WO2016170653A1 - Steam turbine system - Google Patents

Steam turbine system Download PDF

Info

Publication number
WO2016170653A1
WO2016170653A1 PCT/JP2015/062421 JP2015062421W WO2016170653A1 WO 2016170653 A1 WO2016170653 A1 WO 2016170653A1 JP 2015062421 W JP2015062421 W JP 2015062421W WO 2016170653 A1 WO2016170653 A1 WO 2016170653A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
steam
heat pump
steam turbine
cooling
Prior art date
Application number
PCT/JP2015/062421
Other languages
French (fr)
Japanese (ja)
Inventor
守 木村
尚弘 楠見
日野 徳昭
白石 朋史
コーテット アウン
正利 吉村
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/062421 priority Critical patent/WO2016170653A1/en
Publication of WO2016170653A1 publication Critical patent/WO2016170653A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether

Definitions

  • the present invention relates to a steam turbine system.
  • Patent Document 1 the nighttime surplus power is used to store heat in the refrigerator, and during the daytime when power demand increases, the stored heat energy is used as cooling energy for the condenser to achieve power leveling. Is disclosed.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a steam turbine system that can efficiently reduce the output to the power system when the amount of electric power introduced into the renewable energy increases. is there.
  • a steam turbine system of the present invention is a steam turbine system connected to a power system to which a power generation system that generates power using renewable energy is connected, and is driven by steam.
  • a turbine a condenser that cools the steam discharged from the turbine to a liquid, a cooling circuit that circulates a cooling refrigerant for cooling the steam in the condenser, and the cooling
  • a heat pump that cools the cooling refrigerant flowing through the circulation path; and a first detection unit that detects a change in power demand in the power system when power equal to or greater than a predetermined power is supplied from the power generation system to the power system; A part of the power supplied to the power system is supplied to the heat pump based on the change in the power demand detected by the detecting means, and the heat pump And a control device to be driven.
  • the block diagram of the electric power system containing the steam turbine system which concerns on the 1st Embodiment of this invention is shown. It is a graph which shows the time change of the wind power generated in wind power generation.
  • the block diagram of the electric power system containing the steam turbine system which concerns on the 2nd Embodiment of this invention is shown.
  • the block diagram of the electric power system containing the steam turbine system which concerns on the 3rd Embodiment of this invention is shown.
  • the block diagram of the electric power system containing the steam turbine system which concerns on the 4th Embodiment of this invention is shown.
  • FIG. 1 shows a configuration diagram of an electric power system including a steam turbine system 20 according to the first embodiment.
  • the steam turbine system 20 includes a turbine 1, a generator 2, a boiler 4, a pump 5, a condenser 6, a circulation path 7, a low-temperature heat source 8, a cooling circulation path 9, a pump 10, A heat pump 11, power detectors 12 to 14, and a control device 15 are mainly provided.
  • the steam turbine system 20 is a system called a base load power source such as a nuclear power generation system or a coal thermal power generation system.
  • the boiler 4 heats a refrigerant such as water to make it steam.
  • the turbine 1 is driven by the steam from the boiler 4 and converts the kinetic energy of the steam into mechanical rotational motion.
  • a generator 2 is connected to the turbine 1, and the generator 2 generates power using the rotation of the turbine 1 and outputs it to the power system 3.
  • a cooling circuit 9 is connected to the condenser 6, and water pumped from a low-temperature heat source 8 such as the sea or river by the pump 10 is supplied to the condenser 6.
  • a low-temperature heat source 8 such as the sea or river by the pump 10
  • heat exchange is performed between the steam from the turbine 1 in the circulation path 7 and the water pumped in the cooling circulation path 9.
  • the degree of vacuum in the condenser 6 depends on the temperature of the low-temperature heat source 8.
  • the low-temperature heat source 8 is the sea or a river
  • the water temperature is lower in the winter than in the summer, so the degree of vacuum in the condenser 6 is higher in the winter, and the thermal efficiency of the steam turbine system 20 is improved.
  • the heat pump 11 is provided so as to include a cooling circuit 9 positioned between the condenser 6 and the pump 10.
  • the heat pump 11 includes, for example, a compressor, an expansion valve, a condenser, and an evaporator. Then, the water pumped up by the pump 10 is cooled by the low temperature part (evaporator) of the heat pump 11, and the cooled water is supplied to the condenser 6.
  • the power detector 12 detects the power generated by the generator 2.
  • the power detector 14 detects power input to the heat pump 11.
  • the power detector 13 detects demand power of the power system 3. A change in power demand in the power system 3 is detected by the power detector 13. For example, when the power demand in the power system 3 decreases, the power detected by the power detector 13 decreases.
  • the power detector 12 corresponds to second detection means
  • the power detector 13 corresponds to first detection means
  • the power detector 14 corresponds to third detection means.
  • the control device 15 controls the operation of the steam turbine system 20.
  • the power system 3 is connected to a power generation system 16 that generates power using renewable energy such as wind power.
  • FIG. 2 is a graph showing temporal changes in wind power generation in wind power generation.
  • the vertical axis represents the ratio (%) of the maximum power generation (rated power) of wind power generation, and the horizontal axis represents time (seconds).
  • the wind power fluctuates, and includes fluctuations of various periods from a long period of 100 seconds or more to a short period of 1 second or less.
  • the power generation system 16 Power is excessively supplied to the power system 3.
  • 70% of the wind power generation corresponds to the predetermined power.
  • the control device 15 Based on the change detected by the power detector 13 (output fluctuation from the steam turbine system 20 to the power system 3), the control device 15 generates a part of the power (surplus) that is generated by the generator 2 and supplied to the power system 3. The power is controlled to flow to the heat pump 11 side. Note that the control device 15 adjusts the amount of power to be supplied to the heat pump 11 according to the amount of change in power demand detected by the power detector 13.
  • the heat pump 11 is driven, the water pumped up by the pump 10 as described above is cooled by the evaporator of the heat pump 11, the cooled water is supplied to the condenser 6, and the vacuum in the condenser 6 is The degree becomes higher.
  • the thermal efficiency of the steam turbine system 20 can be improved by the surplus power. Accordingly, when the amount of introduced renewable energy increases, the output from the steam turbine system 20 to the power system 3 can be efficiently reduced.
  • the change in the power demand in the power system 3 is detected by the power detector 13, an increase in the amount of introduced power in the power generation system 16 (a decrease in power demand in the power system 3) can be detected immediately. Therefore, it is possible to immediately execute control for inputting surplus power to the heat pump 11.
  • the control device 15 acquires the power values of the power detectors 12 and 14 when the surplus power is supplied to the heat pump 11, and grasps the power values detected by the power detectors 12 to 14. Thereby, by flowing surplus power to the heat pump 11, the power value detected by the power detector 13 changes abruptly. However, since the power values of the power detectors 12 and 14 are grasped, the power system 3 The operation of the steam turbine system 20 can be continued without determining that an accident has occurred.
  • FIG. 3 shows a configuration diagram of an electric power system including a steam turbine system 120 according to the second embodiment.
  • the same reference number is attached
  • subjected and description is abbreviate
  • a heating circulation path 33 is connected to a high temperature portion of the heat pump 11, and a heater 34 is provided between the condenser 6 and the pump 5.
  • the heating refrigerant in the heating circulation path 33 is warmed by the high-temperature portion (condenser) of the heat pump 11, and the warmed refrigerant is heated. 34.
  • the water from the condenser 6 is warmed by the warmed refrigerant, so that the temperature difference in the circulation path 7 can be increased, and the steam turbine system 120 can be operated with higher efficiency. Can do.
  • FIG. 4 shows a configuration diagram of an electric power system including a steam turbine system 220 according to the third embodiment.
  • the same reference number is attached
  • subjected and description is abbreviate
  • the steam turbine system 220 includes a power converter (inverter) 41 for variable speed control of a motor (for example, a compressor motor) in the heat pump 11.
  • a power converter for example, a compressor motor
  • FIG. 5 shows a configuration diagram of an electric power system including a steam turbine system 320 according to the fourth embodiment.
  • the same reference number is attached
  • subjected and description is abbreviate
  • the steam turbine system 320 includes two heat pumps 52 and 54 and power converters 51 and 53 corresponding to the heat pumps 52 and 54.
  • the steam turbine system 320 includes two heat pumps 52 and 54 and power converters 51 and 53 corresponding to the heat pumps 52 and 54.
  • the above steam turbine system may be used in a combined cycle or a nuclear power plant regardless of what the fuel is.
  • the change in power demand is detected based on power, it may be detected based on frequency or voltage.

Abstract

Provided is a steam turbine system capable of efficiently reducing output to a power system when the amount of introduced renewable energy power has increased. This steam turbine system 20 is equipped with: a steam-driven turbine 1; a condenser 6 for cooling steam discharged from the turbine 1 and converting the steam to liquid; a cooling circulation path 9 in which a cooling refrigerant for cooling the steam in the condenser 6 circulates; a heat pump 11 for cooling the cooling refrigerant flowing in the cooling circulation path 9; a power detector 13 for detecting a change in the power demand in a power system 3 when more than a prescribed amount of power is supplied to the power system 3 from a power generation system 16; and a control device 15 for supplying a portion of the power supplied to the power system 3 to the heat pump 11 and thereby driving the heat pump 11, on the basis of a change in the power demand as detected by the power detector 13.

Description

蒸気タービンシステムSteam turbine system
 本発明は、蒸気タービンシステムに関する。 The present invention relates to a steam turbine system.
 近年、風力発電や太陽光発電などの再生可能エネルギーの導入量が飛躍的に増加しており、再生可能エネルギーが電力系統へ与える影響が大きくなっている。再生可能エネルギーは、自然現象を利用した発電のため予測が困難であり、時間的に短い周期で大きな変動が発生することもある。電力は需要と供給が一致していることが前提のため、変動分を電力系統全体で補償する必要があることから、大規模蓄電池システムを併設することや、ガスタービン発電システムなどの発電量を調整できる発電システムで調整している。しかしながら、大規模蓄電池システムは高コストであり、ガスタービン発電システムでも対応できない早い変動が発生した場合の対処方法が課題となっている。 In recent years, the amount of renewable energy such as wind power generation and solar power generation has increased dramatically, and the impact of renewable energy on the power system is increasing. Renewable energy is difficult to predict due to power generation using natural phenomena, and large fluctuations may occur in a short period of time. Since it is assumed that the supply and demand of electric power are the same, it is necessary to compensate for fluctuations in the entire electric power system. Therefore, it is necessary to install a large-scale storage battery system or reduce the amount of power generated by a gas turbine power generation system. It is adjusted with a power generation system that can be adjusted. However, a large-scale storage battery system is expensive, and there is a problem of how to cope with an early change that cannot be handled by a gas turbine power generation system.
 さらに、ベースロード電源と言われる原子力発電システムや石炭火力などの蒸気タービンシステムにおいては、高効率運転のために一定出力での連続運転を現在行っているが、再生可能エネルギーの導入電力量が増えるとベースロード電源と合わせた発電量が電力需要量を上回ることも考えられ、ベースロード電源においても部分負荷で運転する必要が出てくると考えられる。しかし、ベースロード電源における部分負荷運転時には発電システムの効率が低下する。このため、ベースロード電源において、部分負荷運転を行うことなく、電力系統への出力を減少させることが求められる。 Furthermore, in steam turbine systems such as nuclear power generation systems and coal-fired power generation, which are called base load power supplies, continuous operation at a constant output is currently being performed for high-efficiency operation, but the amount of electricity introduced for renewable energy will increase. The power generation amount combined with the base load power supply may exceed the power demand, and the base load power supply may need to be operated with a partial load. However, the efficiency of the power generation system decreases during partial load operation in the base load power source. For this reason, in the base load power supply, it is required to reduce the output to the power system without performing partial load operation.
 特許文献1には、夜間の余剰電力を利用して、冷凍機に蓄熱しておき、電力需要が増大する昼間に、蓄熱エネルギーを復水器の冷却エネルギーとして使用して、電力平準化を図ることについて開示されている。 In Patent Document 1, the nighttime surplus power is used to store heat in the refrigerator, and during the daytime when power demand increases, the stored heat energy is used as cooling energy for the condenser to achieve power leveling. Is disclosed.
特開2013-231393号公報JP 2013-231393 A
 しかし、特許文献1に記載されている技術では、夜間の余剰電力を利用することにより、電力平準化を図っているが、再生可能エネルギーによる導入電力量が増加した時には、電力系統への出力を低減させることはできない。 However, in the technique described in Patent Document 1, power surplus is achieved by using surplus power at night, but when the amount of introduced power by renewable energy increases, output to the power system is reduced. It cannot be reduced.
 本発明は上述の点に鑑みなされたもので、その目的は、再生可能エネルギーの導入電力量が増えた場合に、効率的に電力系統への出力を低減可能な蒸気タービンシステムを提供することにある。 The present invention has been made in view of the above points, and an object of the present invention is to provide a steam turbine system that can efficiently reduce the output to the power system when the amount of electric power introduced into the renewable energy increases. is there.
 上記目的を達成するために、本発明の蒸気タービンシステムは、再生可能エネルギーを利用して発電を行う発電システムが接続された電力系統に接続される蒸気タービンシステムであって、蒸気により駆動されるタービンと、前記タービンから排出された前記蒸気を冷却して液体にする復水器と、前記復水器において前記蒸気を冷却するための冷却用冷媒が循環する冷却用循環路と、前記冷却用循環路を流れる冷却用冷媒を冷却するヒートポンプと、前記発電システムから所定の電力以上の電力が前記電力系統に供給された場合における前記電力系統での電力需要の変化を検知する第1検知手段と、前記検知手段で検知した前記電力需要の変化に基づき、前記電力系統へ供給する電力の一部を前記ヒートポンプへ供給し、前記ヒートポンプを駆動させる制御装置と、を備える。 In order to achieve the above object, a steam turbine system of the present invention is a steam turbine system connected to a power system to which a power generation system that generates power using renewable energy is connected, and is driven by steam. A turbine, a condenser that cools the steam discharged from the turbine to a liquid, a cooling circuit that circulates a cooling refrigerant for cooling the steam in the condenser, and the cooling A heat pump that cools the cooling refrigerant flowing through the circulation path; and a first detection unit that detects a change in power demand in the power system when power equal to or greater than a predetermined power is supplied from the power generation system to the power system; A part of the power supplied to the power system is supplied to the heat pump based on the change in the power demand detected by the detecting means, and the heat pump And a control device to be driven.
 本発明によれば、再生可能エネルギーの導入電力量が増えた場合に、効率的に電力系統への出力を低減可能な蒸気タービンシステムを提供することができる。 According to the present invention, it is possible to provide a steam turbine system that can efficiently reduce the output to the power system when the amount of electric power introduced into the renewable energy increases.
本発明の第1の実施形態に係る蒸気タービンシステムを含む電力システムの構成図を示す。The block diagram of the electric power system containing the steam turbine system which concerns on the 1st Embodiment of this invention is shown. 風力発電における風力発電電力の時間的変化を示すグラフである。It is a graph which shows the time change of the wind power generated in wind power generation. 本発明の第2の実施形態に係る蒸気タービンシステムを含む電力システムの構成図を示す。The block diagram of the electric power system containing the steam turbine system which concerns on the 2nd Embodiment of this invention is shown. 本発明の第3の実施形態に係る蒸気タービンシステムを含む電力システムの構成図を示す。The block diagram of the electric power system containing the steam turbine system which concerns on the 3rd Embodiment of this invention is shown. 本発明の第4の実施形態に係る蒸気タービンシステムを含む電力システムの構成図を示す。The block diagram of the electric power system containing the steam turbine system which concerns on the 4th Embodiment of this invention is shown.
 以下、本発明の第1の実施形態に係る蒸気タービンシステム20について、図面を参照して説明する。 Hereinafter, a steam turbine system 20 according to a first embodiment of the present invention will be described with reference to the drawings.
 図1は、第1の実施形態に係る蒸気タービンシステム20を含む電力システムの構成図を示す。 FIG. 1 shows a configuration diagram of an electric power system including a steam turbine system 20 according to the first embodiment.
 蒸気タービンシステム20は、タービン1と、発電機2と、ボイラ4と、ポンプ5と、復水器6と、循環路7と、低温熱源8と、冷却用循環路9と、ポンプ10と、ヒートポンプ11と、電力検知器12~14と、制御装置15とを主に備える。蒸気タービンシステム20は、原子力発電システムまたは石炭火力発電システム等のベースロード電源と呼ばれるシステムである。 The steam turbine system 20 includes a turbine 1, a generator 2, a boiler 4, a pump 5, a condenser 6, a circulation path 7, a low-temperature heat source 8, a cooling circulation path 9, a pump 10, A heat pump 11, power detectors 12 to 14, and a control device 15 are mainly provided. The steam turbine system 20 is a system called a base load power source such as a nuclear power generation system or a coal thermal power generation system.
 ボイラ4は、水などの冷媒を加熱し蒸気にする。タービン1は、ボイラ4からの蒸気により駆動され、蒸気の運動エネルギーを機械的な回転運動に変換する。タービン1には、発電機2が接続されており、発電機2はタービン1の回転を利用して発電し、電力系統3に出力する。 The boiler 4 heats a refrigerant such as water to make it steam. The turbine 1 is driven by the steam from the boiler 4 and converts the kinetic energy of the steam into mechanical rotational motion. A generator 2 is connected to the turbine 1, and the generator 2 generates power using the rotation of the turbine 1 and outputs it to the power system 3.
 タービン1から排出された蒸気は、復水器6に流入し、復水器6において冷却されて液体(例えば、水)となる。液体となった冷媒は、ポンプ5により循環路7を通過してボイラ4に流入し、ボイラ4により再び加熱され蒸気となり、タービン1に流入する。このように熱サイクルが構成されている。 Steam discharged from the turbine 1 flows into the condenser 6 and is cooled in the condenser 6 to become a liquid (for example, water). The refrigerant that has become liquid passes through the circulation path 7 by the pump 5 and flows into the boiler 4, and is heated again by the boiler 4 to become steam and flows into the turbine 1. Thus, the thermal cycle is configured.
 また、復水器6には、冷却用循環路9が接続され、ポンプ10により海または川等の低温熱源8から汲み上げた水が、復水器6に供給される。そして、復水器6では、循環路7内のタービン1からの蒸気と、冷却用循環路9内の汲み上げた水との間で熱交換が行われる。なお、復水器6における真空度は、低温熱源8の温度に依存する。低温熱源8が海または川の場合、夏よりも冬の方が水温が低いため、冬の方が復水器6における真空度が高くなり、蒸気タービンシステム20の熱効率が向上する。 Further, a cooling circuit 9 is connected to the condenser 6, and water pumped from a low-temperature heat source 8 such as the sea or river by the pump 10 is supplied to the condenser 6. In the condenser 6, heat exchange is performed between the steam from the turbine 1 in the circulation path 7 and the water pumped in the cooling circulation path 9. Note that the degree of vacuum in the condenser 6 depends on the temperature of the low-temperature heat source 8. When the low-temperature heat source 8 is the sea or a river, the water temperature is lower in the winter than in the summer, so the degree of vacuum in the condenser 6 is higher in the winter, and the thermal efficiency of the steam turbine system 20 is improved.
 ヒートポンプ11は、復水器6とポンプ10との間に位置する冷却用循環路9を含むように設けられている。ヒートポンプ11は、例えば、圧縮機、膨張弁、凝縮器、および蒸発器等により構成される。そして、ポンプ10により汲み上げられた水が、ヒートポンプ11の低温部(蒸発器)により冷却され、冷却された水が復水器6に供給される。 The heat pump 11 is provided so as to include a cooling circuit 9 positioned between the condenser 6 and the pump 10. The heat pump 11 includes, for example, a compressor, an expansion valve, a condenser, and an evaporator. Then, the water pumped up by the pump 10 is cooled by the low temperature part (evaporator) of the heat pump 11, and the cooled water is supplied to the condenser 6.
 電力検知器12は、発電機2により発電される電力を検知する。電力検知器14は、ヒートポンプ11へ入力される電力を検知する。電力検知器13は、電力系統3の需要電力を検知する。電力検知器13により、電力系統3での電力需要の変化が検知される。例えば、電力系統3での電力需要が減少した場合には、電力検知器13により検知される電力が減少する。なお、電力検知器12は第2検知手段に相当し、電力検知器13は第1検知手段に相当し、電力検知器14は第3検知手段に相当する。 The power detector 12 detects the power generated by the generator 2. The power detector 14 detects power input to the heat pump 11. The power detector 13 detects demand power of the power system 3. A change in power demand in the power system 3 is detected by the power detector 13. For example, when the power demand in the power system 3 decreases, the power detected by the power detector 13 decreases. The power detector 12 corresponds to second detection means, the power detector 13 corresponds to first detection means, and the power detector 14 corresponds to third detection means.
 制御装置15は、蒸気タービンシステム20の動作を制御する。 The control device 15 controls the operation of the steam turbine system 20.
 また、電力系統3には、例えば風力等の再生可能エネルギーを利用して発電を行う発電システム16が接続されている。 The power system 3 is connected to a power generation system 16 that generates power using renewable energy such as wind power.
 図2は、風力発電における風力発電電力の時間的変化を示すグラフである。縦軸は、風力発電の最大発電電力(定格電力)に対する割合(%)を示し、横軸は時間(秒)を示している。 FIG. 2 is a graph showing temporal changes in wind power generation in wind power generation. The vertical axis represents the ratio (%) of the maximum power generation (rated power) of wind power generation, and the horizontal axis represents time (seconds).
 図2に示すように、風力発電電力(曲線21)は変動し、100秒以上の長い周期から1秒以下の短い周期まで色々な周期の変動が含まれている。そして、電力系統3において、風力発電に対する電力需要が、70%の風力発電電力に相当する電力(直線22)であった時に、風力発電電力が70%を超えた場合には、発電システム16から電力系統3に対し過剰に電力が供給されることになる。本実施形態において、風力発電の70%の電力が所定の電力に相当する。 As shown in FIG. 2, the wind power (curve 21) fluctuates, and includes fluctuations of various periods from a long period of 100 seconds or more to a short period of 1 second or less. In the power system 3, when the power demand for wind power generation is power corresponding to 70% wind power generation (straight line 22), when the wind power generation power exceeds 70%, the power generation system 16 Power is excessively supplied to the power system 3. In the present embodiment, 70% of the wind power generation corresponds to the predetermined power.
 これにより、電力系統3の蒸気タービンシステム20に対する電力需要が変化(減少)し、この変化が電力検知器13で検知される。制御装置15は、電力検知器13で検知された変化(蒸気タービンシステム20から電力系統3への出力変動)に基づき、発電機2により発電され電力系統3へ供給される電力の一部(余剰電力)をヒートポンプ11側へ流れるように制御する。なお、制御装置15は、電力検知器13により検知された電力需要の変化量に応じて、ヒートポンプ11へ流す電力の量を調整する。 Thereby, the power demand for the steam turbine system 20 of the power system 3 changes (decreases), and this change is detected by the power detector 13. Based on the change detected by the power detector 13 (output fluctuation from the steam turbine system 20 to the power system 3), the control device 15 generates a part of the power (surplus) that is generated by the generator 2 and supplied to the power system 3. The power is controlled to flow to the heat pump 11 side. Note that the control device 15 adjusts the amount of power to be supplied to the heat pump 11 according to the amount of change in power demand detected by the power detector 13.
 この結果、ヒートポンプ11が駆動され、上記のようにポンプ10により汲み上げられた水が、ヒートポンプ11の蒸発器により冷却され、冷却された水が復水器6に供給され、復水器6における真空度が高くなる。このように、余剰電力により、蒸気タービンシステム20の熱効率を向上させることができる。従って、再生可能エネルギーの導入電力量が増えた場合に、蒸気タービンシステム20から電力系統3への出力を効率的に低減させることができる。また、電力系統3における電力需要の変化を電力検知器13により検知するので、発電システム16の導入電力量の増加(電力系統3における電力需要の低下)を即時に検知することができる。よって、余剰電力をヒートポンプ11へ入力させる制御を即時に実行することができる。 As a result, the heat pump 11 is driven, the water pumped up by the pump 10 as described above is cooled by the evaporator of the heat pump 11, the cooled water is supplied to the condenser 6, and the vacuum in the condenser 6 is The degree becomes higher. Thus, the thermal efficiency of the steam turbine system 20 can be improved by the surplus power. Accordingly, when the amount of introduced renewable energy increases, the output from the steam turbine system 20 to the power system 3 can be efficiently reduced. Moreover, since the change in the power demand in the power system 3 is detected by the power detector 13, an increase in the amount of introduced power in the power generation system 16 (a decrease in power demand in the power system 3) can be detected immediately. Therefore, it is possible to immediately execute control for inputting surplus power to the heat pump 11.
 また、制御装置15は、ヒートポンプ11へ余剰電力を流す際に、電力検知器12、14の電力値を取得し、電力検知器12~14で検知される電力値を把握している。これにより、余剰電力をヒートポンプ11へ流すことにより、電力検知器13により検知される電力値が急激に変化するが、電力検知器12、14の電力値を把握しているので、電力系統3で事故が起こったと判断することなく、蒸気タービンシステム20の運転を継続させることができる。 The control device 15 acquires the power values of the power detectors 12 and 14 when the surplus power is supplied to the heat pump 11, and grasps the power values detected by the power detectors 12 to 14. Thereby, by flowing surplus power to the heat pump 11, the power value detected by the power detector 13 changes abruptly. However, since the power values of the power detectors 12 and 14 are grasped, the power system 3 The operation of the steam turbine system 20 can be continued without determining that an accident has occurred.
 次に、本発明の第2の実施形態に係る蒸気タービンシステム120について、図面を参照して説明する。 Next, a steam turbine system 120 according to a second embodiment of the present invention will be described with reference to the drawings.
 図3は、第2の実施形態に係る蒸気タービンシステム120を含む電力システムの構成図を示す。なお、第1の実施形態に係る蒸気タービンシステム20と同様の部材については同一の参照番号を付して説明を省略し、異なる部分についてのみ説明を行う。 FIG. 3 shows a configuration diagram of an electric power system including a steam turbine system 120 according to the second embodiment. In addition, about the member similar to the steam turbine system 20 which concerns on 1st Embodiment, the same reference number is attached | subjected and description is abbreviate | omitted and only a different part is demonstrated.
 図3に示すように、蒸気タービンシステム120は、ヒートポンプ11の高温部に加温用循環路33が接続され、復水器6とポンプ5との間に加温器34が設けられている。そして、余剰電力によりヒートポンプ11が駆動される際には、加温用循環路33内の加温用冷媒が、ヒートポンプ11の高温部(凝縮器)により温められ、温められた冷媒が加温器34に供給される。加温器34では、温められた冷媒により、復水器6からの水が温められるので、循環路7内の温度差を増加させることができ、蒸気タービンシステム120をより高効率で運転させることができる。 As shown in FIG. 3, in the steam turbine system 120, a heating circulation path 33 is connected to a high temperature portion of the heat pump 11, and a heater 34 is provided between the condenser 6 and the pump 5. When the heat pump 11 is driven by surplus power, the heating refrigerant in the heating circulation path 33 is warmed by the high-temperature portion (condenser) of the heat pump 11, and the warmed refrigerant is heated. 34. In the heater 34, the water from the condenser 6 is warmed by the warmed refrigerant, so that the temperature difference in the circulation path 7 can be increased, and the steam turbine system 120 can be operated with higher efficiency. Can do.
 また、余剰電力をヒートポンプ11に流した場合、蒸気タービンシステム120の熱容量の関係からいれた電気エネルギーがすぐにタービン1に反映されるわけではなく、ある程度の時間差を持って反映される。よって、電力系統3の電力需要がさらに低下した場合などは、燃料量を減らすなど、より高効率な運転が可能となる。 In addition, when surplus power is passed through the heat pump 11, the electric energy entered from the relationship of the heat capacity of the steam turbine system 120 is not immediately reflected in the turbine 1, but is reflected with a certain time difference. Therefore, when the electric power demand of the electric power system 3 further decreases, a more efficient operation such as reducing the amount of fuel becomes possible.
 次に、本発明の第3の実施形態に係る蒸気タービンシステム220について、図面を参照して説明する。 Next, a steam turbine system 220 according to a third embodiment of the present invention will be described with reference to the drawings.
 図4は、第3の実施形態に係る蒸気タービンシステム220を含む電力システムの構成図を示す。なお、第1の実施形態に係る蒸気タービンシステム20と同様の部材については同一の参照番号を付して説明を省略し、異なる部分についてのみ説明を行う。 FIG. 4 shows a configuration diagram of an electric power system including a steam turbine system 220 according to the third embodiment. In addition, about the member similar to the steam turbine system 20 which concerns on 1st Embodiment, the same reference number is attached | subjected and description is abbreviate | omitted and only a different part is demonstrated.
 図3に示すように、蒸気タービンシステム220は、ヒートポンプ11内のモータ(例えば、圧縮機のモータ)を可変速制御するための電力変換器(インバータ)41を備えている。これにより、ヒートポンプ11を高効率に運転させることができ、蒸気タービンシステム220をより高効率で運転させることができる。 3, the steam turbine system 220 includes a power converter (inverter) 41 for variable speed control of a motor (for example, a compressor motor) in the heat pump 11. Thereby, the heat pump 11 can be operated with high efficiency, and the steam turbine system 220 can be operated with higher efficiency.
 次に、本発明の第4の実施形態に係る蒸気タービンシステム320について、図面を参照して説明する。 Next, a steam turbine system 320 according to a fourth embodiment of the present invention will be described with reference to the drawings.
 図5は、第4の実施形態に係る蒸気タービンシステム320を含む電力システムの構成図を示す。なお、第1の実施形態に係る蒸気タービンシステム20と同様の部材については同一の参照番号を付して説明を省略し、異なる部分についてのみ説明を行う。 FIG. 5 shows a configuration diagram of an electric power system including a steam turbine system 320 according to the fourth embodiment. In addition, about the member similar to the steam turbine system 20 which concerns on 1st Embodiment, the same reference number is attached | subjected and description is abbreviate | omitted and only a different part is demonstrated.
 図3に示すように、蒸気タービンシステム320は、2台のヒートポンプ52、54、および各ヒートポンプ52、54に対応する電力変換器51、53を備える。このように、ヒートポンプおよび電力変換器を複数台備えることにより、余剰電力が大きい場合にも対処することが可能となる。また、冷媒の温度が低い場合に、例えば電力変換器51およびヒートポンプ52のみを駆動させ、冷媒の温度が高い場合に、電力変換器51、53およびヒートポンプ52、54を駆動させることにより、ヒートポンプによる冷媒の冷却に幅を持たせることができる。また、余剰電力を高精度に制御することが可能となる。 3, the steam turbine system 320 includes two heat pumps 52 and 54 and power converters 51 and 53 corresponding to the heat pumps 52 and 54. Thus, by providing a plurality of heat pumps and power converters, it is possible to cope with a case where the surplus power is large. Further, when the temperature of the refrigerant is low, for example, only the power converter 51 and the heat pump 52 are driven, and when the temperature of the refrigerant is high, the power converters 51 and 53 and the heat pumps 52 and 54 are driven, thereby The cooling of the refrigerant can be widened. In addition, surplus power can be controlled with high accuracy.
 なお、本発明は、上述した実施例に限定されない。当業者であれば、本発明の範囲内で、種々の追加や変更等を行うことができる。 In addition, this invention is not limited to the Example mentioned above. A person skilled in the art can make various additions and changes within the scope of the present invention.
 例えば、上記の蒸気タービンシステムは、燃料が何であるかは問わず、コンバインドサイクルまたは原子力プラントで利用しても良い。また、電力需要の変化を電力に基づき検知したが、周波数または電圧に基づき検知しても良い。 For example, the above steam turbine system may be used in a combined cycle or a nuclear power plant regardless of what the fuel is. Moreover, although the change in power demand is detected based on power, it may be detected based on frequency or voltage.
1:タービン、2:発電機、3:電力系統、4:ボイラ、6:復水器、9:冷却用循環路、11、52、54:ヒートポンプ、12~14:電力検知器、15:制御装置、16:発電システム、20、120、220、320:蒸気タービンシステム、33:加温用循環路、34:加温器、41、51、53:電力変換器 1: turbine, 2: generator, 3: power system, 4: boiler, 6: condenser, 9: cooling circuit, 11, 52, 54: heat pump, 12-14: power detector, 15: control Apparatus, 16: Power generation system, 20, 120, 220, 320: Steam turbine system, 33: Heating circuit, 34: Heater, 41, 51, 53: Power converter

Claims (5)

  1.  再生可能エネルギーを利用して発電を行う発電システムが接続された電力系統に接続される蒸気タービンシステムであって、
     蒸気により駆動されるタービンと、
     前記タービンから排出された前記蒸気を冷却して液体にする復水器と、
     前記復水器において前記蒸気を冷却するための冷却用冷媒が循環する冷却用循環路と、
     前記冷却用循環路を流れる冷却用冷媒を冷却するヒートポンプと、
     前記発電システムから所定の電力以上の電力が前記電力系統に供給された場合における前記電力系統での電力需要の変化を検知する第1検知手段と、
     前記第1検知手段で検知した前記電力需要の変化に基づき、前記電力系統へ供給する電力の一部を前記ヒートポンプへ供給し、前記ヒートポンプを駆動させる制御装置と、を備える蒸気タービンシステム。
    A steam turbine system connected to a power system connected to a power generation system that generates power using renewable energy,
    A turbine driven by steam;
    A condenser that cools the steam discharged from the turbine into a liquid;
    A cooling circuit in which a cooling refrigerant for cooling the steam circulates in the condenser;
    A heat pump for cooling the cooling refrigerant flowing through the cooling circuit;
    First detection means for detecting a change in power demand in the power system when power equal to or higher than a predetermined power is supplied from the power generation system to the power system;
    A steam turbine system comprising: a control device that supplies a part of the electric power supplied to the electric power system to the heat pump based on the change in the electric power demand detected by the first detection means, and drives the heat pump.
  2.  前記タービンの回転を利用して発電する発電機と、
     前記発電機による発電される電力を検知する第2検知手段と、
     前記ヒートポンプで使用される電力を検知する第3検知手段と、を備え、
     前記制御装置は、前記電力系統へ供給する電力の一部を前記ヒートポンプへ供給する際に、前記第2検知手段および前記第3検知手段で検知された電力を取得する、請求項1に記載の蒸気タービンシステム。
    A generator for generating electric power by utilizing the rotation of the turbine;
    Second detection means for detecting electric power generated by the generator;
    And a third detection means for detecting electric power used in the heat pump,
    The said control apparatus acquires the electric power detected by the said 2nd detection means and the said 3rd detection means, when supplying a part of electric power supplied to the said electric power grid to the said heat pump. Steam turbine system.
  3.  前記蒸気を発生するボイラと、
     前記ボイラと前記復水器の間に設けられ、前記復水器からの前記液体を加温する加温器と、
     加温用冷媒が循環し、前記ヒートポンプの高温部において前記加温用冷媒が加温され、前記加温器において加温された前記加温用冷媒により前記液体を加温する加温用循環路と、を備える、請求項1または請求項2に記載の蒸気タービンシステム。
    A boiler that generates the steam;
    A heater provided between the boiler and the condenser, for heating the liquid from the condenser;
    A heating circulation path in which a heating refrigerant circulates, the heating refrigerant is heated in a high temperature portion of the heat pump, and the liquid is heated by the heating refrigerant heated in the heater. A steam turbine system according to claim 1 or 2, comprising:
  4.  前記ヒートポンプのモータの可変速制御を行うための電力変換器を備える、請求項1から請求項3のいずれか一項に記載の蒸気タービンシステム。 The steam turbine system according to any one of claims 1 to 3, further comprising a power converter for performing variable speed control of a motor of the heat pump.
  5.  前記ヒートポンプおよび前記電力変換器が複数設けられている、請求項4に記載の蒸気タービンシステム。
     
    The steam turbine system according to claim 4, wherein a plurality of the heat pumps and the power converters are provided.
PCT/JP2015/062421 2015-04-23 2015-04-23 Steam turbine system WO2016170653A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/062421 WO2016170653A1 (en) 2015-04-23 2015-04-23 Steam turbine system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/062421 WO2016170653A1 (en) 2015-04-23 2015-04-23 Steam turbine system

Publications (1)

Publication Number Publication Date
WO2016170653A1 true WO2016170653A1 (en) 2016-10-27

Family

ID=57143849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062421 WO2016170653A1 (en) 2015-04-23 2015-04-23 Steam turbine system

Country Status (1)

Country Link
WO (1) WO2016170653A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113669157A (en) * 2021-06-30 2021-11-19 华电国际电力股份有限公司深圳公司 Gas steam power generation system combined with wind power and power generation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4093868A (en) * 1974-04-29 1978-06-06 Manning John I Method and system utilizing steam turbine and heat pump
JPH06129210A (en) * 1992-10-21 1994-05-10 Shimizu Corp Thermoelectric supply system
JP2011231778A (en) * 2011-08-26 2011-11-17 Fujita Corp Waste heat recovery system
JP2015046984A (en) * 2013-08-27 2015-03-12 住友電気工業株式会社 Wind turbine generator system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4093868A (en) * 1974-04-29 1978-06-06 Manning John I Method and system utilizing steam turbine and heat pump
JPH06129210A (en) * 1992-10-21 1994-05-10 Shimizu Corp Thermoelectric supply system
JP2011231778A (en) * 2011-08-26 2011-11-17 Fujita Corp Waste heat recovery system
JP2015046984A (en) * 2013-08-27 2015-03-12 住友電気工業株式会社 Wind turbine generator system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113669157A (en) * 2021-06-30 2021-11-19 华电国际电力股份有限公司深圳公司 Gas steam power generation system combined with wind power and power generation method thereof

Similar Documents

Publication Publication Date Title
US10655505B2 (en) Compressed air energy storage and power generation device and compressed air energy storage and power generation method
US9816491B2 (en) Solar power system and method therefor
JP6343587B2 (en) Compressed air storage power generation method and compressed air storage power generation apparatus
CN108291532B (en) Solar power generation device and control method thereof
JP6407730B2 (en) Generation power smoothing system
US10954852B2 (en) Compressed air energy storage power generation device
KR20150082431A (en) Thermal energy storage system comprising a combined heating and cooling machine and a method for using the thermal energy storage system
EP2540995B1 (en) Power generation apparatus
EP2940254B1 (en) Power generation system and power generation method
US11047302B2 (en) Compressed air energy storage power generation apparatus
JP4684762B2 (en) Power generator
EP3372804B1 (en) Compressed air energy storage power generation device and compressed air energy storage power generation method
JP2010190460A (en) Air conditioning system
WO2016170653A1 (en) Steam turbine system
JP5192736B2 (en) Exhaust heat power generation apparatus, operation method of exhaust heat power generation apparatus
JP6613176B2 (en) Power generation system
JP5822505B2 (en) STARTING DEVICE AND STARTING METHOD FOR POWER GENERATION SYSTEM
JPWO2019058764A1 (en) Hydropower system interconnection system
JP2015161284A (en) control system and heat supply method
JP2013059170A (en) Power generation apparatus and starting method of the same
JP2012217240A (en) Method of controlling local power system having power generation system, and local power system
JP2013204584A (en) Coal gasification-combined electric power plant and operation control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15889892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15889892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP