JP5192736B2 - Exhaust heat power generation apparatus, operation method of exhaust heat power generation apparatus - Google Patents

Exhaust heat power generation apparatus, operation method of exhaust heat power generation apparatus Download PDF

Info

Publication number
JP5192736B2
JP5192736B2 JP2007156849A JP2007156849A JP5192736B2 JP 5192736 B2 JP5192736 B2 JP 5192736B2 JP 2007156849 A JP2007156849 A JP 2007156849A JP 2007156849 A JP2007156849 A JP 2007156849A JP 5192736 B2 JP5192736 B2 JP 5192736B2
Authority
JP
Japan
Prior art keywords
generator
power
working medium
exhaust heat
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007156849A
Other languages
Japanese (ja)
Other versions
JP2008312330A (en
Inventor
知行 内村
毅一 入江
修行 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2007156849A priority Critical patent/JP5192736B2/en
Publication of JP2008312330A publication Critical patent/JP2008312330A/en
Application granted granted Critical
Publication of JP5192736B2 publication Critical patent/JP5192736B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Description

本発明は、排熱源の熱エネルギーを電気エネルギーに変換する排熱発電装置、特に低温の排熱を熱源として発電を行う排熱発電装置、及び排熱発電装置の運転方法に関するものである。   The present invention relates to an exhaust heat power generation apparatus that converts thermal energy of an exhaust heat source into electrical energy, and more particularly to an exhaust heat power generation apparatus that generates power using low-temperature exhaust heat as a heat source, and a method for operating the exhaust heat power generation apparatus.

近年、省エネルギー推進の必要性から、排熱源からの排熱の有効利用が種々の方法で推進されている。しかしながら、有効利用の容易な高温若しく大容量の排熱に関してはほぼ利用され尽くしており、新規に設置される機器でも、省エネルギー化の進んだ結果、排出される排熱の温度は低下する傾向にある。従って、更に省エネルギー化を推進しようとすれば、低温且つ小容量の排熱を有効に利用することが必要不可欠となる。   In recent years, effective use of exhaust heat from an exhaust heat source has been promoted by various methods because of the need for energy saving promotion. However, high-temperature or large-capacity exhaust heat that is easy to use effectively is almost completely used, and even in newly installed equipment, the temperature of exhaust heat exhausted tends to decrease as a result of progress in energy saving. It is in. Therefore, in order to further promote energy saving, it is indispensable to effectively use low-temperature and small-capacity exhaust heat.

図1は従来のこの種の排熱発電装置の構成例を示す図である。本排熱発電装置は、発電装置100を備え、排熱源120から80℃程度の温水を熱源とし、冷却塔130により冷却された冷却水を低温熱源として発電する排熱発電装置である。発電装置100は、蒸気発生器101、液滴分離器102、調速弁(図示せず)及び主蒸気弁103、膨張機としてのタービン104と高速発電機105を有するタービン発電機106、凝縮器107、給液ポンプ108を備え、これらを作動媒体配管109で接続した構成である。発電装置100は制御盤110により制御され、高速発電機105で発電された交流電力は高周波整流器111で直流電力に変換され、更に系統連携装置112で交流電力(一般には50Hz又は60Hzの商用電力)に変換され、系統113に送電される。なお、ここでは膨張機としてタービンを用いる例を示しているが、蒸気発生器101からの作動媒体蒸気を膨張させ機械的回転力を得られ、該回転力で高速発電機105を回転駆動する膨張機であればよい。   FIG. 1 is a diagram showing a configuration example of this type of conventional exhaust heat power generation apparatus. The exhaust heat power generation apparatus is an exhaust heat power generation apparatus that includes the power generation apparatus 100 and generates electric power using hot water of about 80 ° C. from the exhaust heat source 120 as a heat source and cooling water cooled by the cooling tower 130 as a low temperature heat source. A power generator 100 includes a steam generator 101, a droplet separator 102, a regulator valve (not shown) and a main steam valve 103, a turbine 104 as an expander, a turbine generator 106 having a high-speed generator 105, and a condenser. 107, a liquid supply pump 108 is provided, and these are connected by a working medium pipe 109. The power generator 100 is controlled by a control panel 110, and AC power generated by the high-speed generator 105 is converted into DC power by a high-frequency rectifier 111, and further AC power (generally commercial power of 50 Hz or 60 Hz) by a system linkage device 112. Is transmitted to the grid 113. Although an example in which a turbine is used as an expander is shown here, the working medium steam from the steam generator 101 is expanded to obtain a mechanical rotational force, and the high-speed generator 105 is rotationally driven by the rotational force. Any machine can be used.

排熱源120から温水循環ポンプ121で温水を蒸気発生器101に供給することにより、給液ポンプ108で該蒸気発生器101に供給された作動媒体液は加熱され、作動媒体蒸気となって作動媒体配管109を通って液滴分離器102に供給され、該液滴分離器102で作動媒体蒸気中の液滴は分離除去される。液滴分が除去された作動媒体蒸気は調速弁(図示せず)及び主蒸気弁103を通って膨張機としてのタービン104に供給され、該タービン104の回転力で高速発電機105が駆動回転する。タービン104から吐き出された作動媒体蒸気は凝縮器107に供給され、該凝縮器107で冷却塔130から冷却水ポンプ131により供給される冷却水により冷却され、凝縮して作動媒体液となる。該作動媒体液は給液ポンプ108により、蒸気発生器101に送られ作動媒体は循環する。なお、排熱発電装置としては、温水に代えて排熱源からの排気ガスを熱源とするもの、低温熱源も冷却水と冷却塔の組み合わせではなく、空気による冷却(空冷凝縮器)や、河川水などの別の低温熱源を用いるものもある。また、この低温熱源と熱交換する二次流体を用いたり、これらと同等の別の技術を用いるものもある。また、排熱源としては工場排熱、原動機等の排熱、温泉水(地熱)、太陽熱等、様々なものがあり、更にこれらの熱源によって生成される温水や低圧蒸気等もある。   By supplying hot water from the exhaust heat source 120 to the steam generator 101 by the hot water circulation pump 121, the working medium liquid supplied to the steam generator 101 by the liquid supply pump 108 is heated and becomes working medium vapor. The droplets are supplied to the droplet separator 102 through the pipe 109, and the droplets in the working medium vapor are separated and removed by the droplet separator 102. The working medium vapor from which the liquid droplets have been removed is supplied to a turbine 104 as an expander through a regulator valve (not shown) and a main steam valve 103, and the high-speed generator 105 is driven by the rotational force of the turbine 104. Rotate. The working medium vapor discharged from the turbine 104 is supplied to the condenser 107, cooled by the cooling water supplied from the cooling tower 130 by the cooling water pump 131 by the condenser 107, and condensed to become a working medium liquid. The working medium liquid is sent to the steam generator 101 by the feed pump 108, and the working medium circulates. The exhaust heat power generation equipment uses exhaust gas from the exhaust heat source as a heat source instead of hot water, and the low temperature heat source is not a combination of cooling water and a cooling tower, but is cooled by air (air-cooled condenser) or river water. Some use other low-temperature heat sources. Some use a secondary fluid that exchanges heat with the low-temperature heat source, or use another technique equivalent to these. In addition, there are various exhaust heat sources such as factory exhaust heat, exhaust heat from motors, hot spring water (geothermal), solar heat, and the like, and also hot water and low-pressure steam generated by these heat sources.

従来、このような排熱発電装置では、タービン発電機106に設置された調速装置によりタービン発電機106の回転速度を制御する。調速装置は、回転速度の検出器(図示せず)、調速弁、制御装置(図示せず)により構成され、タービン104の回転速度が定格回転速度を超える(若しくは超えることが予測される)と、調速弁の開度を下げ、下回ると開度を上げて回転速度を一定に維持する。また、これと併せて、高速発電機105の負荷制御が行われる。通常、高速発電機105の負荷は回転速度を一定に保つことで自動的に制御される。このような制御を行うため、調速弁は常時、全開とはせず、制御に必要な最小限の開度、閉めた状態で運転する必要がある。このため、次のような課題が生じる。   Conventionally, in such an exhaust heat power generator, the rotational speed of the turbine generator 106 is controlled by a speed governor installed in the turbine generator 106. The speed governor includes a rotational speed detector (not shown), a speed regulating valve, and a control device (not shown), and the rotational speed of the turbine 104 is predicted to exceed (or exceed the rated rotational speed). ), The opening of the governing valve is decreased, and when it is lower, the opening is increased and the rotation speed is kept constant. In addition to this, load control of the high-speed generator 105 is performed. Usually, the load of the high-speed generator 105 is automatically controlled by keeping the rotation speed constant. In order to perform such control, the governing valve is not always fully opened, but must be operated with the minimum opening required for control and closed. For this reason, the following problems arise.

・調速弁は作動媒体配管中にあって圧力損失となるため、発電装置100の発電効率の低下を招く。
・上記の圧力損失により、タービン104に必要な蒸気圧力以上に蒸気発生器101内の圧力が上昇する。
-Since the speed regulating valve is in the working medium piping and causes pressure loss, the power generation efficiency of the power generation apparatus 100 is reduced.
-Due to the above pressure loss, the pressure in the steam generator 101 rises above the steam pressure required for the turbine 104.

本願発明者等は特許文献1に記載するように、逆変換器を用いる系統連携装置の出力を、系統連携装置内の直流電圧が設定された電圧となるように制御することで、調速弁によらずタービン発電機の回転を適正に保ち、発電電力を最大化できることを提案している。
特開2005−312289号公報
As described in Patent Document 1, the inventors of the present application control the output of the system linkage device using the inverse converter so that the DC voltage in the system linkage device becomes a set voltage, thereby controlling the speed control valve. Regardless of this, it is proposed that the turbine generator can keep rotating properly and the generated power can be maximized.
JP 2005-31289 A

上記特許文献1に提案する技術により、発電装置は調速弁が無くても、タービン発電機のタービン及び発電機の回転速度などを規定範囲内に抑えることができる。ただし、この技術においては、発電した電力が、系統連携装置の出力可能電力(容量)を超える場合は、ブレーキヒーターに発電した電力を捨てることになるため、発電機には、想定されうる最大限のタービン出力に相当する発電電力を発電できるだけの容量が必要となり、若しくは、過負荷を防止するために別途調速弁を設けるなどの必要が生じ、製品のコストを押し上げることになる。   With the technology proposed in Patent Document 1, the power generation device can suppress the turbine of the turbine generator, the rotational speed of the generator, and the like within a specified range without a regulator valve. However, in this technology, if the generated power exceeds the output power (capacity) of the grid linkage device, the power generated by the brake heater will be discarded. Therefore, it is necessary to have a capacity sufficient to generate the generated power corresponding to the turbine output of this type, or to provide a separate regulator to prevent overload, which increases the cost of the product.

本発明は上述の点に鑑みてなされたもので、調速弁に依らずタービン発電機の回転速度を一定に保ちながら、発電機の容量を最小限に抑えつつ膨張機及び発電機の過回転速度や発電機の過負荷を防止できる排熱発電装置、排熱発電装置の運転方法を提供することを目的とする。   The present invention has been made in view of the above-described points, and does not depend on a speed control valve, while keeping the rotational speed of the turbine generator constant, while minimizing the capacity of the generator, the expander and the generator are overrotated. An object of the present invention is to provide an exhaust heat power generation apparatus that can prevent speed and generator overload, and an operation method of the exhaust heat power generation apparatus.

上記課題を解決するため本願発明は、蒸気発生器を備え、排熱源からの排熱媒体を前記蒸気発生器に導入し、発生した作動媒体蒸気を膨張機に導き、該膨張機で発電機を駆動して発電すると共に、該膨張機から吐出される作動媒体蒸気を凝縮器に導き低熱源からの低熱媒体により前記作動媒体蒸気を冷却・凝縮し、該凝縮した作動媒体液を前記蒸気発生器に供給して該作動媒体が循環するように構成した排熱発電装置において、前記作動媒体の循環は作動媒体液を循環させる給液ポンプで行い、前記発電機の発電電力を逆変換装置を介して系統に送電可能にし、前記発電機の出力、若しくは回転速度が所定の値を超えようとした場合、前記給液ポンプの回転速度を抑制して前記膨張機及び発電機の過回転・過負荷を防止する過回転・過負荷防止手段を設け、前記発電機の発電電力を逆変換装置を介して系統に送電する場合、前記逆変換装置内の直流電圧が所定の一定値となるように、前記逆変換装置の出力を増減する逆変換装置出力増減手段を設けたことを特徴とする。 In order to solve the above-mentioned problems, the present invention comprises a steam generator, introduces an exhaust heat medium from an exhaust heat source into the steam generator, guides the generated working medium vapor to an expander, and uses the expander to generate a generator. The driving medium generates electric power by driving, leads the working medium vapor discharged from the expander to a condenser, cools and condenses the working medium vapor by a low heat medium from a low heat source, and converts the condensed working medium liquid into the steam generator. In the exhaust heat power generator configured to circulate the working medium, the working medium is circulated by a feed pump that circulates the working medium liquid, and the power generated by the generator is passed through an inverse converter. When the power output of the generator or the rotation speed exceeds a predetermined value, the rotation speed of the feed pump is suppressed and the expander and generator are over-rotated / overloaded. Prevents over-rotation and overload Only setting means, when the power to the system for generating power through the inverters of the generator, as the DC voltage of said inverters is a predetermined constant value, increase or decrease the output of the inverters Inverse conversion device output increase / decrease means is provided .

このような構成の排熱発電装置において、作動媒体の循環量は発生する蒸気の量と等しいので、上記のように過回転・過負荷防止手段を設け、発電機の出力、若しくは膨張機の回転速度が所定の値を超えようとした場合、給液ポンプの回転速度を抑制することにより作動媒体の循環量を抑制することは、即ち発生する作動媒体蒸気の量を抑制することになる。従ってこれにより発電機の出力、若しくは回転速度が所定の値を超えようとするのを、即ち過回転・過負荷となることを回避することができる。また、逆変換装置出力増減手段を設け、発電機の発電電力を逆変換装置を介して系統に送電する場合、逆変換装置内の直流電圧が所定の一定値となるように、逆変換装置の出力を増減することは膨張機及び発電機の回転を適正に保ちつつ、発電電力を最大化することになる。 In the exhaust heat power generation device having such a configuration, since the circulation amount of the working medium is equal to the amount of generated steam, the over-rotation / overload prevention means is provided as described above, and the output of the generator or the rotation of the expander When the speed is about to exceed a predetermined value, suppressing the circulation amount of the working medium by suppressing the rotation speed of the liquid supply pump, that is, suppressing the amount of generated working medium vapor. Accordingly, it is possible to prevent the output or rotational speed of the generator from exceeding a predetermined value, that is, over-rotation / overload. In addition, when an inverse conversion device output increasing / decreasing means is provided and the power generated by the generator is transmitted to the system via the inverse conversion device, the reverse conversion device has a predetermined constant value so that the DC voltage in the inverse conversion device becomes a predetermined constant value. Increasing or decreasing the output maximizes the generated power while maintaining the rotation of the expander and the generator appropriately.

また、本願発明は、上記排熱発電装置において、前記過回転・過負荷防止手段は、前記発電機の出力電力、若しくは回転数が所定の値を下回った場合、前記給液ポンプの回転速度の抑制を解除することを特徴とする。 Further, in the exhaust heat power generation apparatus according to the present invention, the over-rotation / overload prevention means is configured to reduce the rotation speed of the feed pump when the output power of the generator or the number of rotations falls below a predetermined value . It is characterized by releasing the suppression .

上記のように発電機の出力電力、若しくは回転数が所定の値を下回った場合、給液ポンプの回転速度の抑制を解除するので、過回転、過負荷の状態が無くなった場合、蒸気発生器の作動媒体蒸気発生量を速やかに元の状態に戻すことが可能となる。 When the output power of the generator or the number of rotations falls below a predetermined value as described above, the suppression of the rotation speed of the feed pump is canceled, so if the overspeed or overload condition disappears, the steam generator It is possible to quickly return the generated amount of the working medium vapor to the original state.

また、本願発明は、上記排熱発電装置において、前記過回転・過負荷防止手段は、前記膨張機及び発電機の負荷の指標として、前記発電機の発電電流、発電電圧、発電電力のうち少なくとも一つ以上を用いることを特徴とする。 Further, the present invention relates to the exhaust heat power generation apparatus, wherein the overspeed / overload prevention means includes at least one of a power generation current, a power generation voltage, and a power generation of the power generator as an index of the load of the expander and the power generator. It is characterized by using one or more.

また、本願発明は、上記排熱発電装置において、前記発電機の発電電力を逆変換装置を介して系統に送電する場合、前記発電機の負荷の指標として、前記逆変換装置内の直流電流、直流電圧、直流電力、若しくは該逆変換装置の交流出力電流、交流出力電圧、交流出力電力のうちの少なくとも一つ以上を用いることを特徴とする。   Further, the present invention relates to the exhaust heat power generator described above, in the case where power generated by the generator is transmitted to the system via the reverse converter, the direct current in the reverse converter as an indicator of the load of the generator, It is characterized by using at least one of DC voltage, DC power, or AC output current, AC output voltage, AC output power of the inverse converter.

また、本願発明は、蒸気発生器を備え、排熱源からの排熱媒体を前記蒸気発生器に導入し、発生した作動媒体蒸気を膨張機に導き、該膨張機で発電機を駆動して発電すると共に、該膨張機から吐出される作動媒体蒸気を凝縮器に導き低熱源からの低熱媒体により前記作動媒体蒸気を冷却・凝縮し、該凝縮した作動媒体液を前記蒸気発生器に供給して該作動媒体が循環するように構成した排熱発電装置の運転方法であって、前記作動媒体の循環は作動媒体液を循環させる給液ポンプで行い、前記発電機の発電電力を逆変換装置を介して系統に送電可能にし、前記発電機の出力、若しくは回転速度が所定の値を超えようとした場合、前記給液ポンプの回転速度を抑制して前記膨張機及び発電機の過回転・過負荷を防止し、前記発電機の出力電力、若しくは回転数が前記所定値を下回った場合、前記給液ポンプの回転速度の抑制を解除し、前記発電機の発電電力を逆変換装置を介して系統に送電する場合、前記逆変換装置内の直流電圧が所定の一定値となるように、前記逆変換装置の出力を増減することを特徴とする。 Further, the present invention comprises a steam generator, by introducing the exhaust heat medium from the exhaust heat source to the steam generator, directing the working medium vapor generated in the expander drives a generator in the expander In addition to generating electricity, the working medium vapor discharged from the expander is led to a condenser to cool and condense the working medium vapor with a low heat medium from a low heat source, and the condensed working medium liquid is supplied to the steam generator. The exhaust heat power generation apparatus is configured to circulate the working medium , wherein the working medium is circulated by a feed pump that circulates the working medium liquid, and the generated power of the generator is inverted. allowing transmission to the system through the output of the generator, or when the rotation speed is about to exceed a predetermined value, the over-rotation and of the expander and the power generator to suppress the rotation speed of the liquid supply pump Preventing overload, the output power of the generator, If properly the rotational speed falls below the predetermined value, the liquid supply to release the rotational speed of the suppression of the pump, when the power to the system for generating power through the inverters of the generator, the inverse transform apparatus The output of the inverse conversion device is increased or decreased so that the direct current voltage becomes a predetermined constant value .

上記のように発電機の出力、若しくは回転速度が所定の値を超えようとした場合、給液ポンプの回転速度を抑制することにより作動媒体の循環量を抑制して膨張機及び発電機の過回転・過負荷を防止し、発電機の出力電力、若しくは回転数が前記所定値を下回った場合、給液ポンプの回転速度の抑制を解除することにより作動媒体の循環量を抑制するので、排熱発電装置を膨張機及び発電機の過回転・過負荷を回避しながら、過回転・過負荷の状態が無くなった場合、蒸気発生器の作動媒体蒸気発生量を速やかに元の状態に戻すことが可能となる。また、発電機の発電電力を逆変換装置を介して系統に送電する場合、逆変換装置内の直流電圧が所定の一定値となるように、逆変換装置の出力を増減するので、発電機の回転を適正に保ち発電電力を最大化することになる。 As described above, when the output or rotational speed of the generator is about to exceed a predetermined value, the circulation rate of the working medium is suppressed by suppressing the rotational speed of the feed pump, and the excess of the expander and the generator is exceeded. When rotation / overload is prevented and the output power or rotation speed of the generator falls below the predetermined value, the circulation rate of the working medium is suppressed by releasing the suppression of the rotation speed of the feed pump. When the over-rotation / overload state disappears while avoiding over-rotation / overload of the expander and generator, the working medium vapor generation amount of the steam generator is quickly returned to the original state. Is possible. In addition, when the generated power of the generator is transmitted to the system via the inverter, the output of the inverter is increased or decreased so that the DC voltage in the inverter becomes a predetermined constant value. It will keep the rotation properly and maximize the generated power.

本願発明によれば、発電機の出力、若しくは回転速度が所定の値を超えようとした場合、給液ポンプの回転速度を抑制して作動媒体の循環量を抑制するので、作動媒体の循環量は蒸気発生器で発生する作動媒体蒸気量に等しいから、作動媒体の循環量を抑制することは作動媒体蒸気の発生量を抑制することになり、発電機の容量を最小限に抑えても、膨張機及び発電機の過回転速度や過負荷を防止することができる。また、発電機の発電電力を逆変換装置を介して系統に送電する場合、逆変換装置内の直流電圧が所定の一定値となるように、逆変換装置の出力を増減するので、発電機の回転を適正に保ち発電電力を最大化することができる。


According to the present invention, when the output of the generator or the rotation speed exceeds a predetermined value, the rotation speed of the feed pump is suppressed to suppress the circulation amount of the working medium. Is equal to the amount of working medium vapor generated by the steam generator, so reducing the circulating amount of working medium will reduce the amount of working medium vapor generated, and even if the capacity of the generator is minimized, The overspeed and overload of the expander and the generator can be prevented. In addition, when the generated power of the generator is transmitted to the system via the inverter, the output of the inverter is increased or decreased so that the DC voltage in the inverter becomes a predetermined constant value. The generated power can be maximized while maintaining proper rotation.


以下、本願発明の実施の形態例を図面に基づいて説明する。図2は本発明に係る排熱発電装置の構成例を示す図である。本排熱発電装置は、発電装置10を備え、排熱源30から温水循環ポンプで送られる80℃程度の温水を熱源とし、冷却塔40から冷却水ポンプ41により供給される冷却水を低温熱源として発電する排熱発電装置である。発電装置10は、蒸気発生器11、液滴分離器12、主蒸気弁13、膨張機としてのタービン14及び高速発電機15を有するタービン発電機16、凝縮器17、給液ポンプ18を備え、これらを作動媒体配管19で接続した構成である。発電装置10は制御盤20により制御され、高速発電機15で発電された交流電力は高周波整流器21で直流電力に変換され、更に系統連携装置22で交流電力(一般には50Hz又は60Hzの商用電力)に変換され、系統23に送電される。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is a diagram showing a configuration example of the exhaust heat power generator according to the present invention. This exhaust heat power generation apparatus includes the power generation apparatus 10, using hot water of about 80 ° C. sent from the exhaust heat source 30 by a hot water circulation pump as a heat source, and cooling water supplied from the cooling tower 40 by a cooling water pump 41 as a low temperature heat source. It is a waste heat power generator that generates electricity. The power generation apparatus 10 includes a steam generator 11, a droplet separator 12, a main steam valve 13, a turbine 14 as an expander and a turbine generator 16 having a high-speed generator 15, a condenser 17, and a feed pump 18. These are connected by a working medium pipe 19. The power generator 10 is controlled by the control panel 20, and AC power generated by the high-speed generator 15 is converted into DC power by the high-frequency rectifier 21, and further AC power (generally commercial power of 50 Hz or 60 Hz) by the system linkage device 22. And is transmitted to the grid 23.

排熱源30から温水循環ポンプ31で温水を蒸気発生器11に供給することにより、給液ポンプ18により凝縮器17から蒸気発生器11に供給された作動媒体液は加熱され、作動媒体蒸気となって蒸発発生器11の蒸気吐出口から吐き出され作動媒体配管19を通って液滴分離器12に供給される。蒸気吐出口に接続された作動媒体配管19には作動媒体蒸気の圧力を測定する圧力センサ24、温度を測定する温度センサ25が設けられており、その出力は制御盤20に伝送されるようになっている。液滴分離器12で液滴が分離除去された作動媒体蒸気は主蒸気弁13を通ってタービン発電機16のタービン14に供給され、分離された液滴は蒸気発生器11に戻される。   By supplying hot water from the exhaust heat source 30 to the steam generator 11 with the hot water circulation pump 31, the working medium liquid supplied from the condenser 17 to the steam generator 11 by the liquid supply pump 18 is heated to become working medium vapor. Then, the liquid is discharged from the vapor outlet of the evaporation generator 11 and supplied to the droplet separator 12 through the working medium pipe 19. The working medium pipe 19 connected to the steam outlet is provided with a pressure sensor 24 for measuring the pressure of the working medium vapor and a temperature sensor 25 for measuring the temperature, and the output is transmitted to the control panel 20. It has become. The working medium vapor from which the droplets are separated and removed by the droplet separator 12 is supplied to the turbine 14 of the turbine generator 16 through the main steam valve 13, and the separated droplets are returned to the steam generator 11.

作動媒体蒸気が供給されたタービン14は回転し、高速発電機15を駆動する。タービン14から吐き出された作動媒体蒸気は凝縮器17に供給され、該凝縮器17で冷却水ポンプ41により冷却塔40から供給される冷却水で冷却され、凝縮されて作動媒体液となる。該作動媒体液は給液ポンプ18により、再び蒸気発生器11に送られ作動媒体は循環する。なお、作動媒体としてはここでは低沸点(沸点が40℃前後)の作動媒体、例えばジクロロトリフルオロエタンHFC13或いはトリフルオロエタノールCF3CH2OH等を用いることが好ましい。   The turbine 14 supplied with the working medium vapor rotates and drives the high-speed generator 15. The working medium vapor discharged from the turbine 14 is supplied to the condenser 17, where it is cooled by the cooling water supplied from the cooling tower 40 by the cooling water pump 41 and condensed to become a working medium liquid. The working medium liquid is sent again to the steam generator 11 by the feed pump 18 and the working medium circulates. Here, as the working medium, it is preferable to use a working medium having a low boiling point (boiling point is around 40 ° C.), such as dichlorotrifluoroethane HFC13 or trifluoroethanol CF 3 CH 2 OH.

制御盤20は、回転速度/出力検出器26の出力から高速発電機15の出力を監視し、高速発電機15の出力が所定の設定値を超えると、給液ポンプ18の回転速度を低下させ、作動媒体の循環量を抑制する。また、回転速度/出力検出器26の出力から高速発電機15の回転速度も同時に監視し、高速発電機15の回転速度が所定の設定値を超えると、給液ポンプ18の回転速度を低下させ、作動媒体の循環量を抑制する。また、高速発電機15の出力や回転速度が前記所定の設定値を下回った場合、上記作動媒体の循環量の抑制を解除する。高速発電機15の負荷(出力)の指標としては、発電交流電流、発電交流電圧、発電交流電力のうち少なくとも一つ以上を用いる。   The control panel 20 monitors the output of the high speed generator 15 from the output of the rotation speed / output detector 26, and when the output of the high speed generator 15 exceeds a predetermined set value, the rotation speed of the liquid supply pump 18 is reduced. , Suppress the circulating amount of working medium. Further, the rotational speed of the high speed generator 15 is simultaneously monitored from the output of the rotational speed / output detector 26. When the rotational speed of the high speed generator 15 exceeds a predetermined set value, the rotational speed of the liquid supply pump 18 is decreased. , Suppress the circulating amount of working medium. Moreover, when the output and rotational speed of the high-speed generator 15 are less than the predetermined set value, the suppression of the circulation amount of the working medium is released. As an index of the load (output) of the high-speed generator 15, at least one of generated AC current, generated AC voltage, and generated AC power is used.

高速発電機15の出力も回転速度も上記設定値を超えない場合、制御盤20は圧力センサ24及び温度センサ25の出力から蒸気発生器11の蒸気出口の作動媒体蒸気の圧力及び温度から、蒸気発生器11の蒸気出口における作動媒体蒸気の過熱度を演算して求め、該演算過熱度が所定の設定値(目標値)になるように給液ポンプ18の回転速度を増減して、作動媒体の循環量を増減している。具体的には、過熱度が目標値を超えると給液ポンプ18の回転速度を暫増し、下回ると回転速度を暫減する。これにより蒸気発生器11の蒸気出口から出る作動媒体蒸気の過熱度を目標値に維持できる。   When neither the output of the high-speed generator 15 nor the rotational speed exceeds the set value, the control panel 20 determines the steam from the output of the pressure sensor 24 and the temperature sensor 25 from the pressure and temperature of the working medium steam at the steam outlet of the steam generator 11. By calculating the superheat degree of the working medium vapor at the steam outlet of the generator 11 and increasing or decreasing the rotational speed of the liquid feed pump 18 so that the calculated superheat degree becomes a predetermined set value (target value), the working medium is obtained. Increases or decreases the amount of circulation. Specifically, when the degree of superheat exceeds the target value, the rotational speed of the liquid supply pump 18 is temporarily increased, and when it is lower, the rotational speed is decreased temporarily. Thereby, the superheat degree of the working-medium vapor | steam emitted from the steam outlet of the steam generator 11 can be maintained at a target value.

ここでタービン発電機16の回転速度、若しくは高速発電機15の出力が設定値を超えようとした場合、制御盤20は作動媒体蒸気の過熱度によらず、給液ポンプ18の回転速度を暫減する。これにより蒸気発生器11に供給される作動媒体量は暫減する。蒸気発生器11に供給される作動媒体(液)量は、発生する作動媒体蒸気の量と等しいので、媒体の供給量を暫減することは、発生する作動媒体蒸気の量を抑制することになる。従って、高速発電機15の容量を抑えても、タービン14及び高速発電機15が過負荷や過回転速度になることを回避できる。上記例では給液ポンプ18の回転速度の暫増、暫減により作動媒体の循環量を増減したが、給液ポンプ18の回転速度による代わりに、蒸気発生器11への作動媒体の供給配管中に制御弁や戻し弁を設け、この開度を制御しても良い。ただし、回転速度の制御に依ったほうが消費電力を削減できる。   Here, when the rotational speed of the turbine generator 16 or the output of the high-speed generator 15 is about to exceed the set value, the control panel 20 temporarily sets the rotational speed of the liquid feed pump 18 regardless of the degree of superheating of the working medium vapor. Decrease. As a result, the amount of working medium supplied to the steam generator 11 is temporarily reduced. Since the amount of working medium (liquid) supplied to the steam generator 11 is equal to the amount of working medium vapor generated, reducing the amount of medium supplied for a while suppresses the amount of working medium vapor generated. Become. Therefore, even if the capacity of the high-speed generator 15 is suppressed, it is possible to avoid the turbine 14 and the high-speed generator 15 from becoming overloaded or over-rotating speed. In the above example, the circulation amount of the working medium is increased or decreased by temporarily increasing or decreasing the rotation speed of the feed liquid pump 18, but instead of depending on the rotation speed of the supply liquid pump 18, the working medium is being supplied to the steam generator 11. A control valve and a return valve may be provided to control the opening degree. However, power consumption can be reduced by relying on control of the rotational speed.

図3は制御盤20の過熱度制御の機能構成を示す図である。制御盤20は、過熱度演算部20−1、PID演算部20−2、目標値(目標過熱度)設定部20−3、圧力変動補正部20−4、及び回転速度制御部20−5を備えている。蒸気発生器11の蒸気発生器出口に接続された作動媒体配管19に設けた、圧力センサ24及び温度センサ25で測定された作動媒体蒸気の蒸気圧及び蒸気温度は過熱度演算部20−1に入力され、該過熱度演算部20−1は蒸気圧及び蒸気温度から作動媒体蒸気の過熱度を演算する。PID演算部20−2ではこの演算過熱度が目標値設定部20−3で設定された目標過熱度(3℃程度)と比較し、低い場合は回転速度制御部20−5に給液ポンプ18の回転速度を暫増する指令を出力し、該演算過熱度が目標の過熱度と比較して高い場合は給液ポンプ18の回転速度を暫減する指令を出力する。   FIG. 3 is a diagram showing a functional configuration of the superheat degree control of the control panel 20. The control panel 20 includes a superheat degree calculation unit 20-1, a PID calculation unit 20-2, a target value (target superheat degree) setting unit 20-3, a pressure fluctuation correction unit 20-4, and a rotation speed control unit 20-5. I have. The steam pressure and steam temperature of the working medium steam measured by the pressure sensor 24 and the temperature sensor 25 provided in the working medium pipe 19 connected to the steam generator outlet of the steam generator 11 are supplied to the superheat degree calculation unit 20-1. The superheat degree calculation unit 20-1 is inputted and calculates the superheat degree of the working medium vapor from the vapor pressure and the vapor temperature. In the PID calculation unit 20-2, the calculated superheat degree is compared with the target superheat degree (about 3 ° C.) set by the target value setting unit 20-3, and when it is low, the feed pump 18 is supplied to the rotation speed control unit 20-5. A command to temporarily increase the rotational speed of the liquid feed pump 18 is output if the calculated superheat degree is higher than the target superheat degree.

なお、上記例では、作動媒体液流量の増減を給液ポンプ18の回転速度の増減で行うが、作動媒体液流量が増減できれば、給液ポンプ18の回転速度の増減に限定されるものではない。   In the above example, the working medium liquid flow rate is increased / decreased by increasing / decreasing the rotational speed of the liquid supply pump 18, but is not limited to increasing / decreasing the rotational speed of the liquid supply pump 18 as long as the working medium liquid flow rate can be increased / decreased. .

また、上記排熱発電装置において、制御盤20は、タービン発電機16の発電電力を逆変換装置(系統連携装置22)を介して系統23に送電する場合、該逆変換装置内の直流電圧が一定となるように、該逆変換装置の出力を増減することで、タービン発電機16の回転を適正に保ち発電電力を最大化にすることができる。図4は逆変換装置の構成例を示す図である。タービン発電機16の高速発電機15の交流出力電力は高周波整流器21で直流電力に変換され、平滑コンデンサ22−1で平滑される。インバータ22−3はこの直流電力を交流電力に変換し、系統23に送電する。制御盤20は電圧計22−2の出力により高周波整流器21の出力側直流電圧を監視し、この直流電圧が一定となるように、インバータ22−3からの交流出力を増減することで、タービン発電機16の回転を適正に保ち発電電力を最大化する。   In the exhaust heat power generator, when the control panel 20 transmits the power generated by the turbine generator 16 to the grid 23 via the reverse converter (system linkage apparatus 22), the DC voltage in the reverse converter is By increasing / decreasing the output of the inverse converter so as to be constant, the rotation of the turbine generator 16 can be properly maintained and the generated power can be maximized. FIG. 4 is a diagram illustrating a configuration example of the inverse conversion device. The AC output power of the high speed generator 15 of the turbine generator 16 is converted to DC power by the high frequency rectifier 21 and smoothed by the smoothing capacitor 22-1. The inverter 22-3 converts this DC power into AC power and transmits it to the system 23. The control panel 20 monitors the output-side DC voltage of the high-frequency rectifier 21 based on the output of the voltmeter 22-2, and increases or decreases the AC output from the inverter 22-3 so that the DC voltage is constant, thereby generating turbine power generation. Maintain the rotation of the machine 16 properly and maximize the generated power.

上記高速発電機15の発電電力を逆変換装置(系統連携装置22)を介して系統23に送電する場合、高速発電機の負荷指標としては、系統連携装置22内の直流電流、直流電圧(電圧計22−2の出力)、若しくは系統連携装置22の交流出力電流、交流出力電圧、交流出力電力のうちの少なくとも一つ以上を用いる。   When the power generated by the high-speed generator 15 is transmitted to the system 23 via the reverse conversion device (system linkage device 22), the load index of the high-speed generator may be a DC current or a DC voltage (voltage) in the system linkage device 22. Output of the total 22-2), or at least one of the AC output current, the AC output voltage, and the AC output power of the system linkage device 22 is used.

なお、上記排熱発電装置では、排熱源30から温水を熱源として蒸気発生器11に導入し、凝縮器17に冷却塔40からの冷却水を低温源とする例を示したが、熱源及び低温源はこれに限定されるものではなく、排熱源からの排ガスを熱源とし、空気(空冷凝縮器)や河川水などを低温熱源としてもよい。また、この低温熱源と熱交換による二次流体を用いたり、これらと同等の別の技術を用いてもよい。また、排熱源としては工場排熱、原動機等の排熱、温泉水(地熱)、太陽熱等、様々なものがあり、更にこれらの熱源によって生成される温水や低圧蒸気等であってもよい。   In the above exhaust heat power generation apparatus, an example is shown in which hot water is introduced from the exhaust heat source 30 into the steam generator 11 as a heat source, and the cooling water from the cooling tower 40 is used as the low temperature source for the condenser 17. The source is not limited to this, and the exhaust gas from the exhaust heat source may be used as the heat source, and air (air-cooled condenser), river water, or the like may be used as the low-temperature heat source. Moreover, you may use the secondary fluid by this low temperature heat source and heat exchange, or another technique equivalent to these. In addition, there are various exhaust heat sources such as factory exhaust heat, exhaust heat from motors, hot spring water (geothermal), solar heat, and the like, and hot water or low-pressure steam generated by these heat sources may be used.

以上、本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。例えば、上記例では、膨張機としてタービン14を用い該タービンで高速発電機15を駆動するタービン発電機16を説明したが、作動媒体蒸気を膨張機に供給し、該作動媒体蒸気の膨張により発生する機械的回転力で発電機を駆動する構成であればよい。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea described in the claims and the specification and drawings. Is possible. For example, in the above example, the turbine generator 16 that uses the turbine 14 as the expander and drives the high-speed generator 15 with the turbine has been described. However, the working medium vapor is supplied to the expander and is generated by the expansion of the working medium vapor. Any configuration may be used as long as the generator is driven by a mechanical rotational force.

従来の排熱発電装置の構成例を示す図である。It is a figure which shows the structural example of the conventional waste heat power generator. 本発明に係る排熱発電装置の構成例を示す図である。It is a figure which shows the structural example of the waste heat power generator which concerns on this invention. 本発明に係る排熱発電装置の制御盤の過熱度制御の機能構成を示す図である。It is a figure which shows the function structure of the superheat degree control of the control panel of the exhaust heat power generator which concerns on this invention. 本発明に係る排熱発電装置の逆変換装置の構成例を示す図である。It is a figure which shows the structural example of the reverse conversion apparatus of the waste heat power generator which concerns on this invention.

符号の説明Explanation of symbols

10 発電装置
11 蒸気発生器
12 液滴分離器
13 主蒸気弁
14 タービン
15 高速発電機
16 タービン発電機
17 凝縮器
18 給液ポンプ
19 作動媒体配管
20 制御盤
21 高周波整流器
22 系統連携装置
23 系統
24 圧力センサ
25 温度センサ
26 回転速度/出力検出器
27 液面計
30 排熱源
31 温水循環ポンプ
40 冷却塔
41 冷却水ポンプ
DESCRIPTION OF SYMBOLS 10 Power generator 11 Steam generator 12 Droplet separator 13 Main steam valve 14 Turbine 15 High speed generator 16 Turbine generator 17 Condenser 18 Feed pump 19 Working medium piping 20 Control panel 21 High frequency rectifier 22 System linkage apparatus 23 System 24 Pressure sensor 25 Temperature sensor 26 Rotation speed / output detector 27 Level gauge 30 Waste heat source 31 Hot water circulation pump
40 Cooling tower 41 Cooling water pump

Claims (5)

蒸気発生器を備え、排熱源からの排熱媒体を前記蒸気発生器に導入し、発生した作動媒体蒸気を膨張機に導き、該膨張機で発電機を駆動して発電すると共に、該膨張機から吐出される作動媒体蒸気を凝縮器に導き低熱源からの低熱媒体により前記作動媒体蒸気を冷却・凝縮し、該凝縮した作動媒体液を前記蒸気発生器に供給して該作動媒体が循環するように構成した排熱発電装置において、
前記作動媒体の循環は作動媒体液を循環させる給液ポンプで行い、前記発電機の発電電力を逆変換装置を介して系統に送電可能にし、
前記発電機の出力、若しくは回転速度が所定の値を超えようとした場合、前記給液ポンプの回転速度を抑制して前記膨張機及び発電機の過回転・過負荷を防止する過回転・過負荷防止手段を設け、
前記発電機の発電電力を逆変換装置を介して系統に送電する場合、前記逆変換装置内の直流電圧が所定の一定値となるように、前記逆変換装置の出力を増減する逆変換装置出力増減手段を設けたことを特徴とする排熱発電装置。
A steam generator is provided, an exhaust heat medium from an exhaust heat source is introduced into the steam generator, the generated working medium steam is guided to an expander, and the generator is driven by the expander to generate electric power. The working medium vapor discharged from the condenser is led to a condenser, the working medium vapor is cooled and condensed by the low heat medium from the low heat source, and the condensed working medium liquid is supplied to the steam generator to circulate the working medium. In the exhaust heat power generator configured as described above,
Circulation of the working medium is performed by a feed pump that circulates the working medium liquid, and the generated power of the generator can be transmitted to the system via an inverse conversion device,
When the output or rotational speed of the generator is about to exceed a predetermined value, the rotational speed of the liquid supply pump is suppressed to prevent over- expansion / overload of the expander and the generator. set the load prevention means,
Inverter output for increasing / decreasing the output of the inverter so that the DC voltage in the inverter becomes a predetermined constant value when transmitting the power generated by the generator to the system via the inverter An exhaust heat power generator having an increase / decrease means .
請求項に記載の排熱発電装置において、
前記過回転・過負荷防止手段は、前記発電機の出力電力、若しくは回転数が所定の値を下回った場合、前記給液ポンプの回転速度の抑制を解除することを特徴とする排熱発電装置。
The exhaust heat power generator according to claim 1 ,
The over-rotation / over-load prevention means releases the suppression of the rotation speed of the liquid supply pump when the output power or rotation speed of the generator falls below a predetermined value. .
請求項1又は2に記載の排熱発電装置において、
前記過回転・過負荷防止手段は、前記膨張機及び発電機の負荷の指標として、前記発電機の発電電流、発電電圧、発電電力のうち少なくとも一つ以上を用いることを特徴とする排熱発電装置。
The exhaust heat power generator according to claim 1 or 2 ,
The over-rotation / overload prevention means uses at least one of the power generation current, power generation voltage, and power generation of the power generator as an index of the load of the expander and power generator. apparatus.
請求項1乃至3のいずれか1項に記載の排熱発電装置において、
前記発電機の発電電力を前記逆変換装置を介して系統に送電する場合、前記発電機の負荷の指標として、前記逆変換装置内の直流電流、直流電圧、直流電力、若しくは該逆変換装置の交流出力電流、交流出力電圧、交流出力電力のうちの少なくとも一つ以上を用いることを特徴とする排熱発電装置。
The exhaust heat power generator according to any one of claims 1 to 3 ,
If you transmitting the generated power of the generator to the grid through the inverters, as an indication of the load of the generator, the DC current of said power inverter, DC voltage, DC power, or inverse converter An exhaust heat power generation apparatus using at least one of an AC output current, an AC output voltage, and an AC output power.
蒸気発生器を備え、排熱源からの排熱媒体を前記蒸気発生器に導入し、発生した作動媒体蒸気を膨張機に導き、該膨張機で発電機を駆動して発電すると共に、該膨張機から吐出される作動媒体蒸気を凝縮器に導き低熱源からの低熱媒体により前記作動媒体蒸気を冷却・凝縮し、該凝縮した作動媒体液を前記蒸気発生器に供給して該作動媒体が循環するように構成した排熱発電装置の運転方法であって、
前記作動媒体の循環は作動媒体液を循環させる給液ポンプで行い、前記発電機の発電電力を逆変換装置を介して系統に送電可能にし、
前記発電機の出力、若しくは回転速度が所定の値を超えようとした場合、前記給液ポンプの回転速度を抑制して前記膨張機及び発電機の過回転・過負荷を防止し、前記発電機の出力電力、若しくは回転数が前記所定の値を下回った場合、前記給液ポンプの回転速度の抑制を解除し、前記発電機の発電電力を逆変換装置を介して系統に送電する場合、前記逆変換装置内の直流電圧が所定の一定値となるように、前記逆変換装置の出力を増減することを特徴とする排熱発電装置の運転方法。
A steam generator is provided, an exhaust heat medium from an exhaust heat source is introduced into the steam generator, the generated working medium steam is guided to an expander, and the generator is driven by the expander to generate electric power. The working medium vapor discharged from the condenser is led to a condenser, the working medium vapor is cooled and condensed by the low heat medium from the low heat source, and the condensed working medium liquid is supplied to the steam generator to circulate the working medium. An operation method of the exhaust heat power generator configured as described above,
Circulation of the working medium is performed by a feed pump that circulates the working medium liquid, and the generated power of the generator can be transmitted to the system via an inverse conversion device,
When the output or rotation speed of the generator is about to exceed a predetermined value, the rotation speed of the feed pump is suppressed to prevent over-rotation / overload of the expander and the generator, and the generator When the output power of the engine, or the rotation speed is less than the predetermined value, canceling the suppression of the rotation speed of the liquid feed pump, and when transmitting the generated power of the generator to the system via an inverse converter, A method for operating an exhaust heat power generator , wherein the output of the inverse converter is increased or decreased so that the DC voltage in the inverter becomes a predetermined constant value .
JP2007156849A 2007-06-13 2007-06-13 Exhaust heat power generation apparatus, operation method of exhaust heat power generation apparatus Expired - Fee Related JP5192736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007156849A JP5192736B2 (en) 2007-06-13 2007-06-13 Exhaust heat power generation apparatus, operation method of exhaust heat power generation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007156849A JP5192736B2 (en) 2007-06-13 2007-06-13 Exhaust heat power generation apparatus, operation method of exhaust heat power generation apparatus

Publications (2)

Publication Number Publication Date
JP2008312330A JP2008312330A (en) 2008-12-25
JP5192736B2 true JP5192736B2 (en) 2013-05-08

Family

ID=40239415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007156849A Expired - Fee Related JP5192736B2 (en) 2007-06-13 2007-06-13 Exhaust heat power generation apparatus, operation method of exhaust heat power generation apparatus

Country Status (1)

Country Link
JP (1) JP5192736B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5707195B2 (en) * 2011-03-24 2015-04-22 株式会社神戸製鋼所 MOTOR TEMPERATURE ESTIMATION DEVICE, POWER GENERATION SYSTEM HAVING THE SAME, AND MOTOR TEMPERATURE ESTIMATION METHOD
CN102769304A (en) * 2012-07-12 2012-11-07 华北电力大学 Boiler smoke waste heat power generation system
JP6064548B2 (en) 2012-11-28 2017-01-25 株式会社Ihi Waste heat power generator
JP2014239604A (en) * 2013-06-07 2014-12-18 株式会社神戸製鋼所 Generating set
JP6111184B2 (en) * 2013-12-02 2017-04-05 株式会社神戸製鋼所 Waste heat recovery device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949303A (en) * 1982-09-13 1984-03-21 Hitachi Ltd Output control system in thermal engine
JP4889956B2 (en) * 2004-03-22 2012-03-07 株式会社荏原製作所 Power generator

Also Published As

Publication number Publication date
JP2008312330A (en) 2008-12-25

Similar Documents

Publication Publication Date Title
JP4875546B2 (en) Exhaust heat power generation apparatus and method for controlling working medium vapor superheat degree of exhaust heat power generation apparatus
JP4889956B2 (en) Power generator
JP6640524B2 (en) Rankine cycle power plant
US10519814B2 (en) Control of a thermal cyclic process
JP4685518B2 (en) Waste heat power generation equipment
JP5192736B2 (en) Exhaust heat power generation apparatus, operation method of exhaust heat power generation apparatus
US10767513B2 (en) Thermal electric power generator
EP3032099B1 (en) Solar thermal power generation system
CA2716391A1 (en) Method for controlling a wind turbine at high thermal loads
JP4684761B2 (en) Power generator
JP4684762B2 (en) Power generator
US20150318810A1 (en) Power generation system and power generation method
CN101430168B (en) Method and cooling system for improving cooling capacity of power station direct air cooling system
JP5910122B2 (en) Heat recovery generator
JP2013181456A (en) Binary power generator and method for controlling the same
JP2007002761A (en) Cogeneration system and power generator
JP2011074897A (en) Fluid machine driving system
EP3580454B1 (en) Wind turbine waste heat recovery system
JP5440337B2 (en) Engine waste heat recovery power generation method and apparatus
EP2876268B1 (en) Combined power device and method for operating combined power device
JPWO2013111577A1 (en) Air-cooled condenser and power generator equipped with the same
WO2022262225A1 (en) Reactor starting method and system
JP6574594B2 (en) Cooling water supply system
WO2016170653A1 (en) Steam turbine system
WO2011004790A1 (en) Liquid evaporation-type cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130201

R150 Certificate of patent or registration of utility model

Ref document number: 5192736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees