JP7068861B2 - Chiller system - Google Patents

Chiller system Download PDF

Info

Publication number
JP7068861B2
JP7068861B2 JP2018035726A JP2018035726A JP7068861B2 JP 7068861 B2 JP7068861 B2 JP 7068861B2 JP 2018035726 A JP2018035726 A JP 2018035726A JP 2018035726 A JP2018035726 A JP 2018035726A JP 7068861 B2 JP7068861 B2 JP 7068861B2
Authority
JP
Japan
Prior art keywords
heat medium
ghp
ehp
heat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018035726A
Other languages
Japanese (ja)
Other versions
JP2019152347A (en
Inventor
貴史 宮越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2018035726A priority Critical patent/JP7068861B2/en
Publication of JP2019152347A publication Critical patent/JP2019152347A/en
Application granted granted Critical
Publication of JP7068861B2 publication Critical patent/JP7068861B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、熱需要部にて温熱又は冷熱を供給する第1熱媒体を循環する第1熱媒体循環路と、冷媒を循環する冷媒循環路と、当該冷媒循環路を循環する冷媒を圧縮するエンジン駆動式圧縮機とを有し、冷媒の凝縮熱又は蒸発熱により第1熱媒体を加熱又は冷却する形態で、第1熱媒体の温度を制御するGHPチラーを備えるチラーシステムに関する。 The present invention compresses a first heat medium circulation path that circulates a first heat medium that supplies hot or cold heat in a heat demand section, a refrigerant circulation path that circulates a refrigerant, and a refrigerant that circulates in the refrigerant circulation path. The present invention relates to a chiller system including an engine-driven compressor and a GHP chiller that controls the temperature of the first heat medium in a form of heating or cooling the first heat medium by the heat of condensation or evaporation of the refrigerant.

従来、特許文献1に示すように、熱需要部の対象物の加熱・冷却の用に供されるGHPチラーを備えたチラーシステムが知られている。
当該特許文献1に示されるチラーシステムは、冷媒循環路を循環する冷媒を圧縮するエンジン駆動式圧縮機と、冷媒循環路を循環する冷媒を膨張させる膨張弁と、エンジン駆動式圧縮機にて圧縮された冷媒の凝縮熱にて水等の第1熱媒体を加熱する加熱器、又は膨張弁にて膨張された冷媒の蒸発熱にて第1熱媒体を冷却する冷却器として働く第1熱媒体熱交換器と、空気等の第2熱媒体を放熱源として冷媒を凝縮する凝縮器、又は第2熱媒体を吸熱源として冷媒を蒸発する蒸発器として働く第2熱媒体熱交換器とを備えて構成されている。
当該チラーシステムは、エンジンを駆動源として備えるGHPチラーであり、当該GHPチラーは、負荷が大きい場合に高効率で運転できるメリットがあり、また、第1熱媒体を加熱する加熱運転等を実行する場合、排熱を利用することで、効率向上を図ることができるというメリットもある。
Conventionally, as shown in Patent Document 1, a chiller system including a GHP chiller used for heating / cooling an object of a heat demand unit is known.
The chiller system shown in Patent Document 1 is compressed by an engine-driven compressor that compresses the refrigerant circulating in the refrigerant circulation path, an expansion valve that expands the refrigerant circulating in the refrigerant circulation path, and an engine-driven compressor. A first heat medium that works as a heater that heats the first heat medium such as water with the heat of condensation of the generated refrigerant, or as a cooler that cools the first heat medium with the heat of evaporation of the refrigerant expanded by the expansion valve. A heat exchanger is provided with a condenser that condenses the refrigerant using a second heat medium such as air as a heat dissipation source, or a second heat medium heat exchanger that acts as an evaporator that evaporates the refrigerant using the second heat medium as a heat absorption source. It is composed of.
The chiller system is a GHP chiller equipped with an engine as a drive source, and the GHP chiller has an advantage that it can be operated with high efficiency when a load is large, and also executes a heating operation for heating a first heat medium. In this case, there is also an advantage that efficiency can be improved by using waste heat.

特開2014-052122号公報Japanese Unexamined Patent Publication No. 2014-052122

上記特許文献1に開示のGHPチラーにおいては、第1熱媒体を加熱する加熱運転又は第1熱媒体を冷却する冷却運転時等において、負荷が小さくなる場合、冷媒循環路における冷媒の循環量を低減するべく、エンジン駆動式圧縮機の回転数を低下させることになる。しかしながら、エンジン駆動式圧縮機の場合、回転数下限値が比較的高いため、圧縮機の回転を維持した状態では、負荷を十分に下げることができない。このため、例えば、負荷が30%以下となると、エンジン駆動式圧縮機をON/OFF制御する形態で、運転負荷を下げることになる。 In the GHP chiller disclosed in Patent Document 1, when the load is small during the heating operation for heating the first heat medium or the cooling operation for cooling the first heat medium, the circulation amount of the refrigerant in the refrigerant circulation path is determined. In order to reduce it, the rotation speed of the engine-driven compressor will be reduced. However, in the case of an engine-driven compressor, since the lower limit of the rotation speed is relatively high, the load cannot be sufficiently reduced while the compressor is maintained in rotation. Therefore, for example, when the load becomes 30% or less, the operating load is reduced in the form of ON / OFF control of the engine-driven compressor.

本発明は、上述の課題に鑑みてなされたものであり、その目的は、低負荷においても効率の低下を緩和できるチラーシステムを提供する点にある。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a chiller system capable of alleviating a decrease in efficiency even at a low load.

上記目的を達成するためのチラーシステムは、
熱需要部にて温熱又は冷熱を供給する第1熱媒体を循環する第1熱媒体循環路と、冷媒を循環する冷媒循環路と、当該冷媒循環路を循環する冷媒を圧縮するエンジン駆動式圧縮機とを有し、冷媒の凝縮熱又は蒸発熱により第1熱媒体を加熱又は冷却する形態で、第1熱媒体の温度を制御するGHPチラーを備えるチラーシステムであって、その特徴構成は、
前記冷媒循環路を循環する冷媒を圧縮する電気駆動式圧縮機を有し、冷媒の凝縮熱又は蒸発熱により第1熱媒体を加熱又は冷却する形態で、第1熱媒体の温度を制御するEHPチラーを備え
前記GHPチラーは、冷媒の凝縮熱又は蒸発熱により第1熱媒体を加熱又は冷却するGHP第1熱媒体熱交換器と、当該GHP第1熱媒体熱交換器に冷媒を循環する前記冷媒循環路としてのGHP冷媒循環路とを有し、
前記EHPチラーは、冷媒の凝縮熱又は蒸発熱により第1熱媒体を加熱又は冷却するEHP第1熱媒体熱交換器と、当該EHP第1熱媒体熱交換器に冷媒を循環する前記冷媒循環路としてのEHP冷媒循環路とを有し、
前記GHP冷媒循環路と前記EHP冷媒循環路とは各別に備え、
前記第1熱媒体循環路において、前記熱需要部を始点としたときの第1熱媒体通流方向で、前記EHP第1熱媒体熱交換器と前記GHP第1熱媒体熱交換器とを、上流側から記載の順に直列に設けている点にある。
The chiller system to achieve the above purpose is
Engine-driven compression that compresses the first heat medium circulation path that circulates the first heat medium that supplies hot or cold heat in the heat demand section, the refrigerant circulation path that circulates the refrigerant, and the refrigerant that circulates in the refrigerant circulation path. It is a chiller system equipped with a GHP chiller that controls the temperature of the first heat medium in the form of heating or cooling the first heat medium by the heat of condensation or evaporation of the refrigerant.
An EHP that has an electrically driven compressor that compresses the refrigerant that circulates in the refrigerant circulation path, and controls the temperature of the first heat medium in the form of heating or cooling the first heat medium by the heat of condensation or evaporation of the refrigerant. Equipped with a chiller
The GHP chiller includes a GHP first heat medium heat exchanger that heats or cools the first heat medium by the heat of condensation or evaporation of the refrigerant, and the refrigerant circulation path that circulates the refrigerant in the GHP first heat medium heat exchanger. With a GHP refrigerant circulation path as
The EHP chiller includes an EHP first heat medium heat exchanger that heats or cools the first heat medium by the heat of condensation or evaporation of the refrigerant, and the refrigerant circulation path that circulates the refrigerant in the EHP first heat medium heat exchanger. Has an EHP refrigerant circulation path as
The GHP refrigerant circulation path and the EHP refrigerant circulation path are separately provided.
In the first heat medium circulation path, the EHP first heat medium heat exchanger and the GHP first heat medium heat exchanger are placed in the first heat medium flow direction when the heat demand unit is the starting point. The point is that they are provided in series in the order described from the upstream side .

上記特徴構成を有するチラーシステムによれば、GHPチラーに加えて、低負荷においても比較的高い効率で運転可能なEHPチラーをも備えるから、例えば、低負荷においては、EHPチラーの運転容量比率を高くし、低負荷から高負荷へ負荷を増加させるに従って、GHPチラーの運転容量比率を徐々に高くするような制御を実行することができる。
これにより、低負荷から高負荷まで比較的高い効率を維持できるチラーシステムを実現することができる。
更に、通常、チラーシステムにより加熱又は冷却された第1熱媒体が供給される熱需要部では、比較的高い精度で温度制御することが望まれる場合が多い。
上記特徴構成によれば、第1熱媒体循環路において熱需要部を始点としたときの第1熱媒体通流方向で、EHPチラー熱交換器とGHPチラー熱交換器とを、上流側から記載の順に直列に設けているから、例えば、第1熱媒体循環路において、GHP第1熱媒体熱交換器の出口での第1熱媒体温度を、入力部にて受け付けた目標温度に制御している状態で、EHP第1熱媒体熱交換器の出口での第1熱媒体温度を制御するという比較的簡易な制御により、第1熱媒体の温度を所望の目標温度に精度良く制御しつつも、EHPとGHPとの運転容量比率を適切に制御することができる。
つまり、このような比較的簡易な制御を採用することにより、GHPチラーとEHPチラーの運転容量比率を、統一的に制御する制御システムを組まない構成、即ち、GHPチラーの運転容量を制御するGHP制御装置と、EHPチラーの運転容量を制御するEHP制御装置とを各別に備える構成であっても、精度良く第1熱媒体の温度を所望の目標温度に制御しつつも、EHPとGHPとの運転容量比率を適切に制御できるチラーシステムを実現できる。
また、上記特徴構成の如く、第1熱媒体循環路において、EHP第1熱媒体熱交換器とGHP第1熱媒体熱交換器とを、直列に設ける構成を採用することで、並列に設ける構成を採用する場合に比べ、EHP第1熱媒体熱交換器及びGHP第1熱媒体熱交換器への第1熱媒体の流量比率制御を行う弁体を省略することができ、構成の簡素化を図ることができる。
According to the chiller system having the above characteristic configuration, in addition to the GHP chiller, it also has an EHP chiller that can be operated with relatively high efficiency even at a low load. Therefore, for example, at a low load, the operating capacity ratio of the EHP chiller can be determined. Control can be performed to gradually increase the operating capacity ratio of the GHP chiller as the load is increased and the load is increased from low load to high load.
This makes it possible to realize a chiller system that can maintain relatively high efficiency from low load to high load.
Further, in the heat demand unit to which the first heat medium heated or cooled by the chiller system is usually supplied, it is often desired to control the temperature with relatively high accuracy.
According to the above characteristic configuration, the EHP chiller heat exchanger and the GHP chiller heat exchanger are described from the upstream side in the first heat medium flow direction when the heat demand portion is the starting point in the first heat medium circulation path. For example, in the first heat medium circulation path, the temperature of the first heat medium at the outlet of the GHP first heat medium heat exchanger is controlled to the target temperature received by the input unit. While the temperature of the first heat medium is accurately controlled to a desired target temperature by a relatively simple control of controlling the temperature of the first heat medium at the outlet of the EHP first heat medium heat exchanger in the state of being present. , The operating capacity ratio between EHP and GHP can be appropriately controlled.
That is, by adopting such a relatively simple control, a configuration that does not form a control system that uniformly controls the operating capacity ratio of the GHP chiller and the EHP chiller, that is, the GHP that controls the operating capacity of the GHP chiller. Even in a configuration in which a control device and an EHP control device for controlling the operating capacity of the EHP chiller are separately provided, the temperature of the first heat medium is accurately controlled to a desired target temperature, and the EHP and GHP are combined. It is possible to realize a chiller system that can appropriately control the operating capacity ratio.
Further, as in the above-mentioned characteristic configuration, in the first heat medium circulation path, the EHP first heat medium heat exchanger and the GHP first heat medium heat exchanger are provided in series by adopting a configuration in which the EHP first heat medium heat exchanger is provided in parallel. Compared with the case of adopting the above, the valve body that controls the flow rate ratio of the first heat medium to the EHP first heat medium heat exchanger and the GHP first heat medium heat exchanger can be omitted, and the configuration can be simplified. Can be planned.

チラーシステムの更なる特徴構成は、
現状の負荷における全運転容量に対する前記GHPチラーの運転容量比率及び前記EHPチラーの運転容量比率を制御する運転容量比率制御を実行する制御装置を備え、
前記制御装置は、前記GHP第1熱媒体熱交換器の入口の第1熱媒体の温度であるGHP第1熱媒体入口温度と出口の第1熱媒体の温度であるGHP第1熱媒体出口温度との温度差であるGHP第1熱媒体温度差と、前記EHP第1熱媒体熱交換器の入口の第1熱媒体の温度であるEHP第1熱媒体入口温度と出口の第1熱媒体の温度であるEHP第1熱媒体出口温度との温度差であるEHP第1熱媒体温度差との比率である温度差比率を変更する形態で、前記運転容量比率制御を実行する点にある。
Further features of the chiller system are
A control device for executing operation capacity ratio control for controlling the operation capacity ratio of the GHP chiller and the operation capacity ratio of the EHP chiller with respect to the total operation capacity under the current load is provided.
The control device has a GHP first heat medium inlet temperature which is the temperature of the first heat medium at the inlet of the GHP first heat medium heat exchanger and a GHP first heat medium outlet temperature which is the temperature of the first heat medium at the outlet. The GHP first heat medium temperature difference, which is the temperature difference between the two, and the EHP first heat medium inlet temperature, which is the temperature of the first heat medium at the inlet of the EHP first heat medium heat exchanger, and the first heat medium at the outlet. The point is to execute the operation capacity ratio control in a form of changing the temperature difference ratio, which is the ratio of the temperature difference from the EHP first heat medium outlet temperature, which is the temperature, to the EHP first heat medium temperature difference.

上記制御を採用することにより、より一層簡易な制御にて、EHPとGHPとの運転容量比率を制御することができるから、制御装置として、EHPチラーの運転容量を制御するEHP制御装置とを各別に備える構成であっても、適切に精度良く第1熱媒体の温度を所望の目標温度に制御できるチラーシステムを実現できる。 By adopting the above control, the operating capacity ratio between the EHP and the GHP can be controlled by a simpler control. Therefore, as a control device, an EHP control device for controlling the operating capacity of the EHP chiller is used. Even if the configuration is separately provided, it is possible to realize a chiller system capable of controlling the temperature of the first heat medium to a desired target temperature appropriately and accurately.

これまで説明してきたチラーシステムでは、
前記制御装置は、前記運転容量比率制御において、前記GHPチラーの運転容量比率と前記EHPチラーの運転容量比率との比に対応して、前記GHP第1熱媒体温度差と前記EHP第1熱媒体温度差との比を制御することが好ましい。
In the chiller system described so far,
In the operation capacity ratio control, the control device corresponds to the ratio between the operation capacity ratio of the GHP chiller and the operation capacity ratio of the EHP chiller, and corresponds to the temperature difference between the GHP first heat medium and the EHP first heat medium. It is preferable to control the ratio with the temperature difference.

チラーシステムの更なる特徴構成は、
前記制御装置は、前記GHP第1熱媒体熱交換器及び前記EHP第1熱媒体熱交換器の入口での第1熱媒体の温度と、前記GHP第1熱媒体熱交換器及び前記EHP第1熱媒体熱交換器を通過する冷媒の温度との温度差である冷媒温度差が、補正判定温度差を超えている場合、
前記冷媒温度差が小さくなるように、前記GHP第1熱媒体熱交換器及び前記EHP第1熱媒体熱交換器を通過する冷媒の温度を制御する冷媒温度補正制御を実行する点にある。
Further features of the chiller system are
The control device includes the temperature of the first heat medium at the inlets of the GHP first heat medium heat exchanger and the EHP first heat medium heat exchanger, and the GHP first heat medium heat exchanger and the EHP first. When the refrigerant temperature difference, which is the temperature difference from the temperature of the refrigerant passing through the heat medium heat exchanger, exceeds the correction judgment temperature difference.
The point is to execute the refrigerant temperature correction control for controlling the temperature of the refrigerant passing through the GHP first heat medium heat exchanger and the EHP first heat medium heat exchanger so that the refrigerant temperature difference becomes small.

以下、上記特徴構成の作用効果に関し、GHPチラーにおいて、冷却運転を実行する場合を例として、図2も参照しながら、説明する。
尚、当該作用効果は、EHPチラーであっても同一であり、また、加熱運転をする場合であっても、同一である。
チラーシステムにあっては、理論上は、冷媒循環路を循環する冷媒流量が一定である場合で、GHPチラーにおいて冷却運転を実行するとき、即ち、GHP第1熱媒体熱交換器が、第1熱媒体を冷却する冷却器として働くときには、GHP第1熱媒体熱交換器における冷媒温度(蒸発温度)を高く設定するほど、圧縮機における圧縮仕事は減少し投入エネルギ(図2でW)は減少するが、蒸発過程でのエンタルピー(図2でh)は少し増加(図2でΔh)するため、成績係数((h+Δh)/(W-ΔW))は高くなる。
そこで、上記特徴構成にあっては、制御装置は、チラーシステムの効率向上を図るべく、GHP第1熱媒体熱交換器の入口での第1熱媒体の温度と、GHP第1熱媒体熱交換器を通過する冷媒の温度(蒸発温度)との温度差である冷媒温度差が小さくなるように、GHP第1熱媒体熱交換器を通過する冷媒の温度(蒸発温度)を上昇させる冷媒温度補正制御を行う。
しかしながら、実際には、このように蒸発温度を高くする場合、GHP第1熱媒体熱交換器での第1熱媒体の温度と冷媒の温度との温度差である冷媒温度差が小さくなるため、第1熱媒体と冷媒との熱交換に要する時間が長くなり、十分な仕事量を確保できない虞がある。
そこで、上記特徴構成にあっては、上記冷媒温度補正制御では、GHP第1熱媒体熱交換器の入口での第1熱媒体の温度と、GHP第1熱媒体熱交換器を通過する冷媒の温度(蒸発温度)との温度差である冷媒温度差が、補正判定温度差(例えば、5℃以上6℃以下程度の温度差)を超えている場合であって、冷媒温度(蒸発温度)を上昇させたとしても、GHP第1熱媒体熱交換器において十分な仕事量を確保できると想定される場合に、冷媒温度差が小さくなるように(例えば、5℃以上6℃以下程度の温度差まで小さくなるように)、GHP第1熱媒体熱交換器を通過する冷媒の温度を制御する、具体的には、膨張弁の弁開度と、エンジン駆動式圧縮機の回転数及びトルクを制御するのである。
Hereinafter, the operation and effect of the above-mentioned feature configuration will be described with reference to FIG. 2 as an example of a case where a cooling operation is executed in a GHP chiller.
The action and effect are the same even in the case of the EHP chiller, and are the same even in the case of the heating operation.
In the chiller system, theoretically, when the cooling operation is performed in the GHP chiller when the flow rate of the refrigerant circulating in the refrigerant circulation path is constant, that is, the GHP first heat medium heat exchanger is the first. When working as a cooler for cooling the heat medium, the higher the refrigerant temperature (evaporation temperature) in the GHP 1st heat medium heat exchanger is set, the less the compression work in the compressor and the lower the input energy (W in FIG. 2). However, since the enthalpy (h in FIG. 2) in the evaporation process increases slightly (Δh in FIG. 2), the performance coefficient ((h + Δh) / (W−ΔW)) becomes high.
Therefore, in the above-mentioned characteristic configuration, the control device has the temperature of the first heat medium at the inlet of the GHP first heat medium heat exchanger and the GHP first heat medium heat exchange in order to improve the efficiency of the chiller system. Refrigerator temperature correction that raises the temperature of the refrigerant passing through the GHP first heat medium heat exchanger (evaporation temperature) so that the refrigerant temperature difference, which is the temperature difference from the temperature of the refrigerant passing through the vessel (evaporation temperature), becomes small. Take control.
However, in reality, when the evaporation temperature is increased in this way, the refrigerant temperature difference, which is the temperature difference between the temperature of the first heat medium and the temperature of the refrigerant in the GHP first heat medium heat exchanger, becomes small. The time required for heat exchange between the first heat medium and the refrigerant becomes long, and there is a risk that a sufficient amount of work cannot be secured.
Therefore, in the above-mentioned characteristic configuration, in the above-mentioned refrigerant temperature correction control, the temperature of the first heat medium at the inlet of the GHP first heat medium heat exchanger and the refrigerant passing through the GHP first heat medium heat exchanger are used. When the refrigerant temperature difference, which is the temperature difference from the temperature (evaporation temperature), exceeds the correction determination temperature difference (for example, the temperature difference of about 5 ° C. or higher and 6 ° C. or lower), the refrigerant temperature (evaporation temperature) is determined. Even if it is increased, when it is assumed that a sufficient work load can be secured in the GHP first heat medium heat exchanger, the temperature difference of the refrigerant is reduced (for example, a temperature difference of about 5 ° C. or higher and 6 ° C. or lower). Controls the temperature of the refrigerant passing through the GHP 1st heat medium heat exchanger, specifically, the valve opening of the expansion valve and the rotation speed and torque of the engine-driven compressor. To do.

チラーシステムの更なる特徴構成は、
現状の負荷における全運転容量に対する前記GHPチラーの運転容量比率及び前記EHPチラーの運転容量比率を制御する制御装置を備え、
前記制御装置は、前記熱需要部での第1熱媒体の目標温度を取得可能に構成され、
前記制御装置は、前記熱需要部が設けられ電気事業者から電力の供給を受ける施設における電力デマンドを予測する電力デマンド予測処理を実行し、
前記電気事業者との間で決定された前記施設の電力使用量の最大値である契約電力を、前記電力デマンド予測処理にて予測される前記施設の電力デマンドが超えないように、前記EHPチラーの運転容量比率を制御するデマンド制御を実行し、
前記デマンド制御している状態で、前記第1熱媒体循環路において前記熱需要部を始点としたときの第1熱媒体通流方向で、前記GHP第1熱媒体熱交換器の出口の第1熱媒体の温度が前記目標温度となるように前記GHPチラーの運転容量比率を制御する点にある。
Further features of the chiller system are
A control device for controlling the operating capacity ratio of the GHP chiller and the operating capacity ratio of the EHP chiller to the total operating capacity under the current load is provided.
The control device is configured to be able to acquire the target temperature of the first heat medium in the heat demand unit.
The control device executes a power demand prediction process for predicting a power demand in a facility where the heat demand unit is provided and power is supplied from an electric power company.
The EHP chiller so that the contracted power, which is the maximum value of the power consumption of the facility determined with the electric power company, does not exceed the power demand of the facility predicted by the power demand prediction process. Execute demand control to control the operating capacity ratio of
In the state of demand control, the first outlet of the GHP first heat medium heat exchanger is in the first heat medium flow direction when the heat demand unit is the starting point in the first heat medium circulation path. The point is to control the operating capacity ratio of the GHP chiller so that the temperature of the heat medium becomes the target temperature.

上記特徴構成によれば、GHPチラーとEHPチラーの運転容量比率を、統一的に制御する制御システムを組まない構成、即ち、GHPチラーの運転容量比率を制御するGHP制御装置と、EHPチラーの運転容量比率を制御するEHP制御装置とを各別に備える構成であっても、電力デマンドが契約電力を超えないように制御しつつ、EHPチラーとGHPチラーとの運転容量比率を適切に制御でき、且つ第1熱媒体の温度を精度良く所望の目標温度に制御できる。 According to the above feature configuration, a configuration that does not form a control system that uniformly controls the operating capacity ratio of the GHP chiller and the EHP chiller, that is, the GHP control device that controls the operating capacity ratio of the GHP chiller and the operation of the EHP chiller. Even if the EHP control device for controlling the capacity ratio is separately provided, the operating capacity ratio between the EHP chiller and the GHP chiller can be appropriately controlled while controlling the power demand so as not to exceed the contracted power. The temperature of the first heat medium can be accurately controlled to a desired target temperature.

これまで説明してきたチラーシステムは、
前記GHPチラーの運転を制御するGHP制御装置と、前記EHPチラーの運転を制御するEHP制御装置とを互いに独立して各別に備えていることが好ましい。
The chiller system described so far is
It is preferable that the GHP control device for controlling the operation of the GHP chiller and the EHP control device for controlling the operation of the EHP chiller are provided independently of each other.

これまで説明してきたチラーシステムにあっては、GHP制御装置とEHP制御装置とは、負荷毎の運転容量比率のマップさえ記憶しておれば、互いに独立した制御であっても、適切な運転容量比率を保ちつつ、熱需部に導かれる第1熱媒体の温度を精度良く制御できるGHPとEHPとのハイブリッドチラーシステムを実現できる。 In the chiller system described so far, the GHP control device and the EHP control device have appropriate operating capacities even if they are controlled independently of each other as long as they store a map of the operating capacity ratio for each load. It is possible to realize a hybrid chiller system of GHP and EHP that can accurately control the temperature of the first heat medium guided to the heat demand unit while maintaining the ratio.

本発明の実施形態に係るチラーシステムの概略構成図Schematic block diagram of the chiller system according to the embodiment of the present invention 温度差補正制御の効果を説明するためのPh線図Ph diagram to explain the effect of temperature difference correction control

本発明の実施形態に係るチラーシステム100は、低負荷においても高い効率で運転できるものに関する。
チラーシステム100は、図1に示すように、電気事業者Deから電力の供給を受けて運転するよう構成されているGHPチラー30及びEHPチラー40を備えて構成されている。電気事業者Deは、チラーシステム100が設けられる施設へ電力を供給する。
GHPチラー30には、その運転を制御するGHP制御装置31が設けられており、EHPチラー40には、その運転を制御するEHP制御装置41が設けられており、当該実施形態にあっては、GHP制御装置31とEHP制御装置41とが、互いに独立して各別に設けられている。
つまり、当該実施形態に係るチラーシステム100にあっては、GHPチラー30のGHP制御装置31による運転制御と、EHPチラー40のEHP制御装置41による運転制御とは、夫々、独立して実行され、GHP制御装置31とEHP制御装置41とは、互いに通信しない構成を採用している。
The chiller system 100 according to the embodiment of the present invention relates to a system that can be operated with high efficiency even at a low load.
As shown in FIG. 1, the chiller system 100 includes a GHP chiller 30 and an EHP chiller 40 that are configured to be operated by receiving electric power from the electric power company De. The electric power company De supplies electric power to the facility where the chiller system 100 is installed.
The GHP chiller 30 is provided with a GHP control device 31 for controlling its operation, and the EHP chiller 40 is provided with an EHP control device 41 for controlling its operation. The GHP control device 31 and the EHP control device 41 are provided separately from each other independently of each other.
That is, in the chiller system 100 according to the embodiment, the operation control by the GHP control device 31 of the GHP chiller 30 and the operation control by the EHP control device 41 of the EHP chiller 40 are executed independently. The GHP control device 31 and the EHP control device 41 adopt a configuration in which they do not communicate with each other.

GHPチラー30は、冷媒循環路としてのGHP冷媒循環路C1と、当該GHP冷媒循環路C1を循環する冷媒を圧縮するエンジン駆動式圧縮機35とを有し、冷媒の凝縮熱又は蒸発熱により第1熱媒体を加熱又は冷却する形態で、第1熱媒体の温度を制御する。
説明を追加すると、GHPチラー30は、図1に示すように、エンジンEにて駆動されるエンジン駆動式圧縮機35と、GHP冷媒循環路C1を循環する冷媒を膨張するGHP膨張弁32と、冷媒の凝縮熱又は蒸発熱により第1熱媒体を加熱又は冷却するGHP第1熱媒体熱交換器33と、冷媒と室外空気とを熱交換する形態で冷媒を凝縮又は蒸発させるGHP空気熱交換器36とを備えて構成されている。
更に、GHP冷媒循環路C1には、エンジン駆動式圧縮機35、GHP第1熱媒体熱交換器33、GHP膨張弁32、及びGHP空気熱交換器36とに記載の順に冷媒を通流させる加熱運転と、エンジン駆動式圧縮機35、GHP空気熱交換器36、GHP膨張弁32、及びGHP第1熱媒体熱交換器33とに記載の順に冷媒を通流させる冷却運転とを切り替えるGHP四方弁34が設けられている。
The GHP chiller 30 has a GHP refrigerant circulation path C1 as a refrigerant circulation path and an engine-driven compressor 35 for compressing the refrigerant circulating in the GHP refrigerant circulation path C1. 1 The temperature of the first heat medium is controlled in the form of heating or cooling the heat medium.
To add an explanation, as shown in FIG. 1, the GHP chiller 30 includes an engine-driven compressor 35 driven by the engine E, a GHP expansion valve 32 that expands the refrigerant circulating in the GHP refrigerant circulation path C1, and a GHP expansion valve 32. The GHP first heat medium heat exchanger 33 that heats or cools the first heat medium by the heat of condensation or evaporation of the refrigerant, and the GHP air heat exchanger that condenses or evaporates the refrigerant in the form of heat exchange between the refrigerant and the outdoor air. It is configured to include 36.
Further, the GHP refrigerant circulation path C1 is heated by passing the refrigerant in the order described in the engine drive type compressor 35, the GHP first heat medium heat exchanger 33, the GHP expansion valve 32, and the GHP air heat exchanger 36. A GHP four-way valve that switches between operation and cooling operation in which the refrigerant flows in the order described in the engine-driven compressor 35, the GHP air heat exchanger 36, the GHP expansion valve 32, and the GHP first heat medium heat exchanger 33. 34 is provided.

EHPチラー40は、冷媒循環路としてのEHP冷媒循環路C2と、当該EHP冷媒循環路C2を循環する冷媒を圧縮する電気駆動式圧縮機45とを有し、冷媒の凝縮熱又は蒸発熱により第1熱媒体を加熱又は冷却する形態で、第1熱媒体の温度を制御する。
説明を追加すると、EHPチラー40は、図1に示すように、モータMにて駆動される電気駆動式圧縮機45と、EHP冷媒循環路C2を循環する冷媒を膨張するEHP膨張弁42と、冷媒の凝縮熱又は蒸発熱により第1熱媒体を加熱又は冷却するEHP第1熱媒体熱交換器43と、冷媒と室外空気とを熱交換する形態で冷媒を凝縮又は蒸発させるEHP空気熱交換器46とを備えて構成されている。
更に、EHP冷媒循環路C2には、電気駆動式圧縮機45、EHP第1熱媒体熱交換器43、EHP膨張弁42、及びEHP空気熱交換器46とに記載の順に冷媒を通流させる加熱運転と、電気駆動式圧縮機45、EHP空気熱交換器46、EHP膨張弁42、及びEHP第1熱媒体熱交換器43とに記載の順に冷媒を通流させる冷却運転とを切り替えるEHP四方弁44が設けられている。
The EHP chiller 40 has an EHP refrigerant circulation path C2 as a refrigerant circulation path and an electrically driven compressor 45 for compressing the refrigerant circulating in the EHP refrigerant circulation path C2, and the EHP chiller 40 is the first due to the heat of condensation or evaporation of the refrigerant. 1 The temperature of the first heat medium is controlled in the form of heating or cooling the heat medium.
To add an explanation, as shown in FIG. 1, the EHP chiller 40 includes an electric drive type compressor 45 driven by a motor M, an EHP expansion valve 42 for expanding a refrigerant circulating in an EHP refrigerant circulation path C2, and an EHP expansion valve 42. The EHP first heat medium heat exchanger 43 that heats or cools the first heat medium by the heat of condensation or evaporation of the refrigerant, and the EHP air heat exchanger that condenses or evaporates the refrigerant in the form of heat exchange between the refrigerant and the outdoor air. It is configured to include 46.
Further, the EHP refrigerant circulation path C2 is heated by passing the refrigerant in the order described in the electric drive type compressor 45, the EHP first heat medium heat exchanger 43, the EHP expansion valve 42, and the EHP air heat exchanger 46. EHP four-way valve that switches between operation and cooling operation in which the refrigerant flows in the order described in the electric drive type compressor 45, the EHP air heat exchanger 46, the EHP expansion valve 42, and the EHP first heat medium heat exchanger 43. 44 is provided.

即ち、当該実施形態に係るチラーシステム100は、GHP冷媒循環路C1とEHP冷媒循環路C2とを各別に備えている。 That is, the chiller system 100 according to the embodiment separately includes a GHP refrigerant circulation path C1 and an EHP refrigerant circulation path C2.

チラーシステム100では、熱需要部50にて温熱又は冷熱を供給する水等の第1熱媒体を循環する第1熱媒体循環路C3が設けられており、当該第1熱媒体循環路C3には、第1熱媒体を圧送する圧送ポンプPが設けられると共に、熱需要部50を始点としたときの第1熱媒体通流方向で、EHP第1熱媒体熱交換器43とGHP第1熱媒体熱交換器33とが上流側から記載の順に直列に設けられている。
熱需要部50は、設定入力部(図示せず)にて設定される目標温度と第1熱媒体の温度とから上記圧送ポンプPの回転数を制御する。
In the chiller system 100, the heat demand unit 50 is provided with a first heat medium circulation path C3 that circulates a first heat medium such as water that supplies hot or cold heat, and the first heat medium circulation path C3 is provided. , A pressure feed pump P for pumping the first heat medium is provided, and the EHP first heat medium heat exchanger 43 and the GHP first heat medium are provided in the direction of flow of the first heat medium when the heat demand unit 50 is the starting point. The heat exchanger 33 is provided in series from the upstream side in the order described.
The heat demand unit 50 controls the rotation speed of the pump P from the target temperature set by the setting input unit (not shown) and the temperature of the first heat medium.

更に、当該第1熱媒体循環路C3には、熱需要部50を始点としたときの第1熱媒体通流方向で、EHP第1熱媒体熱交換器43の入口の第1熱媒体の温度(熱需要部50とEHP第1熱媒体熱交換器43との間の温度)を計測する第1温度センサS1、EHP第1熱媒体熱交換器43の出口(GHP第1熱媒体熱交換器33の入口)の第1熱媒体の温度を計測する第2温度センサS2、GHP第1熱媒体熱交換器33の出口の第1熱媒体の温度(GHP第1熱媒体熱交換器33と熱需要部50との間の温度)を計測する第3温度センサS3とを備えている。また、第1熱媒体循環路C3を通流する第1熱媒体の流量を計測する流量センサS4が設けられている。
GHP制御装置31及びEHP制御装置41の夫々は、熱需要部50の設定入力部(図示せず)にて入力された第1熱媒体の目標温度、第1温度センサS1にて計測される温度、第2温度センサS2にて計測される温度、第3温度センサS3にて計測される温度、及び流量センサS4にて計測される流量とを受信可能に構成されている。
Further, in the first heat medium circulation path C3, the temperature of the first heat medium at the inlet of the EHP first heat medium heat exchanger 43 in the flow direction of the first heat medium when the heat demand unit 50 is the starting point. The outlets of the first temperature sensor S1 and the EHP first heat medium heat exchanger 43 (GHP first heat medium heat exchanger 43) for measuring (the temperature between the heat demand unit 50 and the EHP first heat medium heat exchanger 43). Second temperature sensor S2 for measuring the temperature of the first heat medium at the inlet of 33), the temperature of the first heat medium at the outlet of the GHP first heat medium heat exchanger 33 (GHP first heat medium heat exchanger 33 and heat) It is provided with a third temperature sensor S3 that measures the temperature between the demand unit 50 and the heat unit 50. Further, a flow rate sensor S4 for measuring the flow rate of the first heat medium passing through the first heat medium circulation path C3 is provided.
In each of the GHP control device 31 and the EHP control device 41, the target temperature of the first heat medium input by the setting input unit (not shown) of the heat demand unit 50 and the temperature measured by the first temperature sensor S1. , The temperature measured by the second temperature sensor S2, the temperature measured by the third temperature sensor S3, and the flow rate measured by the flow rate sensor S4 are configured to be receivable.

尚、当該実施形態に係るチラーシステム100にあっては、上述したように、GHP制御装置31とEHP制御装置41とが各別に設けられ互いに通信しない簡易な構成を採用しているが、このような構成にあっても、熱需要部50での加熱冷却負荷に基づいて、GHPチラー30及びEHPチラー40夫々の運転容量比率が適切に制御される構成が採用されている。
換言すると、GHP制御装置31及びEHP制御装置41は、現状の負荷における全運転量に対するGHPチラー30の運転容量比率及びEHPチラー40の運転容量比率を制御する運転容量比率制御を実行可能に構成されている。
As described above, the chiller system 100 according to the embodiment employs a simple configuration in which the GHP control device 31 and the EHP control device 41 are separately provided and do not communicate with each other. Even in such a configuration, a configuration is adopted in which the operating capacity ratios of the GHP chiller 30 and the EHP chiller 40 are appropriately controlled based on the heating / cooling load in the heat demand unit 50.
In other words, the GHP control device 31 and the EHP control device 41 are configured to be able to execute the operation capacity ratio control that controls the operation capacity ratio of the GHP chiller 30 and the operation capacity ratio of the EHP chiller 40 with respect to the total operation amount under the current load. ing.

説明を追加すると、GHP制御装置31及びEHP制御装置41の夫々は、熱需要部50の設定入力部にて設定された目標温度と第1温度センサS1にて計測される温度との温度差に、流量センサS4にて計測される流量を積算して、熱需要部50での要求負荷を導出する。
GHP制御装置31及びEHP制御装置41の夫々は、各負荷における自身の運転容量比率の関係を示す運転制御マップを記憶しており、上述の導出された負荷における自身の運転容量比率を運転制御マップから呼び出す。
GHP制御装置31及びEHP制御装置41の夫々は、GHP第1熱媒体熱交換器33の入口の第1熱媒体の温度であるGHP第1熱媒体入口温度(第2温度センサS2にて計測される温度)と出口の第1熱媒体の温度であるGHP第1熱媒体出口温度(第3温度センサS3にて計測される温度)との温度差であるGHP第1熱媒体温度差と、EHP第1熱媒体熱交換器43の入口の第1熱媒体の温度であるEHP第1熱媒体入口温度(第1温度センサS1にて計測される温度)と出口の第1熱媒体の温度であるEHP第1熱媒体出口温度(第2温度センサS2にて計測される温度)との温度差であるEHP第1熱媒体温度差との比率を変更する形態で、運転容量比率制御を実行する。
具体的には、GHP制御装置31及びEHP制御装置41の夫々は、運転容量比率制御において、GHPチラー30の運転容量比率とEHPチラー40の運転容量比率との比に対応して、GHP第1熱媒体温度差とEHP第1熱媒体温度差との比を制御する。
当該実施形態においては、GHP制御装置31及びEHP制御装置41の夫々は、運転容量比率制御において、GHPチラー30の運転容量比率とEHPチラー40の運転容量比率との比を、GHP第1熱媒体温度差とEHP第1熱媒体温度差の比に一致させる制御を実行する。
Adding an explanation, the GHP control device 31 and the EHP control device 41 each have a temperature difference between the target temperature set by the setting input unit of the heat demand unit 50 and the temperature measured by the first temperature sensor S1. , The flow rate measured by the flow rate sensor S4 is integrated to derive the required load in the heat demand unit 50.
Each of the GHP control device 31 and the EHP control device 41 stores an operation control map showing the relationship of its own operation capacity ratio in each load, and the operation control map shows its own operation capacity ratio in the above-derived derived load. Call from.
Each of the GHP control device 31 and the EHP control device 41 is measured by the GHP first heat medium inlet temperature (measured by the second temperature sensor S2), which is the temperature of the first heat medium at the inlet of the GHP first heat medium heat exchanger 33. GHP first heat medium temperature difference, which is the temperature difference between GHP first heat medium outlet temperature (temperature measured by the third temperature sensor S3), which is the temperature of the first heat medium at the outlet, and EHP. EHP first heat medium inlet temperature (temperature measured by the first temperature sensor S1) which is the temperature of the first heat medium at the inlet of the first heat medium heat exchanger 43 and the temperature of the first heat medium at the outlet. The operating capacity ratio control is executed in a form of changing the ratio of the temperature difference from the EHP first heat medium outlet temperature (the temperature measured by the second temperature sensor S2) to the EHP first heat medium temperature difference.
Specifically, each of the GHP control device 31 and the EHP control device 41 corresponds to the ratio between the operating capacity ratio of the GHP chiller 30 and the operating capacity ratio of the EHP chiller 40 in the operating capacity ratio control, and the GHP first. The ratio between the heat medium temperature difference and the EHP first heat medium temperature difference is controlled.
In the embodiment, each of the GHP control device 31 and the EHP control device 41 sets the ratio of the operating capacity ratio of the GHP chiller 30 to the operating capacity ratio of the EHP chiller 40 in the operating capacity ratio control as the GHP first heat medium. Control is performed to match the ratio between the temperature difference and the temperature difference of the EHP first heat medium.

通常、チラーシステム100では、熱需要部50にて要求される目標温度を、比較的高精度に満たす必要があるが、上記特徴構成によれば、GHPチラー30は、GHP第1熱媒体熱交換器33の出口温度を、第1熱媒体の目標温度に制御するシンプルな制御が実行されるから、熱需要部50へ導かれる第1熱媒体を、比較的高い精度で目標温度に制御できる。更に、GHPチラー30とEHPチラー40との夫々は、GHP第1熱媒体熱交換器33を通過前後の第1熱媒体の温度差と、及びEHP第1熱媒体熱交換器43を通過前後の第1熱媒体の温度差との比率を、運転容量比率に合わせるという比較的簡易な制御により、運転容量比率を所望の値に制御することができる。 Normally, in the chiller system 100, it is necessary to satisfy the target temperature required by the heat demand unit 50 with relatively high accuracy. However, according to the above-mentioned feature configuration, the GHP chiller 30 is the GHP first heat medium heat exchange. Since simple control for controlling the outlet temperature of the vessel 33 to the target temperature of the first heat medium is executed, the first heat medium guided to the heat demand unit 50 can be controlled to the target temperature with relatively high accuracy. Further, the GHP chiller 30 and the EHP chiller 40 each have a temperature difference of the first heat medium before and after passing through the GHP first heat medium heat exchanger 33, and before and after passing through the EHP first heat medium heat exchanger 43. The operating capacity ratio can be controlled to a desired value by a relatively simple control of adjusting the ratio with the temperature difference of the first heat medium to the operating capacity ratio.

ここで、電気事業者Deから供給される電力は、電力線Dにより、施設の各電力負荷へ供給されるように構成されている。施設が電気事業者Deから電力線Dを介して受電する実際の受電電力は、受電電力測定部10を用いて測定される。
当該実施形態に係るチラーシステム100では、デマンド制御をも実行可能に構成されている。
具体的には、EHP制御装置41は、受電電力測定部10の測定結果に基づいて、電気事業者Deから電力の供給を受ける熱需要部50が設けられる施設(図示せず)における電力デマンドを予測する電力デマンド予測処理を実行し、電気事業者Deとの間で決定された施設の電力使用量の最大値である契約電力を、電力デマンド予測処理にて予測される施設の電力デマンドが超えないように、EHPチラー40の運転容量比率を制御するデマンド制御を実行する。
更に、GHP制御装置31は、EHP制御装置41がデマンド制御している状態で、第1熱媒体循環路C3において熱需要部50を始点としたときの第1熱媒体通流方向で、GHP第1熱媒体熱交換器33の出口の第1熱媒体の温度(第3温度センサS3にて計測される温度)が目標温度となるように、GHPチラー30の運転容量比率を制御する。
Here, the electric power supplied from the electric power company De is configured to be supplied to each electric power load of the facility by the electric power line D. The actual received power received by the facility from the electric power company De via the power line D is measured by using the received power measuring unit 10.
The chiller system 100 according to the embodiment is configured to be able to execute demand control as well.
Specifically, the EHP control device 41 determines the power demand in the facility (not shown) in which the heat demand unit 50 that receives power from the electric power company De is provided, based on the measurement result of the power received power measuring unit 10. The power demand of the facility predicted by the power demand prediction process exceeds the contracted power, which is the maximum value of the power consumption of the facility determined with the electric power company De by executing the predicted power demand prediction process. Demand control for controlling the operating capacity ratio of the EHP chiller 40 is executed so as not to be present.
Further, the GHP control device 31 is in a state where the EHP control device 41 is demand-controlled, and the GHP control device 31 is the GHP first in the first heat medium flow direction when the heat demand unit 50 is the starting point in the first heat medium circulation path C3. 1 The operating capacity ratio of the GHP chiller 30 is controlled so that the temperature of the first heat medium at the outlet of the heat exchanger 33 (the temperature measured by the third temperature sensor S3) becomes the target temperature.

当該制御により、GHPチラー30の運転容量比率を制御するGHP制御装置31と、EHPチラー40の運転容量比率を制御するEHP制御装置41とを各別に備える構成であっても、電力デマンドが契約電力を超えないように制御しつつ、GHPチラー30とEHPチラー40との運転容量比率を適切に制御でき、且つ第1熱媒体の温度を精度良く所望の目標温度に制御できる。 Even if the GHP control device 31 that controls the operating capacity ratio of the GHP chiller 30 and the EHP control device 41 that controls the operating capacity ratio of the EHP chiller 40 are separately provided by the control, the power demand is the contract power. The operating capacity ratio between the GHP chiller 30 and the EHP chiller 40 can be appropriately controlled while controlling so as not to exceed the above, and the temperature of the first heat medium can be accurately controlled to a desired target temperature.

〔別実施形態〕
(1)上記実施形態において、GHP制御装置31とEHP制御装置41とは、互いに独立して別体に設けられ、且つ互いに通信しない状態で設けられている構成例を示した。
しかしながら、GHP制御装置31とEHP制御装置41とは、一体の制御装置として構成しても構わない。又は、互いに通信する状態で設けられていても構わない。
[Another Embodiment]
(1) In the above embodiment, the configuration example in which the GHP control device 31 and the EHP control device 41 are provided independently of each other and in a state of not communicating with each other is shown.
However, the GHP control device 31 and the EHP control device 41 may be configured as an integrated control device. Alternatively, it may be provided in a state of communicating with each other.

(2)上記実施形態では、GHP制御装置31及びEHP制御装置41の夫々は、GHP第1熱媒体温度差とEHP第1熱媒体温度差との比率を変更する形態で、運転容量比率制御を実行する例を示した。
当該温度差については、以下の如く補正しても構わない。
因みに、以下では、説明を簡略化するべく、GHPチラー30で冷却運転を実行する場合を例として説明するが、EHPチラー40においても同様の論理が成立し、また、加熱運転においても同様の論理が成立する。
GHPチラー30にあっては、理論上は、図2に示すように、GHP冷媒循環路C1を循環する冷媒流量が一定である場合で、GHPチラー30において冷却運転を実行するとき、即ち、GHP第1熱媒体熱交換器33が、第1熱媒体を冷却する冷却器として働くときには、GHP第1熱媒体熱交換器33における冷媒温度(蒸発温度)を高く設定するほど、エンジン駆動式圧縮機35における圧縮仕事(図2でW)は減少するが、冷媒の蒸発過程でのエンタルピー変化量(図2でh)は少し増加(図2でΔh)するため、成績係数((h+Δh)/(W-ΔW))は高くなる。
そこで、上記特徴構成にあっては、GHP制御装置31は、チラーシステム100の効率向上を図るべく、GHP第1熱媒体熱交換器33の入口での第1熱媒体の温度(第2温度センサS2で計測される温度)と、GHP第1熱媒体熱交換器33を通過する冷媒の温度(蒸発温度)との温度差である冷媒温度差が小さくなるように、GHP第1熱媒体熱交換器33を通過する冷媒の温度(蒸発温度)を上昇させる冷媒温度補正制御を行う。
しかしながら、実際には、このように蒸発温度(蒸発温度)を高くする場合、GHP第1熱媒体熱交換器33での第1熱媒体の温度と冷媒の温度との温度差である冷媒温度差が小さくなるため、第1熱媒体と冷媒との熱交換に要する時間が長くなり、十分な仕事量を確保できない虞がある。
そこで、上記冷媒温度補正制御では、GHP第1熱媒体熱交換器33の入口での第1熱媒体の温度と、GHP第1熱媒体熱交換器33を通過する冷媒の温度(蒸発温度)との温度差である冷媒温度差が、補正判定温度差(例えば、5℃以上6℃以下程度の温度差)を超えている場合であって、冷媒温度(蒸発温度)を上昇させたとしても、GHP第1熱媒体熱交換器33において十分な仕事量を確保できると想定される場合に、冷媒温度差が小さくなるように(例えば、5℃以上6℃以下程度の温度差まで小さくなるように)、GHP第1熱媒体熱交換器33を通過する冷媒の温度を制御する、具体的には、GHP膨張弁32の弁開度と、エンジン駆動式圧縮機35の回転数及びトルクを制御するのである。
(2) In the above embodiment, each of the GHP control device 31 and the EHP control device 41 controls the operating capacity ratio by changing the ratio between the GHP first heat medium temperature difference and the EHP first heat medium temperature difference. An example to execute is shown.
The temperature difference may be corrected as follows.
Incidentally, in the following, in order to simplify the explanation, a case where the cooling operation is executed by the GHP chiller 30 will be described as an example, but the same logic is established in the EHP chiller 40, and the same logic is also established in the heating operation. Is established.
In the GHP chiller 30, theoretically, as shown in FIG. 2, when the cooling operation is executed in the GHP chiller 30 when the refrigerant flow rate circulating in the GHP refrigerant circulation path C1 is constant, that is, the GHP. When the first heat medium heat exchanger 33 acts as a cooler for cooling the first heat medium, the higher the refrigerant temperature (evaporation temperature) in the GHP first heat medium heat exchanger 33 is set, the more the engine-driven compressor The compression work (W in FIG. 2) in 35 decreases, but the amount of change in enthalpy (h in FIG. 2) during the evaporation process of the refrigerant increases slightly (Δh in FIG. 2), so that the performance coefficient ((h + Δh) / ( W-ΔW)) becomes higher.
Therefore, in the above-mentioned characteristic configuration, the GHP control device 31 measures the temperature of the first heat medium at the inlet of the GHP first heat medium heat exchanger 33 (second temperature sensor) in order to improve the efficiency of the chiller system 100. GHP first heat medium heat exchange so that the refrigerant temperature difference, which is the temperature difference between the temperature measured in S2) and the temperature of the refrigerant passing through the GHP first heat medium heat exchanger 33 (evaporation temperature), becomes small. The refrigerant temperature correction control is performed to raise the temperature (evaporation temperature) of the refrigerant passing through the vessel 33.
However, in reality, when the evaporation temperature (evaporation temperature) is increased in this way, the refrigerant temperature difference is the temperature difference between the temperature of the first heat medium and the temperature of the refrigerant in the GHP first heat medium heat exchanger 33. Therefore, the time required for heat exchange between the first heat medium and the refrigerant becomes long, and there is a possibility that a sufficient amount of work cannot be secured.
Therefore, in the above-mentioned refrigerant temperature correction control, the temperature of the first heat medium at the inlet of the GHP first heat medium heat exchanger 33 and the temperature of the refrigerant passing through the GHP first heat medium heat exchanger 33 (evaporation temperature). Even if the refrigerant temperature difference, which is the temperature difference of the above, exceeds the correction determination temperature difference (for example, the temperature difference of about 5 ° C. or higher and 6 ° C. or lower) and the refrigerant temperature (evaporation temperature) is increased. When it is assumed that a sufficient amount of work can be secured in the GHP first heat medium heat exchanger 33, the temperature difference of the refrigerant is reduced (for example, the temperature difference is reduced to about 5 ° C. or higher and 6 ° C. or lower). ), Controls the temperature of the refrigerant passing through the GHP first heat medium heat exchanger 33, specifically, controls the valve opening degree of the GHP expansion valve 32 and the rotation speed and torque of the engine-driven compressor 35. It is.

)上記実施形態では、GHP制御装置31及びEHP制御装置41は、第1熱媒体循環路C3を通流する第1熱媒体の流量を、流量センサS4の計測結果を受信する形で取得する構成例を示した。
しかしながら、他の例として、GHP制御装置31及びEHP制御装置41は、圧送ポンプPの回転数に基づいて、第1熱媒体循環路C3を通流する第1熱媒体の流量を演算から導出して取得する構成を採用しても構わない。
( 3 ) In the above embodiment, the GHP control device 31 and the EHP control device 41 acquire the flow rate of the first heat medium passing through the first heat medium circulation path C3 in the form of receiving the measurement result of the flow rate sensor S4. An example of the configuration to be used is shown.
However, as another example, the GHP control device 31 and the EHP control device 41 derive the flow rate of the first heat medium flowing through the first heat medium circulation path C3 from the calculation based on the rotation speed of the pressure feed pump P. You may adopt the configuration to be acquired.

尚、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。 It should be noted that the configuration disclosed in the above embodiment (including another embodiment, the same shall apply hereinafter) can be applied in combination with the configuration disclosed in other embodiments as long as there is no contradiction. The embodiments disclosed in the present specification are examples, and the embodiments of the present invention are not limited thereto, and can be appropriately modified without departing from the object of the present invention.

本発明のチラーシステムは、低負荷においても効率の低下を緩和できるチラーシステムとして、有効に利用可能である。 The chiller system of the present invention can be effectively used as a chiller system capable of alleviating a decrease in efficiency even at a low load.

30 :GHPチラー
31 :GHP制御装置
33 :GHP第1熱媒体熱交換器
35 :エンジン駆動式圧縮機
40 :EHPチラー
41 :EHP制御装置
43 :EHP第1熱媒体熱交換器
45 :電気駆動式圧縮機
50 :熱需要部
100 :チラーシステム
C1 :GHP冷媒循環路
C2 :EHP冷媒循環路
C3 :第1熱媒体循環路
E :エンジン
30: GHP chiller 31: GHP control device 33: GHP first heat medium heat exchanger 35: engine-driven compressor 40: EHP chiller 41: EHP control device 43: EHP first heat medium heat exchanger 45: electric drive type Compressor 50: Heat demand unit 100: Chiller system C1: GHP refrigerant circulation path C2: EHP refrigerant circulation path C3: First heat medium circulation path E: Engine

Claims (6)

熱需要部にて温熱又は冷熱を供給する第1熱媒体を循環する第1熱媒体循環路と、冷媒を循環する冷媒循環路と、当該冷媒循環路を循環する冷媒を圧縮するエンジン駆動式圧縮機とを有し、冷媒の凝縮熱又は蒸発熱により第1熱媒体を加熱又は冷却する形態で、第1熱媒体の温度を制御するGHPチラーを備えるチラーシステムであって、
前記冷媒循環路を循環する冷媒を圧縮する電気駆動式圧縮機を有し、冷媒の凝縮熱又は蒸発熱により第1熱媒体を加熱又は冷却する形態で、第1熱媒体の温度を制御するEHPチラーを備え
前記GHPチラーは、冷媒の凝縮熱又は蒸発熱により第1熱媒体を加熱又は冷却するGHP第1熱媒体熱交換器と、当該GHP第1熱媒体熱交換器に冷媒を循環する前記冷媒循環路としてのGHP冷媒循環路とを有し、
前記EHPチラーは、冷媒の凝縮熱又は蒸発熱により第1熱媒体を加熱又は冷却するEHP第1熱媒体熱交換器と、当該EHP第1熱媒体熱交換器に冷媒を循環する前記冷媒循環路としてのEHP冷媒循環路とを有し、
前記GHP冷媒循環路と前記EHP冷媒循環路とは各別に備え、
前記第1熱媒体循環路において、前記熱需要部を始点としたときの第1熱媒体通流方向で、前記EHP第1熱媒体熱交換器と前記GHP第1熱媒体熱交換器とを、上流側から記載の順に直列に設けているチラーシステム。
Engine-driven compression that compresses the first heat medium circulation path that circulates the first heat medium that supplies hot or cold heat in the heat demand section, the refrigerant circulation path that circulates the refrigerant, and the refrigerant that circulates in the refrigerant circulation path. A chiller system including a GHP chiller that controls the temperature of the first heat medium in the form of heating or cooling the first heat medium by the heat of condensation or evaporation of the refrigerant.
An EHP that has an electrically driven compressor that compresses the refrigerant that circulates in the refrigerant circulation path, and controls the temperature of the first heat medium in the form of heating or cooling the first heat medium by the heat of condensation or evaporation of the refrigerant. Equipped with a chiller
The GHP chiller includes a GHP first heat medium heat exchanger that heats or cools the first heat medium by the heat of condensation or evaporation of the refrigerant, and the refrigerant circulation path that circulates the refrigerant in the GHP first heat medium heat exchanger. With a GHP refrigerant circulation path as
The EHP chiller includes an EHP first heat medium heat exchanger that heats or cools the first heat medium by the heat of condensation or evaporation of the refrigerant, and the refrigerant circulation path that circulates the refrigerant in the EHP first heat medium heat exchanger. Has an EHP refrigerant circulation path as
The GHP refrigerant circulation path and the EHP refrigerant circulation path are separately provided.
In the first heat medium circulation path, the EHP first heat medium heat exchanger and the GHP first heat medium heat exchanger are placed in the first heat medium flow direction when the heat demand unit is the starting point. A chiller system installed in series in the order described from the upstream side .
現状の負荷における全運転容量に対する前記GHPチラーの運転容量比率及び前記EHPチラーの運転容量比率を制御する運転容量比率制御を実行する制御装置を備え、
前記制御装置は、前記GHP第1熱媒体熱交換器の入口の第1熱媒体の温度であるGHP第1熱媒体入口温度と出口の第1熱媒体の温度であるGHP第1熱媒体出口温度との温度差であるGHP第1熱媒体温度差と、前記EHP第1熱媒体熱交換器の入口の第1熱媒体の温度であるEHP第1熱媒体入口温度と出口の第1熱媒体の温度であるEHP第1熱媒体出口温度との温度差であるEHP第1熱媒体温度差との比率である温度差比率を変更する形態で、前記運転容量比率制御を実行する請求項1に記載のチラーシステム。
A control device for executing operation capacity ratio control for controlling the operation capacity ratio of the GHP chiller and the operation capacity ratio of the EHP chiller with respect to the total operation capacity under the current load is provided.
The control device has a GHP first heat medium inlet temperature which is the temperature of the first heat medium at the inlet of the GHP first heat medium heat exchanger and a GHP first heat medium outlet temperature which is the temperature of the first heat medium at the outlet. The GHP first heat medium temperature difference, which is the temperature difference between the two, and the EHP first heat medium inlet temperature, which is the temperature of the first heat medium at the inlet of the EHP first heat medium heat exchanger, and the first heat medium at the outlet. The first aspect of claim 1, wherein the operation capacity ratio control is executed in a form of changing the temperature difference ratio, which is the ratio of the temperature difference from the EHP first heat medium outlet temperature, which is the temperature, to the EHP first heat medium temperature difference. Chiller system .
前記制御装置は、前記運転容量比率制御において、前記GHPチラーの運転容量比率と前記EHPチラーの運転容量比率との比に対応して、前記GHP第1熱媒体温度差と前記EHP第1熱媒体温度差との比を制御する請求項2に記載のチラーシステム。 In the operation capacity ratio control, the control device corresponds to the ratio between the operation capacity ratio of the GHP chiller and the operation capacity ratio of the EHP chiller, and corresponds to the temperature difference between the GHP first heat medium and the EHP first heat medium. The chiller system according to claim 2, wherein the ratio to the temperature difference is controlled . 前記制御装置は、前記GHP第1熱媒体熱交換器及び前記EHP第1熱媒体熱交換器の入口での第1熱媒体の温度と、前記GHP第1熱媒体熱交換器及び前記EHP第1熱媒体熱交換器を通過する冷媒の温度との温度差である冷媒温度差が、補正判定温度差を超えている場合、
前記冷媒温度差が小さくなるように、前記GHP第1熱媒体熱交換器及び前記EHP第1熱媒体熱交換器を通過する冷媒の温度を制御する冷媒温度補正制御を実行する請求項2又は3に記載のチラーシステム。
The control device includes the temperature of the first heat medium at the inlets of the GHP first heat medium heat exchanger and the EHP first heat medium heat exchanger, and the GHP first heat medium heat exchanger and the EHP first. When the refrigerant temperature difference, which is the temperature difference from the temperature of the refrigerant passing through the heat medium heat exchanger, exceeds the correction judgment temperature difference.
Claim 2 or 3 for executing refrigerant temperature correction control for controlling the temperature of the refrigerant passing through the GHP first heat medium heat exchanger and the EHP first heat medium heat exchanger so that the refrigerant temperature difference becomes small. The chiller system described in .
現状の負荷における全運転容量に対する前記GHPチラーの運転容量比率及び前記EHPチラーの運転容量比率を制御する制御装置を備え、
前記制御装置は、前記熱需要部での第1熱媒体の目標温度を取得可能に構成され、
前記制御装置は、前記熱需要部が設けられ電気事業者から電力の供給を受ける施設における電力デマンドを予測する電力デマンド予測処理を実行し、
前記電気事業者との間で決定された前記施設の電力使用量の最大値である契約電力を、前記電力デマンド予測処理にて予測される前記施設の電力デマンドが超えないように、前記EHPチラーの運転容量比率を制御するデマンド制御を実行し、
前記デマンド制御している状態で、前記第1熱媒体循環路において前記熱需要部を始点としたときの第1熱媒体通流方向で、前記GHP第1熱媒体熱交換器の出口の第1熱媒体の温度が前記目標温度となるように前記GHPチラーの運転容量比率を制御する請求項1~4の何れか一項に記載のチラーシステム。
A control device for controlling the operating capacity ratio of the GHP chiller and the operating capacity ratio of the EHP chiller to the total operating capacity under the current load is provided.
The control device is configured to be able to acquire the target temperature of the first heat medium in the heat demand unit.
The control device executes a power demand prediction process for predicting a power demand in a facility where the heat demand unit is provided and power is supplied from an electric power company.
The EHP chiller so that the contracted power, which is the maximum value of the power consumption of the facility determined with the electric power company, does not exceed the power demand of the facility predicted by the power demand prediction process. Execute demand control to control the operating capacity ratio of
In the state of demand control, the first outlet of the GHP first heat medium heat exchanger is in the first heat medium flow direction when the heat demand unit is the starting point in the first heat medium circulation path. The chiller system according to any one of claims 1 to 4, wherein the operating capacity ratio of the GHP chiller is controlled so that the temperature of the heat medium becomes the target temperature .
前記GHPチラーの運転を制御するGHP制御装置と、前記EHPチラーの運転を制御するEHP制御装置とを互いに独立して各別に備えている請求項1~5の何れか一項に記載のチラーシステム。 The chiller system according to any one of claims 1 to 5, further comprising a GHP control device for controlling the operation of the GHP chiller and an EHP control device for controlling the operation of the EHP chiller independently of each other. ..
JP2018035726A 2018-02-28 2018-02-28 Chiller system Active JP7068861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018035726A JP7068861B2 (en) 2018-02-28 2018-02-28 Chiller system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018035726A JP7068861B2 (en) 2018-02-28 2018-02-28 Chiller system

Publications (2)

Publication Number Publication Date
JP2019152347A JP2019152347A (en) 2019-09-12
JP7068861B2 true JP7068861B2 (en) 2022-05-17

Family

ID=67948709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018035726A Active JP7068861B2 (en) 2018-02-28 2018-02-28 Chiller system

Country Status (1)

Country Link
JP (1) JP7068861B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115698606B (en) * 2020-06-09 2024-03-19 三菱电机楼宇解决方案株式会社 Refrigeration cycle device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012007835A (en) 2010-06-25 2012-01-12 Aisin Seiki Co Ltd Air conditioner group controller and air conditioning system
JP2013036683A (en) 2011-08-08 2013-02-21 Toshiba Carrier Corp Warming device
JP2014052122A (en) 2012-09-06 2014-03-20 Yanmar Co Ltd Engine driven heat pump chiller
JP2015132410A (en) 2014-01-10 2015-07-23 東京瓦斯株式会社 Air conditioner and air conditioning system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10300265A (en) * 1997-05-01 1998-11-13 Daikin Ind Ltd Refrigerating equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012007835A (en) 2010-06-25 2012-01-12 Aisin Seiki Co Ltd Air conditioner group controller and air conditioning system
JP2013036683A (en) 2011-08-08 2013-02-21 Toshiba Carrier Corp Warming device
JP2014052122A (en) 2012-09-06 2014-03-20 Yanmar Co Ltd Engine driven heat pump chiller
JP2015132410A (en) 2014-01-10 2015-07-23 東京瓦斯株式会社 Air conditioner and air conditioning system

Also Published As

Publication number Publication date
JP2019152347A (en) 2019-09-12

Similar Documents

Publication Publication Date Title
TWI573969B (en) Cascade floating intermediate temperature heat pump system
CN102770718B (en) Air conditioning system and method of controlling air conditioning system
US10871314B2 (en) Heat pump and water heater
JP5121747B2 (en) Geothermal heat pump device
JP5524571B2 (en) Heat pump equipment
EP3115707B1 (en) Heat source device
WO2017056856A1 (en) Vehicular temperature regulation device
US11394063B2 (en) Cooling system for temperature regulation and control method thereof
KR20100123729A (en) Refrigeration device
US10197307B2 (en) Air conditioner with oil level control for both gas and electric heat pump cycles
EP3048376A1 (en) Air conditioner
WO2017204287A1 (en) Heat source system and heat source system control method
JP6328004B2 (en) Compressor / pump switching type cooling device
JP5481838B2 (en) Heat pump cycle equipment
EP3199889B1 (en) Air conditioner
JP6672619B2 (en) Air conditioning system
JP7068861B2 (en) Chiller system
KR20080073996A (en) A air conditioning system by water source and control method thereof
US20200158370A1 (en) Control systems and methods for heat pump systems
JP2017150689A (en) Air conditioner
KR101649447B1 (en) Geothermal heat pump system using gas
EP3604952B1 (en) Air conditioner
JP4348572B2 (en) Refrigeration cycle
JP7057129B2 (en) Vehicle waste heat recovery device
KR102177952B1 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220502

R150 Certificate of patent or registration of utility model

Ref document number: 7068861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150