JP4875546B2 - Exhaust heat power generation apparatus and method for controlling working medium vapor superheat degree of exhaust heat power generation apparatus - Google Patents

Exhaust heat power generation apparatus and method for controlling working medium vapor superheat degree of exhaust heat power generation apparatus Download PDF

Info

Publication number
JP4875546B2
JP4875546B2 JP2007156850A JP2007156850A JP4875546B2 JP 4875546 B2 JP4875546 B2 JP 4875546B2 JP 2007156850 A JP2007156850 A JP 2007156850A JP 2007156850 A JP2007156850 A JP 2007156850A JP 4875546 B2 JP4875546 B2 JP 4875546B2
Authority
JP
Japan
Prior art keywords
working medium
exhaust heat
generator
steam
superheat degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007156850A
Other languages
Japanese (ja)
Other versions
JP2008309046A (en
Inventor
知行 内村
毅一 入江
修行 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2007156850A priority Critical patent/JP4875546B2/en
Publication of JP2008309046A publication Critical patent/JP2008309046A/en
Application granted granted Critical
Publication of JP4875546B2 publication Critical patent/JP4875546B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

本発明は、排熱源の熱エネルギーを電気エネルギーに変換する排熱発電装置、特に低温の排熱を熱源として発電を行う排熱発電装置、及び排熱発電装置の作動媒体蒸気過熱度制御方法に関するものである。   The present invention relates to an exhaust heat power generation apparatus that converts thermal energy of an exhaust heat source into electrical energy, and more particularly to an exhaust heat power generation apparatus that generates power using low-temperature exhaust heat as a heat source, and a working medium vapor superheat degree control method for the exhaust heat power generation apparatus. Is.

近年、省エネルギー推進の必要性から、排熱源からの排熱の有効利用が種々の方法で推進されている。しかしながら、有効利用の容易な高温若しく大容量の排熱に関してはほぼ利用され尽くしており、新規に設置される機器でも、省エネルギー化の進んだ結果、排出される排熱の温度は低下する傾向にある。従って、更に省エネルギー化を推進しようとすれば、低温且つ小容量の排熱を有効に利用することが必要不可欠となる。   In recent years, effective use of exhaust heat from an exhaust heat source has been promoted by various methods because of the need for energy saving promotion. However, high-temperature or large-capacity exhaust heat that is easy to use effectively is almost completely used, and even in newly installed equipment, the temperature of exhaust heat exhausted tends to decrease as a result of progress in energy saving. It is in. Therefore, in order to further promote energy saving, it is indispensable to effectively use low-temperature and small-capacity exhaust heat.

図1は従来のこの種の排熱発電装置の構成例を示す図である。本排熱発電装置は、発電装置100を備え、該発電装置100に排熱源120から80℃程度の温水を熱源とし、冷却塔130により冷却された冷却水を低温熱源として発電する排熱発電装置である。発電装置100は、蒸気発生器101、液滴分離器102、調速弁(図示せず)及び主蒸気弁103、膨張機としてのタービン104及び高速発電機105を有するタービン発電機106、凝縮器107、給液ポンプ108を備え、これらを作動媒体配管109で接続した構成である。発電装置100は制御盤110により制御され、高速発電機105で発電された交流電力は高周波整流器111で直流電力に変換され、更に系統連携装置112で交流電力(一般には50Hz又は60Hzの商用電力)に変換され、系統113に送電される。ここで蒸気発生器101としてプレート式の熱交換器を用いている。   FIG. 1 is a diagram showing a configuration example of this type of conventional exhaust heat power generation apparatus. The exhaust heat power generation apparatus includes the power generation apparatus 100, and the power generation apparatus 100 uses the hot water at about 80 ° C. from the exhaust heat source 120 as a heat source and generates heat using the cooling water cooled by the cooling tower 130 as a low temperature heat source. It is. The power generation apparatus 100 includes a steam generator 101, a droplet separator 102, a regulator valve (not shown) and a main steam valve 103, a turbine 104 as an expander, a turbine generator 106 having a high-speed generator 105, and a condenser. 107, a liquid supply pump 108 is provided, and these are connected by a working medium pipe 109. The power generator 100 is controlled by a control panel 110, and AC power generated by the high-speed generator 105 is converted into DC power by a high-frequency rectifier 111, and further AC power (generally commercial power of 50 Hz or 60 Hz) by a system linkage device 112. Is transmitted to the grid 113. Here, a plate-type heat exchanger is used as the steam generator 101.

排熱源120から温水循環ポンプ121で温水を蒸気発生器101に供給することにより、給液ポンプ108で凝縮器107から該蒸気発生器101に供給された作動媒体液は加熱され、作動媒体蒸気となって作動媒体配管109を通って液滴分離器102に供給され、該液滴分離器102で作動媒体蒸気中の液滴は分離除去される。液滴分が除去された作動媒体蒸気は調速弁(図示せず)及び主蒸気弁103を通ってタービン発電機106のタービン104に供給され、該タービン104により高速発電機105が駆動される。タービン104から吐き出された作動媒体蒸気は凝縮器107に供給され、該凝縮器107で冷却塔130から冷却水ポンプ131により供給される冷却水により冷却され、凝縮して作動媒体液となる。該作動媒体液は給液ポンプ108により、蒸気発生器101に送られ作動媒体は循環する。なお、排熱発電装置の熱源としては、排熱源からの温水に代えて排熱源からの排気ガスを熱源とするもの、低温熱源も冷却水と冷却塔の組み合わせではなく、空気による冷却(空冷凝縮器)や、河川水などの別の低温熱源を用いるものもある。また、この低温熱源と熱交換する二次流体を用いたり、これらと同等の別の技術を用いるものもある。また、排熱源としては工場排熱、原動機等の排熱、温泉水(地熱)、太陽熱等、様々なものがあり、更にこれらの熱源によって生成される温水や低圧蒸気等もある。   By supplying hot water from the exhaust heat source 120 to the steam generator 101 by the hot water circulation pump 121, the working medium liquid supplied from the condenser 107 to the steam generator 101 is heated by the feed liquid pump 108, and the working medium vapor and Then, the droplets are supplied to the droplet separator 102 through the working medium pipe 109, and the droplets in the working medium vapor are separated and removed by the droplet separator 102. The working medium vapor from which the liquid droplets have been removed is supplied to the turbine 104 of the turbine generator 106 through the regulator valve (not shown) and the main steam valve 103, and the high-speed generator 105 is driven by the turbine 104. . The working medium vapor discharged from the turbine 104 is supplied to the condenser 107, cooled by the cooling water supplied from the cooling tower 130 by the cooling water pump 131 by the condenser 107, and condensed to become a working medium liquid. The working medium liquid is sent to the steam generator 101 by the feed pump 108, and the working medium circulates. Note that the heat source of the exhaust heat power generation device uses an exhaust gas from the exhaust heat source as a heat source instead of hot water from the exhaust heat source, and the low temperature heat source is not a combination of cooling water and a cooling tower, but is cooled by air (air-cooled condensation) ) And other low-temperature heat sources such as river water. Some use a secondary fluid that exchanges heat with the low-temperature heat source, or use another technique equivalent to these. In addition, there are various exhaust heat sources such as factory exhaust heat, exhaust heat from motors, hot spring water (geothermal), solar heat, and the like, and also hot water and low-pressure steam generated by these heat sources.

図1の排熱発電装置では、蒸気発生器101に供給された排熱源120からの熱源温水を用いて作動媒体液を気化させ、その作動媒体蒸気によりタービン発電機106のタービン104を駆動して発電する。タービン104を出た作動媒体蒸気は、凝縮器107で再び作動媒体液となり、給液ポンプ108で循環する。発電装置100の送出電力は、高速発電機105で発電した電力(発電電力)から、給液ポンプ108や潤滑油循環ポンプ(図示せず)、制御盤110等の消費電力を差し引いたものとなり、本明細書ではこれをネット出力と称する。   In the exhaust heat power generation apparatus of FIG. 1, the working medium liquid is vaporized using the heat source hot water from the exhaust heat source 120 supplied to the steam generator 101, and the turbine 104 of the turbine generator 106 is driven by the working medium steam. Generate electricity. The working medium vapor that exits the turbine 104 becomes a working medium liquid again in the condenser 107 and circulates in the feed pump 108. The output power of the power generation apparatus 100 is obtained by subtracting the power consumption of the feed pump 108, the lubricating oil circulation pump (not shown), the control panel 110, etc. from the power (generated power) generated by the high-speed generator 105, In this specification, this is called net output.

従来、このような排熱発電装置では、タービン発電機106に設置された調速装置によりタービン発電機106の回転速度が制御される。調速装置は、回転速度の検出器(図示せず)、調速弁103、制御装置(図示せず)により構成され、タービン104の回転速度が定格回転速度を超える(若しくは超えることが予測される)と、調速弁103の開度を下げ、下回ると開度を上げて回転速度を一定に維持する。また、これと併せて、高速発電機105の負荷制御が行われる。通常、高速発電機105の負荷は回転速度を一定に保つことで自動的に制御される。このような制御を行うため、調速弁は常時、全開とはせず、制御に必要な最小限の開度、閉めた状態で運転する必要がある。このため、次のような課題が生じる。   Conventionally, in such an exhaust heat power generator, the rotational speed of the turbine generator 106 is controlled by a speed governor installed in the turbine generator 106. The speed control device includes a rotational speed detector (not shown), a speed control valve 103, and a control device (not shown), and the rotational speed of the turbine 104 exceeds (or is predicted to exceed) the rated rotational speed. The opening of the governing valve 103 is decreased, and when it is lower, the opening is increased and the rotation speed is kept constant. In addition to this, load control of the high-speed generator 105 is performed. Usually, the load of the high-speed generator 105 is automatically controlled by keeping the rotation speed constant. In order to perform such control, the governing valve is not always fully opened, but must be operated with the minimum opening required for control and closed. For this reason, the following problems arise.

・調速弁は作動媒体配管中にあって圧力損失となるため、発電装置100の発電効率の低下を招く。
・上記の圧力損失により、タービン104に必要な蒸気圧力以上に蒸気発生器101内の圧力が上昇する。
-Since the speed regulating valve is in the working medium piping and causes a pressure loss, the power generation efficiency of the power generation apparatus 100 is reduced.
-Due to the above pressure loss, the pressure in the steam generator 101 rises above the steam pressure required for the turbine 104.

本願発明者等は特許文献1に記載するように、逆変換器を用いる系統連携装置の出力を、系統連携装置内の直流電圧が設定された電圧となるように制御することで、調速弁によらずタービン発電機の回転を適正に保ち、発電電力を最大化できることを提案している。これにより、発電装置は供給される排熱を余さず蒸気として回収し、且つそれを有効に用いて発電することができるようになった。しかしながら、この方法では下記のような従来とは異なる蒸気発生器の制御が必要となる。   As described in Patent Document 1, the inventors of the present application control the output of the system linkage device using the inverse converter so that the DC voltage in the system linkage device becomes a set voltage, thereby controlling the speed control valve. Regardless of this, it is proposed that the turbine generator can keep rotating properly and the generated power can be maximized. As a result, the power generation apparatus can recover all the exhaust heat supplied as steam, and can use it effectively to generate power. However, this method requires the control of a steam generator different from the conventional one as described below.

従来の発電用ボイラ(蒸気発生器)の制御は、主として主蒸気圧力を一定とするように、加熱量が制御される。そして、それにより変動するボイラ液面を規定範囲内に納めるように給水量などを制御する。これは、調速装置の動作においては、調整弁の前後に一定の圧力差が必要であり、主蒸気圧力を一定とすることで、タービン発電機を安定して運転できるからである。しかしながら、調速弁を有しない(あるいは運用しない)、上記のような排熱発電装置においては、圧力は主蒸気量とタービンの運転条件により決まる値であり、制御指標として適さない。また、前述したように、排熱は燃料と違い、節減することは必ずしも必要でなく、むしろ供給された排熱は余さず利用して発電に供することが求められる。   In conventional power generation boilers (steam generators), the amount of heating is controlled so that the main steam pressure is kept constant. And the amount of water supply etc. are controlled so that the boiler liquid level which fluctuates by it may fall within a regulation range. This is because in the operation of the speed governor, a certain pressure difference is required before and after the regulating valve, and the turbine generator can be stably operated by keeping the main steam pressure constant. However, in the above-described exhaust heat power generation apparatus that does not have (or does not operate) a speed control valve, the pressure is a value determined by the main steam amount and the operating condition of the turbine, and is not suitable as a control index. Further, as described above, unlike the fuel, it is not always necessary to save the exhaust heat, but rather, it is required to use the supplied exhaust heat for power generation.

図2は従来の発電用としてポピュラーな、ドラム型蒸気発生器を用いた排熱発電装置の構成例を示す図である。発電装置100はドラム型蒸気発生器(ドラム型ボイラと同等)140、気液分離器(ドラム)141、液面計142、過熱器143、主蒸気弁144、膨張機としてのタービン104及び高速発電機105を有するタービン発電機106、凝縮器107、給液ポンプ108を備え、これらを作動媒体配管109で接続した構成である。ドラム型蒸気発生器140は、作動媒体液を加熱し、給液の80%くらいを気化させ、これを気液分離器(ドラム)141で作動媒体蒸気を分離し、気化しなかった作動媒体液はドラム型蒸気発生器140に戻し(再循環させ)、分離した作動媒体蒸気を次段の過熱器143に送り、過熱(スーパヒート)させる(このスーパヒートは必要に応じて行う)。スーパヒートは、作動媒体蒸気がタービン104で凝縮して液滴になる場合に必要で、特に作動媒体が水である場合は不可欠といってよい。   FIG. 2 is a diagram showing a configuration example of a waste heat power generation apparatus using a drum-type steam generator, which is popular for conventional power generation. The power generation apparatus 100 includes a drum-type steam generator (equivalent to a drum-type boiler) 140, a gas-liquid separator (drum) 141, a liquid level gauge 142, a superheater 143, a main steam valve 144, a turbine 104 as an expander, and high-speed power generation. A turbine generator 106 having a machine 105, a condenser 107, and a liquid feed pump 108 are provided, and these are connected by a working medium pipe 109. The drum-type steam generator 140 heats the working medium liquid to vaporize about 80% of the feed liquid, and the working medium liquid is separated by the gas-liquid separator (drum) 141 and is not vaporized. Is returned (recirculated) to the drum-type steam generator 140, and the separated working medium steam is sent to the next superheater 143 to be superheated (superheat is performed if necessary). Superheat is necessary when the working medium vapor condenses into droplets in the turbine 104, and may be essential especially when the working medium is water.

この場合、一般的には気液分離器(ドラム)141の液位を見て給液量を制御し、蒸気圧力で加熱量を制御する。排熱発電装置の場合は、加熱量の制御は不要であるが、装置を小型化するとドラム型蒸気発生器140の圧力損失(入口と出口の圧力差)が大きくなり、ドラム型蒸気発生器140の液位と気液分離器(ドラム)141の液位とが合わなくなったり、分離液をドラム型蒸気発生器140へ戻せなくなったりする。また、応答速度の速い(小型の)ドラム型蒸気発生器140では、給液量の変化が蒸気圧力変動に影響することなどを防止するために、発生する作動媒体蒸気量を計測して制御に用いる等、実際には多くの計測器と複雑な制御が必要となる。   In this case, generally, the liquid supply amount is controlled by looking at the liquid level of the gas-liquid separator (drum) 141, and the heating amount is controlled by the steam pressure. In the case of the exhaust heat power generation device, it is not necessary to control the amount of heating, but if the device is downsized, the pressure loss (pressure difference between the inlet and outlet) of the drum-type steam generator 140 increases, and the drum-type steam generator 140 May not match the liquid level of the gas-liquid separator (drum) 141, or the separated liquid may not be returned to the drum-type steam generator 140. Further, in the drum type steam generator 140 having a fast response speed (small), in order to prevent the change in the supply amount from affecting the steam pressure fluctuation, the generated working medium steam amount is measured and controlled. In practice, many measuring instruments and complicated controls are required.

図3は従来の発電用としてポピュラーな、貫流型蒸気発生器(貫流型ボイラと同等)を用いた排熱発電装置の構成例を示す図である。発電装置100は貫流型蒸気発生器150、気液分離器(ドラム)141、液面計142、過熱器143、主蒸気弁103、膨張機としてのタービン104及び高速発電機105を有するタービン発電機106、凝縮器107、給液ポンプ108を備え、これらを作動媒体配管109で接続した構成である。貫流型蒸気発生器150では、一般的には圧力を目標圧力とするように給液量を制御し、蒸気の温度により加熱量を制御している。但し、これらの物理量は相互に影響し合うので、それぞれ補正を行う必要がある。また、作動媒体の液滴がタービン104に流入することを防止し、タービン104中の媒体の凝縮を抑止するため、過熱器143を設ける場合がある。気液分離器141は、起動時や制御不調時等のために設けているが、通常は使用されない。前述したように、排熱発電装置では回収熱量を最大化することが望ましく、圧力を目標値とすることは目的に適わない。回収熱量を最大化し、適切な作動媒体供給量を確保するための制御が必要である。   FIG. 3 is a diagram showing a configuration example of a waste heat power generation apparatus using a once-through steam generator (equivalent to a once-through boiler) that is popular for conventional power generation. The power generator 100 includes a once-through steam generator 150, a gas-liquid separator (drum) 141, a liquid level gauge 142, a superheater 143, a main steam valve 103, a turbine 104 as an expander, and a high-speed generator 105. 106, a condenser 107, and a liquid supply pump 108, which are connected by a working medium pipe 109. In the once-through steam generator 150, the amount of liquid supply is generally controlled so that the pressure becomes a target pressure, and the amount of heating is controlled by the temperature of the steam. However, since these physical quantities affect each other, it is necessary to correct each of them. In addition, a superheater 143 may be provided to prevent droplets of the working medium from flowing into the turbine 104 and to prevent condensation of the medium in the turbine 104. The gas-liquid separator 141 is provided for startup, malfunction of control, etc., but is not normally used. As described above, in the exhaust heat power generation apparatus, it is desirable to maximize the amount of recovered heat, and setting the pressure as the target value is not suitable for the purpose. Control is required to maximize the amount of recovered heat and ensure an adequate supply of working medium.

また、排熱発電装置は、従来の発電用火力設備に比較して小規模で応答が速く、従来の制御方法では、発電装置を安定的に運転することが困難であった。また、蒸気量等の計測が必要となる場合があり、装置の低廉化のために大きな障害となる。
特開2005−312289号公報 特開2006−37857号公報 特開2006−316767号公報
Further, the exhaust heat power generation device is small in scale and quick in response as compared with the conventional power generation thermal power plant, and it has been difficult to stably operate the power generation device with the conventional control method. In addition, it may be necessary to measure the amount of steam, which is a major obstacle for reducing the cost of the apparatus.
JP 2005-31289 A JP 2006-37857 A JP 2006-316767 A

上記のように排熱発電装置の蒸気発生器の制御においては、下記の3点が重要となる。
・回収熱量を最大化すること
タービン発電機の必要作動媒体蒸気量に合わせて、発電装置に供給される熱量を制御するのではなく、供給される排熱を可能な限り回収し、できるだけ多くの作動媒体蒸気を発生することが、排熱発電装置の蒸気発生器には求められる。
As described above, the following three points are important in controlling the steam generator of the exhaust heat power generator.
・ Maximize the amount of recovered heat Rather than controlling the amount of heat supplied to the power generator according to the required amount of working medium vapor of the turbine generator, recover the exhaust heat supplied as much as possible and It is required for the steam generator of the exhaust heat power generator to generate working medium steam.

・蒸気発生器の伝熱効率を維持すること
供給熱量に対し、蒸気発生器への作動媒体液の供給量が過小であると、蒸気発生器の伝熱面に作動媒体液が行き渡らず、実効上の伝熱面積が少なくなる。このようになると、発電装置の排熱回収能力が低下し、発電出力の低下を招く。
・ Maintaining the heat transfer efficiency of the steam generator If the amount of working medium liquid supplied to the steam generator is too small compared to the amount of heat supplied, the working medium liquid will not spread over the heat transfer surface of the steam generator, which is effective. Less heat transfer area. If it becomes like this, the exhaust-heat recovery capability of a power generator will fall, and the fall of power generation output will be caused.

・蒸気発生器の出口作動媒体蒸気中の液滴を抑制すること
供給熱量に対し、蒸気発生器への作動媒体液の供給量が過大であると、蒸発できなかった作動媒体液が、蒸気発生器の出口から出る作動媒体蒸気中に混じる。この作動媒体蒸気中に混ざる液量が若干であれば、液滴分離器等を設けることで作動媒体蒸気から液滴を分離・除去できるが、液滴量が過大である場合などでは分離できず、タービンに流入する。この場合、タービン効率が低下したり、潤滑系に作動媒体が混入する原因となったり、はなはだしい場合はタービン自身が液滴により損傷する場合がある。
・ Suppressing droplets in the steam generator outlet working medium vapor If the amount of working medium liquid supplied to the steam generator is excessive relative to the amount of heat supplied, the working medium liquid that could not evaporate will generate steam. Mixed in the working medium vapor from the outlet of the vessel. If the amount of liquid mixed in the working medium vapor is small, droplets can be separated and removed from the working medium vapor by providing a droplet separator, etc., but cannot be separated when the amount of liquid droplets is excessive. Flows into the turbine. In this case, the turbine efficiency may be reduced, the working medium may be mixed into the lubrication system, or the turbine itself may be damaged by droplets in extreme cases.

本発明は上述の点に鑑みてなされたもので、上記回収熱量の最大化、蒸気発生器の伝熱効率の維持、及び作動媒体蒸気中の液滴の抑制が実現できる排熱発電装置を提供することを目的とする。   The present invention has been made in view of the above points, and provides an exhaust heat power generator capable of maximizing the amount of recovered heat, maintaining heat transfer efficiency of a steam generator, and suppressing droplets in working medium vapor. For the purpose.

上記課題を解決するため本願発明は、蒸気発生器を備え、排熱源からの排熱媒体を前記蒸気発生器に導入し、発生した作動媒体蒸気を膨張機に導き、該膨張機で発電機を駆動して発電すると共に、吐出される作動媒体蒸気を凝縮器に導き低熱源からの低熱媒体により前記作動媒体蒸気を冷却・凝縮し、該凝縮した作動媒体液を前記蒸気発生器に供給するように構成した排熱発電装置において、前記蒸気発生器に供給する作動媒体液流量を増減して該蒸気発生器から前記膨張機に導く前記作動媒体蒸気の過熱度を所定の目標値に制御する作動媒体蒸気過熱度制御手段を設け、前記作動媒体蒸気過熱度制御手段は、当該排熱発電装置が起動してから一定の時間が経過するまでは前記過熱度の目標値を前記所定の目標値より低く設定して作動媒体液流量を増減制御する機能を備えていることを特徴とする。 In order to solve the above-mentioned problems, the present invention comprises a steam generator, introduces an exhaust heat medium from an exhaust heat source into the steam generator, guides the generated working medium vapor to an expander, and uses the expander to generate a generator. Driven to generate electric power, guide the discharged working medium vapor to a condenser, cool and condense the working medium vapor with a low heat medium from a low heat source, and supply the condensed working medium liquid to the steam generator In the exhaust heat power generation apparatus configured as described above, an operation for controlling the superheat degree of the working medium vapor led to the expander from the steam generator to a predetermined target value by increasing or decreasing the flow rate of the working medium liquid supplied to the steam generator Medium steam superheat degree control means is provided , and the working medium steam superheat degree control means sets the target value of the superheat degree from the predetermined target value until a predetermined time elapses after the exhaust heat power generator is activated. Set working fluid low Characterized in that it comprises a function to increase or decrease control of the amount.

上記のように作動媒体液流量を増減して作動媒体蒸気の過熱度を制御する作動媒体蒸気過熱度制御手段を設けることにより、蒸気発生器の蒸気吐出口又は相当する部分の作動媒体蒸気の過熱度は所定の目標値に維持されることになり、過熱器や液滴分離器を備えなくても、タービン発電機のタービンに液滴が流入することがなく、タービンの効率低下や損傷の恐れがない。また、作動媒体蒸気過熱度制御手段は、当該排熱発電装置が起動してから一定の時間が経過するまでは過熱度の目標値を所定の目標値より低く設定して作動媒体液流量を増減制御する機能を備えているので、起動時は作動媒体蒸気の過熱度を低く抑えることで作動媒体の循環量を多めにして、一定の時間が経過したら過熱度を本来の目標値とし、本来の作動媒体の循環量とすることにより、蒸気発生器内で作動媒体の偏流を抑制することができる。 By providing the working medium vapor superheat degree control means for controlling the superheat degree of the working medium vapor by increasing / decreasing the working medium liquid flow rate as described above, the superheated working medium vapor at the steam outlet of the steam generator or the corresponding part is provided. The temperature is maintained at a predetermined target value, and even without a superheater or droplet separator, droplets do not flow into the turbine of the turbine generator, which may reduce turbine efficiency and damage. There is no. Further, the working medium vapor superheat degree control means sets the superheat degree target value to be lower than a predetermined target value until the fixed time elapses after the exhaust heat power generator is activated, thereby increasing or decreasing the working medium liquid flow rate. Because it has a function to control, at the time of start-up, keep the superheat degree of the working medium vapor low to increase the circulation amount of the working medium, and after a certain period of time, the superheat degree will be the original target value, By setting the circulating amount of the working medium, it is possible to suppress the drift of the working medium in the steam generator.

また、本願発明は、上記排熱発電装置において、前記蒸気発生器はプレート式熱交換器であることを特徴とする。   The invention of the present application is characterized in that, in the exhaust heat power generator, the steam generator is a plate heat exchanger.

また、本願発明は、上記排熱発電装置において、前記作動媒体蒸気過熱度制御手段は、前記蒸気発生器に作動媒体液を供給する給液ポンプの回転速度を増減して作動媒体液流量を増減する機能を備えていることを特徴とする。 In the exhaust heat power generator described above, the working medium vapor superheat degree control means may increase or decrease the working medium liquid flow rate by increasing or decreasing the rotational speed of a feed pump that supplies the working medium liquid to the steam generator. It has the function to perform.

また、本願発明は、上記排熱発電装置において、前記作動媒体蒸気過熱度制御手段は、前記蒸気発生器から前記膨張機に導く前記作動媒体蒸気の圧力と温度から該作動媒体蒸気の過熱度を演算する過熱度演算機能と、該過熱度演算機能で演算して得られた演算過熱度と、前記設定された目標過熱度を比較し、該演算過熱度が高い場合は前記作動媒体液流量を増し、低い場合は該作動媒体液流量を減じて前記演算過熱度を前記目標過熱度に制御する制御機能を備えていることを特徴とする。 Further, according to the present invention, in the exhaust heat power generator, the working medium steam superheat degree control means determines the superheat degree of the working medium steam from the pressure and temperature of the working medium steam guided from the steam generator to the expander. a superheating degree calculation function for calculating an operational superheat obtained by calculating in該過Netsudo calculation function, compares the set target superheat degree, when the operational degree of superheat is high the working medium fluid flow When the flow rate is increased and the flow rate is low, the flow rate of the working medium liquid is decreased to control the calculated superheat degree to the target superheat degree.

上記のように作動媒体蒸気過熱度制御手段は、演算過熱度を目標過熱度に制御する制御機能を備えるので、蒸気発生器の蒸気吐出口又は相当する部分の作動媒体蒸気の過熱度を常に目標過熱度に維持でき、タービン発電機のタービンの効率を良好な状態に維持できる。   As described above, the working medium steam superheat degree control means has a control function for controlling the calculated superheat degree to the target superheat degree, so that the superheat degree of the working medium steam at the steam discharge port of the steam generator or a corresponding portion is always set as the target. The degree of superheat can be maintained, and the turbine efficiency of the turbine generator can be maintained in a good state.

また、本願発明は、上記排熱発電装置において、前記作動媒体蒸気過熱度制御手段は、前記蒸気発生器の蒸発吐出口又は該蒸気発生器から前記膨張機に前記作動媒体蒸気を導く配管又は前記膨張機の蒸気入口の作動媒体蒸気圧の変化により前記作動媒体液流量を増減する圧力変動補正機能を備えていることを特徴とする。 Further, the present invention provides the exhaust heat power generation apparatus, wherein the working medium vapor superheat degree control means includes an evaporation discharge port of the steam generator or a pipe for guiding the working medium vapor from the steam generator to the expander or the A pressure fluctuation correction function for increasing or decreasing the flow rate of the working medium liquid according to a change in the working medium vapor pressure at the steam inlet of the expander is provided.

上記のように作動媒体蒸気過熱度制御手段は、圧力変動補正機能を備えるので、作動媒体の循環量が変動し、蒸気圧力が増減した場合、それを相殺できる。   As described above, the working medium vapor superheat degree control means has the pressure fluctuation correction function, and therefore, when the circulating amount of the working medium fluctuates and the steam pressure increases or decreases, it can cancel out.

また、本願発明は、上記排熱発電装置において、前記発電機の発電電力を逆変換装置を介して他の電力系統に送電する場合、該逆変換装置内の直流電圧が一定となるように、該逆変換装置の出力を増減する手段を設けたことを特徴とする。 Further, in the present invention, in the exhaust heat power generator, when the generated power of the generator is transmitted to another power system through the reverse converter, the DC voltage in the reverse converter is constant. Means for increasing or decreasing the output of the inverse converter is provided.

また、本願発明は、プレート式熱交換器からなる蒸気発生器を備え、排熱源からの排熱媒体を前記蒸気発生器に導入し、発生した作動媒体蒸気を膨張機に導き、該膨張機で発電機を駆動して発電すると共に、吐出される作動媒体蒸気を凝縮器に導き低熱源からの低熱媒体により前記作動媒体蒸気を冷却・凝縮し、該凝縮した作動媒体液を前記蒸気発生器に供給するように構成した排熱発電装置の前記蒸気発生器から前記膨張機に導く前記作動媒体蒸気の過熱度を所定の目標値に制御する排熱発電装置の作動媒体蒸気過熱度制御方法であって、当該排熱発電装置が起動してから一定の時間が経過するまでは過熱度の目標値を前記所定の目標値より低く設定し、前記蒸気発生器に供給する作動媒体液流量を増減して前記作動媒体蒸気の過熱度を該低く設定した目標値になるように制御し、前記一定の時間の経過後は前記目標値を前記所定の目標値とし、前記蒸気発生器に供給する作動媒体液流量を増減して前記作動媒体蒸気の過熱度を前記所定の目標過熱度に制御することを特徴とする。 Further, the present invention includes a steam generator composed of a plate heat exchanger, introduces an exhaust heat medium from an exhaust heat source into the steam generator, guides the generated working medium vapor to the expander, and the expander The generator is driven to generate electricity, and the discharged working medium vapor is guided to a condenser to cool and condense the working medium vapor with a low heat medium from a low heat source, and the condensed working medium liquid is supplied to the steam generator. A working medium steam superheat control method for a waste heat power generator, wherein the superheat degree of the working medium steam led from the steam generator of the exhaust heat power generator configured to be supplied to the expander is controlled to a predetermined target value. The target value of the superheat degree is set lower than the predetermined target value until a certain time has elapsed after the exhaust heat power generator is started, and the flow rate of the working medium liquid supplied to the steam generator is increased or decreased. the superheating of the working medium vapor Te The target value is set to the predetermined target value after the fixed time has elapsed, and the working medium liquid flow rate supplied to the steam generator is increased or decreased to increase or decrease the working medium steam. The superheat degree is controlled to the predetermined target superheat degree.

本願発明によれば、作動媒体蒸気過熱度制御手段により蒸気発生器に供給する作動媒体液流量を増減して該蒸気発生器の蒸気吐出口又は相当する部分の作動媒体蒸気の過熱度を所定の目標値にするので、回収熱量の最大化、蒸気発生器の伝熱効率の維持、及び作動媒体蒸気中の液滴の抑制が実現できる排熱発電装置、及び排熱発電装置の作動媒体蒸気過熱度制御方法を提供できる。また、排熱発電装置の起動時は作動媒体蒸気の過熱度を低く抑えることで作動媒体の循環量を多めにして、一定の時間が経過したら過熱度を本来の目標値とし、本来の作動媒体の循環量とすることにより、蒸気発生器内で作動媒体の偏流を抑制することができる


According to the present invention, the working medium vapor superheat degree control means increases or decreases the flow rate of the working medium liquid supplied to the steam generator to set the superheat degree of the working medium vapor at the steam discharge port of the steam generator or a corresponding portion to a predetermined value. Since the target value is set, the exhaust heat power generator capable of maximizing the amount of recovered heat, maintaining the heat transfer efficiency of the steam generator, and suppressing droplets in the working medium steam, and the working medium steam superheat degree of the exhaust heat power generator A control method can be provided. In addition, when the exhaust heat power generator is started, the superheat degree of the working medium vapor is kept low to increase the circulating amount of the working medium, and when a certain time has elapsed, the superheat degree is set to the original target value, and the original working medium is By using the circulation amount of the above, the drift of the working medium can be suppressed in the steam generator .


以下、本願発明の実施の形態例を図面に基づいて説明する。図4は本発明に係る排熱発電装置の構成例を示す図である。本排熱発電装置は、発電装置10を備え、排熱源30から80℃程度の温水を熱源とし、冷却塔40からの冷却水を低温熱源として発電する排熱発電装置である。発電装置10は、蒸気発生器11、液滴分離器12、主蒸気弁13、膨張機としてのタービン14及び高速発電機15を有するタービン発電機16、凝縮器17、給液ポンプ18を備え、これらを作動媒体配管19で接続した構成である。発電装置10は制御盤20により制御され、高速発電機15で発電された交流電力は高周波整流器21で直流電力に変換され、更に系統連携装置22で交流電力(一般には50Hz又は60Hzの商用電力)に変換され、系統23に送電される。ここで蒸気発生器11としてプレート式の熱交換器を用いている。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 4 is a diagram showing a configuration example of the exhaust heat power generator according to the present invention. The exhaust heat power generation apparatus includes the power generation apparatus 10 and is an exhaust heat power generation apparatus that generates electric power using hot water of about 80 ° C. from the exhaust heat source 30 as a heat source and cooling water from the cooling tower 40 as a low temperature heat source. The power generation apparatus 10 includes a steam generator 11, a droplet separator 12, a main steam valve 13, a turbine 14 as an expander and a turbine generator 16 having a high-speed generator 15, a condenser 17, and a feed pump 18. These are connected by a working medium pipe 19. The power generator 10 is controlled by the control panel 20, and AC power generated by the high-speed generator 15 is converted into DC power by the high-frequency rectifier 21, and further AC power (generally commercial power of 50 Hz or 60 Hz) by the system linkage device 22. And is transmitted to the grid 23. Here, a plate-type heat exchanger is used as the steam generator 11.

排熱源30から温水循環ポンプ31で温水を蒸気発生器11に供給することにより、給液ポンプ18により凝縮器17から該蒸気発生器11に供給された作動媒体液を加熱し、作動媒体蒸気となって蒸発発生器11の蒸気吐出口から吐き出され作動媒体配管19を通って液滴分離器12に供給される。蒸気吐出口に接続された作動媒体配管19には作動媒体蒸気の圧力を測定する圧力センサ24、温度を測定する温度センサ25が設けられており、その出力は制御盤20に伝送されるようになっている。液滴分離器12で液滴が分離除去された作動媒体蒸気は主蒸気弁13を通ってタービン発電機16のタービン14に供給され、分離された液滴は開閉弁27を及び配管26を通って凝縮器17に送られる。   By supplying hot water from the exhaust heat source 30 to the steam generator 11 with the hot water circulation pump 31, the working medium liquid supplied from the condenser 17 to the steam generator 11 is heated by the liquid supply pump 18, and the working medium vapor and Then, the liquid is discharged from the vapor outlet of the evaporation generator 11 and supplied to the droplet separator 12 through the working medium pipe 19. The working medium pipe 19 connected to the steam outlet is provided with a pressure sensor 24 for measuring the pressure of the working medium vapor and a temperature sensor 25 for measuring the temperature, and the output is transmitted to the control panel 20. It has become. The working medium vapor from which the droplets are separated and removed by the droplet separator 12 is supplied to the turbine 14 of the turbine generator 16 through the main steam valve 13, and the separated droplets pass through the on-off valve 27 and the pipe 26. And sent to the condenser 17.

作動媒体蒸気が供給されたタービン14は回転し、高速発電機15を駆動する。タービン14から吐き出された作動媒体蒸気は凝縮器17に供給され、該凝縮器17で冷却水ポンプ41により冷却塔40から供給される冷却水により冷却され、凝縮されて作動媒体液となる。該作動媒体液は給液ポンプ18により、再び蒸発発生器11に送られ作動媒体は循環する。なお、作動媒体としてはここでは低沸点(沸点が40℃前後)の作動媒体、例えばジクロロトリフルオロエタンHFC13或いはトリフルオロエタノールCF3CH2OH等を用いることが好ましい。   The turbine 14 supplied with the working medium vapor rotates and drives the high-speed generator 15. The working medium vapor discharged from the turbine 14 is supplied to the condenser 17, where it is cooled by the cooling water supplied from the cooling tower 40 by the cooling water pump 41 and condensed to become a working medium liquid. The working medium liquid is sent again to the evaporation generator 11 by the liquid supply pump 18, and the working medium circulates. Here, as the working medium, it is preferable to use a working medium having a low boiling point (boiling point is around 40 ° C.), such as dichlorotrifluoroethane HFC13 or trifluoroethanol CF 3 CH 2 OH.

制御盤20は、圧力センサ24で測定された蒸気発生器11の蒸気発生器出口からの作動媒体蒸気の圧力と温度センサ25で測定された蒸気発生器11の出口の作動媒体蒸気の温度から、過熱度を演算して求める。過熱度は、蒸気発生器出口において検出しても良く、タービン14の入口や、相当する配管中などにおいて検出しても良い。この演算して得られた演算過熱度が目標の過熱度と比較して低い場合は給液ポンプ18の回転速度を減じて蒸気発生器11に供給される作動媒体液流量を減らし、該演算過熱度が目標の過熱度と比較して高い場合は給液ポンプ18の回転速度を増やし蒸気発生器11に供給される作動媒体液流量を増し、蒸気発生器11から吐出される作動媒体蒸気の過熱度が一定になるように制御する。これに作動媒体の循環量が変動した場合の補正として、蒸気発生器11の蒸気出口からの作動媒体蒸気圧を圧力センサ24で監視し、該圧力が増減した場合、それを相殺するため、給液ポンプ18の回転速度を増減する。即ち、作動媒体蒸気圧が増加した場合給液ポンプ18の回転速度を増し、作動媒体蒸気圧が減少した場合給液ポンプ18の回転速度を減じる。なお、過熱度に代えて、例えば、作動媒体蒸気の温度から飽和圧力を計算し、作動媒体圧力と飽和圧力との差を指標としても、略同等の効果を得ることができる。   The control panel 20 calculates the pressure of the working medium vapor from the steam generator outlet of the steam generator 11 measured by the pressure sensor 24 and the temperature of the working medium vapor at the outlet of the steam generator 11 measured by the temperature sensor 25. Calculate the degree of superheat. The degree of superheat may be detected at the steam generator outlet, or may be detected at the inlet of the turbine 14 or in the corresponding piping. When the calculated superheat degree obtained by this calculation is lower than the target superheat degree, the rotational speed of the liquid feed pump 18 is reduced to reduce the flow rate of the working medium liquid supplied to the steam generator 11 and the calculated superheat. When the degree is higher than the target superheat degree, the rotational speed of the feed pump 18 is increased to increase the flow rate of the working medium liquid supplied to the steam generator 11, and the superheated working medium steam discharged from the steam generator 11 is increased. Control the degree to be constant. As a correction when the circulating amount of the working medium fluctuates, the working medium vapor pressure from the steam outlet of the steam generator 11 is monitored by the pressure sensor 24, and when the pressure increases or decreases, The rotational speed of the liquid pump 18 is increased or decreased. That is, when the working medium vapor pressure increases, the rotational speed of the liquid supply pump 18 is increased, and when the working medium vapor pressure decreases, the rotational speed of the liquid supply pump 18 is decreased. In place of the degree of superheat, for example, the saturation pressure is calculated from the temperature of the working medium vapor, and the difference between the working medium pressure and the saturation pressure can be used as an index to obtain substantially the same effect.

上記のように制御盤20は、圧力センサ24の出力と温度センサ25の出力から作動媒体蒸気の過熱度を演算し、この演算して得られた演算過熱度が目標の過熱度と比較して低い場合は作動媒体液流量を減らし、該演算過熱度が目標の過熱度と比較して高い場合は作動媒体液流量を増すので、蒸気発生器11の蒸気出口において作動媒体蒸気は一定の過熱度を有することになり、蒸気発生器11の蒸気出口から吐出される作動媒体蒸気を過熱するための過熱器を設ける必要がない。なお、上記例では、作動媒体液流量の増減を給液ポンプ18の回転速度の増減で行うが、作動媒体液流量の増減ができれば、給液ポンプ18の回転速度の増減に限定されるものではない。   As described above, the control panel 20 calculates the superheat degree of the working medium vapor from the output of the pressure sensor 24 and the output of the temperature sensor 25, and the calculated superheat degree obtained by this calculation is compared with the target superheat degree. When it is low, the working medium liquid flow rate is decreased, and when the calculated superheat is higher than the target superheat degree, the working medium liquid flow rate is increased. Therefore, the working medium vapor at the steam outlet of the steam generator 11 has a constant superheat degree. Therefore, it is not necessary to provide a superheater for superheating the working medium vapor discharged from the steam outlet of the steam generator 11. In the above example, the working medium liquid flow rate is increased / decreased by increasing / decreasing the rotational speed of the feed liquid pump 18. Absent.

図5は上記排熱発電装置における作動媒体蒸気の過熱度を一定制御した時の蒸気発生器内のイメージを示す図である。給液ポンプ18によりプレート式の熱交換器である蒸気発生器11の液入口11aから供給される凝縮器17からの作動媒体液はプレートとプレートの間の流路11bを通って加熱され、作動媒体蒸気となって蒸気出口11cから作動媒体配管19を通ってタービン14へ送られる。蒸気発生器11の内部は、下方から作動媒体予熱部A1と、作動媒体気化部A2と、作動媒体過熱部A3とに区分される。給液ポンプ18により蒸気発生器11に供給される作動媒体液の供給量が過大(作動媒体循環量が過大)となると作動媒体過熱部A3が縮小し、作動媒体蒸気の過熱度が低下し、制御盤20の上記制御により給液ポンプ18の回転速度が減少し作動媒体の循環量が減る。また、給液ポンプ18により蒸気発生器11に凝縮器17から供給される作動媒体液の供給量が不足(作動媒体循環量が不足)すると作動媒体過熱部A3が拡大し、作動媒体蒸気の過熱度が上昇し、制御盤20の上記制御により給液ポンプ18の回転速度が増加し作動媒体の循環量が増える。   FIG. 5 is a diagram showing an image inside the steam generator when the superheat degree of the working medium steam in the exhaust heat power generator is controlled to be constant. The working medium liquid from the condenser 17 supplied from the liquid inlet 11a of the steam generator 11, which is a plate heat exchanger, is heated by the liquid supply pump 18 through the flow path 11b between the plates. It becomes medium vapor and is sent from the vapor outlet 11 c to the turbine 14 through the working medium pipe 19. The inside of the steam generator 11 is divided into a working medium preheating part A1, a working medium vaporizing part A2, and a working medium superheating part A3 from below. When the supply amount of the working medium liquid supplied to the steam generator 11 by the feed pump 18 becomes excessive (the working medium circulation amount is excessive), the working medium superheated portion A3 is reduced, and the superheating degree of the working medium vapor is reduced, By the above control of the control panel 20, the rotation speed of the liquid supply pump 18 is reduced and the circulation amount of the working medium is reduced. Further, when the supply amount of the working medium liquid supplied from the condenser 17 to the steam generator 11 by the feed pump 18 is insufficient (the working medium circulation amount is insufficient), the working medium superheated portion A3 is expanded, and the working medium vapor is overheated. The rotation speed of the liquid supply pump 18 is increased by the above control of the control panel 20, and the amount of circulation of the working medium is increased.

制御盤20は、過熱度演算部20−1、PID演算部20−2、目標値(目標過熱度)設定部20−3、圧力変動補正部20−4、及び回転速度制御部20−5を備えている。蒸気発生器11の蒸気出口11cに接続された作動媒体配管19に設けた、圧力センサ24及び温度センサ25で測定された作動媒体蒸気圧及び作動媒体蒸気温度は過熱度演算部20−1に入力され、該過熱度演算部20−1で作動媒体蒸気の過熱度が演算される。PID演算部20−2ではこの演算過熱度が目標値設定部20−3で設定された目標の過熱度(3℃程度)と比較し、低い場合は回転速度制御部20−5に給液ポンプ18の回転速度を所定量減速するよう指令し、該演算過熱度が目標の過熱度と比較して高い場合は給液ポンプ18の回転速度を所定量増速するよう指令する。   The control panel 20 includes a superheat degree calculation unit 20-1, a PID calculation unit 20-2, a target value (target superheat degree) setting unit 20-3, a pressure fluctuation correction unit 20-4, and a rotation speed control unit 20-5. I have. The working medium vapor pressure and working medium vapor temperature measured by the pressure sensor 24 and the temperature sensor 25 provided in the working medium pipe 19 connected to the steam outlet 11c of the steam generator 11 are input to the superheat degree calculation unit 20-1. Then, the superheat degree of the working medium vapor is calculated by the superheat degree calculation unit 20-1. The PID calculation unit 20-2 compares the calculated superheat degree with the target superheat degree (about 3 ° C.) set by the target value setting unit 20-3. 18 is commanded to decelerate the rotational speed by a predetermined amount, and when the calculated superheat degree is higher than the target superheat degree, a command is given to increase the rotational speed of the feed pump 18 by a predetermined amount.

また、作動媒体の循環量が変動して蒸気発生器11の蒸気出口11cからの作動媒体蒸気圧が増減した場合、それを圧力センサ24で検出し、この作動媒体の循環量の変動を相殺するため、回転速度制御部20−5に給液ポンプ18の回転速度を増減する指令を出す。即ち、作動媒体蒸気圧が増加した場合給液ポンプ18の回転速度を増し、作動媒体蒸気圧が減少した場合給液ポンプ18の回転速度を減じる。この増減の量は、作動媒体蒸気圧力の変化量に比例するようにすると良い。また、制御が不安定となることを避けるため、給液ポンプ18の回転速度の増減量には、上限及び下限を設けることが好ましい。   Further, when the working medium circulation amount fluctuates and the working medium vapor pressure from the steam outlet 11c of the steam generator 11 increases or decreases, this is detected by the pressure sensor 24 to cancel the fluctuation of the working medium circulation amount. Therefore, a command to increase or decrease the rotation speed of the liquid supply pump 18 is issued to the rotation speed control unit 20-5. That is, when the working medium vapor pressure increases, the rotational speed of the liquid supply pump 18 is increased, and when the working medium vapor pressure decreases, the rotational speed of the liquid supply pump 18 is decreased. The amount of increase / decrease is preferably proportional to the amount of change in working medium vapor pressure. In order to avoid unstable control, it is preferable to provide an upper limit and a lower limit for the amount of increase / decrease in the rotation speed of the liquid supply pump 18.

上記のように排熱源30から発電装置10の蒸気発生器11に供給される排熱量に対して作動媒体液の供給量が過小であると、作動媒体液の行き渡らなかった伝熱面が過熱器として働き、過熱度が上昇する。また、蒸気発生器11に供給される排熱量に対して作動媒体液の供給量が過大であると、過熱器として働く伝熱面が小さくなるため、過熱度が低下する。従って、蒸気発生器11の蒸気出口11c、或いは相当する作動媒体配管19中において、過熱度を一定とするように作動媒体の供給量を制御することで、排熱の供給量に対して適正な流量の作動媒体を供給することが可能となり、供給された排熱を無駄なく利用し、発電装置10の作動媒体を適切に維持できる。   As described above, when the supply amount of the working medium liquid is excessively small with respect to the exhaust heat amount supplied from the exhaust heat source 30 to the steam generator 11 of the power generation apparatus 10, the heat transfer surface where the working medium liquid has not spread is superheater. As a result, the degree of superheat rises. Moreover, since the heat transfer surface which acts as a superheater will become small if the supply amount of a working-medium liquid is excessive with respect to the waste heat amount supplied to the steam generator 11, a superheat degree will fall. Therefore, by controlling the supply amount of the working medium so that the degree of superheat is constant in the steam outlet 11c of the steam generator 11 or the corresponding working medium pipe 19, the amount of exhaust heat is appropriate. It becomes possible to supply the working medium at a flow rate, and it is possible to appropriately maintain the working medium of the power generation apparatus 10 by using the supplied exhaust heat without waste.

具体的には上記のように、蒸気発生器11の蒸気出口11cにおける作動媒体蒸気の過熱度に目標値を設定し、過熱度が目標値以上となったら、或いは目標以上となることが予測された場合、蒸気発生器11への作動媒体液の供給量を増し、過熱度が目標値以下となったら、或いは目標値以下となることが予測された場合、蒸気発生器11への作動媒体液の供給量を減ずる。本実施形態に基づく発明者らの実験では、この目標過熱度を1〜3℃程度とすると、蒸気発生器11の蒸気出口11cから出る作動媒体蒸気中の液滴が極めて少なく、安定した運転を行いながら、熱回収量を最大化することができた。これは作動媒体、温度センサや圧力センサの精度や応答速度により、最適な値は異なるものと予想されるが、発明者等の検証では、多くの場合で1〜3℃が適切となるようである。   Specifically, as described above, a target value is set for the superheat degree of the working medium steam at the steam outlet 11c of the steam generator 11, and when the superheat degree becomes equal to or higher than the target value, it is predicted to become higher than the target. In the case where the supply amount of the working medium liquid to the steam generator 11 is increased and the degree of superheat becomes equal to or less than the target value, or when it is predicted to become equal to or less than the target value, the working medium liquid to the steam generator 11 is Reduce the amount of supply. In the experiments by the inventors based on the present embodiment, when the target superheat degree is about 1 to 3 ° C., there are very few droplets in the working medium vapor coming out of the steam outlet 11c of the steam generator 11, and stable operation is achieved. While doing so, we were able to maximize heat recovery. The optimum value is expected to be different depending on the accuracy and response speed of the working medium, temperature sensor and pressure sensor. However, in the verification by the inventors, 1 to 3 ° C. seems to be appropriate in many cases. is there.

また、作動媒体の循環を開始した直後は、温水温度や媒体温度が安定しておらず、伝熱条件が設計条件から外れてしまい、作動媒体の循環の偏り(偏流)を生じたり、制御が不調となったりしやすい。そこで制御盤20は、作動媒体の循環を開始してから一定の時間が経過するまでは過熱度の目標値を本来の目標値より低く設定して作動媒体液流量を増減制御する機能を備えている。これにより起動時は作動媒体蒸気の過熱度を低く抑えることで循環量を多めにして、一定の時間が経過したら過熱度を本来の目標値とし、本来の循環量とする。このようにすると、蒸気発生器11内で作動媒体の偏流を抑制することができる。なお、この切替は瞬時に行っても、徐々に変化させてもよく、切替は循環開始からの時間によるほか、温水や作動媒体蒸気の温度や圧力、及びその変化率等を指標としても良い。   Immediately after starting the circulation of the working medium, the hot water temperature and the medium temperature are not stable, the heat transfer conditions deviate from the design conditions, and the working medium circulation is biased (uneven flow). It is easy to get sick. Therefore, the control panel 20 has a function of increasing / decreasing the flow rate of the working medium by setting the target value of the superheat degree lower than the original target value until a certain time has elapsed after the circulation of the working medium is started. Yes. As a result, at the time of start-up, the amount of circulation is increased by keeping the degree of superheating of the working medium vapor low, and when a certain period of time has elapsed, the degree of superheating is set to the original target value and the original amount of circulation. If it does in this way, the drift of a working medium can be suppressed in the steam generator 11. This switching may be performed instantaneously or may be gradually changed. The switching may be based on the time from the start of circulation, the temperature and pressure of hot water or working medium vapor, the rate of change thereof, and the like.

また、上記排熱発電装置において、制御盤20は、タービン発電機16の発電電力を逆変換装置(系統連携装置22)を介して系統23に送電する場合、該逆変換装置内の直流電圧が一定となるように、該逆変換装置の出力を増減することで、タービン発電機16の回転を適正に保ち発電電力を最大化にすることができる。図6は逆変換装置の構成例を示す図である。タービン発電機16の高速発電機15の交流出力は高周波整流器21で直流に変換され、平滑コンデンサ22−1で平滑される。インバータ22−3はこの直流を交流に変換し、系統23に送電する。高周波整流器21の出力側直流電圧は電圧計22−2で測定し、制御盤20(図4参照)に出力される。制御盤20は、この直流電圧が所定の一定電圧値となるように、インバータ22−3の出力を増減することで、タービン発電機16の回転を適正に保ち発電電力を最大化することができる。   In the exhaust heat power generator, when the control panel 20 transmits the power generated by the turbine generator 16 to the grid 23 via the reverse converter (system linkage apparatus 22), the DC voltage in the reverse converter is By increasing / decreasing the output of the inverse converter so as to be constant, the rotation of the turbine generator 16 can be properly maintained and the generated power can be maximized. FIG. 6 is a diagram illustrating a configuration example of the inverse conversion device. The alternating current output of the high speed generator 15 of the turbine generator 16 is converted into direct current by the high frequency rectifier 21 and smoothed by the smoothing capacitor 22-1. The inverter 22-3 converts this direct current into alternating current and transmits it to the system 23. The output side DC voltage of the high frequency rectifier 21 is measured by a voltmeter 22-2 and output to the control panel 20 (see FIG. 4). The control panel 20 can maximize the generated power by appropriately maintaining the rotation of the turbine generator 16 by increasing / decreasing the output of the inverter 22-3 so that the DC voltage becomes a predetermined constant voltage value. .

なお、上記排熱発電装置では、排熱源30から温水を熱源とし蒸気発生器11に導入し、凝縮器17に冷却塔40からの冷却水を低温源とする例を示したが、熱源及び低温源はこれに限定されるものではなく、例えば排熱源からの排ガスを熱源とし、空気(空冷凝縮器)や河川水などを低温熱源としてもよい。また、この低温熱源と熱交換による二次流体を用いたり、これらと同等の別の技術を用いるものもある。また、排熱源としては工場排熱、原動機等の排熱、温泉水(地熱)、太陽熱など、様々なものがあり、更にこれらの熱源によって生成される温水や低圧蒸気等であっても良い。   In the above exhaust heat power generation apparatus, an example is shown in which hot water is introduced from the exhaust heat source 30 into the steam generator 11 and the cooling water from the cooling tower 40 is used as the low temperature source in the condenser 17. The source is not limited to this. For example, exhaust gas from an exhaust heat source may be used as a heat source, and air (air-cooled condenser), river water, or the like may be used as a low-temperature heat source. Some use a secondary fluid by heat exchange with this low-temperature heat source, or use another technique equivalent to these. Further, there are various exhaust heat sources such as factory exhaust heat, exhaust heat from motors, hot spring water (geothermal), solar heat, and the like, and hot water or low-pressure steam generated by these heat sources may be used.

以上、本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。例えば、上記例では膨張機としてタービン14を用い高速発電機15を駆動するタービン発電機16を説明したが、膨張機に作動媒体蒸気を供給し、該作動媒体蒸気の膨張により発生する機械的回転力で発電機を駆動する構成であればよい。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea described in the claims and the specification and drawings. Is possible. For example, in the above-described example, the turbine generator 16 that drives the high-speed generator 15 using the turbine 14 as the expander has been described. However, the mechanical rotation generated by supplying the working medium vapor to the expander and expanding the working medium vapor. Any configuration may be used as long as the generator is driven by force.

蒸気発生器にプレート式熱交換器を用いた従来の排熱発電装置の構成例を示す図である。It is a figure which shows the structural example of the conventional waste heat power generator using a plate type heat exchanger for a steam generator. 蒸気発生器にドラム型蒸気発生器を用いた従来の排熱発電装置の構成例を示す図である。It is a figure which shows the structural example of the conventional waste heat power generator using a drum type steam generator for a steam generator. 蒸気発生器に貫流型蒸気発生器を用いた従来の排熱発電装置の構成例を示す図である。It is a figure which shows the structural example of the conventional waste heat power generator using a once-through type steam generator for a steam generator. 本発明に係る排熱発電装置の構成例を示す図である。It is a figure which shows the structural example of the waste heat power generator which concerns on this invention. 本発明に係る排熱発電装置の過熱度一定制御時の蒸気発生器内のイメージを示す図である。It is a figure which shows the image in the steam generator at the time of superheat degree constant control of the exhaust heat power generator which concerns on this invention. 本発明に係る排熱発電装置の逆変換装置の構成例を示す図である。It is a figure which shows the structural example of the reverse conversion apparatus of the waste heat power generator which concerns on this invention.

符号の説明Explanation of symbols

10 発電装置
11 蒸気発生器
12 液滴分離器
13 主蒸気弁
14 タービン
15 高速発電機
16 タービン発電機
17 凝縮器
18 給液ポンプ
19 作動媒体配管
20 制御盤
21 高周波整流器
22 系統連携装置
23 系統
24 圧力センサ
25 温度センサ
26 配管
27 開閉弁
30 排熱源
31 温水循環ポンプ
40 冷却塔
41 冷却水ポンプ
DESCRIPTION OF SYMBOLS 10 Power generator 11 Steam generator 12 Droplet separator 13 Main steam valve 14 Turbine 15 High speed generator 16 Turbine generator 17 Condenser 18 Feed pump 19 Working medium piping 20 Control panel 21 High frequency rectifier 22 System linkage apparatus 23 System 24 Pressure sensor 25 Temperature sensor 26 Piping 27 On-off valve 30 Waste heat source 31 Hot water circulation pump
40 Cooling tower 41 Cooling water pump

Claims (7)

蒸気発生器を備え、排熱源からの排熱媒体を前記蒸気発生器に導入し、発生した作動媒体蒸気を膨張機に導き、該膨張機で発電機を駆動して発電すると共に、吐出される作動媒体蒸気を凝縮器に導き低熱源からの低熱媒体により前記作動媒体蒸気を冷却・凝縮し、該凝縮した作動媒体液を前記蒸気発生器に供給するように構成した排熱発電装置において、
前記蒸気発生器に供給する作動媒体液流量を増減して該蒸気発生器から前記膨張機に導く前記作動媒体蒸気の過熱度を所定の目標値に制御する作動媒体蒸気過熱度制御手段を設け、
前記作動媒体蒸気過熱度制御手段は、当該排熱発電装置が起動してから一定の時間が経過するまでは前記過熱度の目標値を前記所定の目標値より低く設定して作動媒体液流量を増減制御する機能を備えていることを特徴とする排熱発電装置。
A steam generator is provided, an exhaust heat medium from an exhaust heat source is introduced into the steam generator, the generated working medium steam is guided to an expander, and the generator is driven by the expander to generate power and discharged. In the exhaust heat power generation apparatus configured to guide the working medium vapor to a condenser, cool and condense the working medium vapor with a low heat medium from a low heat source, and supply the condensed working medium liquid to the steam generator.
Setting the working medium vapor superheat control means for controlling the degree of superheat of the working medium vapor leading to the expander from the steam generator to increase or decrease the working medium fluid flow supplied to the steam generator to a predetermined target value ,
The working medium steam superheat degree control means sets the superheat degree target value to be lower than the predetermined target value until the fixed time has elapsed after the exhaust heat power generator is started up, and sets the working medium liquid flow rate. An exhaust heat power generator having a function of increasing / decreasing control .
請求項1に記載の排熱発電装置において、
前記蒸気発生器はプレート式熱交換器であることを特徴とする排熱発電装置。
The exhaust heat power generator according to claim 1,
The exhaust heat power generation apparatus according to claim 1, wherein the steam generator is a plate heat exchanger.
請求項1又は2に記載の排熱発電装置において、
前記作動媒体蒸気過熱度制御手段は、前記蒸気発生器に作動媒体液を供給する給液ポンプの回転速度を増減して作動媒体液流量を増減する機能を備えていることを特徴とする排熱発電装置。
The exhaust heat power generator according to claim 1 or 2,
The working medium vapor superheat degree control means has a function to increase / decrease the working medium liquid flow rate by increasing / decreasing the rotational speed of a feed pump for supplying the working medium liquid to the steam generator. Power generation device.
請求項1乃至3のいずれか1項に記載の排熱発電装置において、
前記作動媒体蒸気過熱度制御手段は、前記蒸気発生器から前記膨張機に導く前記作動媒体蒸気の圧力と温度から該作動媒体蒸気の過熱度を演算する過熱度演算機能と、該過熱度演算機能で演算して得られた演算過熱度と、前記設定された目標過熱度を比較し、該演算過熱度が高い場合は前記作動媒体液流量を増し、低い場合は該作動媒体液流量を減じて前記演算過熱度を前記目標過熱度に制御する制御機能を備えていることを特徴とする排熱発電装置。
The exhaust heat power generator according to any one of claims 1 to 3,
The working medium steam superheat degree control means includes a superheat degree calculation function for calculating the superheat degree of the working medium steam from the pressure and temperature of the working medium steam led from the steam generator to the expander, and the superheat degree calculation function. Comparing the calculated superheat degree calculated by the above and the set target superheat degree, when the calculated superheat degree is high, the working medium liquid flow rate is increased, and when the calculated superheat degree is low, the working medium liquid flow rate is decreased. An exhaust heat power generator having a control function for controlling the calculated superheat degree to the target superheat degree.
請求項1乃至4のいずれか1項に記載の排熱発電装置において、
前記作動媒体蒸気過熱度制御手段は、前記蒸気発生器の蒸発吐出口又は該蒸気発生器から前記膨張機に前記作動媒体蒸気を導く配管又は前記膨張機の蒸気入口の作動媒体蒸気圧の変化により前記作動媒体液流量を増減する圧力変動補正機能を備えていることを特徴とする排熱発電装置。
The exhaust heat power generator according to any one of claims 1 to 4,
The working medium vapor superheat degree control means is based on a change in the working medium vapor pressure of the vapor discharge port of the steam generator, a pipe for introducing the working medium vapor from the steam generator to the expander, or a steam inlet of the expander. An exhaust heat power generator having a pressure fluctuation correction function for increasing or decreasing the flow rate of the working medium liquid.
請求項1乃至のいずれか1項に記載の排熱発電装置において、
前記発電機の発電電力を逆変換装置を介して他の電力系統に送電する場合、該逆変換装置内の直流電圧が一定となるように、該逆変換装置の出力を増減する手段を設けたことを特徴とする排熱発電装置。
The exhaust heat power generator according to any one of claims 1 to 5 ,
In the case of transmitting the power generated by the generator to another power system via an inverter, means for increasing or decreasing the output of the inverter is provided so that the DC voltage in the inverter is constant. An exhaust heat power generator characterized by that.
プレート式熱交換器からなる蒸気発生器を備え、排熱源からの排熱媒体を前記蒸気発生器に導入し、発生した作動媒体蒸気を膨張機に導き、該膨張機で発電機を駆動して発電すると共に、吐出される作動媒体蒸気を凝縮器に導き低熱源からの低熱媒体により前記作動媒体蒸気を冷却・凝縮し、該凝縮した作動媒体液を前記蒸気発生器に供給するように構成した排熱発電装置の前記蒸気発生器から前記膨張機に導く前記作動媒体蒸気の過熱度を所定の目標値に制御する排熱発電装置の作動媒体蒸気過熱度制御方法であって、
当該排熱発電装置が起動してから一定の時間が経過するまでは過熱度の目標値を前記所定の目標値より低く設定し、前記蒸気発生器に供給する作動媒体液流量を増減して前記作動媒体蒸気の過熱度を該低く設定した目標値になるように制御し、前記一定の時間の経過後は前記目標値を前記所定の目標値とし、前記蒸気発生器に供給する作動媒体液流量を増減して前記作動媒体蒸気の過熱度を前記所定の目標過熱度に制御することを特徴とする排熱発電装置の作動媒体蒸気過熱度制御方法。
A steam generator comprising a plate heat exchanger, introducing the exhaust heat medium from the exhaust heat source into the steam generator, guiding the generated working medium vapor to the expander, and driving the generator with the expander; In addition to generating electric power, the discharged working medium vapor is guided to a condenser, and the working medium vapor is cooled and condensed by a low heat medium from a low heat source, and the condensed working medium liquid is supplied to the steam generator. A method for controlling the degree of superheat of a working medium vapor of an exhaust heat power generator that controls the degree of superheat of the working medium steam led from the steam generator of the waste heat power generator to the expander, to a predetermined target value ,
The target value of the superheat degree is set lower than the predetermined target value until a certain time has elapsed after the exhaust heat power generator is started, and the flow rate of the working medium liquid supplied to the steam generator is increased or decreased. Control is made so that the superheat degree of the working medium vapor becomes the target value set to be low, and after the predetermined time has elapsed, the target value is set as the predetermined target value, and the working medium liquid flow rate supplied to the steam generator And controlling the superheat degree of the working medium steam to the predetermined target superheat degree by increasing / decreasing the working medium steam superheat degree.
JP2007156850A 2007-06-13 2007-06-13 Exhaust heat power generation apparatus and method for controlling working medium vapor superheat degree of exhaust heat power generation apparatus Expired - Fee Related JP4875546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007156850A JP4875546B2 (en) 2007-06-13 2007-06-13 Exhaust heat power generation apparatus and method for controlling working medium vapor superheat degree of exhaust heat power generation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007156850A JP4875546B2 (en) 2007-06-13 2007-06-13 Exhaust heat power generation apparatus and method for controlling working medium vapor superheat degree of exhaust heat power generation apparatus

Publications (2)

Publication Number Publication Date
JP2008309046A JP2008309046A (en) 2008-12-25
JP4875546B2 true JP4875546B2 (en) 2012-02-15

Family

ID=40236870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007156850A Expired - Fee Related JP4875546B2 (en) 2007-06-13 2007-06-13 Exhaust heat power generation apparatus and method for controlling working medium vapor superheat degree of exhaust heat power generation apparatus

Country Status (1)

Country Link
JP (1) JP4875546B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014087864A1 (en) 2012-12-03 2014-06-12 東京博善株式会社 Cremation system

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5195653B2 (en) * 2009-06-09 2013-05-08 トヨタ自動車株式会社 Waste heat recovery device and engine
JP5639515B2 (en) * 2011-03-24 2014-12-10 株式会社神戸製鋼所 Binary power generator and control method thereof
WO2013020256A1 (en) * 2011-08-08 2013-02-14 Tang Zhongsheng Water spraying type steam engine
CN102392701B (en) * 2011-08-08 2015-03-18 唐忠盛 Water injection type steam engine
JP5891146B2 (en) 2012-08-29 2016-03-22 株式会社神戸製鋼所 Power generation device and method for controlling power generation device
JP6064548B2 (en) 2012-11-28 2017-01-25 株式会社Ihi Waste heat power generator
JP5957410B2 (en) * 2013-04-16 2016-07-27 株式会社神戸製鋼所 Waste heat recovery device
JP6334270B2 (en) * 2013-05-31 2018-05-30 メタウォーター株式会社 Control method for organic waste combustion plant.
JP6060040B2 (en) * 2013-06-07 2017-01-11 株式会社神戸製鋼所 Waste heat recovery device and operation control method of waste heat recovery device
CN108825318A (en) * 2018-09-20 2018-11-16 北京宏远佰思德科技有限公司 A kind of cryogenic fluid electricity generation system and dynamical system
CN112786223B (en) * 2021-01-14 2023-10-31 中广核研究院有限公司 Waste heat discharging system and flow stabilizing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6981377B2 (en) * 2002-02-25 2006-01-03 Outfitter Energy Inc System and method for generation of electricity and power from waste heat and solar sources
JP4277608B2 (en) * 2003-07-10 2009-06-10 株式会社日本自動車部品総合研究所 Rankine cycle
JP4889956B2 (en) * 2004-03-22 2012-03-07 株式会社荏原製作所 Power generator
JP4659503B2 (en) * 2005-03-31 2011-03-30 株式会社荏原製作所 Power generation device and lubricating oil recovery method
JP4808006B2 (en) * 2005-11-04 2011-11-02 株式会社荏原製作所 Drive system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014087864A1 (en) 2012-12-03 2014-06-12 東京博善株式会社 Cremation system
US9822972B2 (en) 2012-12-03 2017-11-21 Tokyo Hakuzen Co., Ltd. Cremation system

Also Published As

Publication number Publication date
JP2008309046A (en) 2008-12-25

Similar Documents

Publication Publication Date Title
JP4875546B2 (en) Exhaust heat power generation apparatus and method for controlling working medium vapor superheat degree of exhaust heat power generation apparatus
KR101419261B1 (en) Control of a thermal cyclic process
JP4578354B2 (en) Waste heat utilization equipment for steam turbine plant
RU2502880C2 (en) Organic rankine cycle of direct heating
JP5981693B2 (en) Method and system for determining safe drum water level in combined cycle operation
AU2012214955B2 (en) Method and apparatus of producing and utilizing thermal energy in a combined heat and power plant
JP5595595B2 (en) Method of operating a combined gas / steam turbine facility, gas / steam turbine facility for implementing this method, and corresponding regulator
WO2013129569A1 (en) Waste heat recovery ranking cycle system
JP5788235B2 (en) Steam generator
US11261760B2 (en) On-demand vapor generator and control system
JP2005312289A (en) Power generating device
CN105386803B (en) Low-grade waste heat power generation system capable of achieving gas-liquid hybrid recycling and control method
JP4684762B2 (en) Power generator
US10472992B2 (en) On-demand steam generator and control system
JP5192736B2 (en) Exhaust heat power generation apparatus, operation method of exhaust heat power generation apparatus
JP2008267341A (en) Exhaust heat recovering device
KR20110079446A (en) Control method of organic rankine cycle system pump
JP5424711B2 (en) Steam turbine power generation system
KR101613227B1 (en) Apparatus and method for power production using waste heat in a ship
JP6516993B2 (en) Combined cycle plant and boiler steam cooling method
JPH1136818A (en) Controller for cogeneration plant utilizing waste heat
JP2002156493A (en) Site heat supply equipment of nuclear power station
JP2019027399A (en) Combined cycle power generation plant, and its operation method and modification method
RU2067668C1 (en) Combined-cycle plant operation process
JPH05296401A (en) Exhaust heat recoverying boiler system and its main steam temperature controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4875546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees