溶液温度69.2℃
の関係が有り、単純に説明すれば、温水で、55wt%溶液が温水で75℃まで加熱沸騰させられると、飽和温度40.4℃の蒸気が発生し、これが圧力損失を伴って、蒸発器に入り、蒸発器の55wt%溶液に吸収される。その際の溶液温度は約73℃である。蒸気の流れで飽和温度に差がでてくるが、この圧力差は、配管のV3’のサイズなどが関係する。
溶液の戻しのため、ある程度の差圧が必要であり、弁サイズを選定し、場合によっては配管中にオリフィスを入れて差圧を付けるようにする。
【0018】
【発明の効果】
前記のように、本発明では、低温再生器のみの単独運転が可能となったので、吸収冷凍装置の低負荷の場合の効率的な運転ができ、エネルギ的にも経済的にも効率のよい吸収冷凍装置が提供できた。
【図面の簡単な説明】
【図1】 本発明を説明するための参考例である吸収冷凍装置の一例を示すフロー構成図。
【図2】 本発明を説明するための参考例である吸収冷凍装置の他の例を示すフロー構成図。
【図3】 本発明の吸収冷凍装置の一例を示すフロー構成図。
【図4】 本発明の吸収冷凍装置の他の例を示すフロー構成図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an absorption refrigeration apparatus, and more particularly, to an absorption refrigeration apparatus in which a control valve is provided in a dilute solution flow path to enable operation with low potential energy alone.
[0002]
[Prior art]
In a normal absorption refrigerator, the heat source heat quantity is adjusted based on a chilled water load signal or a chilled water temperature signal. In the dual effect absorption refrigerator, the differential pressure between the high-temperature regenerator and the absorber and the position head provide driving force for flowing the solution from the high-temperature regenerator to the absorber. Generally, the flow path resistance is adjusted and an orifice or the like is inserted so that the required flow rate is obtained with the driving force under rated conditions. As described above, when the pressure of the high temperature regenerator changes, the driving force changes, so that the outflow amount of the high temperature regenerator changes. The inflow is adjusted to match the outflow.
Conventionally, the liquid level at the outlet of the high-temperature regenerator is detected, and the inflow amount to the high-temperature regenerator or the outflow amount is adjusted so that the liquid level can be maintained within a certain range. (See, for example, Japanese Patent Publication No. 58-23541).
[0003]
We also propose a combined cooling system with a waste heat recovery heat exchanger that exchanges heat between the fluid supplied from a single waste heat source outside the absorption refrigerator and the absorbed diluted solution flowing through the diluted solution line in the diluted solution line. (See Japanese Patent Application Laid-Open No. 7-218015 or Japanese Patent Application Laid-Open No. 7-218018).
In the cogeneration system, hot water having a relatively low temperature is supplied together with electricity. This hot water is not very high in temperature, is classified as low potential energy, and is often used for hot water supply or heating. Recently, it is increasingly used for cooling as a heat source of an absorption refrigerator.
In the cogeneration system, this hot water is obtained for engine cooling (jacket hot water), heat recovery from engine exhaust, or cooling in the case of a fuel cell. In some cases, the absorption chiller is operated with low potential energy alone, but it has also been proposed and used to reduce the amount of high potential energy required together with high potential energy, as in the above-mentioned combined cooling system. It has been started.
[0004]
By the way, all of these absorption refrigeration apparatuses usually have a low internal pressure of the high-temperature regenerator without using high potential energy, even under a load state where the chilled water load is small and high potential energy is not required. Since the solution cannot be returned from the vessel to the absorber, it is necessary to use high potential energy and low potential energy at the same time. Issue gazette).
Japanese Patent Laid-Open No. 7-218018 has been proposed as a solution to this problem. However, since the flow of the solution is selectively switched by a three-way valve, the fluctuation at the time of switching tends to be large. In particular, when stopping high potential energy and moving to low potential single operation, it is necessary to reduce the concentration of the high-temperature heat exchanger and high-temperature regenerator to prevent crystallization when the flow is stopped. There was a problem.
[0005]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems of the prior art, and enables a single use of low potential energy by a simple device configuration change in a load state where the chilled water load is small and high potential energy is unnecessary. It is an object to provide an absorption refrigeration apparatus.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, in the present invention, an absorber, a low temperature regenerator, a high temperature regenerator, a condenser, an evaporator, a low temperature solution heat exchanger, a high temperature solution heat exchanger, a solution pump, a refrigerant pump, and these devices An absorption refrigeration apparatus using a low potential energy and a high potential energy as a heat source, wherein the solution channel and the refrigerant channel are switched between a cooling cycle and a heating cycle. The solution flow path is a flow path that leads a dilute solution from a dilute solution branch point to a low-temperature regenerator and the rest to a high-temperature regenerator by a solution pump, and the low-temperature regenerator has a low potential. A heating mechanism using energy and a heating mechanism using refrigerant vapor generated in the high temperature regenerator are provided, and the heating mechanism using low potential energy is disposed upstream of the high temperature regenerator along the flow of the solution in the low temperature regenerator. Placed a heating mechanism by the refrigerant vapor from the vessel to the downstream side, the dilute solution from the branch point in the flow path leading to the high-temperature regenerator, a valve for controlling the solution circulation rate provided, the valve, heating and cooling tufts load If there is no need to use a high potential energy in the small high-temperature regenerator, Rutotomoni provided a control mechanism for controlling the near closed or closed valve, the said high-temperature regenerator, a high potential energy adjustment mechanism, said cold The regenerator has a low-potential energy adjustment mechanism, uses the low-potential energy preferentially, and has a control mechanism for controlling the cooling capacity or the heating capacity using the high-potential energy when the heat source is insufficient. In the absorption refrigeration apparatus, the low potential energy adjustment mechanism is a solution valve for adjusting a flow rate of a solution introduced or dispersed in a heating unit of a low temperature regenerator .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
As described above, the present invention has a branch point in the dilute solution flow path between the low-temperature heat exchanger and the high-temperature heat exchanger, a part of the solution in the low-temperature regenerator, and the rest in the high-temperature heat exchanger. In the cycle leading to the high temperature regenerator, a heating device with low potential energy is arranged upstream of the heating part of the low temperature regenerator, and the amount of solution circulation is controlled between the branch point and the high temperature heat exchanger. In the case of a cooling load in which a valve is provided and it is not necessary to use high potential energy for the high-temperature regenerator, a control mechanism for controlling the valve to close or close to close is provided.
The invention will now be described with reference to the flow diagram of shows to absorb refrigeration apparatus in FIGS. 1 and 2 are reference examples for explaining the present invention, and FIGS. 3 and 4 are apparatus examples of the present invention.
[0009]
1-4, A is an absorber, GL is a low temperature regenerator, GH is a high temperature regenerator, C is a condenser, E is an evaporator, XL is a low temperature heat exchanger, XH, XHa, and XHb are high temperature heat exchanges. , SP is a solution pump, RP is a refrigerant pump, F is a float, La is a heating mechanism that uses low potential energy, Lb is a heating mechanism that uses refrigerant vapor from a high temperature regenerator, V1 to V6 are switching valves, and 1 is an air conditioner Cold water piping connected to the load, 2 is cooling water piping, 3 and 4 are heat source piping, 5 is a temperature sensor, 6 is a controller, 7 is a heat source heat amount adjustment valve, 8 is a circulation amount control valve, and 9 is inverter rotation speed control. , 11-16 are refrigerant flow paths, 21-31 are solution flow paths, and 20 is a branch point.
The operation of the absorption refrigeration apparatus will be described with reference to FIG. 1. In the cooling operation in which heating is performed using the normal high potential energy of the apparatus, the diluted solution that has absorbed the refrigerant is supplied from the absorber A to the solution pump SP. After passing through the heated side of the low-temperature heat exchanger XL, from the dilute solution branch point 20, a part passes to the low-temperature regenerator GL and the remaining part passes through the heated side of the high-temperature heat exchanger XH from the flow path 23 to the high-temperature regenerator. Introduced to GH. In the high temperature regenerator GH, the dilute solution is heated by a heating heat source to evaporate the refrigerant and concentrated, and the concentrated concentrated solution passes through the flow path 26 and is heat exchanged by the high temperature heat exchanger XH. Merge with concentrated solution 25 from GL.
[0010]
The dilute solution introduced into the low temperature regenerator through the flow path 24 from the branch point 20 is heated by the low temperature regenerator using low potential energy and the heating mechanism Lb heated by the refrigerant vapor from the high temperature regenerator. Thus, after being concentrated by heating, the concentrated solution from the high-temperature regenerator is merged in the flow path 25, and then passed through the heating side of the low-temperature heat exchanger XL and introduced into the absorber A from the flow path 28.
The refrigerant gas evaporated in the high temperature regenerator GH passes through the refrigerant flow path 13, is used as a heat source for the low temperature regenerator GL, and is then introduced into the condenser C. In the condenser C, the refrigerant gas is cooled and condensed by the cooling water together with the refrigerant gas from the low temperature regenerator GL, and enters the evaporator E through the flow path 12. In the evaporator E, the refrigerant is circulated through the flow path 11 by the refrigerant pump RP to evaporate. At that time, the evaporating heat is taken from the cold water on the load side, the cold water is cooled, and supplied to the cooling.
The evaporated refrigerant is absorbed by the concentrated solution in the absorber A to become a dilute solution and is circulated by a solution pump.
[0011]
In such an absorption refrigeration apparatus, the solution pump SP that sends the solution from the absorber A to the high-temperature regenerator GH is made variable by the inverter 9, and further, in the dilute solution line from the intermediate point 20 to the high-temperature regenerator GH. The solution control valve 8 is provided.
In normal operation, the solution control valve 8 to the high temperature regenerator GH is fully opened (or a predetermined opening), the liquid level of the high temperature regenerator GH is detected by the float F, and the rotation speed of the solution pump SP is controlled. Adjust.
The number of revolutions of the solution pump is determined by determining the basic number of revolutions based on the refrigerant saturation temperature (or equivalent temperature or pressure) of the high-temperature regenerator and finely adjusting the number by the float F.
When the detected value of the temperature sensor 5 falls below a predetermined value, it is determined that the load is small, the supply of high potential energy is stopped, and the single operation of low potential energy is performed.
[0012]
In addition, when the detected value of the temperature sensor 5 rises above a predetermined value during the low potential energy single operation, it is determined that the load has increased, and the supply of the high potential energy is resumed, so that the low potential and the high potential energy can be used together. Return.
In addition, since the refrigeration capacity by single operation changes depending on the supply temperature of low potential energy (warm water) (capacity increases when warm water temperature rises and capacity decreases when warm water temperature falls), the predetermined value used for the above-mentioned judgment is set to the warm water temperature It may be a function. In this case, even when there is no potential energy (high potential single operation), the supply stop of the high potential energy can be controlled with a single logic.
The magnitude of the load may be compared with a predetermined value of the chilled water inlet / outlet temperature difference or by directly calculating the chilled water load (cold water inlet / outlet temperature difference × cold water flow rate) and comparing it with a predetermined value.
[0013]
When the cooling load is detected by the temperature sensor 5 and the low potential energy is used alone without using the small high potential energy, the solution control valve 8 is fully closed or close to close to the high temperature regenerator GH. The operation is performed at a flow rate equal to or lower than a flow rate (usually only an actual head) at which the solution can be returned from the high temperature regenerator GH to the absorber A. At this time, since it is desired to flow a large amount of solution flow through the low temperature regenerator GL, the rotation speed control of the solution pump SP is set to a predetermined rotation speed instead of the liquid level of the high temperature regenerator.
Further, the rotational speed of the solution pump can be adjusted according to the cold water load.
As described above, in the present invention, the low temperature regenerator is provided with the heating mechanism La by low potential energy and the solution control valve is provided, so that only the low temperature regenerator GL is operated independently from the high temperature regenerator GH. Can now.
FIG. 2 shows that in the absorption refrigeration apparatus of FIG. 1, the branch point 20 is arranged in front of the low-temperature heat exchanger XL, and the high-temperature regenerator for heating the dilute solution to the high-temperature regenerator is used in two stages XHa and XHb. Heating is performed with a concentrated solution from the regenerator, which has the same functions and effects as in FIG.
[0014]
FIGS. 3 and 4 correspond to FIGS. 1 and 2, respectively, and a switching mechanism between a cooling cycle and a heating cycle is provided in FIGS. 1 and 2 so that the mechanism can be applied to the heating cycle. A vapor flow path V1 provided in the refrigerant flow path 14 for guiding the refrigerant vapor from the regenerator GH to the evaporator E or the absorber A, or a solution flow path for connecting the liquid below the evaporator E to the absorber A or the absorber. The valve V2 provided in the refrigerant flow path 15 leading to 21 or the valve 25 provided in the solution flow path 29 leading to the absorber A by bypassing the low temperature heat exchanger XL for the concentrated solution 25, Or it is set as valve V3 'provided in the refrigerant | coolant flow path 16 which guide | induces the vapor | steam generated by the said low temperature regenerator GL to the evaporator E or the absorber A. FIG.
In addition, as a capacity control method during the hot water single operation, a valve V5 that adjusts the amount of heat source input by the amount of solution introduced into the low temperature regenerator GL heating unit is provided. Using V5 as a three-way valve, when the hot water temperature is lower than the solution temperature, a solution flow path 30 may be provided to switch the solution introduction position in order to prevent heat from escaping to the external hot water 3. V5 may be a two-way valve that directly controls the spraying amount instead of the three-way valve, or may be a two-way valve that bypasses spraying and blows downward. Also, a method of controlling the spray amount by adjusting the rotation speed of the SP can be used. Further, when the hot water temperature is lower than the solution temperature, the warm water heat source 3 may be provided with a valve V6 that bypasses the low temperature regenerator GL.
[0015]
Further, in the heating cycle, in the system in which the refrigerant is condensed by the evaporator E, the solution temperature is higher than the condensation temperature by at least the boiling point rise, and the low temperature regenerator GL heats the solution from the hot water to the solution. And makes it difficult to generate steam.
For example, the relationship between the solution concentration and the equilibrium temperature of the solution is shown below using a LiBr aqueous solution as an example.
[Table 1]
Figure 0003880333
[0016]
The hot water as exhaust heat has a maximum temperature of about 90 ° C. and is usually used up to about 80 ° C. During the cooling cycle, it is necessary to dilute a solution of about 55 wt% to 62 wt% to nearly 40 wt% during the heating cycle. For this reason, it is necessary to bring a large amount of dilution refrigerant into the apparatus.
In the present invention, the bypass pipe 31 is connected from the solution flow path 25 from the low-temperature regenerator GL, the valve V4 is provided in the bypass pipe, the solution is sprayed on the evaporator E, and the above relationship is changed. When the solution concentration in the low-temperature regenerator GL and the solution concentration sprayed on the evaporator E are substantially the same, the rise in boiling point can be almost eliminated.
[0017]
For example, when a 55 wt% LiBr aqueous solution is used,
Concentration 55wt%
Low temperature regenerator Saturation temperature (dew point) 40.4 ° C Solution temperature 75 ° C
Evaporator Saturation temperature (dew point) 35.4 ° C Solution temperature 69.2 ° C
In a simple explanation, when a 55 wt% solution is heated and boiled to 75 ° C. with warm water, steam with a saturation temperature of 40.4 ° C. is generated. And is absorbed into the 55 wt% solution of the evaporator. The solution temperature in that case is about 73 degreeC. The difference in saturation temperature is caused by the flow of steam, and this pressure difference is related to the size of the pipe V3 ′.
A certain amount of differential pressure is required to return the solution, and the valve size is selected, and in some cases, an orifice is inserted into the pipe to apply the differential pressure.
[0018]
【The invention's effect】
As described above, in the present invention, since only a low-temperature regenerator can be operated independently, it is possible to operate efficiently in the case of a low load of the absorption refrigeration apparatus, which is efficient in terms of energy and economy. Absorption refrigeration equipment could be provided.
[Brief description of the drawings]
FIG. 1 is a flow configuration diagram showing an example of an absorption refrigeration apparatus as a reference example for explaining the present invention.
FIG. 2 is a flow configuration diagram showing another example of an absorption refrigeration apparatus which is a reference example for explaining the present invention.
FIG. 3 is a flow configuration diagram showing an example of the absorption refrigeration apparatus of the present invention.
FIG. 4 is a flow configuration diagram showing another example of the absorption refrigeration apparatus of the present invention.

Claims (1)

吸収器、低温再生器、高温再生器、凝縮器、蒸発器、低温溶液熱交換器、高温溶液熱交換器、溶液ポンプ、冷媒ポンプ及びこれらの機器を接続する溶液流路と冷媒流路を備え、熱源として低ポテンシャルエネルギと高ポテンシャルエネルギとを用いる吸収冷凍装置であって、前記溶液流路と冷媒流路には、冷房サイクルと暖房サイクルの切替機構を有し、前記溶液流路は、溶液ポンプにより希溶液を希溶液分岐点から、一部は低温再生器に、残部は高温再生器に導く流路とし、前記低温再生器は、低ポテンシャルエネルギによる加熱機構と、高温再生器で発生した冷媒蒸気による加熱機構とを備え、該低温再生器内の溶液の流れに沿って、低ポテンシャルエネルギによる加熱機構を上流側に、高温再生器からの冷媒蒸気による加熱機構を下流側に配し、希溶液を分岐点から高温再生器に導く流路中に、溶液循環量を制御する弁を設け、該弁に、冷暖房負荷が小さく高温再生器に高ポテンシャルエネルギを用いる必要がない場合には、該弁を閉止又は閉止付近に制御する制御機構を設けると共に、前記高温再生器には、高ポテンシャルエネルギ調節機構を、前記低温再生器には、低ポテンシャルエネルギ調節機構を備え、該低ポテンシャルエネルギを優先的に用い、熱源が不足するときに高ポテンシャルエネルギを用いて、冷房能力又は暖房能力を制御する制御機構を有し、前記低ポテンシャルエネルギ調節機構が、低温再生器の加熱部に導入又は散布する溶液流量を調節する溶液弁であることを特徴とする吸収冷凍装置。  Absorber, low-temperature regenerator, high-temperature regenerator, condenser, evaporator, low-temperature solution heat exchanger, high-temperature solution heat exchanger, solution pump, refrigerant pump, and solution channel and refrigerant channel that connect these devices An absorption refrigeration apparatus using low potential energy and high potential energy as a heat source, wherein the solution channel and the refrigerant channel have a switching mechanism between a cooling cycle and a heating cycle, and the solution channel is a solution The dilute solution is flowed from the dilute solution branch point by the pump, partly to the low temperature regenerator, and the rest to the high temperature regenerator. The low temperature regenerator is generated by the heating mechanism with low potential energy and the high temperature regenerator. A heating mechanism using refrigerant vapor, and along the flow of the solution in the low-temperature regenerator, the heating mechanism using low-potential energy is upstream, and the heating mechanism using refrigerant vapor from the high-temperature regenerator is downstream. Provided in the flow path leading the dilute solution from the branch point to the high temperature regenerator, and a valve for controlling the amount of solution circulation is provided, and the valve has a small cooling / heating load and does not need to use high potential energy for the high temperature regenerator. In this case, a control mechanism for controlling the valve to close or close is provided, the high temperature regenerator is provided with a high potential energy adjustment mechanism, and the low temperature regenerator is provided with a low potential energy adjustment mechanism, It has a control mechanism that preferentially uses low potential energy and controls cooling capacity or heating capacity using high potential energy when the heat source is insufficient, and the low potential energy adjusting mechanism is a heating unit of the low temperature regenerator. An absorption refrigeration apparatus characterized by being a solution valve for adjusting a flow rate of a solution introduced into or sprayed into the container.
JP2001155198A 2001-05-24 2001-05-24 Absorption refrigeration equipment Expired - Fee Related JP3880333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001155198A JP3880333B2 (en) 2001-05-24 2001-05-24 Absorption refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001155198A JP3880333B2 (en) 2001-05-24 2001-05-24 Absorption refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2002349984A JP2002349984A (en) 2002-12-04
JP3880333B2 true JP3880333B2 (en) 2007-02-14

Family

ID=18999433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001155198A Expired - Fee Related JP3880333B2 (en) 2001-05-24 2001-05-24 Absorption refrigeration equipment

Country Status (1)

Country Link
JP (1) JP3880333B2 (en)

Also Published As

Publication number Publication date
JP2002349984A (en) 2002-12-04

Similar Documents

Publication Publication Date Title
KR100343845B1 (en) Absorption Chiller
KR920003906B1 (en) Absorption system hot and cold water supply apparatus
JP2008025915A (en) Absorption refrigerator system
JP3241550B2 (en) Double effect absorption chiller / heater
JP4721783B2 (en) Operation control method of absorption chiller / heater
JP6814071B2 (en) Absorption chiller system and absorption chiller using waste heat
JP3880333B2 (en) Absorption refrigeration equipment
JP2985513B2 (en) Absorption cooling and heating system and its control method
JP3824441B2 (en) Absorption refrigeration equipment
JP4278315B2 (en) Absorption refrigerator
JP2001289530A (en) Absorption chiller-heater
JP3412795B2 (en) Double effect absorption chiller / heater
JP3280261B2 (en) Absorption refrigeration equipment
JPH07849Y2 (en) Air-cooled absorption chiller / heater
JPH04203861A (en) Absorption type water cooling and/or heating device and operation thereof
JP3081490B2 (en) Absorption refrigerator
JP3157349B2 (en) Absorption refrigerator control device
JPH0886531A (en) Dual-effect absorption refrigerator as well as hot and chilled water generator
JPS5857667B2 (en) Dual effect absorption refrigeration device and its control method
JP2004085049A (en) Waste heat input type water cooling and heating machine and operation method
JPH0868572A (en) Dual-effect absorption refrigerator
JPH04151470A (en) Control device for absorption type cold-hot water heater
JPS6266068A (en) Air-cooled double-effect absorption water heater and chiller
JPH04217757A (en) Absorption cold and hot water device
JPH0758145B2 (en) Absorption cold / hot water device and its operating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees