JP5596606B2 - Power generator - Google Patents

Power generator Download PDF

Info

Publication number
JP5596606B2
JP5596606B2 JP2011065848A JP2011065848A JP5596606B2 JP 5596606 B2 JP5596606 B2 JP 5596606B2 JP 2011065848 A JP2011065848 A JP 2011065848A JP 2011065848 A JP2011065848 A JP 2011065848A JP 5596606 B2 JP5596606 B2 JP 5596606B2
Authority
JP
Japan
Prior art keywords
medium
power generation
heating medium
cooling medium
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011065848A
Other languages
Japanese (ja)
Other versions
JP2012202262A (en
Inventor
成人 足立
昌義 松村
成川  裕
和雄 ▲高▼橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011065848A priority Critical patent/JP5596606B2/en
Priority to KR1020120018840A priority patent/KR101284487B1/en
Priority to CN201210093828.7A priority patent/CN102691541B/en
Publication of JP2012202262A publication Critical patent/JP2012202262A/en
Application granted granted Critical
Publication of JP5596606B2 publication Critical patent/JP5596606B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/08Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with working fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/003Plants characterised by condensers arranged or modified to co-operate with the engines condenser cooling circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

本発明は、発電装置に関する。   The present invention relates to a power generator.

発電装置としては、水蒸気のフラッシュによって発電機を駆動するフラッシュ発電が広く導入されている。しかし、近年、省エネルギーの観点から、排熱回収等に利用するために、フラッシュ発電が利用できないような低温の熱によって発電できるシステムへのニーズが高まっている。   As a power generator, flash power generation in which a generator is driven by a water vapor flash has been widely introduced. However, in recent years, from the viewpoint of energy saving, there is an increasing need for a system that can generate power using low-temperature heat that cannot be used for flash power generation in order to recover exhaust heat.

そのような発電装置として、例えば特許文献1に記載されているように、低沸点の作動媒体によってタービンや膨張機(エキスパンダ)を駆動するために、作動流体の蒸発器と、作動流体蒸気に膨張仕事をさせるためのスクリュータービンと、作動流体蒸気を凝縮させるための凝縮器と、作動流体を循環させるための循環ポンプとを直列に接続した閉ループ内で作動流体を循環させる熱サイクルであるランキンサイクルを利用したバイナリ発電システムがある。   As such a power generation device, for example, as described in Patent Document 1, in order to drive a turbine or an expander (expander) by a low-boiling working medium, a working fluid evaporator and a working fluid vapor are used. Rankine, which is a heat cycle for circulating a working fluid in a closed loop in which a screw turbine for performing expansion work, a condenser for condensing working fluid vapor, and a circulation pump for circulating the working fluid are connected in series There is a binary power generation system using a cycle.

通常、バイナリ発電システムでは、地熱発電のように大容量の熱源(坑井、蒸気井など)から蒸気等の加熱媒体が蒸発器に供給される。ただ、その熱源から供給される蒸気等の加熱媒体の流量等、すなわち、熱源から供給される熱量は状況に応じて大きく変化する場合が多い。従って、従来のバイナリ発電システムでは、大きく変動する熱源の状況に適切に対応するための種々の技術が提案されている。   Normally, in a binary power generation system, a heating medium such as steam is supplied to an evaporator from a large-capacity heat source (well, steam well, etc.) as in geothermal power generation. However, the flow rate of a heating medium such as steam supplied from the heat source, that is, the amount of heat supplied from the heat source often varies greatly depending on the situation. Therefore, in the conventional binary power generation system, various techniques for appropriately dealing with the situation of the heat source that varies greatly have been proposed.

例えば、特許文献1のバイナリ発電システムは、ランキンサイクルによってスクリュータービンを回して発電機を駆動するようにしたバイナリ発電装置に、蒸発器の作動流体の液面を調節することによってスクリュータービンの出力を制御する構成を備えている。これにより熱源の状況、ひいては蒸発器に供給される熱量の増減に係わらず、蒸発器の作動流体液面を適正に調節して、蒸発器の伝熱性能を適正に保持し、また、急激な作動流体循環量の増大に伴うポンプ動力が増大するといった不具合を回避することができる。   For example, in the binary power generation system disclosed in Patent Document 1, the output of the screw turbine is adjusted by adjusting the liquid level of the working fluid of the evaporator to the binary power generation device that drives the generator by rotating the screw turbine by Rankine cycle. It has a configuration to control. As a result, the working fluid level of the evaporator is properly adjusted to maintain the heat transfer performance of the evaporator properly, regardless of the increase or decrease in the amount of heat supplied to the evaporator, Problems such as an increase in pump power accompanying an increase in the amount of working fluid circulation can be avoided.

ところで、大容量の熱源から供給される熱量が十二分に存在する場合には、蒸発器を複数構成し、それに伴って、蒸発器と、スクリュータービン(スクリュエキスパンダ)等の膨張機と、凝縮器と、循環ポンプとを直列に接続した閉ループ内で作動流体を循環させて熱サイクルを複数構成することが考えられる。   By the way, when there is more than enough heat supplied from a large-capacity heat source, a plurality of evaporators are configured, and accordingly, an evaporator and an expander such as a screw turbine (screw expander), It is conceivable to configure a plurality of thermal cycles by circulating the working fluid in a closed loop in which a condenser and a circulation pump are connected in series.

しかしながら、単に、上述のような熱サイクルを複数構成するのみでは、いずれの熱サイクルにどの程度の熱量を分配して供給するかが考慮されておらず、非効率な熱回収となり、変動する熱源の状況に適切に対応し得ない場合がある。   However, simply configuring a plurality of heat cycles as described above does not take into account how much heat is distributed and supplied to which heat cycle, resulting in inefficient heat recovery and fluctuating heat sources May not be able to respond appropriately to the situation.

特開平10−103023号公報Japanese Patent Laid-Open No. 10-103030

前記問題点に鑑みて、熱源の変動に応じて、複数の熱サイクルに熱量を適切に分配して発電できる発電装置を提供することを課題とする。   In view of the above problems, an object of the present invention is to provide a power generation apparatus that can generate electricity by appropriately distributing heat to a plurality of heat cycles in accordance with fluctuations in a heat source.

前記課題を解決するために、本発明による発電装置は、蒸発器において外部から供給される加熱媒体によって作動媒体を蒸発させ、蒸発した作動媒体を発電機に接続した膨張機に導入して前記膨張機を駆動することにより発電し、前記膨張機から排出された作動媒体を凝縮器に導入し、前記凝縮器において外部から供給される冷却媒体によって作動媒体を冷却して凝縮させ、凝縮した作動媒体をポンプによって前記蒸発器に再供給する発電サイクルを複数有し、熱源から加熱媒体が供給される共通の加熱媒体供給共通流路から分岐して、それぞれの前記発電サイクルの前記蒸発器に加熱媒体を供給する加熱媒体供給分岐流路と、それぞれの前記発電サイクルの前記蒸発器から作動媒体と熱交換した加熱媒体を排出する加熱媒体排出分岐流路と、冷却源から冷却媒体が供給される共通の冷却媒体供給共通流路から分岐して、それぞれの前記発電サイクルの前記凝縮器に冷却媒体を供給する冷却媒体供給分岐流路と、それぞれの前記発電サイクルの前記凝縮器から作動媒体と熱交換した冷却媒体を排出する冷却媒体排出分岐流路とを備え、前記加熱媒体供給分岐流路および前記加熱媒体排出分岐流路の少なくともいずれかに設けられ、加熱媒体の流れを遮断する加熱媒体遮断弁と、前記冷却媒体供給分岐流路および前記冷却媒体排出分岐流路の少なくともいずれかに設けられ、冷却媒体の流れを遮断する冷却媒体遮断弁と、少なくともいずれかの前記発電サイクルの前記加熱媒体供給分岐流路および前記加熱媒体排出分岐流路に設けられ、それぞれ加熱媒体の温度を検出する加熱媒体供給温度検出器および加熱媒体排出温度検出器と、それぞれの前記発電機の発電量を検出する電力検出器と、前記加熱媒体供給温度検出器の検出値と前記加熱媒体排出温度検出器の検出値との差分および前記電力検出器の検出値に基づいて、前記加熱媒体遮断弁および冷却媒体遮断弁を開閉する制御装置とを有するものとする。
In order to solve the above-described problem, the power generator according to the present invention evaporates the working medium with a heating medium supplied from the outside in the evaporator, and introduces the evaporated working medium into the expander connected to the generator to expand the expansion. The working medium is generated by driving the machine, the working medium discharged from the expander is introduced into the condenser, the working medium is cooled and condensed by the cooling medium supplied from the outside in the condenser, and the condensed working medium A plurality of power generation cycles for re-supplying the evaporator to the evaporator by a pump, branching from a common heating medium supply common flow path to which a heating medium is supplied from a heat source, and heating medium to the evaporator of each of the power generation cycles A heating medium supply branch channel for supplying the heating medium, and a heating medium discharge branch channel for discharging the heating medium heat-exchanged with the working medium from the evaporator of each of the power generation cycles A cooling medium supply branch channel that branches from a common cooling medium supply common channel to which a cooling medium is supplied from a cooling source and supplies the cooling medium to the condenser of each of the power generation cycles, and each of the power generation cycles A cooling medium discharge branch flow path for discharging the cooling medium heat-exchanged with the working medium from the condenser, and provided in at least one of the heating medium supply branch flow path and the heating medium discharge branch flow path, a heating medium cutoff valve for blocking the flow of the medium, the cooling medium provided in at least one of the supply branch flow path and the cooling medium discharge branch passage, and a cooling medium cutoff valve for blocking the flow of the cooling medium, at least one Provided in the heating medium supply branch flow path and the heating medium discharge branch flow path of the power generation cycle, respectively, for detecting the temperature of the heating medium. A temperature detector, a heating medium discharge temperature detector, a power detector that detects a power generation amount of each of the generators, a detection value of the heating medium supply temperature detector, and a detection value of the heating medium discharge temperature detector; And a control device for opening and closing the heating medium cutoff valve and the cooling medium cutoff valve based on the difference between the two and the detection value of the power detector .

この構成によれば、加熱媒体遮断弁および冷却媒体遮断弁を閉鎖することで、発電サイクルへの熱の出入りを個別に遮断して、発電サイクルを完全に停止させられる。これにより、変動する熱源の状況に応じて、最適な発電サイクルの組み合わせを選択して運転することができ、発電サイクルのエネルギー変換効率を高く維持し、供給される熱エネルギーを最大限に電力に変換できる。   According to this configuration, by closing the heating medium cutoff valve and the cooling medium cutoff valve, the heat generation cycle can be completely stopped by individually blocking the heat flow to and from the power generation cycle. As a result, it is possible to select and operate the optimal combination of power generation cycles according to the conditions of the fluctuating heat source, maintain the energy conversion efficiency of the power generation cycle high, and maximize the supplied heat energy to electric power. Can be converted.

この構成によれば、蒸発器に供給される熱量と発電量とのバランスに基づいて、運転する発電システムの合計容量が適切であるか否かを判断し、発電システムの容量を調整するので、供給される熱エネルギーを最大限に電力に変換できる。   According to this configuration, based on the balance between the amount of heat supplied to the evaporator and the amount of power generation, it is determined whether the total capacity of the power generation system to be operated is appropriate, and the capacity of the power generation system is adjusted. The supplied thermal energy can be converted to electric power as much as possible.

この発電装置において、前記制御装置は、前記加熱媒体供給温度検出器の検出値と加熱媒体排出温度検出器の検出値との差分が所定の加熱温度差下限値より小さくなったとき、前記加熱媒体遮断弁および冷却媒体遮断弁が閉じている前記発電サイクルのいずれか1つの前記加熱媒体遮断弁および冷却媒体遮断弁を開き、前記加熱媒体供給温度検出器の検出値と加熱媒体排出温度検出器の検出値との差分が前記加熱温度差下限値以上で、且つ、前記電力検出器の検出値が所定の電力下限値より小さくなったとき、前記加熱媒体遮断弁および冷却媒体遮断弁が開いている前記発電サイクルのいずれか1つの前記加熱媒体遮断弁および冷却媒体遮断弁を閉じることが好ましい。   In this power generation device, the control device may be configured such that when the difference between the detection value of the heating medium supply temperature detector and the detection value of the heating medium discharge temperature detector becomes smaller than a predetermined heating temperature difference lower limit value, The heating medium cutoff valve and the cooling medium cutoff valve of any one of the power generation cycles in which the cutoff valve and the cooling medium cutoff valve are closed are opened, and the detected value of the heating medium supply temperature detector and the heating medium discharge temperature detector When the difference from the detection value is equal to or greater than the heating temperature difference lower limit value and the detection value of the power detector is smaller than a predetermined power lower limit value, the heating medium cutoff valve and the cooling medium cutoff valve are open. It is preferable to close the heating medium cutoff valve and the cooling medium cutoff valve of any one of the power generation cycles.

また、本発明の発電装置は、蒸発器において外部から供給される加熱媒体によって作動媒体を蒸発させ、蒸発した作動媒体を発電機に接続した膨張機に導入して前記膨張機を駆動することにより発電し、前記膨張機から排出された作動媒体を凝縮器に導入し、前記凝縮器において外部から供給される冷却媒体によって作動媒体を冷却して凝縮させ、凝縮した作動媒体をポンプによって前記蒸発器に再供給する発電サイクルを複数有し、熱源から加熱媒体が供給される共通の加熱媒体供給共通流路から分岐して、それぞれの前記発電サイクルの前記蒸発器に加熱媒体を供給する加熱媒体供給分岐流路と、それぞれの前記発電サイクルの前記蒸発器から作動媒体と熱交換した加熱媒体を排出する加熱媒体排出分岐流路と、冷却源から冷却媒体が供給される共通の冷却媒体供給共通流路から分岐して、それぞれの前記発電サイクルの前記凝縮器に冷却媒体を供給する冷却媒体供給分岐流路と、それぞれの前記発電サイクルの前記凝縮器から作動媒体と熱交換した冷却媒体を排出する冷却媒体排出分岐流路とを備え、前記加熱媒体供給分岐流路および前記加熱媒体排出分岐流路の少なくともいずれかに設けられ、加熱媒体の流れを遮断する加熱媒体遮断弁と、前記冷却媒体供給分岐流路および前記冷却媒体排出分岐流路の少なくともいずれかに設けられ、冷却媒体の流れを遮断する冷却媒体遮断弁と、少なくともいずれかの前記発電サイクルの前記冷却媒体供給分岐流路および前記冷却媒体排出分岐流路に設けられ、それぞれ冷却媒体の温度を検出する冷却媒体供給温度検出器および冷却媒体排出温度検出器と、それぞれの前記発電機の発電量を検出する電力検出器と、前記冷却媒体供給温度検出器の検出値と前記冷却媒体排出温度検出器の検出値との差分および前記電力検出器の検出値に基づいて、前記加熱媒体遮断弁および冷却媒体遮断弁を開閉する制御装置とを有してもよい。
Further, the power generator of the present invention evaporates the working medium with a heating medium supplied from the outside in the evaporator, and drives the expander by introducing the evaporated working medium into the expander connected to the generator. Electric power is generated, the working medium discharged from the expander is introduced into a condenser, the working medium is cooled and condensed by a cooling medium supplied from the outside in the condenser, and the condensed working medium is pumped by the evaporator. A heating medium supply that has a plurality of power generation cycles that are re-supplied to the power source, branches from a common heating medium supply common flow path to which a heating medium is supplied from a heat source, and supplies the heating medium to the evaporator of each power generation cycle The cooling medium is provided with a branching channel, a heating medium discharge branching channel for discharging the heating medium heat-exchanged with the working medium from the evaporator of each power generation cycle, and a cooling source. A cooling medium supply branch flow path that branches from the common cooling medium supply common flow path and supplies the cooling medium to the condenser of each of the power generation cycles; and a working medium from the condenser of each of the power generation cycles A cooling medium discharge branch flow path for discharging the cooling medium heat-exchanged with the heating medium, provided in at least one of the heating medium supply branch flow path and the heating medium discharge branch flow path, and for heating to interrupt the flow of the heating medium A medium shut-off valve, a cooling medium shut-off valve that is provided in at least one of the cooling medium supply branch flow path and the cooling medium discharge branch flow path, and shuts off a flow of the cooling medium; and at least one of the power generation cycles A cooling medium supply temperature detector and a cooling medium, which are provided in the cooling medium supply branch flow path and the cooling medium discharge branch flow path, respectively, detect the temperature of the cooling medium. A discharge temperature detector, a power detector for detecting a power generation amount of each of the generator, the difference of the detected value of the coolant feed temperature detector and the detected value of the coolant discharge temperature detector and the power detection And a control device that opens and closes the heating medium shut-off valve and the cooling medium shut-off valve based on the detected value of the vessel.

この構成によれば、凝縮器に供給される冷熱量と発電量とのバランスに基づいて、運転する発電システムの合計容量が適切であるか否かを判断し、発電システムの容量を調整するので、供給される冷熱エネルギーを最大限に利用して発電できる。   According to this configuration, since the total capacity of the power generation system to be operated is determined based on the balance between the amount of cold heat supplied to the condenser and the amount of power generation, the capacity of the power generation system is adjusted. It is possible to generate electricity by making the best use of the supplied cold energy.

この発電装置において、前記制御装置は、前記冷却媒体供給温度検出器の検出値と冷却媒体排出温度検出器の検出値との差分が所定の冷却温度差下限値より小さくなったとき、前記加熱媒体遮断弁および冷却媒体遮断弁が閉じている前記発電サイクルのいずれか1つの前記加熱媒体遮断弁および冷却媒体遮断弁を開き、前記冷却媒体供給温度検出器の検出値と冷却媒体排出温度検出器の検出値との差分が前記冷却温度差下限値以上で、且つ、前記電力検出器の検出値が所定の電力下限値より小さくなったとき、前記加熱媒体遮断弁および冷却媒体遮断弁が開いている前記発電サイクルのいずれか1つの前記加熱媒体遮断弁および冷却媒体遮断弁を閉じることが好ましい。   In this power generation device, the control device is configured such that when the difference between the detection value of the cooling medium supply temperature detector and the detection value of the cooling medium discharge temperature detector becomes smaller than a predetermined cooling temperature difference lower limit value, the heating medium The heating medium shut-off valve and the cooling medium shut-off valve of any one of the power generation cycles in which the shut-off valve and the cooling medium shut-off valve are closed are opened, the detected value of the cooling medium supply temperature detector and the cooling medium discharge temperature detector When the difference from the detection value is equal to or greater than the cooling temperature difference lower limit value and the detection value of the power detector is smaller than a predetermined power lower limit value, the heating medium cutoff valve and the cooling medium cutoff valve are open. It is preferable to close the heating medium cutoff valve and the cooling medium cutoff valve of any one of the power generation cycles.

また、本発明の発電装置は、蒸発器において外部から供給される加熱媒体によって作動媒体を蒸発させ、蒸発した作動媒体を発電機に接続した膨張機に導入して前記膨張機を駆動することにより発電し、前記膨張機から排出された作動媒体を凝縮器に導入し、前記凝縮器において外部から供給される冷却媒体によって作動媒体を冷却して凝縮させ、凝縮した作動媒体をポンプによって前記蒸発器に再供給する発電サイクルを複数有し、熱源から加熱媒体が供給される共通の加熱媒体供給共通流路から分岐して、それぞれの前記発電サイクルの前記蒸発器に加熱媒体を供給する加熱媒体供給分岐流路と、それぞれの前記発電サイクルの前記蒸発器から作動媒体と熱交換した加熱媒体を排出する加熱媒体排出分岐流路と、冷却源から冷却媒体が供給される共通の冷却媒体供給共通流路から分岐して、それぞれの前記発電サイクルの前記凝縮器に冷却媒体を供給する冷却媒体供給分岐流路と、それぞれの前記発電サイクルの前記凝縮器から作動媒体と熱交換した冷却媒体を排出する冷却媒体排出分岐流路とを備え、前記加熱媒体供給分岐流路および前記加熱媒体排出分岐流路の少なくともいずれかに設けられ、加熱媒体の流れを遮断する加熱媒体遮断弁と、前記冷却媒体供給分岐流路および前記冷却媒体排出分岐流路の少なくともいずれかに設けられ、冷却媒体の流れを遮断する冷却媒体遮断弁と、少なくともいずれかの前記発電サイクルの前記蒸発器の上流および下流に配設され、それぞれ前記作動媒体の温度を検出する作動媒体蒸発前温度検出器および作動媒体蒸発後温度検出器と、それぞれの前記発電機の発電量を検出する電力検出器と、前記作動媒体蒸発前温度検出器の検出値と前記作動媒体蒸発後温度検出器の検出値との差分および前記電力検出器の検出値に基づいて、前記加熱媒体遮断弁および冷却媒体遮断弁を開閉する制御装置とを有してもよい。
Further, the power generator of the present invention evaporates the working medium with a heating medium supplied from the outside in the evaporator, and drives the expander by introducing the evaporated working medium into the expander connected to the generator. Electric power is generated, the working medium discharged from the expander is introduced into a condenser, the working medium is cooled and condensed by a cooling medium supplied from the outside in the condenser, and the condensed working medium is pumped by the evaporator. A heating medium supply that has a plurality of power generation cycles that are re-supplied to the power source, branches from a common heating medium supply common flow path to which a heating medium is supplied from a heat source, and supplies the heating medium to the evaporator of each power generation cycle The cooling medium is provided with a branching channel, a heating medium discharge branching channel for discharging the heating medium heat-exchanged with the working medium from the evaporator of each power generation cycle, and a cooling source. A cooling medium supply branch flow path that branches from the common cooling medium supply common flow path and supplies the cooling medium to the condenser of each of the power generation cycles; and a working medium from the condenser of each of the power generation cycles A cooling medium discharge branch flow path for discharging the cooling medium heat-exchanged with the heating medium, provided in at least one of the heating medium supply branch flow path and the heating medium discharge branch flow path, and for heating to interrupt the flow of the heating medium A medium shut-off valve, a cooling medium shut-off valve that is provided in at least one of the cooling medium supply branch flow path and the cooling medium discharge branch flow path, and shuts off a flow of the cooling medium; and at least one of the power generation cycles disposed upstream and downstream of the evaporator, respectively the working medium evaporates before detecting the temperature of the working medium temperature detector and the working medium evaporates after the temperature detector, A power detector for detecting a power generation amount of said generator respectively, of the difference and the power detector and the detected value of the working medium after evaporation temperature detector and the detected value of the working medium evaporated before the temperature detector And a controller that opens and closes the heating medium cutoff valve and the cooling medium cutoff valve based on the detected value.

この構成によれば、作動媒体が加熱媒体から受け取った熱量と発電量とのバランスに基づいて、運転する発電システムの合計容量が適切であるか否かを判断し、発電システムの容量を調整するので、供給される冷熱エネルギーを最大限に利用して発電できる。   According to this configuration, based on the balance between the amount of heat received by the working medium from the heating medium and the amount of power generation, it is determined whether the total capacity of the operating power generation system is appropriate, and the capacity of the power generation system is adjusted. Therefore, it is possible to generate electricity using the supplied cold energy to the maximum.

この発電装置において、前記制御装置は、前記作動媒体蒸発前温度検出器の検出値と前記作動媒体蒸発後温度検出器の検出値との差分が所定の蒸発温度差下限値より小さくなったとき、前記加熱媒体遮断弁および冷却媒体遮断弁が閉じている前記発電サイクルのいずれか1つの前記加熱媒体遮断弁および冷却媒体遮断弁を開き、前記作動媒体蒸発前温度検出器の検出値と前記作動媒体蒸発後温度検出器の検出値との差分が前記蒸発温度差下限値以上で、且つ、前記電力検出器の検出値が所定の電力下限値より小さくなったとき、前記加熱媒体遮断弁および冷却媒体遮断弁が開いている前記発電サイクルのいずれか1つの前記加熱媒体遮断弁および冷却媒体遮断弁を閉じることが好ましい。   In this power generation device, when the difference between the detection value of the temperature detector before evaporation of the working medium and the detection value of the temperature detector after evaporation of the working medium is smaller than a predetermined lower limit value of the evaporation temperature difference, The heating medium shut-off valve and the cooling medium shut-off valve of any one of the power generation cycles in which the heating medium shut-off valve and the cooling medium shut-off valve are closed are opened, and the detection value of the working medium evaporation temperature detector and the working medium are opened. When the difference between the detected value of the post-evaporation temperature detector is equal to or greater than the lower limit value of the evaporating temperature difference and the detected value of the power detector is smaller than a predetermined lower limit value of the electric power, the heating medium cutoff valve and the cooling medium It is preferable to close the heating medium cutoff valve and the cooling medium cutoff valve of any one of the power generation cycles in which the cutoff valve is open.

また、本発明の発電装置は、蒸発器において外部から供給される加熱媒体によって作動媒体を蒸発させ、蒸発した作動媒体を発電機に接続した膨張機に導入して前記膨張機を駆動することにより発電し、前記膨張機から排出された作動媒体を凝縮器に導入し、前記凝縮器において外部から供給される冷却媒体によって作動媒体を冷却して凝縮させ、凝縮した作動媒体をポンプによって前記蒸発器に再供給する発電サイクルを複数有し、熱源から加熱媒体が供給される共通の加熱媒体供給共通流路から分岐して、それぞれの前記発電サイクルの前記蒸発器に加熱媒体を供給する加熱媒体供給分岐流路と、それぞれの前記発電サイクルの前記蒸発器から作動媒体と熱交換した加熱媒体を排出する加熱媒体排出分岐流路と、冷却源から冷却媒体が供給される共通の冷却媒体供給共通流路から分岐して、それぞれの前記発電サイクルの前記凝縮器に冷却媒体を供給する冷却媒体供給分岐流路と、それぞれの前記発電サイクルの前記凝縮器から作動媒体と熱交換した冷却媒体を排出する冷却媒体排出分岐流路とを備え、前記加熱媒体供給分岐流路および前記加熱媒体排出分岐流路の少なくともいずれかに設けられ、加熱媒体の流れを遮断する加熱媒体遮断弁と、前記冷却媒体供給分岐流路および前記冷却媒体排出分岐流路の少なくともいずれかに設けられ、冷却媒体の流れを遮断する冷却媒体遮断弁と、少なくともいずれかの前記発電サイクルの前記凝縮器の上流および下流に配設され、それぞれ前記作動媒体の温度を検出する作動媒体凝縮前温度検出器および作動媒体凝縮後温度検出器と、それぞれの前記発電機の発電量を検出する電力検出器と、前記作動媒体凝縮前温度検出器の検出値と前記作動媒体凝縮後温度検出器の検出値との差分および前記電力検出器の検出値に基づいて、前記加熱媒体遮断弁および冷却媒体遮断弁を開閉する制御装置とを有してもよい。
Further, the power generator of the present invention evaporates the working medium with a heating medium supplied from the outside in the evaporator, and drives the expander by introducing the evaporated working medium into the expander connected to the generator. Electric power is generated, the working medium discharged from the expander is introduced into a condenser, the working medium is cooled and condensed by a cooling medium supplied from the outside in the condenser, and the condensed working medium is pumped by the evaporator. A heating medium supply that has a plurality of power generation cycles that are re-supplied to the power source, branches from a common heating medium supply common flow path to which a heating medium is supplied from a heat source, and supplies the heating medium to the evaporator of each power generation cycle The cooling medium is provided with a branching channel, a heating medium discharge branching channel for discharging the heating medium heat-exchanged with the working medium from the evaporator of each power generation cycle, and a cooling source. A cooling medium supply branch flow path that branches from the common cooling medium supply common flow path and supplies the cooling medium to the condenser of each of the power generation cycles; and a working medium from the condenser of each of the power generation cycles A cooling medium discharge branch flow path for discharging the cooling medium heat-exchanged with the heating medium, provided in at least one of the heating medium supply branch flow path and the heating medium discharge branch flow path, and for heating to interrupt the flow of the heating medium A medium shut-off valve, a cooling medium shut-off valve that is provided in at least one of the cooling medium supply branch flow path and the cooling medium discharge branch flow path, and shuts off a flow of the cooling medium; and at least one of the power generation cycles disposed upstream and downstream of the condenser, and the respective working medium condensed before detecting the temperature of the working medium temperature detector and the working medium condensation temperature after the detector, A power detector for detecting a power generation amount of said generator respectively, of the difference and the power detector and the detected value of the working medium condensation temperature after the detector and the detected value of the working medium condensation temperature before detector And a controller that opens and closes the heating medium cutoff valve and the cooling medium cutoff valve based on the detected value.

この構成によれば、作動媒体が冷却媒体に放出した熱量と発電量とのバランスに基づいて、運転する発電システムの合計容量が適切であるか否かを判断し、発電システムの容量を調整するので、供給される冷熱エネルギーを最大限に利用して発電できる。   According to this configuration, it is determined whether the total capacity of the power generation system to be operated is appropriate based on the balance between the amount of heat released from the working medium to the cooling medium and the amount of power generation, and the capacity of the power generation system is adjusted. Therefore, it is possible to generate electricity using the supplied cold energy to the maximum.

この発電装置において、前記作動媒体凝縮前温度検出器の検出値と前記作動媒体凝縮後温度検出器の検出値との差分が所定の凝縮温度差下限値より小さくなったとき、前記加熱媒体遮断弁および冷却媒体遮断弁が閉じている前記発電サイクルのいずれか1つの前記加熱媒体遮断弁および冷却媒体遮断弁を開き、前記作動媒体凝縮前温度検出器の検出値と前記作動媒体凝縮後温度検出器の検出値との差分が前記凝縮温度差下限値以上で、且つ、前記電力検出器の検出値が所定の電力下限値より小さくなったとき、前記加熱媒体遮断弁および冷却媒体遮断弁が開いている前記発電サイクルのいずれか1つの前記加熱媒体遮断弁および冷却媒体遮断弁を閉じることが好ましい。   In this power generator, when the difference between the detection value of the temperature detector before condensation of the working medium and the detection value of the temperature detector after condensation of the working medium becomes smaller than a predetermined condensation temperature difference lower limit value, the heating medium cutoff valve The heating medium shut-off valve and the cooling medium shut-off valve in any one of the power generation cycles in which the cooling medium shut-off valve is closed, and the detection value of the working medium pre-condensation temperature detector and the working medium post-condensation temperature detector are opened. When the difference from the detected value is equal to or greater than the lower limit value of the condensation temperature difference and the detected value of the power detector is smaller than a predetermined lower power limit value, the heating medium cutoff valve and the cooling medium cutoff valve are opened. It is preferable to close the heating medium cutoff valve and the cooling medium cutoff valve of any one of the power generation cycles.

また、本発明の発電装置は、蒸発器において外部から供給される加熱媒体によって作動媒体を蒸発させ、蒸発した作動媒体を発電機に接続した膨張機に導入して前記膨張機を駆動することにより発電し、前記膨張機から排出された作動媒体を凝縮器に導入し、前記凝縮器において外部から供給される冷却媒体によって作動媒体を冷却して凝縮させ、凝縮した作動媒体をポンプによって前記蒸発器に再供給する発電サイクルを複数有し、熱源から加熱媒体が供給される共通の加熱媒体供給共通流路から分岐して、それぞれの前記発電サイクルの前記蒸発器に加熱媒体を供給する加熱媒体供給分岐流路と、それぞれの前記発電サイクルの前記蒸発器から作動媒体と熱交換した加熱媒体を排出する加熱媒体排出分岐流路と、冷却源から冷却媒体が供給される共通の冷却媒体供給共通流路から分岐して、それぞれの前記発電サイクルの前記凝縮器に冷却媒体を供給する冷却媒体供給分岐流路と、それぞれの前記発電サイクルの前記凝縮器から作動媒体と熱交換した冷却媒体を排出する冷却媒体排出分岐流路とを備え、前記加熱媒体供給分岐流路および前記加熱媒体排出分岐流路の少なくともいずれかに設けられ、加熱媒体の流れを遮断する加熱媒体遮断弁と、前記冷却媒体供給分岐流路および前記冷却媒体排出分岐流路の少なくともいずれかに設けられ、冷却媒体の流れを遮断する冷却媒体遮断弁と、少なくともいずれかの前記発電サイクルに設けられ、作動媒体の流量を検出する作動媒体流量検出器と、それぞれの前記発電機の発電量を検出する電力検出器と、前記作動媒体流量検出器の検出値および前記電力検出器の検出値に基づいて、前記加熱媒体遮断弁および冷却媒体遮断弁を開閉する制御装置とを有してもよい。 Further, the power generator of the present invention evaporates the working medium with a heating medium supplied from the outside in the evaporator, and drives the expander by introducing the evaporated working medium into the expander connected to the generator. Electric power is generated, the working medium discharged from the expander is introduced into a condenser, the working medium is cooled and condensed by a cooling medium supplied from the outside in the condenser, and the condensed working medium is pumped by the evaporator. A heating medium supply that has a plurality of power generation cycles that are re-supplied to the power source, branches from a common heating medium supply common flow path to which a heating medium is supplied from a heat source, and supplies the heating medium to the evaporator of each power generation cycle The cooling medium is provided with a branching channel, a heating medium discharge branching channel for discharging the heating medium heat-exchanged with the working medium from the evaporator of each power generation cycle, and a cooling source. A cooling medium supply branch flow path that branches from the common cooling medium supply common flow path and supplies the cooling medium to the condenser of each of the power generation cycles; and a working medium from the condenser of each of the power generation cycles A cooling medium discharge branch flow path for discharging the cooling medium heat-exchanged with the heating medium, provided in at least one of the heating medium supply branch flow path and the heating medium discharge branch flow path, and for heating to interrupt the flow of the heating medium Provided in at least one of the medium shutoff valve, the cooling medium supply branch flow path, and the cooling medium discharge branch flow path, and shuts off the flow of the cooling medium, and provided in at least one of the power generation cycles A working medium flow detector for detecting a flow rate of the working medium, a power detector for detecting a power generation amount of each of the generators, and a working medium flow detector. Detection value and based on the detected value of the power detector may include a control device for opening and closing the heating medium cutoff valves and the cooling medium cutoff valve.

この構成によれば、作動媒体の流量と発電量とのバランスに基づいて、運転する発電システムの合計容量が適切であるか否かを判断し、発電システムの容量を調整するので、供給される冷熱エネルギーを最大限に利用して発電できる。   According to this configuration, it is determined whether or not the total capacity of the operating power generation system is appropriate based on the balance between the flow rate of the working medium and the power generation amount, and the capacity of the power generation system is adjusted. Electricity can be generated using the maximum amount of cold energy.

また、この発電装置において、前記制御装置は、前記作動媒体流量検出器の検出値が所定の流量上限値より大きくなったとき、前記加熱媒体遮断弁および冷却媒体遮断弁が閉じている前記発電サイクルのいずれか1つの前記加熱媒体遮断弁および冷却媒体遮断弁を開き、前記作動媒体流量検出器の検出値が前記流量上限値以下で、且つ、前記電力検出器の検出値が所定の電力下限値より小さくなったとき、前記加熱媒体遮断弁および冷却媒体遮断弁が開いている前記発電サイクルのいずれか1つの前記加熱媒体遮断弁および冷却媒体遮断弁を閉じることが好ましい。   Further, in this power generation device, the control device may be configured such that the heating medium cutoff valve and the cooling medium cutoff valve are closed when the detection value of the working medium flow rate detector becomes larger than a predetermined flow rate upper limit value. Any one of the heating medium cutoff valve and the cooling medium cutoff valve is opened, the detection value of the working medium flow rate detector is less than or equal to the upper limit value of the flow rate, and the detection value of the power detector is a predetermined power lower limit value. When it becomes smaller, it is preferable to close the heating medium cutoff valve and the cooling medium cutoff valve of any one of the power generation cycles in which the heating medium cutoff valve and the cooling medium cutoff valve are open.

また、本発明の発電装置において、前記制御装置は、それぞれの前記発電サイクルの運転時間の積算時間を記憶し、前記加熱媒体遮断弁および冷却媒体遮断弁を開くときには、前記加熱媒体遮断弁および冷却媒体遮断弁が閉じている前記発電サイクル中で、前記積算時間が最も短い前記発電サイクルの前記加熱媒体遮断弁および冷却媒体遮断弁を開き、前記加熱媒体遮断弁および冷却媒体遮断弁を閉じるときには、前記加熱媒体遮断弁および冷却媒体遮断弁が開いている前記発電サイクル中で、前記積算時間が最も長い前記発電サイクルの前記加熱媒体遮断弁および冷却媒体遮断弁を閉じることが好ましい。   In the power generation device of the present invention, the control device stores the accumulated time of the operation time of each of the power generation cycles, and when the heating medium cutoff valve and the cooling medium cutoff valve are opened, the heating medium cutoff valve and cooling In the power generation cycle in which the medium shut-off valve is closed, when opening the heating medium shut-off valve and the cooling medium shut-off valve of the power generation cycle with the shortest integration time and closing the heating medium shut-off valve and the cooling medium shut-off valve, In the power generation cycle in which the heating medium cutoff valve and the cooling medium cutoff valve are open, it is preferable to close the heating medium cutoff valve and the cooling medium cutoff valve of the power generation cycle with the longest integration time.

また、本発明の発電装置において、前記電力下限値は、現在、前記加熱媒体遮断弁および冷却媒体遮断弁が開けられている前記発電サイクルの最大発電量の和と、前記加熱媒体遮断弁および冷却媒体遮断弁が開けられている前記発電サイクルの最大発電量の和から次に前記加熱媒体遮断弁および冷却媒体遮断弁を閉じるべき前記発電サイクルの最大発電量を減じた値との間の値であることが好ましい。   In the power generation device of the present invention, the power lower limit value is the sum of the maximum power generation amount of the power generation cycle in which the heating medium cutoff valve and the cooling medium cutoff valve are currently open, the heating medium cutoff valve and the cooling A value between the sum of the maximum power generation amount of the power generation cycle in which the medium shut-off valve is opened and a value obtained by subtracting the maximum power generation amount of the power generation cycle in which the heating medium shut-off valve and the cooling medium shut-off valve should be closed next. Preferably there is.

本発明の第1実施形態の発電装置の構成図である。It is a lineblock diagram of the power generator of a 1st embodiment of the present invention. 本発明の第2実施形態の発電装置の構成図である。It is a block diagram of the electric power generating apparatus of 2nd Embodiment of this invention. 図2の発電装置の制御の流れ図である。It is a flowchart of control of the electric power generating apparatus of FIG. 本発明の第3実施形態の発電装置の構成図である。It is a block diagram of the electric power generating apparatus of 3rd Embodiment of this invention. 図4の発電装置の制御の流れ図である。It is a flowchart of control of the electric power generating apparatus of FIG. 本発明の第4実施形態の発電装置の構成図である。It is a block diagram of the electric power generating apparatus of 4th Embodiment of this invention. 図6の発電装置の制御の流れ図である。It is a flowchart of control of the electric power generating apparatus of FIG. 本発明の第5実施形態の発電装置の構成図である。It is a block diagram of the electric power generating apparatus of 5th Embodiment of this invention. 本発明の第6実施形態の発電装置の構成図である。It is a block diagram of the electric power generating apparatus of 6th Embodiment of this invention. 本発明の第7実施形態の発電装置の構成図である。It is a block diagram of the electric power generating apparatus of 7th Embodiment of this invention. 本発明の第8実施形態の発電装置の構成図である。It is a block diagram of the electric power generating apparatus of 8th Embodiment of this invention.

これより、本発明の実施形態について、図面を参照しながら説明する。先ず、図1に、本発明の第1実施形態である発電装置100の構成を示す。発電装置100は、2つの発電サイクル1a,1bを有する。発電サイクル1a,1bは、それぞれ、蒸発器2、スクリュ膨張機3、凝縮器4およびポンプ5が介設され、作動媒体(例えばR245fa等のフロン系熱媒体)が封入された閉鎖した循環流路6からなるランキンサイクル熱機関である。   Embodiments of the present invention will now be described with reference to the drawings. First, in FIG. 1, the structure of the electric power generating apparatus 100 which is 1st Embodiment of this invention is shown. The power generation apparatus 100 has two power generation cycles 1a and 1b. The power generation cycles 1a and 1b are respectively closed circulation channels in which an evaporator 2, a screw expander 3, a condenser 4 and a pump 5 are interposed, and a working medium (for example, a chlorofluorocarbon heat medium such as R245fa) is enclosed. It is a Rankine cycle heat engine consisting of six.

蒸発器2は、装置外部の熱源から供給される加熱媒体(例えば坑井から採取される蒸気やボイラで製造した蒸気)と熱交換して、作動媒体を蒸発させる熱交換器である。蒸発器2において蒸発した作動媒体は、スクリュ膨張機3に導入され、スクリュ膨張機3内で膨張することにより、スクリュ膨張機3を回転駆動する。スクリュ膨張機3で膨張して圧力が低下した状態で排出される作動媒体は、凝縮器4に導入される。凝縮器4は、装置外部の冷却源から供給される冷却媒体(例えば河川やクーリングタワーから供給される冷却水)と熱交換することによって作動媒体を冷却して凝縮させる熱交換器である。凝縮器4で凝縮して液体となった作動媒体は、ポンプ5によって蒸発器2に再供給される。   The evaporator 2 is a heat exchanger that evaporates the working medium by exchanging heat with a heating medium (for example, steam collected from a well or steam produced by a boiler) supplied from a heat source outside the apparatus. The working medium evaporated in the evaporator 2 is introduced into the screw expander 3 and is expanded in the screw expander 3 to rotationally drive the screw expander 3. The working medium which is expanded by the screw expander 3 and discharged in a state where the pressure is reduced is introduced into the condenser 4. The condenser 4 is a heat exchanger that cools and condenses the working medium by exchanging heat with a cooling medium supplied from a cooling source outside the apparatus (for example, cooling water supplied from a river or a cooling tower). The working medium condensed into a liquid by the condenser 4 is re-supplied to the evaporator 2 by the pump 5.

スクリュ膨張機3の回転軸には、発電機7が接続されている。この発電機7が、スクリュ膨張機3の回転エネルギーを、電気エネルギーに変換、つまり、発電をする。発電機7の発電量は、電力検出器8によってそれぞれ検出され、その検出値が制御装置9に入力されるようになっている。   A generator 7 is connected to the rotating shaft of the screw expander 3. This generator 7 converts the rotational energy of the screw expander 3 into electrical energy, that is, generates power. The power generation amount of the generator 7 is detected by the power detector 8, and the detected value is input to the control device 9.

加熱媒体は、加熱媒体供給共通流路10に供給され、加熱媒体外排出共通流路11を通じて熱源に環流、或いは、外部で2次利用または廃棄される。各発電サイクル1の蒸発器2には、それぞれ、加熱媒体供給共通流路10から分岐した加熱媒体供給分岐流路12を介して加熱媒体が供給される。蒸発器2を通過した加熱媒体は、加熱媒体排出共通流路11に合流する加熱媒体排出分岐流路13を介して排出されるようになっている。   The heating medium is supplied to the heating medium supply common flow path 10 and circulates to the heat source through the heating medium discharge common flow path 11 or is secondarily used or discarded outside. A heating medium is supplied to the evaporator 2 of each power generation cycle 1 via a heating medium supply branch flow path 12 branched from the heating medium supply common flow path 10. The heating medium that has passed through the evaporator 2 is discharged through a heating medium discharge branch flow path 13 that joins the heating medium discharge common flow path 11.

冷却媒体は、冷却媒体供給共通流路14に供給され、冷却媒体排出共通流路15を通じて冷却源に環流または廃棄される。各発電サイクル1a,1bの凝縮器4には、冷却媒体供給共通流路14から分岐した冷却媒体供給分岐流路16を介して冷却媒体が供給される。凝縮器4を通過した冷却媒体は、冷却媒体排出共通流路16に合流する冷却媒体排出分岐流路17を介して排出されるようになっている。   The cooling medium is supplied to the cooling medium supply common flow path 14 and circulated or discarded to the cooling source through the cooling medium discharge common flow path 15. The cooling medium is supplied to the condenser 4 of each power generation cycle 1a, 1b via a cooling medium supply branch flow path 16 branched from the cooling medium supply common flow path 14. The cooling medium that has passed through the condenser 4 is discharged through a cooling medium discharge branch channel 17 that joins the cooling medium discharge common channel 16.

第2の発電サイクル1bには、加熱媒体供給分岐流路12に加熱媒体遮断弁18が設けられ、冷却媒体供給分岐流路16に冷却媒体遮断弁19が設けられている。加熱媒体遮断弁18および冷却媒体遮断弁19は、オペレータが制御装置9を操作することによって略同時に開閉できるようになっている。   In the second power generation cycle 1 b, a heating medium cutoff valve 18 is provided in the heating medium supply branch flow path 12, and a cooling medium cutoff valve 19 is provided in the cooling medium supply branch flow path 16. The heating medium cutoff valve 18 and the cooling medium cutoff valve 19 can be opened and closed substantially simultaneously by the operator operating the control device 9.

本実施形態の発電装置100では、発電サイクル1a,1bの電力検出器8の検出値が低下したときに、第2の発電サイクル1bのポンプ5を停止し、且つ、加熱媒体遮断弁18および冷却媒体遮断弁19を閉鎖することで、第2の発電サイクル1bの循環流路6内の作動媒体の循環および加熱媒体や冷却媒体との熱交換を完全に停止することができる。   In the power generation device 100 of the present embodiment, when the detection value of the power detector 8 of the power generation cycles 1a and 1b decreases, the pump 5 of the second power generation cycle 1b is stopped, and the heating medium cutoff valve 18 and the cooling are shut down. By closing the medium cutoff valve 19, the circulation of the working medium in the circulation flow path 6 of the second power generation cycle 1b and the heat exchange with the heating medium and the cooling medium can be completely stopped.

これにより、加熱媒体や冷却媒体の供給量が低下したとき、第1の発電サイクル1aのみに加熱媒体や冷却媒体を供給することで、第1の発電サイクル1aに供給される熱量を確保し、第1の発電サイクル1aの発電効率を高く維持することができる。つまり、加熱媒体や冷却媒体の供給量に応じて、運転している発電サイクル1a,1bの合計容量が最適な値になるように、発電サイクル1a,1bの運転サイクル数を調整することで、発電容量に対して大幅に小さい電力の発電を行うことによる発電効率の低下を防止できる。   Thereby, when the supply amount of the heating medium and the cooling medium decreases, the heating medium and the cooling medium are supplied only to the first power generation cycle 1a, thereby securing the amount of heat supplied to the first power generation cycle 1a. The power generation efficiency of the first power generation cycle 1a can be maintained high. That is, by adjusting the number of operating cycles of the power generation cycles 1a and 1b so that the total capacity of the operating power generation cycles 1a and 1b becomes an optimum value according to the supply amount of the heating medium and the cooling medium, It is possible to prevent a decrease in power generation efficiency due to power generation that is significantly smaller than the power generation capacity.

発電装置100では、逆に、第1の発電サイクル1aのみを運転しているときに電力検出器8の検出値上昇したときは、第2の発電サイクル1bのポンプ5を起動し、且つ、加熱媒体遮断弁18および冷却媒体遮断弁19を開放することで、第2の発電サイクル1bの運転を開始する。これにより、第1の発電サイクル1a単体の容量を超えて供給される熱エネルギーを、第2の発電サイクル1bにも分散して電力に変換できる。   Conversely, in the power generation apparatus 100, when the detection value of the power detector 8 increases while only the first power generation cycle 1a is operating, the pump 5 of the second power generation cycle 1b is activated and heated. The operation of the second power generation cycle 1b is started by opening the medium cutoff valve 18 and the cooling medium cutoff valve 19. Thereby, the thermal energy supplied exceeding the capacity | capacitance of the 1st electric power generation cycle 1a can be disperse | distributed also to the 2nd electric power generation cycle 1b, and can be converted into electric power.

続いて、図2に、本発明の第2実施形態の発電装置200を示す。尚、これ以降の実施形態の説明では、先に説明した実施形態と同じ構成要素には同じ符号を付して、重複する説明を省略する。   Next, FIG. 2 shows a power generator 200 according to the second embodiment of the present invention. In the following description of the embodiment, the same constituent elements as those of the above-described embodiment are denoted by the same reference numerals, and redundant description is omitted.

本実施形態の発電装置200の第1の発電サイクル1aでは、加熱媒体供給分岐流路12に、蒸発器2に供給される加熱媒体の温度を検出する加熱媒体供給温度検出器20が設けられ、加熱媒体排出分岐流路13に、蒸発器2から排出される加熱媒体の温度を検出する加熱媒体排出温度検出器21が設けられている。加熱媒体供給温度検出器20および加熱媒体排出温度検出器21の検出値は、制御装置9に入力されるようになっている。   In the first power generation cycle 1a of the power generation apparatus 200 of the present embodiment, the heating medium supply branch flow path 12 is provided with a heating medium supply temperature detector 20 that detects the temperature of the heating medium supplied to the evaporator 2, A heating medium discharge temperature detector 21 for detecting the temperature of the heating medium discharged from the evaporator 2 is provided in the heating medium discharge branch flow path 13. The detection values of the heating medium supply temperature detector 20 and the heating medium discharge temperature detector 21 are input to the control device 9.

また、本実施形態において、加熱媒体遮断弁18は、加熱媒体排出分岐流路13に設けられ、冷却媒体遮断弁19は、冷却媒体排出分岐流路17に設けられている。本実施形態の加熱媒体遮断弁18および冷却媒体遮断弁19は、制御装置9によって自動的に開閉される。   In the present embodiment, the heating medium cutoff valve 18 is provided in the heating medium discharge branch flow path 13, and the cooling medium cutoff valve 19 is provided in the cooling medium discharge branch flow path 17. The heating medium cutoff valve 18 and the cooling medium cutoff valve 19 of this embodiment are automatically opened and closed by the control device 9.

図3に、発電装置200の制御装置9による加熱媒体遮断弁18および冷却媒体遮断弁19の開閉に係る制御の流れを示す。本実施形態において、制御装置9は、ステップS1において、第1の発電サイクル1aの加熱媒体供給温度検出器20の検出値と加熱媒体排出温度検出器21の検出値との差分(加熱温度差)ΔThを算出し、予め設定されている加熱温度差下限値Sthと比較する。   FIG. 3 shows a flow of control related to opening and closing of the heating medium cutoff valve 18 and the cooling medium cutoff valve 19 by the control device 9 of the power generation device 200. In the present embodiment, in step S1, the control device 9 determines the difference (heating temperature difference) between the detection value of the heating medium supply temperature detector 20 and the detection value of the heating medium discharge temperature detector 21 in the first power generation cycle 1a. ΔTh is calculated and compared with a preset heating temperature difference lower limit Sth.

ステップS1において、加熱温度差ΔThが加熱温度差下限値Sthより小さければ、制御装置9は、ステップS2で第2の発電サイクル1bのポンプ5を起動し、ステップS3で第2の発電サイクル1bの加熱媒体遮断弁18および冷却媒体遮断弁19を開放することによって、第2の発電サイクル1bの運転を開始する。   In step S1, if the heating temperature difference ΔTh is smaller than the heating temperature difference lower limit value Sth, the control device 9 activates the pump 5 of the second power generation cycle 1b in step S2, and in step S3 the second power generation cycle 1b. By opening the heating medium cutoff valve 18 and the cooling medium cutoff valve 19, the operation of the second power generation cycle 1b is started.

ステップS1において、加熱温度差ΔThが加熱温度差下限値Sth以上であれば、ステップS4に進んで、第1の発電サイクル1aの電力検出器8の検出値W1と第2の発電サイクル1bの電力検出器8の検出値W2との合計値を算出し、この合計値を、予め設定されている電力下限値Spと比較する。   In step S1, if the heating temperature difference ΔTh is equal to or greater than the heating temperature difference lower limit value Sth, the process proceeds to step S4 to detect the detected value W1 of the power detector 8 of the first power generation cycle 1a and the power of the second power generation cycle 1b. A total value with the detection value W2 of the detector 8 is calculated, and this total value is compared with a preset power lower limit Sp.

ステップS4において、電力検出器8の検出値の合計値(W1+W2)が、電力下限値Sp以上であれば、ステップS1に戻る。ステップS4において、電力検出器8の検出値の合計値(W1+W2)が、電力下限値Spより小さければ、制御装置9は、ステップS5で第2の発電サイクル1bのポンプ5を停止し、ステップS3で第2の発電サイクル1bの加熱媒体遮断弁18および冷却媒体遮断弁19を閉鎖することによって、第2の発電サイクル1bの運転を停止する。   In step S4, if the total value (W1 + W2) of the detection values of the power detector 8 is equal to or greater than the power lower limit Sp, the process returns to step S1. In step S4, if the total value (W1 + W2) of the detection values of the power detector 8 is smaller than the power lower limit Sp, the control device 9 stops the pump 5 of the second power generation cycle 1b in step S5, and step S3. Then, the operation of the second power generation cycle 1b is stopped by closing the heating medium cutoff valve 18 and the cooling medium cutoff valve 19 of the second power generation cycle 1b.

ステップS2およびS3で第2の発電サイクル1bの運転を開始、或いは、ステップS5およびS6で第2の発電サイクル1bの運転を停止したときは、ステップS7に進んで、発電装置200全体の運転が安定するために必要であると考えられる値に予め設定された待ち時間が経過してから、ステップS1に戻って、制御を継続する。   When the operation of the second power generation cycle 1b is started in steps S2 and S3, or when the operation of the second power generation cycle 1b is stopped in steps S5 and S6, the operation proceeds to step S7, and the operation of the entire power generation apparatus 200 is performed. After a waiting time set in advance to a value considered necessary for stabilization, the process returns to step S1 and the control is continued.

本実施形態において、第1の発電サイクル1aの蒸発器2において作動流体が加熱媒体から単位時間当たりに受け取る熱量は、第1の発電サイクル1aの容量によって制約される。このため、運転している発電サイクル1a,1bの合計容量に対して加熱媒体供給共通流路10に供給される加熱媒体の流量が大きくなっても、蒸発器2において作動媒体が加熱媒体から受け取る単位時間当たりの熱量は大きくならない。従って、各蒸発器2を通過する過熱媒体の流量が設計値よりも大きくなると、熱媒体供給温度検出器20と加熱媒体排出温度検出器21との検出温度の差分ΔThは、設計値よりも小さな値となる。   In the present embodiment, the amount of heat received by the working fluid from the heating medium per unit time in the evaporator 2 of the first power generation cycle 1a is limited by the capacity of the first power generation cycle 1a. For this reason, even if the flow rate of the heating medium supplied to the heating medium supply common flow path 10 becomes larger than the total capacity of the power generation cycles 1a and 1b in operation, the working medium is received from the heating medium in the evaporator 2. The amount of heat per unit time does not increase. Therefore, when the flow rate of the superheated medium passing through each evaporator 2 becomes larger than the design value, the difference ΔTh in the detected temperature between the heat medium supply temperature detector 20 and the heating medium discharge temperature detector 21 is smaller than the design value. Value.

このため、第1の発電サイクル1aだけで発電した方が高効率となる加熱媒体の流量の上限値に対応する、媒体供給温度検出器20と加熱媒体排出温度検出器21との検出温度の差分ΔThの値を、予め、加熱温度差下限値Sthとして制御装置9に記憶させておくことで、加熱媒体の流量の上昇に応じて、第2の発電サイクル1bを自動的に追加運転して、加熱媒体の熱エネルギーを最大限に電力に変換することができる。尚、第1の発電サイクル1aの発電機7と第2の発電サイクル1bの発電機7との連携(共通の電力系統への給電するための同期)は、発電機7の形式等に応じて、公知の方法が採用される。   For this reason, the difference between the detected temperatures of the medium supply temperature detector 20 and the heating medium discharge temperature detector 21 corresponding to the upper limit value of the flow rate of the heating medium, which is more efficient when power is generated only in the first power generation cycle 1a. By storing the value of ΔTh in advance in the control device 9 as the heating temperature difference lower limit value Sth, the second power generation cycle 1b is automatically additionally operated in accordance with the increase in the flow rate of the heating medium, The heat energy of the heating medium can be converted to electric power as much as possible. The linkage (synchronization for supplying power to the common power system) between the generator 7 of the first power generation cycle 1a and the generator 7 of the second power generation cycle 1b depends on the type of the generator 7, etc. A known method is employed.

また、蒸発器2を通過する加熱媒体の流量が減少してくると、蒸発器2において作動媒体に供給できる熱量が小さくなる。すると、スクリュ膨張機3において動力に変換できる熱エネルギーが減少するので、発電機7の出力が低下する。このため、電力下限値Spを、第1の発電サイクル1aおよび第2の発電サイクル1bを共に運転するよりも、第1の発電サイクル1aを単独で運転した方が最終的に多くの電力を得られると考えられる加熱媒体の流量において、電力検出器8の検出値の合計(W1+W2)として観測される値に設定することで、加熱媒体供給共通流路10に供給される加熱媒体の流量の減少に対して、発電装置200全体の容量を適切に減少させて、発電効率の低下を防止できる。   Further, when the flow rate of the heating medium passing through the evaporator 2 decreases, the amount of heat that can be supplied to the working medium in the evaporator 2 decreases. Then, since the heat energy that can be converted into power in the screw expander 3 is reduced, the output of the generator 7 is reduced. For this reason, the electric power lower limit Sp is finally obtained by operating the first power generation cycle 1a alone rather than operating both the first power generation cycle 1a and the second power generation cycle 1b. The flow rate of the heating medium supplied to the heating medium supply common flow path 10 is reduced by setting the value to be observed as the sum (W1 + W2) of the detection values of the power detector 8 in the flow rate of the heating medium considered to be generated. On the other hand, the capacity | capacitance of the electric power generating apparatus 200 whole can be reduced appropriately, and the fall of power generation efficiency can be prevented.

このように、本実施形態では、制御装置9が、第1の発電サイクル1aの単独での運転と、第1および第2の発電サイクル1a,1bの並列運転とを適切に切り換えるので、加熱媒体供給共通流路10に供給される加熱媒体の流量が変動しても、常に、高効率の発電を行うことができる。   Thus, in the present embodiment, the control device 9 appropriately switches between the single operation of the first power generation cycle 1a and the parallel operation of the first and second power generation cycles 1a and 1b. Even if the flow rate of the heating medium supplied to the supply common flow path 10 fluctuates, high-efficiency power generation can always be performed.

尚、本実施形態において、ステップS2とステップS3、および、ステップS5とステップS6は、略時間差なく実行される手順であり、それぞれ、順番を入れ替えても問題ない。   In the present embodiment, steps S2 and S3, and steps S5 and S6 are procedures executed with substantially no time difference, and there is no problem even if the order is changed.

さらに、図4に、本発明の第3実施形態の発電装置300を示す。本実施形態の発電装置300は、合計n(3以上の任意の自然数)組の発電サイクル1a〜1nを有する。発電サイクル1a〜1nは、主に使用される第1番目の発電サイクル1aと、複数の出力調整用の補助発電サイクル1b〜1nとからなる。第2番目の発電サイクル1bから第n番目の発電サイクルまでは、全て第2実施形態の第2の発電サイクル1bと同じ構成である。   Furthermore, FIG. 4 shows a power generator 300 according to a third embodiment of the present invention. The power generation apparatus 300 according to the present embodiment includes a total of n (arbitrary natural numbers of 3 or more) sets of power generation cycles 1a to 1n. The power generation cycles 1a to 1n include a first power generation cycle 1a that is mainly used and a plurality of auxiliary power generation cycles 1b to 1n for output adjustment. The configuration from the second power generation cycle 1b to the nth power generation cycle is the same as that of the second power generation cycle 1b of the second embodiment.

本実施形態の制御装置9は、第2の発電サイクル1bから第nの発電サイクル1nまでの、それぞれの運転時間の積算値を個別に記憶し、加熱媒体供給共通流路10に供給される加熱媒体の流量の変化に対して、運転時間の積算値に応じて起動する発電サイクル1xおよび停止する発電サイクル1yを決定する。   The control device 9 of the present embodiment individually stores the integrated values of the respective operation times from the second power generation cycle 1b to the nth power generation cycle 1n, and is supplied to the heating medium supply common channel 10 The power generation cycle 1x to be started and the power generation cycle 1y to be stopped are determined according to the integrated value of the operation time with respect to the change in the medium flow rate.

図5に、本実施形態の制御装置9による制御の流れを示す。ステップS11において、第1の発電サイクル1aの加熱媒体供給温度検出器20の検出値と加熱媒体排出温度検出器21の検出値との差分(加熱温度差)ΔThが予め設定した加熱温度差下限値Sthより小さければ、制御装置9は、ステップS12で、予め決定されている第x番目の発電サイクル1xのポンプ5を起動し、ステップS13で第x番目の発電サイクル1xの加熱媒体遮断弁18および冷却媒体遮断弁19を開放することによって、第x番目の発電サイクル1xの運転を開始する。   FIG. 5 shows a flow of control by the control device 9 of the present embodiment. In step S11, the difference (heating temperature difference) ΔTh between the detection value of the heating medium supply temperature detector 20 and the detection value of the heating medium discharge temperature detector 21 in the first power generation cycle 1a is set in advance as a heating temperature difference lower limit value. If it is smaller than Sth, the control device 9 activates the pump 5 of the x-th power generation cycle 1x determined in advance in step S12, and in step S13, the heating medium cutoff valve 18 of the x-th power generation cycle 1x and By opening the coolant cutoff valve 19, the operation of the xth power generation cycle 1x is started.

制御装置9は、ステップS12およびS13で第x番目の発電サイクル1xの運転を開始した後、ステップS14において、さらに加熱媒体の流量が増加したときに始動すべき次の発電サイクルの番号xを改めて決定する。具体的には、制御装置9は、その時点で停止している発電サイクル1i(i=2〜n)の中で最も運転時間の積算値が小さいものを次に起動する発電サイクル1xとする。   After starting the operation of the xth power generation cycle 1x in steps S12 and S13, the control device 9 changes the number x of the next power generation cycle to be started when the flow rate of the heating medium further increases in step S14. decide. Specifically, the control device 9 sets the power generation cycle 1x to be started next to the power generation cycle 1i (i = 2 to n) that is stopped at that time and that has the smallest integrated operation time.

また、本実施形態の制御装置9は、ステップS11において、加熱温度差ΔThが加熱温度差下限値Sth以上であれば、ステップS15に進んで、全ての発電サイクル1aから1nの電力検出器8の検出値の合計値(ΣWi)を、各発電サイクル1iの最大発電量Pi(定格出力)と各発電サイクル1iの運転状態のステイタスfi(運転中は1、停止中は0)とを掛け合わせた値の合計値から次に停止する第y番目の発電システム1yの最大発電量Pyに所定の係数k(0≦k<1)を掛け合わせた値を差し引いた値である電力下限値(Σ(fi・Pi)−k・Py)と比較する。   In addition, if the heating temperature difference ΔTh is equal to or greater than the heating temperature difference lower limit value Sth in step S11, the control device 9 of the present embodiment proceeds to step S15, and the power detectors 8 of all the power generation cycles 1a to 1n. The total value (ΣWi) of the detected values is multiplied by the maximum power generation amount Pi (rated output) of each power generation cycle 1i and the operating status fi of each power generation cycle 1i (1 during operation, 0 during stop). The power lower limit value (Σ (Σ ()) is obtained by subtracting a value obtained by multiplying the maximum power generation amount Py of the y-th power generation system 1y to be stopped next by a predetermined coefficient k (0 ≦ k <1) from the total value. fi · Pi) −k · Py).

つまり、制御装置9は、発電装置300の現時点の合計発電量(ΣWi)と、現在運転している発電サイクル1iの最大発電量の合計値(Σ(fi・Pi))と、現在運転している発電サイクル1iの最大発電量の合計値から次に停止する第y番目の発電サイクル1yの発電量を減じた値(Σ(fi・Pi)−Py)との間の係数kによって決まる電力下限値(Σ(fi・Pi)−k・Py)と比較することで、運転中の発電サイクル1iの容量が、加熱媒体供給共通流路10に供給されている加熱媒体の流量に対して過剰であるか否かを判定する。   That is, the control device 9 operates the current total power generation amount (ΣWi) of the power generation device 300 and the total value (Σ (fi · Pi)) of the maximum power generation amount of the currently operating power generation cycle 1i. The lower limit of power determined by a coefficient k between the sum of the maximum power generation amounts of the power generation cycle 1i and the value obtained by subtracting the power generation amount of the y-th power generation cycle 1y to be stopped next (Σ (fi · Pi) −Py) By comparing with the value (Σ (fi · Pi) −k · Py), the capacity of the power generation cycle 1 i during operation is excessive with respect to the flow rate of the heating medium supplied to the heating medium supply common flow path 10. It is determined whether or not there is.

ステップS15において、その時点の発電装置300の合計発電量(ΣWi)が電力下限値(Σ(fi・Pi)−k・Py)以上であれば、運転中の発電サイクル1iの容量の合計が、加熱媒体供給共通流路10に供給されている加熱媒体の流量に対して適切であるのでステップS11に戻り、加熱媒体の流量(加熱温度差ΔTh)の確認を行う。   In step S15, if the total power generation amount (ΣWi) of the power generation device 300 at that time is equal to or greater than the power lower limit value (Σ (fi · Pi) −k · Py), the total capacity of the power generation cycle 1i during operation is Since it is appropriate for the flow rate of the heating medium supplied to the heating medium supply common channel 10, the process returns to step S11, and the flow rate of the heating medium (heating temperature difference ΔTh) is confirmed.

ステップS15において、その時点の発電装置300の合計発電量(ΣWi)が電力下限値(Σ(fi・Pi)−k・Py)より小さければ、運転中の発電サイクル1iの容量が過剰であるので、制御装置9は、ステップS16およびS17において、第y番目の発電サイクル1yのポンプ5の停止並びに加熱媒体遮断弁18および冷却媒体遮断弁19の閉鎖を行って、第y番目の発電サイクルを停止する。さらに、制御装置9はステップS18において、第1番目の発電サイクル1aを除いてその時点で運転しているすべての発電サイクル1i(i=2〜n)の中で運転時間の積算値が最も大きいものを次に停止する発電サイクル1yとする。   In step S15, if the total power generation amount (ΣWi) of the power generation device 300 at that time is smaller than the power lower limit value (Σ (fi · Pi) −k · Py), the capacity of the power generation cycle 1i during operation is excessive. In step S16 and S17, the control device 9 stops the pump 5 of the y-th power generation cycle 1y and closes the heating medium cutoff valve 18 and the cooling medium cutoff valve 19 to stop the y-th power generation cycle. To do. Further, in step S18, the control device 9 has the largest integrated value of operation time among all the power generation cycles 1i (i = 2 to n) operating at that time except the first power generation cycle 1a. Let the thing be the power generation cycle 1y which stops next.

第x番目の発電サイクル1xを起動した場合、および、第y番目の発電サイクル1yを停止した場合は、ステップS19において時間待ちをしてから、ステップS11に戻る。   When the x-th power generation cycle 1x is activated and when the y-th power generation cycle 1y is stopped, the process waits for time in step S19 and then returns to step S11.

本実施形態では、第2番目の発電サイクル1bから第n番目の発電サイクル1nまでの積算運転時間が平均して増加するように、運転または停止する発電サイクル1iが選択されるので、各発電サイクル1iの損耗が平均化される。   In the present embodiment, the power generation cycle 1i to be operated or stopped is selected so that the integrated operation time from the second power generation cycle 1b to the nth power generation cycle 1n increases on average. The wear of 1i is averaged.

さらに、図6に、本発明の第4実施形態の発電装置400を示す。本実施形態の発電装置400は、全て同じ構成からなる合計n組の発電サイクル1a〜1nを有する。つまり、全ての発電サイクル1a〜1nは、加熱媒体遮断弁18および冷却媒体遮断弁19、並びに、加熱媒体供給温度検出器20および加熱媒体排出温度検出器21を有する。   Furthermore, FIG. 6 shows a power generator 400 according to a fourth embodiment of the present invention. The power generation apparatus 400 of the present embodiment has a total of n power generation cycles 1a to 1n each having the same configuration. That is, all the power generation cycles 1a to 1n include the heating medium cutoff valve 18 and the cooling medium cutoff valve 19, the heating medium supply temperature detector 20, and the heating medium discharge temperature detector 21.

図7に、本実施形態の制御装置9による制御の流れを示す。本実施形態では、ステップS21において、次に停止すべき第y番目の発電サイクル1aの加熱媒体供給温度検出器20の検出値と加熱媒体排出温度検出器21の検出値との差分(加熱温度差)ΔThyが予め設定した加熱温度差下限値Sthより小さければ、制御装置9は、ステップS22で、予め決定されている第x番目の発電サイクル1xのポンプ5を起動し、ステップS23で第x番目の発電サイクル1xの加熱媒体遮断弁18および冷却媒体遮断弁19を開放することによって、第x番目の発電サイクル1xの運転を開始し、ステップS24でその時点で停止している発電サイクル1i(i=1〜n)の中で最も運転時間の積算値が小さいものを次に起動する発電サイクル1xとする。   FIG. 7 shows a flow of control by the control device 9 of the present embodiment. In this embodiment, in step S21, the difference (heating temperature difference) between the detected value of the heating medium supply temperature detector 20 and the detected value of the heating medium discharge temperature detector 21 of the yth power generation cycle 1a to be stopped next. ) If ΔThy is smaller than the preset heating temperature difference lower limit value Sth, the control device 9 activates the pump 5 of the x-th power generation cycle 1x determined in advance in step S22, and the x-th in step S23. By opening the heating medium shut-off valve 18 and the cooling medium shut-off valve 19 of the power generation cycle 1x, the operation of the xth power generation cycle 1x is started, and the power generation cycle 1i (i) stopped at that time in step S24. = 1 to n), the one with the smallest integrated operation time is defined as the power generation cycle 1x to be started next.

また、本実施形態の制御装置9は、ステップS21において、加熱温度差ΔThyが加熱温度差下限値Sth以上であれば、ステップS25に進んで、全ての発電サイクル1aから1nの電力検出器8の検出値の合計値(ΣWi)を、各発電サイクル1iの最大発電量と各発電サイクル1iの運転状態のステイタスとを掛け合わせた値の合計値から次に停止する第y番目の発電システム1yの最大発電量に所定の係数kを掛け合わせた値を差し引いた電力下限値(Σ(fi・Pi)−k・Py)と比較する。   Moreover, if the heating temperature difference ΔThy is equal to or larger than the heating temperature difference lower limit value Sth in step S21, the control device 9 of the present embodiment proceeds to step S25, and the power detectors 8 of all the power generation cycles 1a to 1n. The total value (ΣWi) of the detected values is the sum of the values obtained by multiplying the maximum power generation amount of each power generation cycle 1i and the status of the operation state of each power generation cycle 1i, and the y-th power generation system 1y that stops next. A power lower limit value (Σ (fi · Pi) −k · Py) obtained by subtracting a value obtained by multiplying the maximum power generation amount by a predetermined coefficient k is compared.

ステップS25において、その時点の発電装置400の合計発電量(ΣWi)が電力下限値(Σ(fi・Pi)−k・Py)以上であれば、ステップS21に戻る。ステップS25において、その時点の発電装置300の合計発電量(ΣWi)が電力下限値(Σ(fi・Pi)−k・Py)より小さければ、制御装置9は、ステップS26およびS27において、第y番目の発電サイクルのポンプ5の停止並びに加熱媒体遮断弁18および冷却媒体遮断弁19の閉鎖を行う。さらに、制御装置9はステップS28において、第1番目の発電サイクル1aを含めてその時点で運転している発電サイクル1i(i=1〜n)の中で最も運転時間の積算値が大きいものを次に停止する発電サイクル1yとする。   In step S25, if the total power generation amount (ΣWi) of the power generation device 400 at that time is equal to or greater than the power lower limit value (Σ (fi · Pi) −k · Py), the process returns to step S21. In step S25, if the total power generation amount (ΣWi) of the power generation device 300 at that time is smaller than the power lower limit value (Σ (fi · Pi) −k · Py), the control device 9 determines that the y-th generation in steps S26 and S27. The pump 5 of the second power generation cycle is stopped and the heating medium cutoff valve 18 and the cooling medium cutoff valve 19 are closed. Further, in step S28, the control device 9 has the largest integrated value of the operating time among the power generation cycles 1i (i = 1 to n) that are operating at that time including the first power generation cycle 1a. Next, the power generation cycle 1y is stopped.

第x番目の発電サイクル1xを起動した場合、および、第y番目の発電サイクル1yを停止した場合は、ステップS29において時間待ちをしてから、ステップS21に戻る。   When the xth power generation cycle 1x is started and when the yth power generation cycle 1y is stopped, the process waits for time in step S29 and then returns to step S21.

続いて、図8に、本発明の第5実施形態の発電装置500を示す。本実施形態の発電装置500は、主たる第1の発電サイクル1aと、補助的な第2乃至第n番目の発電サイクル1b〜1nを有する。本実施形態の第1の発電サイクル1a〜1nは、冷却媒体供給分岐流路16および冷却媒体排出17に、それぞれの冷却媒体の温度を検出する冷却媒体供給温度検出器22および冷却媒体排出温度検出器23が設けられている。   Next, FIG. 8 shows a power generation device 500 according to a fifth embodiment of the present invention. The power generation device 500 according to the present embodiment includes a main first power generation cycle 1a and auxiliary second to nth power generation cycles 1b to 1n. In the first power generation cycle 1a to 1n of the present embodiment, the cooling medium supply branch flow path 16 and the cooling medium discharge 17 are respectively provided with a cooling medium supply temperature detector 22 and a cooling medium discharge temperature detection that detect the temperature of the cooling medium. A vessel 23 is provided.

本実施形態において、制御装置9は、冷却媒体供給温度検出器22の検出値と冷却媒体排出温度検出器23の検出値との差分(冷却温度差)ΔTcを算出し、予め設定した冷却温度差下限値Stcと比較する。そして、制御装置9は、冷却温度差ΔTcが冷却温度差下限値Stcよりも小さい場合は、予め決定しておいた第x番目の発電サイクル1xのポンプ5を始動し、加熱媒体遮断弁18および冷却媒体遮断弁19を開放することによって、第x番目の発電システム1xの運転を開始する。   In the present embodiment, the control device 9 calculates a difference (cooling temperature difference) ΔTc between the detection value of the cooling medium supply temperature detector 22 and the detection value of the cooling medium discharge temperature detector 23 and sets a preset cooling temperature difference. Compare with the lower limit value Stc. Then, when the cooling temperature difference ΔTc is smaller than the cooling temperature difference lower limit value Stc, the control device 9 starts the pump 5 of the x-th power generation cycle 1x determined in advance, By opening the cooling medium cutoff valve 19, the operation of the xth power generation system 1x is started.

また、制御装置9は、冷却温度差ΔTcが冷却温度差下限値Stc以上であり、且つ、全ての発電サイクル1a〜1nの電力検出器8の検出値の合計値(ΣWi)が、その時点で運転している発電サイクル1iの最大発電量の合計値から次に停止する第y番目の発電システム1yの最大発電量に所定の係数kを掛け合わせた値を差し引いた電力下限値(Σ(fi・Pi)−k・Py)より小さい場合には、予め決定しておいた第y番目の発電サイクル1xのポンプ5を停止し、加熱媒体遮断弁18および冷却媒体遮断弁19を閉鎖することによって、第y番目の発電システム1yの運転を停止する。   Further, the control device 9 determines that the cooling temperature difference ΔTc is equal to or greater than the cooling temperature difference lower limit value Stc and the total value (ΣWi) of the detection values of the power detectors 8 of all the power generation cycles 1a to 1n is A power lower limit value (Σ (fi) obtained by subtracting a value obtained by multiplying the maximum power generation amount of the y-th power generation system 1y to be stopped next by a predetermined coefficient k from the total value of the maximum power generation amount of the operating power generation cycle 1i. If Pi is smaller than -k · Py), the pump 5 of the y-th power generation cycle 1x determined in advance is stopped, and the heating medium cutoff valve 18 and the cooling medium cutoff valve 19 are closed. The operation of the yth power generation system 1y is stopped.

本実施形態は、冷却媒体の流量に応じて発電サイクル1iの運転数を調整する。つまり、本実施形態は、加熱媒体の流量は豊富であるが、冷却媒体の流量や温度がボトルネックとなる場合に適用されるものである。また、主従のない複数の発電サイクル1iを並列に接続した発電装置においても、冷却媒体の凝縮器4前後の温度差に応じて発電サイクル1iの運転数を調整してもよい。   In the present embodiment, the number of operation of the power generation cycle 1i is adjusted according to the flow rate of the cooling medium. That is, this embodiment is applied when the flow rate of the heating medium is abundant but the flow rate or temperature of the cooling medium becomes a bottleneck. Further, even in a power generation apparatus in which a plurality of power generation cycles 1i without master and slave are connected in parallel, the number of operations of the power generation cycle 1i may be adjusted according to the temperature difference between the cooling medium and the condenser 4 before and after.

続いて、図9に、本発明の第6実施形態の発電装置600を示す。本実施形態の発電装置600は、主たる第1の発電サイクル1aと、補助的な第2乃至第n番目の発電サイクル1b〜1nを有する。本実施形態の第1の発電サイクル1aは、蒸発器2の上流側および下流側の循環流路6においてそれぞれ作動媒体の温度を検出する作動媒体蒸発前温度検出器24および作動媒体蒸発後温度検出器25が設けられている。   Next, FIG. 9 shows a power generator 600 according to a sixth embodiment of the present invention. The power generation apparatus 600 of this embodiment includes a main first power generation cycle 1a and auxiliary second to nth power generation cycles 1b to 1n. The first power generation cycle 1a of the present embodiment includes a working medium pre-evaporation temperature detector 24 and a working medium post-evaporation temperature detection that detect the temperature of the working medium in the upstream and downstream circulation passages 6 of the evaporator 2, respectively. A vessel 25 is provided.

本実施形態において、制御装置9は、作動媒体蒸発前温度検出器24の検出値と作動媒体蒸発後温度検出器25の検出値との差分(蒸発温度差)ΔTeを算出し、予め設定した蒸発温度差下限値Steと比較する。そして、制御装置9は、蒸発温度差ΔTeが冷却温度差下限値Steよりも小さい場合は、予め決定しておいた第x番目の発電サイクル1xのポンプ5を始動し、加熱媒体遮断弁18および冷却媒体遮断弁19を開放することによって、第x番目の発電システム1xの運転を開始する。   In the present embodiment, the control device 9 calculates a difference (evaporation temperature difference) ΔTe between a detection value of the temperature detector 24 before evaporation of the working medium and a detection value of the temperature detector 25 after the evaporation of the working medium, and preset evaporation. Compare with the temperature difference lower limit value Ste. Then, when the evaporation temperature difference ΔTe is smaller than the cooling temperature difference lower limit value Ste, the control device 9 starts the pump 5 of the x-th power generation cycle 1x determined in advance, By opening the cooling medium cutoff valve 19, the operation of the xth power generation system 1x is started.

また、制御装置9は、蒸発温度差ΔTeが蒸発温度差下限値Ste以上であり、且つ、全ての発電サイクル1a〜1nの電力検出器8の検出値の合計値(ΣWi)が、その時点で運転している発電サイクル1iの最大発電量の合計値から次に停止する第y番目の発電システム1yの最大発電量に所定の係数kを掛け合わせた値を差し引いた電力下限値(Σ(fi・Pi)−k・Py)より小さい場合には、予め決定しておいた第y番目の発電サイクル1xのポンプ5を停止し、加熱媒体遮断弁18および冷却媒体遮断弁19を閉鎖することによって、第y番目の発電システム1yの運転を停止する。   Further, the controller 9 determines that the evaporation temperature difference ΔTe is equal to or greater than the evaporation temperature difference lower limit value Ste and the total value (ΣWi) of the detection values of the power detectors 8 of all the power generation cycles 1a to 1n is at that time. A power lower limit value (Σ (fi) obtained by subtracting a value obtained by multiplying the maximum power generation amount of the y-th power generation system 1y to be stopped next by a predetermined coefficient k from the total value of the maximum power generation amount of the operating power generation cycle 1i. If Pi is smaller than -k · Py), the pump 5 of the y-th power generation cycle 1x determined in advance is stopped, and the heating medium cutoff valve 18 and the cooling medium cutoff valve 19 are closed. The operation of the yth power generation system 1y is stopped.

本実施形態は、蒸発器2における熱交換量に応じて発電サイクル1iの運転数を調整する。また、主従のない複数の発電サイクル1iを並列に接続した発電装置においても、蒸発器2における熱交換量(蒸発温度差)に応じて発電サイクル1iの運転数を調整してもよい。   In the present embodiment, the number of operation of the power generation cycle 1 i is adjusted according to the heat exchange amount in the evaporator 2. Further, even in a power generation apparatus in which a plurality of power generation cycles 1i without master and slave are connected in parallel, the number of operation of the power generation cycle 1i may be adjusted according to the heat exchange amount (evaporation temperature difference) in the evaporator 2.

続いて、図10に、本発明の第7実施形態の発電装置700を示す。本実施形態の発電装置700は、主たる第1の発電サイクル1aと、補助的な第2乃至第n番目の発電サイクル1b〜1nを有する。本実施形態の第1の発電サイクル1aは、凝縮器4の上流側および下流側の循環流路6においてそれぞれ作動媒体の温度を検出する作動媒体凝縮前温度検出器26および作動媒体凝縮後温度検出器27が設けられている。   Next, FIG. 10 shows a power generation device 700 according to a seventh embodiment of the present invention. The power generation device 700 of the present embodiment includes a main first power generation cycle 1a and auxiliary second to nth power generation cycles 1b to 1n. The first power generation cycle 1a of the present embodiment includes a working medium pre-condensation temperature detector 26 that detects the temperature of the working medium in the upstream and downstream circulation passages 6 of the condenser 4, and a working medium post-condensation temperature detection. A container 27 is provided.

本実施形態において、制御装置9は、作動媒体凝縮前温度検出器26の検出値と作動媒体凝縮後温度検出器25の検出値との差分(凝縮温度差)ΔTdを算出し、予め設定した凝縮温度差下限値Stdと比較する。そして、制御装置9は、凝縮温度差ΔTdが凝縮温度差下限値Stdよりも小さい場合は、予め決定しておいた第x番目の発電サイクル1xのポンプ5を始動し、加熱媒体遮断弁18および冷却媒体遮断弁19を開放することによって、第x番目の発電システム1xの運転を開始する。   In the present embodiment, the control device 9 calculates a difference (condensation temperature difference) ΔTd between the detection value of the working medium pre-condensation temperature detector 26 and the detection value of the working medium post-condensation temperature detector 25, and sets a preset condensation. The temperature difference is compared with the lower limit value Std. When the condensing temperature difference ΔTd is smaller than the condensing temperature difference lower limit value Std, the control device 9 starts the pump 5 of the x-th power generation cycle 1x determined in advance, By opening the cooling medium cutoff valve 19, the operation of the xth power generation system 1x is started.

また、制御装置9は、凝縮温度差ΔTdが凝縮温度差下限値Std以上であり、且つ、全ての発電サイクル1a〜1nの電力検出器8の検出値の合計値(ΣWi)が、その時点で運転している発電サイクル1iの最大発電量の合計値から次に停止する第y番目の発電システム1yの最大発電量に所定の係数kを掛け合わせた値を差し引いた電力下限値(Σ(fi・Pi)−k・Py)より小さい場合には、予め決定しておいた第y番目の発電サイクル1xのポンプ5を停止し、加熱媒体遮断弁18および冷却媒体遮断弁19を閉鎖することによって、第y番目の発電システム1yの運転を停止する。   Further, the controller 9 determines that the condensation temperature difference ΔTd is equal to or greater than the condensation temperature difference lower limit value Std and the total value (ΣWi) of the detection values of the power detectors 8 of all the power generation cycles 1a to 1n is A power lower limit value (Σ (fi) obtained by subtracting a value obtained by multiplying the maximum power generation amount of the y-th power generation system 1y to be stopped next by a predetermined coefficient k from the total value of the maximum power generation amount of the operating power generation cycle 1i. If Pi is smaller than -k · Py), the pump 5 of the y-th power generation cycle 1x determined in advance is stopped, and the heating medium cutoff valve 18 and the cooling medium cutoff valve 19 are closed. The operation of the yth power generation system 1y is stopped.

本実施形態は、凝縮器4における熱交換量に応じて発電サイクル1iの運転数を調整する。また、主従のない複数の発電サイクル1iを並列に接続した発電装置においても、凝縮器4における熱交換量(凝縮温度差)に応じて発電サイクル1iの運転数を調整してもよい。   In the present embodiment, the number of operation of the power generation cycle 1 i is adjusted according to the heat exchange amount in the condenser 4. Further, even in a power generation apparatus in which a plurality of power generation cycles 1i without master and slave are connected in parallel, the number of operation of the power generation cycle 1i may be adjusted according to the heat exchange amount (condensation temperature difference) in the condenser 4.

続いて、図11に、本発明の第8実施形態の発電装置800を示す。本実施形態の発電装置800は、主たる第1の発電サイクル1aと、補助的な第2乃至第n番目の発電サイクル1b〜1nを有する。本実施形態の第1の発電サイクル1aは、循環流路6に、ポンプ5が吐出した作動媒体の流量を検出する作動媒体流量検出器28が設けられている。また、ポンプ5は、蒸発器2の液面を一定に保つように回転数制御される。   Next, FIG. 11 shows a power generator 800 according to an eighth embodiment of the present invention. The power generation apparatus 800 according to the present embodiment includes a main first power generation cycle 1a and auxiliary second to nth power generation cycles 1b to 1n. In the first power generation cycle 1 a of the present embodiment, a working medium flow rate detector 28 that detects the flow rate of the working medium discharged by the pump 5 is provided in the circulation flow path 6. Further, the rotation speed of the pump 5 is controlled so as to keep the liquid level of the evaporator 2 constant.

本実施形態において、制御装置9は、作動媒体流量検出器28の検出値Fと、予め設定した流量上限値Sfとを比較する。そして、制御装置9は、作動媒体の流量Fが流量上限値Sfよりも大きい場合は、予め決定しておいた第x番目の発電サイクル1xのポンプ5を始動し、加熱媒体遮断弁18および冷却媒体遮断弁19を開放することによって、第x番目の発電システム1xの運転を開始する。   In the present embodiment, the control device 9 compares the detection value F of the working medium flow rate detector 28 with a preset flow rate upper limit value Sf. When the flow rate F of the working medium is larger than the flow rate upper limit value Sf, the control device 9 starts the pump 5 of the x-th power generation cycle 1x that has been determined in advance, and heat medium shut-off valve 18 and cooling By opening the medium cutoff valve 19, the operation of the xth power generation system 1x is started.

また、制御装置9は、作動媒体の流量Fが流量上限値Sf以下であり、且つ、全ての発電サイクル1a〜1nの電力検出器8の検出値の合計値(ΣWi)が、その時点で運転している発電サイクル1iの最大発電量の合計値から次に停止する第y番目の発電システム1yの最大発電量に所定の係数kを掛け合わせた値を差し引いた電力下限値(Σ(fi・Pi)−k・Py)より小さい場合には、予め決定しておいた第y番目の発電サイクル1xのポンプ5を停止し、加熱媒体遮断弁18および冷却媒体遮断弁19を閉鎖することによって、第y番目の発電システム1yの運転を停止する。   Further, the control device 9 operates when the flow rate F of the working medium is equal to or less than the flow rate upper limit value Sf and the total value (ΣWi) of the detection values of the power detectors 8 of all the power generation cycles 1a to 1n is at that time. The power lower limit value (Σ (fi · If Pi is smaller than -k · Py), the pump 5 of the y-th power generation cycle 1x determined in advance is stopped, and the heating medium cutoff valve 18 and the cooling medium cutoff valve 19 are closed. The operation of the yth power generation system 1y is stopped.

本実施形態は、凝循環流路6の作動媒体の流量に応じて発電サイクル1iの運転数を調整する。また、主従のない複数の発電サイクル1iを並列に接続した発電装置においても、循環流路6の作動媒体の流量に応じて発電サイクル1iの運転数を調整してもよい。   In the present embodiment, the number of operation of the power generation cycle 1 i is adjusted according to the flow rate of the working medium in the coagulation flow path 6. Further, even in a power generation apparatus in which a plurality of power generation cycles 1 i without master and slave are connected in parallel, the number of operations of the power generation cycle 1 i may be adjusted according to the flow rate of the working medium in the circulation flow path 6.

100,200,300,400,500,600,700,800…発電装置
1a,1b,1n…発電サイクル
2…蒸発器
3…スクリュ膨張機
4…凝縮器
5…ポンプ
6…循環流路
7…発電機
8…電力検出器
9…制御装置
10…加熱媒体供給共通流路
11…加熱媒体排出共通流路
12…加熱媒体供給分岐流路
13…加熱媒体排出分岐流路
14…冷却媒体供給共通流路
15…冷却媒体排出共通流路
16…冷却媒体供給分岐流路
17…冷却媒体排分岐流路
18…加熱媒体遮断弁
19…冷却媒体遮断弁
20…加熱媒体供給温度検出器
21…加熱媒体排出温度検出器
22…冷却媒体供給温度検出器
23…冷却媒体排出温度検出器
24…作動媒体蒸発前温度検出器
25…作動媒体蒸発後温度検出器
26…作動媒体凝縮前温度検出器
27…作動媒体凝縮後温度検出器
28…作動媒体流量検出器
DESCRIPTION OF SYMBOLS 100,200,300,400,500,600,700,800 ... Power generation device 1a, 1b, 1n ... Power generation cycle 2 ... Evaporator 3 ... Screw expander 4 ... Condenser 5 ... Pump 6 ... Circulation flow path 7 ... Power generation 8 ... Electric power detector 9 ... Control device 10 ... Heating medium supply common flow path 11 ... Heating medium discharge common flow path 12 ... Heating medium supply branch flow path 13 ... Heating medium discharge branch flow path 14 ... Cooling medium supply common flow path DESCRIPTION OF SYMBOLS 15 ... Cooling medium discharge common flow path 16 ... Cooling medium supply branch flow path 17 ... Cooling medium discharge branch flow path 18 ... Heating medium shut-off valve 19 ... Cooling medium shut-off valve 20 ... Heating medium supply temperature detector 21 ... Heating medium discharge temperature Detector 22 ... Cooling medium supply temperature detector 23 ... Cooling medium discharge temperature detector 24 ... Temperature detector before evaporation of working medium 25 ... Temperature detector after evaporation of working medium 26 ... Temperature detector before condensation of working medium 2 ... working medium condensation temperature after the detector 28 ... working medium flow detector

Claims (12)

蒸発器において外部から供給される加熱媒体によって作動媒体を蒸発させ、蒸発した作動媒体を発電機に接続した膨張機に導入して前記膨張機を駆動することにより発電し、前記膨張機から排出された作動媒体を凝縮器に導入し、前記凝縮器において外部から供給される冷却媒体によって作動媒体を冷却して凝縮させ、凝縮した作動媒体をポンプによって前記蒸発器に再供給する発電サイクルを複数有し、
熱源から加熱媒体が供給される共通の加熱媒体供給共通流路から分岐して、それぞれの前記発電サイクルの前記蒸発器に加熱媒体を供給する加熱媒体供給分岐流路と、
それぞれの前記発電サイクルの前記蒸発器から作動媒体と熱交換した加熱媒体を排出する加熱媒体排出分岐流路と、
冷却源から冷却媒体が供給される共通の冷却媒体供給共通流路から分岐して、それぞれの前記発電サイクルの前記凝縮器に冷却媒体を供給する冷却媒体供給分岐流路と、
それぞれの前記発電サイクルの前記凝縮器から作動媒体と熱交換した冷却媒体を排出する冷却媒体排出分岐流路とを備え、
前記加熱媒体供給分岐流路および前記加熱媒体排出分岐流路の少なくともいずれかに設けられ、加熱媒体の流れを遮断する加熱媒体遮断弁と、
前記冷却媒体供給分岐流路および前記冷却媒体排出分岐流路の少なくともいずれかに設けられ、冷却媒体の流れを遮断する冷却媒体遮断弁と
少なくともいずれかの前記発電サイクルの前記加熱媒体供給分岐流路および前記加熱媒体排出分岐流路に設けられ、それぞれ加熱媒体の温度を検出する加熱媒体供給温度検出器および加熱媒体排出温度検出器と、
それぞれの前記発電機の発電量を検出する電力検出器と、
前記加熱媒体供給温度検出器の検出値と前記加熱媒体排出温度検出器の検出値との差分および前記電力検出器の検出値に基づいて、前記加熱媒体遮断弁および冷却媒体遮断弁を開閉する制御装置とを有することを特徴とする発電装置。
In the evaporator, the working medium is evaporated by a heating medium supplied from the outside, the evaporated working medium is introduced into an expander connected to a generator, and the expander is driven to generate electric power, which is discharged from the expander. A plurality of power generation cycles in which the working medium is introduced into the condenser, the working medium is cooled and condensed by a cooling medium supplied from the outside in the condenser, and the condensed working medium is re-supplied to the evaporator by a pump. And
A heating medium supply branch channel that branches from a common heating medium supply common channel to which a heating medium is supplied from a heat source and supplies the heating medium to the evaporator of each of the power generation cycles;
A heating medium discharge branch passage for discharging the heating medium heat-exchanged with the working medium from the evaporator of each power generation cycle;
A cooling medium supply branch flow path that branches from a common cooling medium supply common flow path to which a cooling medium is supplied from a cooling source and supplies the cooling medium to the condenser of each of the power generation cycles;
A cooling medium discharge branch channel for discharging the cooling medium heat-exchanged with the working medium from the condenser of each of the power generation cycles,
A heating medium cutoff valve that is provided in at least one of the heating medium supply branch flow path and the heating medium discharge branch flow path, and blocks the flow of the heating medium;
A cooling medium shut-off valve that is provided in at least one of the cooling medium supply branch flow path and the cooling medium discharge branch flow path and blocks the flow of the cooling medium ;
A heating medium supply temperature detector and a heating medium discharge temperature detector that are provided in the heating medium supply branch flow path and the heating medium discharge branch flow path of at least one of the power generation cycles, respectively, and detect the temperature of the heating medium;
A power detector for detecting the amount of power generated by each of the generators;
Control for opening and closing the heating medium shut-off valve and the cooling medium shut-off valve based on the difference between the detected value of the heating medium supply temperature detector and the detected value of the heating medium discharge temperature detector and the detected value of the power detector power generator and having a device.
前記制御装置は、前記加熱媒体供給温度検出器の検出値と加熱媒体排出温度検出器の検出値との差分が所定の加熱温度差下限値より小さくなったとき、前記加熱媒体遮断弁および冷却媒体遮断弁が閉じている前記発電サイクルのいずれか1つの前記加熱媒体遮断弁および冷却媒体遮断弁を開き、
前記加熱媒体供給温度検出器の検出値と加熱媒体排出温度検出器の検出値との差分が前記加熱温度差下限値以上で、且つ、前記電力検出器の検出値が所定の電力下限値より小さくなったとき、前記加熱媒体遮断弁および冷却媒体遮断弁が開いている前記発電サイクルのいずれか1つの前記加熱媒体遮断弁および冷却媒体遮断弁を閉じることを特徴とする請求項に記載の発電装置。
When the difference between the detection value of the heating medium supply temperature detector and the detection value of the heating medium discharge temperature detector becomes smaller than a predetermined lower limit value of the heating temperature difference, the control device Opening the heating medium shut-off valve and the cooling medium shut-off valve in any one of the power generation cycles in which the shut-off valve is closed;
The difference between the detection value of the heating medium supply temperature detector and the detection value of the heating medium discharge temperature detector is equal to or greater than the heating temperature difference lower limit value, and the detection value of the power detector is smaller than a predetermined power lower limit value. 2. The power generation according to claim 1 , wherein the heating medium cutoff valve and the cooling medium cutoff valve of any one of the power generation cycles in which the heating medium cutoff valve and the cooling medium cutoff valve are open are closed. apparatus.
蒸発器において外部から供給される加熱媒体によって作動媒体を蒸発させ、蒸発した作動媒体を発電機に接続した膨張機に導入して前記膨張機を駆動することにより発電し、前記膨張機から排出された作動媒体を凝縮器に導入し、前記凝縮器において外部から供給される冷却媒体によって作動媒体を冷却して凝縮させ、凝縮した作動媒体をポンプによって前記蒸発器に再供給する発電サイクルを複数有し、
熱源から加熱媒体が供給される共通の加熱媒体供給共通流路から分岐して、それぞれの前記発電サイクルの前記蒸発器に加熱媒体を供給する加熱媒体供給分岐流路と、
それぞれの前記発電サイクルの前記蒸発器から作動媒体と熱交換した加熱媒体を排出する加熱媒体排出分岐流路と、
冷却源から冷却媒体が供給される共通の冷却媒体供給共通流路から分岐して、それぞれの前記発電サイクルの前記凝縮器に冷却媒体を供給する冷却媒体供給分岐流路と、
それぞれの前記発電サイクルの前記凝縮器から作動媒体と熱交換した冷却媒体を排出する冷却媒体排出分岐流路とを備え、
前記加熱媒体供給分岐流路および前記加熱媒体排出分岐流路の少なくともいずれかに設けられ、加熱媒体の流れを遮断する加熱媒体遮断弁と、
前記冷却媒体供給分岐流路および前記冷却媒体排出分岐流路の少なくともいずれかに設けられ、冷却媒体の流れを遮断する冷却媒体遮断弁と、
少なくともいずれかの前記発電サイクルの前記冷却媒体供給分岐流路および前記冷却媒体排出分岐流路に設けられ、それぞれ冷却媒体の温度を検出する冷却媒体供給温度検出器および冷却媒体排出温度検出器と、
それぞれの前記発電機の発電量を検出する電力検出器と、
前記冷却媒体供給温度検出器の検出値と前記冷却媒体排出温度検出器の検出値との差分および前記電力検出器の検出値に基づいて、前記加熱媒体遮断弁および冷却媒体遮断弁を開閉する制御装置とを有することを特徴とする発電装置。
In the evaporator, the working medium is evaporated by a heating medium supplied from the outside, the evaporated working medium is introduced into an expander connected to a generator, and the expander is driven to generate electric power, which is discharged from the expander. A plurality of power generation cycles in which the working medium is introduced into the condenser, the working medium is cooled and condensed by a cooling medium supplied from the outside in the condenser, and the condensed working medium is re-supplied to the evaporator by a pump. And
A heating medium supply branch channel that branches from a common heating medium supply common channel to which a heating medium is supplied from a heat source and supplies the heating medium to the evaporator of each of the power generation cycles;
A heating medium discharge branch passage for discharging the heating medium heat-exchanged with the working medium from the evaporator of each power generation cycle;
A cooling medium supply branch flow path that branches from a common cooling medium supply common flow path to which a cooling medium is supplied from a cooling source and supplies the cooling medium to the condenser of each of the power generation cycles;
A cooling medium discharge branch channel for discharging the cooling medium heat-exchanged with the working medium from the condenser of each of the power generation cycles,
A heating medium cutoff valve that is provided in at least one of the heating medium supply branch flow path and the heating medium discharge branch flow path, and blocks the flow of the heating medium;
A cooling medium shut-off valve that is provided in at least one of the cooling medium supply branch flow path and the cooling medium discharge branch flow path and blocks the flow of the cooling medium;
A cooling medium supply temperature detector and a cooling medium discharge temperature detector that are provided in at least one of the cooling medium supply branch flow path and the cooling medium discharge branch flow path of the power generation cycle and detect the temperature of the cooling medium, respectively;
A power detector for detecting the amount of power generated by each of the generators;
Control for opening and closing the heating medium cutoff valve and the cooling medium cutoff valve based on the difference between the detection value of the cooling medium supply temperature detector and the detection value of the cooling medium discharge temperature detector and the detection value of the power detector power generation device you; and a device.
前記制御装置は、前記冷却媒体供給温度検出器の検出値と冷却媒体排出温度検出器の検出値との差分が所定の冷却温度差下限値より小さくなったとき、前記加熱媒体遮断弁および冷却媒体遮断弁が閉じている前記発電サイクルのいずれか1つの前記加熱媒体遮断弁および冷却媒体遮断弁を開き、
前記冷却媒体供給温度検出器の検出値と冷却媒体排出温度検出器の検出値との差分が前記冷却温度差下限値以上で、且つ、前記電力検出器の検出値が所定の電力下限値より小さくなったとき、前記加熱媒体遮断弁および冷却媒体遮断弁が開いている前記発電サイクルのいずれか1つの前記加熱媒体遮断弁および冷却媒体遮断弁を閉じることを特徴とする請求項に記載の発電装置。
When the difference between the detection value of the cooling medium supply temperature detector and the detection value of the cooling medium discharge temperature detector becomes smaller than a predetermined lower limit value of the cooling temperature difference, the control device Opening the heating medium shut-off valve and the cooling medium shut-off valve in any one of the power generation cycles in which the shut-off valve is closed;
The difference between the detection value of the cooling medium supply temperature detector and the detection value of the cooling medium discharge temperature detector is not less than the cooling temperature difference lower limit value, and the detection value of the power detector is smaller than a predetermined power lower limit value. 4. The power generation according to claim 3 , wherein the heating medium cutoff valve and the cooling medium cutoff valve of any one of the power generation cycles in which the heating medium cutoff valve and the cooling medium cutoff valve are open are closed. apparatus.
蒸発器において外部から供給される加熱媒体によって作動媒体を蒸発させ、蒸発した作動媒体を発電機に接続した膨張機に導入して前記膨張機を駆動することにより発電し、前記膨張機から排出された作動媒体を凝縮器に導入し、前記凝縮器において外部から供給される冷却媒体によって作動媒体を冷却して凝縮させ、凝縮した作動媒体をポンプによって前記蒸発器に再供給する発電サイクルを複数有し、
熱源から加熱媒体が供給される共通の加熱媒体供給共通流路から分岐して、それぞれの前記発電サイクルの前記蒸発器に加熱媒体を供給する加熱媒体供給分岐流路と、
それぞれの前記発電サイクルの前記蒸発器から作動媒体と熱交換した加熱媒体を排出する加熱媒体排出分岐流路と、
冷却源から冷却媒体が供給される共通の冷却媒体供給共通流路から分岐して、それぞれの前記発電サイクルの前記凝縮器に冷却媒体を供給する冷却媒体供給分岐流路と、
それぞれの前記発電サイクルの前記凝縮器から作動媒体と熱交換した冷却媒体を排出する冷却媒体排出分岐流路とを備え、
前記加熱媒体供給分岐流路および前記加熱媒体排出分岐流路の少なくともいずれかに設けられ、加熱媒体の流れを遮断する加熱媒体遮断弁と、
前記冷却媒体供給分岐流路および前記冷却媒体排出分岐流路の少なくともいずれかに設けられ、冷却媒体の流れを遮断する冷却媒体遮断弁と、
少なくともいずれかの前記発電サイクルの前記蒸発器の上流および下流に配設され、それぞれ前記作動媒体の温度を検出する作動媒体蒸発前温度検出器および作動媒体蒸発後温度検出器と、
それぞれの前記発電機の発電量を検出する電力検出器と、
前記作動媒体蒸発前温度検出器の検出値と前記作動媒体蒸発後温度検出器の検出値との差分および前記電力検出器の検出値に基づいて、前記加熱媒体遮断弁および冷却媒体遮断弁を開閉する制御装置とを有することを特徴とする発電装置。
In the evaporator, the working medium is evaporated by a heating medium supplied from the outside, the evaporated working medium is introduced into an expander connected to a generator, and the expander is driven to generate electric power, which is discharged from the expander. A plurality of power generation cycles in which the working medium is introduced into the condenser, the working medium is cooled and condensed by a cooling medium supplied from the outside in the condenser, and the condensed working medium is re-supplied to the evaporator by a pump. And
A heating medium supply branch channel that branches from a common heating medium supply common channel to which a heating medium is supplied from a heat source and supplies the heating medium to the evaporator of each of the power generation cycles;
A heating medium discharge branch passage for discharging the heating medium heat-exchanged with the working medium from the evaporator of each power generation cycle;
A cooling medium supply branch flow path that branches from a common cooling medium supply common flow path to which a cooling medium is supplied from a cooling source and supplies the cooling medium to the condenser of each of the power generation cycles;
A cooling medium discharge branch channel for discharging the cooling medium heat-exchanged with the working medium from the condenser of each of the power generation cycles,
A heating medium cutoff valve that is provided in at least one of the heating medium supply branch flow path and the heating medium discharge branch flow path, and blocks the flow of the heating medium;
A cooling medium shut-off valve that is provided in at least one of the cooling medium supply branch flow path and the cooling medium discharge branch flow path and blocks the flow of the cooling medium;
A working medium pre-evaporation temperature detector and a working medium post-evaporation temperature detector disposed upstream and downstream of the evaporator of at least one of the power generation cycles, respectively, for detecting the temperature of the working medium;
A power detector for detecting the amount of power generated by each of the generators;
The heating medium shut-off valve and the cooling medium shut-off valve are opened and closed based on the difference between the detected value of the temperature detector before evaporation of the working medium and the detected value of the temperature detector after evaporation of the working medium and the detected value of the power detector. power generation device you; and a control device for.
前記制御装置は、前記作動媒体蒸発前温度検出器の検出値と前記作動媒体蒸発後温度検出器の検出値との差分が所定の蒸発温度差下限値より小さくなったとき、前記加熱媒体遮断弁および冷却媒体遮断弁が閉じている前記発電サイクルのいずれか1つの前記加熱媒体遮断弁および冷却媒体遮断弁を開き、
前記作動媒体蒸発前温度検出器の検出値と前記作動媒体蒸発後温度検出器の検出値との差分が前記蒸発温度差下限値以上で、且つ、前記電力検出器の検出値が所定の電力下限値より小さくなったとき、前記加熱媒体遮断弁および冷却媒体遮断弁が開いている前記発電サイクルのいずれか1つの前記加熱媒体遮断弁および冷却媒体遮断弁を閉じることを特徴とする請求項に記載の発電装置。
When the difference between the detection value of the temperature detector before evaporation of the working medium and the detection value of the temperature detector after evaporation of the working medium becomes smaller than a predetermined lower limit value of the evaporation temperature difference, the control device And open the heating medium cutoff valve and the cooling medium cutoff valve of any one of the power generation cycles in which the cooling medium cutoff valve is closed,
The difference between the detection value of the temperature detector before evaporation of the working medium and the detection value of the temperature detector after evaporation of the working medium is equal to or greater than the lower limit of the evaporation temperature difference, and the detection value of the power detector is a predetermined lower limit of power. when it becomes smaller than the value, to claim 5, characterized in that closing the heating medium cutoff valves and one of said heating medium cutoff valve of the generation cycle of the cooling medium shutoff valve is open and coolant shutoff valve The power generator described.
蒸発器において外部から供給される加熱媒体によって作動媒体を蒸発させ、蒸発した作動媒体を発電機に接続した膨張機に導入して前記膨張機を駆動することにより発電し、前記膨張機から排出された作動媒体を凝縮器に導入し、前記凝縮器において外部から供給される冷却媒体によって作動媒体を冷却して凝縮させ、凝縮した作動媒体をポンプによって前記蒸発器に再供給する発電サイクルを複数有し、
熱源から加熱媒体が供給される共通の加熱媒体供給共通流路から分岐して、それぞれの前記発電サイクルの前記蒸発器に加熱媒体を供給する加熱媒体供給分岐流路と、
それぞれの前記発電サイクルの前記蒸発器から作動媒体と熱交換した加熱媒体を排出する加熱媒体排出分岐流路と、
冷却源から冷却媒体が供給される共通の冷却媒体供給共通流路から分岐して、それぞれの前記発電サイクルの前記凝縮器に冷却媒体を供給する冷却媒体供給分岐流路と、
それぞれの前記発電サイクルの前記凝縮器から作動媒体と熱交換した冷却媒体を排出する冷却媒体排出分岐流路とを備え、
前記加熱媒体供給分岐流路および前記加熱媒体排出分岐流路の少なくともいずれかに設けられ、加熱媒体の流れを遮断する加熱媒体遮断弁と、
前記冷却媒体供給分岐流路および前記冷却媒体排出分岐流路の少なくともいずれかに設けられ、冷却媒体の流れを遮断する冷却媒体遮断弁と、
少なくともいずれかの前記発電サイクルの前記凝縮器の上流および下流に配設され、それぞれ前記作動媒体の温度を検出する作動媒体凝縮前温度検出器および作動媒体凝縮後温度検出器と、
それぞれの前記発電機の発電量を検出する電力検出器と、
前記作動媒体凝縮前温度検出器の検出値と前記作動媒体凝縮後温度検出器の検出値との差分および前記電力検出器の検出値に基づいて、前記加熱媒体遮断弁および冷却媒体遮断弁を開閉する制御装置とを有することを特徴とする発電装置。
In the evaporator, the working medium is evaporated by a heating medium supplied from the outside, the evaporated working medium is introduced into an expander connected to a generator, and the expander is driven to generate electric power, which is discharged from the expander. A plurality of power generation cycles in which the working medium is introduced into the condenser, the working medium is cooled and condensed by a cooling medium supplied from the outside in the condenser, and the condensed working medium is re-supplied to the evaporator by a pump. And
A heating medium supply branch channel that branches from a common heating medium supply common channel to which a heating medium is supplied from a heat source and supplies the heating medium to the evaporator of each of the power generation cycles;
A heating medium discharge branch passage for discharging the heating medium heat-exchanged with the working medium from the evaporator of each power generation cycle;
A cooling medium supply branch flow path that branches from a common cooling medium supply common flow path to which a cooling medium is supplied from a cooling source and supplies the cooling medium to the condenser of each of the power generation cycles;
A cooling medium discharge branch channel for discharging the cooling medium heat-exchanged with the working medium from the condenser of each of the power generation cycles,
A heating medium cutoff valve that is provided in at least one of the heating medium supply branch flow path and the heating medium discharge branch flow path, and blocks the flow of the heating medium;
A cooling medium shut-off valve that is provided in at least one of the cooling medium supply branch flow path and the cooling medium discharge branch flow path and blocks the flow of the cooling medium;
A working medium pre-condensation temperature detector and a working medium post-condensation temperature detector disposed upstream and downstream of the condenser of at least one of the power generation cycles, respectively, for detecting the temperature of the working medium;
A power detector for detecting the amount of power generated by each of the generators;
Based on the difference between the detected value of the temperature detector before condensation of the working medium and the detected value of the temperature detector after condensation of the working medium and the detected value of the power detector, the heating medium cutoff valve and the cooling medium cutoff valve are opened and closed. power generation device you; and a control device for.
前記作動媒体凝縮前温度検出器の検出値と前記作動媒体凝縮後温度検出器の検出値との差分が所定の凝縮温度差下限値より小さくなったとき、前記加熱媒体遮断弁および冷却媒体遮断弁が閉じている前記発電サイクルのいずれか1つの前記加熱媒体遮断弁および冷却媒体遮断弁を開き、
前記作動媒体凝縮前温度検出器の検出値と前記作動媒体凝縮後温度検出器の検出値との差分が前記凝縮温度差下限値以上で、且つ、前記電力検出器の検出値が所定の電力下限値より小さくなったとき、前記加熱媒体遮断弁および冷却媒体遮断弁が開いている前記発電サイクルのいずれか1つの前記加熱媒体遮断弁および冷却媒体遮断弁を閉じることを特徴とする請求項に記載の発電装置。
When the difference between the detection value of the temperature detector before condensation of the working medium and the detection value of the temperature detector after condensation of the working medium becomes smaller than a predetermined condensation temperature difference lower limit value, the heating medium cutoff valve and the cooling medium cutoff valve Open the heating medium shut-off valve and the cooling medium shut-off valve of any one of the power generation cycles that are closed,
The difference between the detection value of the temperature detector before condensation of the working medium and the detection value of the temperature detector after condensation of the working medium is not less than the lower limit value of the condensation temperature difference, and the detection value of the power detector is a predetermined lower limit of power. when it becomes smaller than the value, to claim 7, characterized in that closing the heating medium cutoff valves and one of said heating medium cutoff valve of the generation cycle of the cooling medium shutoff valve is open and coolant shutoff valve The power generator described.
蒸発器において外部から供給される加熱媒体によって作動媒体を蒸発させ、蒸発した作動媒体を発電機に接続した膨張機に導入して前記膨張機を駆動することにより発電し、前記膨張機から排出された作動媒体を凝縮器に導入し、前記凝縮器において外部から供給される冷却媒体によって作動媒体を冷却して凝縮させ、凝縮した作動媒体をポンプによって前記蒸発器に再供給する発電サイクルを複数有し、
熱源から加熱媒体が供給される共通の加熱媒体供給共通流路から分岐して、それぞれの前記発電サイクルの前記蒸発器に加熱媒体を供給する加熱媒体供給分岐流路と、
それぞれの前記発電サイクルの前記蒸発器から作動媒体と熱交換した加熱媒体を排出する加熱媒体排出分岐流路と、
冷却源から冷却媒体が供給される共通の冷却媒体供給共通流路から分岐して、それぞれの前記発電サイクルの前記凝縮器に冷却媒体を供給する冷却媒体供給分岐流路と、
それぞれの前記発電サイクルの前記凝縮器から作動媒体と熱交換した冷却媒体を排出する冷却媒体排出分岐流路とを備え、
前記加熱媒体供給分岐流路および前記加熱媒体排出分岐流路の少なくともいずれかに設けられ、加熱媒体の流れを遮断する加熱媒体遮断弁と、
前記冷却媒体供給分岐流路および前記冷却媒体排出分岐流路の少なくともいずれかに設けられ、冷却媒体の流れを遮断する冷却媒体遮断弁と、
少なくともいずれかの前記発電サイクルに設けられ、作動媒体の流量を検出する作動媒体流量検出器と、
それぞれの前記発電機の発電量を検出する電力検出器と、
前記作動媒体流量検出器の検出値および前記電力検出器の検出値に基づいて、前記加熱媒体遮断弁および冷却媒体遮断弁を開閉する制御装置とを有することを特徴とする発電装置。
In the evaporator, the working medium is evaporated by a heating medium supplied from the outside, the evaporated working medium is introduced into an expander connected to a generator, and the expander is driven to generate electric power, which is discharged from the expander. A plurality of power generation cycles in which the working medium is introduced into the condenser, the working medium is cooled and condensed by a cooling medium supplied from the outside in the condenser, and the condensed working medium is re-supplied to the evaporator by a pump. And
A heating medium supply branch channel that branches from a common heating medium supply common channel to which a heating medium is supplied from a heat source and supplies the heating medium to the evaporator of each of the power generation cycles;
A heating medium discharge branch passage for discharging the heating medium heat-exchanged with the working medium from the evaporator of each power generation cycle;
A cooling medium supply branch flow path that branches from a common cooling medium supply common flow path to which a cooling medium is supplied from a cooling source and supplies the cooling medium to the condenser of each of the power generation cycles;
A cooling medium discharge branch channel for discharging the cooling medium heat-exchanged with the working medium from the condenser of each of the power generation cycles,
A heating medium cutoff valve that is provided in at least one of the heating medium supply branch flow path and the heating medium discharge branch flow path, and blocks the flow of the heating medium;
A cooling medium shut-off valve that is provided in at least one of the cooling medium supply branch flow path and the cooling medium discharge branch flow path and blocks the flow of the cooling medium;
A working medium flow rate detector that is provided in at least one of the power generation cycles and detects the flow rate of the working medium;
A power detector for detecting the amount of power generated by each of the generators;
The working medium flow detector on the basis of the detected value of the detection value and the power detector, power generation device you; and a control device for opening and closing the heating medium cutoff valves and the cooling medium cutoff valve.
前記制御装置は、前記作動媒体流量検出器の検出値が所定の流量上限値より大きくなったとき、前記加熱媒体遮断弁および冷却媒体遮断弁が閉じている前記発電サイクルのいずれか1つの前記加熱媒体遮断弁および冷却媒体遮断弁を開き、
前記作動媒体流量検出器の検出値が前記流量上限値以下であり、且つ、前記電力検出器の検出値が所定の電力下限値より小さくなったとき、前記加熱媒体遮断弁および冷却媒体遮断弁が開いている前記発電サイクルのいずれか1つの前記加熱媒体遮断弁および冷却媒体遮断弁を閉じることを特徴とする請求項に記載の発電装置。
When the detected value of the working medium flow rate detector exceeds a predetermined flow rate upper limit value, the control device is configured to heat any one of the power generation cycles in which the heating medium cutoff valve and the cooling medium cutoff valve are closed. Open the media shutoff valve and cooling media shutoff valve,
When the detected value of the working medium flow rate detector is less than or equal to the upper limit value of the flow rate and the detected value of the power detector is smaller than a predetermined lower power limit value, the heating medium cutoff valve and the cooling medium cutoff valve are The power generation device according to claim 9 , wherein the heating medium cutoff valve and the cooling medium cutoff valve of any one of the open power generation cycles are closed.
前記制御装置は、それぞれの前記発電サイクルの運転時間の積算時間を記憶し、
前記加熱媒体遮断弁および冷却媒体遮断弁を開くときには、前記加熱媒体遮断弁および冷却媒体遮断弁が閉じている前記発電サイクル中で、前記積算時間が最も短い前記発電サイクルの前記加熱媒体遮断弁および冷却媒体遮断弁を開き、
前記加熱媒体遮断弁および冷却媒体遮断弁を閉じるときには、前記加熱媒体遮断弁および冷却媒体遮断弁が開いている前記発電サイクル中で、前記積算時間が最も長い前記発電サイクルの前記加熱媒体遮断弁および冷却媒体遮断弁を閉じることを特徴とする請求項2,4,6,8,10のいずれかに記載の発電装置。
The control device stores the accumulated time of the operation time of each power generation cycle,
When the heating medium cutoff valve and the cooling medium cutoff valve are opened, the heating medium cutoff valve of the power generation cycle with the shortest integration time in the power generation cycle in which the heating medium cutoff valve and the cooling medium cutoff valve are closed, and Open the coolant shutoff valve
When closing the heating medium shut-off valve and the cooling medium shut-off valve, the heating medium shut-off valve of the power generation cycle with the longest accumulated time in the power generation cycle in which the heating medium shut-off valve and the cooling medium shut-off valve are open and The power generation device according to any one of claims 2 , 4 , 6 , 8 , and 10 , wherein the cooling medium cutoff valve is closed.
前記電力下限値は、現在、前記加熱媒体遮断弁および冷却媒体遮断弁が開けられている前記発電サイクルの最大発電量の和と、前記加熱媒体遮断弁および冷却媒体遮断弁が開けられている前記発電サイクルの最大発電量の和から次に前記加熱媒体遮断弁および冷却媒体遮断弁を閉じるべき前記発電サイクルの最大発電量を減じた値との間の値であることを特徴とする請求項2,4,6,8,10のいずれかに記載の発電装置。 The power lower limit value is the sum of the maximum power generation amount of the power generation cycle in which the heating medium cutoff valve and the cooling medium cutoff valve are currently opened, and the heating medium cutoff valve and the cooling medium cutoff valve are opened. 3. A value between the sum of the maximum power generation amounts of the power generation cycle and a value obtained by subtracting the maximum power generation amount of the power generation cycle in which the heating medium cutoff valve and the cooling medium cutoff valve should be closed next. , 4, 6, 8 , or 10 .
JP2011065848A 2011-03-24 2011-03-24 Power generator Expired - Fee Related JP5596606B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011065848A JP5596606B2 (en) 2011-03-24 2011-03-24 Power generator
KR1020120018840A KR101284487B1 (en) 2011-03-24 2012-02-24 Power generation apparatus
CN201210093828.7A CN102691541B (en) 2011-03-24 2012-03-23 Generating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011065848A JP5596606B2 (en) 2011-03-24 2011-03-24 Power generator

Publications (2)

Publication Number Publication Date
JP2012202262A JP2012202262A (en) 2012-10-22
JP5596606B2 true JP5596606B2 (en) 2014-09-24

Family

ID=46857250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011065848A Expired - Fee Related JP5596606B2 (en) 2011-03-24 2011-03-24 Power generator

Country Status (3)

Country Link
JP (1) JP5596606B2 (en)
KR (1) KR101284487B1 (en)
CN (1) CN102691541B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104279013B (en) * 2013-07-08 2016-06-01 北京华航盛世能源技术有限公司 The ORC (organic Rankine cycle) low-temperature afterheat generating system of a kind of optimization
JP6389794B2 (en) 2015-04-09 2018-09-12 株式会社神戸製鋼所 Thermal energy recovery device
JP6778475B2 (en) * 2015-07-01 2020-11-04 アネスト岩田株式会社 Power generation system and power generation method
CN105888752B (en) * 2015-09-25 2017-08-25 浙江秀舟热电有限公司 Power generation system optimal control method
CN105909331B (en) * 2015-10-07 2017-12-26 河南城建学院 A kind of electricity generation system of optimization output power regulation
JP6425310B2 (en) * 2016-01-20 2018-11-21 東芝三菱電機産業システム株式会社 Heat recovery system and controller
GB2552963A (en) * 2016-08-15 2018-02-21 Futurebay Ltd Thermodynamic cycle apparatus and method
JP2019019797A (en) * 2017-07-20 2019-02-07 パナソニック株式会社 Cogeneration system and operation method of the same
JP2020045826A (en) * 2018-09-19 2020-03-26 三浦工業株式会社 Steam system
KR102606578B1 (en) * 2019-08-23 2023-11-27 삼성중공업(주) Electricity generating system for ships
CN115387867B (en) * 2022-10-31 2023-03-24 中国核动力研究设计院 Power generation system and working medium loading method based on power generation system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171808A (en) * 1985-01-28 1986-08-02 Toshiba Corp Dual rankine cycle power plant
CN1003317B (en) * 1985-08-31 1989-02-15 奥马蒂系统公司 Cascaded power plant using low and medium temp. source fluid
JPH01285607A (en) * 1988-05-07 1989-11-16 Hisaka Works Ltd Hybrid binary generating system
CN1030211C (en) * 1988-12-02 1995-11-01 奥马蒂系统公司 Method of and apparatus for producing power using steam
FR2671135B1 (en) * 1990-12-31 1995-09-29 Ormat Turbines 1965 Ltd RANKINE CYCLE POWER PLANT USING ORGANIC FLUID AND METHOD OF IMPLEMENTING THE SAME.
JPH05296618A (en) * 1992-04-13 1993-11-09 Hitachi Ltd Water cooler
JPH0674589A (en) * 1992-08-26 1994-03-15 Matsushita Refrig Co Ltd Multichamber room cooler/heater
JP3299531B2 (en) * 1999-12-22 2002-07-08 川崎重工業株式会社 Power plant
US7320221B2 (en) * 2004-08-04 2008-01-22 Oramt Technologies Inc. Method and apparatus for using geothermal energy for the production of power
US20060112693A1 (en) * 2004-11-30 2006-06-01 Sundel Timothy N Method and apparatus for power generation using waste heat
KR20070116106A (en) * 2007-10-15 2007-12-06 유티씨 파워 코포레이션 Cascaded organic rankine cycles for waste heat utilization
GB2471852A (en) 2009-07-14 2011-01-19 Creaidea B V Use of a rankine cycle apparatus on a vessel to convert energy from waste streams to mechanical energy

Also Published As

Publication number Publication date
KR20120109295A (en) 2012-10-08
CN102691541B (en) 2014-12-10
JP2012202262A (en) 2012-10-22
KR101284487B1 (en) 2013-07-16
CN102691541A (en) 2012-09-26

Similar Documents

Publication Publication Date Title
JP5596606B2 (en) Power generator
EP2998524B1 (en) Energy recovery device and compression device, and energy recovery method
JP6060040B2 (en) Waste heat recovery device and operation control method of waste heat recovery device
EP2540995B1 (en) Power generation apparatus
JP5871661B2 (en) Binary power generator control method
JP5788235B2 (en) Steam generator
JP2016056686A (en) Compression device
JP5592305B2 (en) Power generator
JP5871663B2 (en) Control method of binary power generator
JP6757631B2 (en) Binary power generation system
JP6060029B2 (en) Rotating machine drive system
CN106321172B (en) Double-circulation power generation system and double-circulation power generation method
JPH112105A (en) Combined cycle power generation plant
JP5924980B2 (en) Binary power generator and control method thereof
JP2000303803A (en) Power generation system
JP2020125700A (en) Power generation facility, power generation facility control device, and power generation facility control method
JP6592418B2 (en) Thermal energy recovery device and operation method thereof
JP6844254B2 (en) Steam generation system and control method of steam generation system
KR20170114391A (en) System for recycling wasted heat of vessel
JPH04325703A (en) Feed water control device for combine cycle power generation plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140807

R150 Certificate of patent or registration of utility model

Ref document number: 5596606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees