JPH0674589A - Multichamber room cooler/heater - Google Patents

Multichamber room cooler/heater

Info

Publication number
JPH0674589A
JPH0674589A JP22693692A JP22693692A JPH0674589A JP H0674589 A JPH0674589 A JP H0674589A JP 22693692 A JP22693692 A JP 22693692A JP 22693692 A JP22693692 A JP 22693692A JP H0674589 A JPH0674589 A JP H0674589A
Authority
JP
Japan
Prior art keywords
heat exchanger
heating
cooling
auxiliary heat
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22693692A
Other languages
Japanese (ja)
Inventor
Kazuhiko Marumoto
一彦 丸本
Masao Kurachi
正夫 蔵地
Nobuhiro Nakagawa
信博 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP22693692A priority Critical patent/JPH0674589A/en
Publication of JPH0674589A publication Critical patent/JPH0674589A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the energy conservation and comfortableness by allowing an operation of a user side refrigerant cycle without switching even if an operation of a heat source side heat exchanger is varied with respect to a load change in room cooling/heating concurrent operations. CONSTITUTION:The multichannel room cooler/heater comprises a heat source side refrigerant cycle 57''', a room heating user side refrigerant cycle 68 for room heating mainly through a room heating second auxiliary heat exchanger 58 formed integrally with a room heating first auxiliary heat exchanger 51, and a room cooling user side refrigerant cycle 70 for room cooling mainly through a room cooling secondary auxiliary heat exchanger 60 formed integrally with a room cooling first auxiliary heat exchanger 55.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱源側冷媒サイクルと
利用側冷媒サイクルに分離された多室冷暖房装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-chamber cooling / heating apparatus separated into a heat source side refrigerant cycle and a use side refrigerant cycle.

【0002】[0002]

【従来の技術】従来の技術としては特開平1−2753
14号公報で知られるような多室冷暖房装置がある。
2. Description of the Related Art As a conventional technique, Japanese Patent Laid-Open No. 1-2753
There is a multi-room air conditioner as known from JP-A-14.

【0003】以下、図面を参照しながら従来の技術につ
いて説明する。図4において、31は圧縮機、32は四
方弁、33は第3補助熱交換器,33aは第3熱交換器
33への冷媒流量を制御する補助制御弁、34は熱源側
熱交換器、34aは熱源側熱交換器34への冷媒流量を
制御する主制御弁、35は減圧装置、36は第1補助熱
交換器でこれらを環状に連接し、熱源側冷媒サイクルを
形成している。
A conventional technique will be described below with reference to the drawings. 4, 31 is a compressor, 32 is a four-way valve, 33 is a third auxiliary heat exchanger, 33a is an auxiliary control valve for controlling the flow rate of the refrigerant to the third heat exchanger 33, 34 is a heat source side heat exchanger, 34a is a main control valve that controls the flow rate of the refrigerant to the heat source side heat exchanger 34, 35 is a pressure reducing device, and 36 is a first auxiliary heat exchanger that connects these in an annular shape to form a heat source side refrigerant cycle.

【0004】37は第2補助熱交換器で第1補助熱交換
器36と熱交換するように一体に形成されている。38
は第1冷媒搬送装置で冷房時と暖房時で冷媒の流出方向
が反対となる可逆特性を持っている。
A second auxiliary heat exchanger 37 is integrally formed so as to exchange heat with the first auxiliary heat exchanger 36. 38
Has a reversible characteristic that the refrigerant outflow directions are opposite during cooling and heating in the first refrigerant transfer device.

【0005】39は第3補助熱交換器33と一体に形成
され熱交換する第4補助熱交換器、40は第2冷媒搬送
装置で冷房時と暖房時で冷媒の流出方向が反対となる可
逆特性を持っており、これらは室外ユニット41に収納
されている。
Reference numeral 39 denotes a fourth auxiliary heat exchanger which is integrally formed with the third auxiliary heat exchanger 33 and exchanges heat. Reference numeral 40 denotes a second refrigerant transfer device, which is a reversible device in which the refrigerant outflow directions are opposite during cooling and heating. It has characteristics and these are housed in the outdoor unit 41.

【0006】42a,42bは第1利用側熱交換器、4
5a,45bは第1利用側熱交換器42a,42bに流
入する冷媒流量を制御する第1流量弁で、46a,46
bは第2利用側熱交換器、48a,48bは第2利用側
熱交換器47a,47bそれぞれへの冷媒流量を制御す
る第2流量弁でありこれらは、室内ユニット43a,4
3bに収納されている。
42a and 42b are first heat exchangers on the utilization side, 4
5a and 45b are first flow valves that control the flow rate of the refrigerant flowing into the first utilization side heat exchangers 42a and 42b.
b is a second use side heat exchanger, and 48a and 48b are second flow rate valves for controlling the flow rates of the refrigerant to the second use side heat exchangers 47a and 47b, respectively. These are indoor units 43a and 4b.
It is stored in 3b.

【0007】第2補助熱交換器37、第1冷媒搬送装置
38、第1流量弁45a,45b、第1利用側熱交換器
42a,42bおよび第1配管44a,44bを環状に
連接し、第1利用側冷媒サイクル49を形成している。
The second auxiliary heat exchanger 37, the first refrigerant transfer device 38, the first flow valves 45a and 45b, the first use side heat exchangers 42a and 42b, and the first pipes 44a and 44b are annularly connected to each other, The first use-side refrigerant cycle 49 is formed.

【0008】また、第4補助熱交換器39、第2冷媒搬
送装置40、第2流量弁48a,48b、第2利用側熱
交換器46a、46bおよび第2配管47a、47bを
環状に連接し第2利用側冷媒サイクルを形成50してい
る。
The fourth auxiliary heat exchanger 39, the second refrigerant transfer device 40, the second flow rate valves 48a and 48b, the second use side heat exchangers 46a and 46b, and the second pipes 47a and 47b are connected in an annular shape. The second utilization side refrigerant cycle is formed 50.

【0009】次に、以上のように構成された多室冷暖房
装置の動作について説明する。室内ユニット43a,4
3bの両方が冷房運転の場合、熱源側冷媒サイクル57
では、補助制御弁33aは閉成し、圧縮機31からの高
温高圧は四方弁32を通り熱源側熱交換器34で放熱し
て凝縮液化し、減圧弁35で減圧され第1補助熱交換器
36で蒸発して四方弁32を通り圧縮機31へ循環す
る。この時第1利用側冷媒サイクル49の第2補助熱交
換器37と第1補助熱交換器36が熱交換し、第1冷媒
搬送装置38に送られ、この第1冷媒搬送装置38によ
って第1冷媒配管44aを通って第1流量弁45a、4
5bへ流通し適性に流量制御されて第1利用側熱交換器
42a,42bへ送られて吸熱蒸発し、ガス化して第1
配管44bを通って第2補助熱交換器37に循環するこ
とになる。
Next, the operation of the multi-room cooling and heating apparatus configured as described above will be described. Indoor units 43a, 4
When both 3b are in the cooling operation, the heat source side refrigerant cycle 57
Then, the auxiliary control valve 33a is closed, the high temperature and high pressure from the compressor 31 passes through the four-way valve 32, radiates heat in the heat source side heat exchanger 34 to be condensed and liquefied, and is decompressed by the pressure reducing valve 35 to be the first auxiliary heat exchanger. It vaporizes at 36 and circulates through the four-way valve 32 to the compressor 31. At this time, the second auxiliary heat exchanger 37 and the first auxiliary heat exchanger 36 of the first usage-side refrigerant cycle 49 exchange heat and are sent to the first refrigerant carrier device 38, where the first refrigerant carrier device 38 The first flow valves 45a, 4a through the refrigerant pipe 44a.
5b, the flow rate of which is appropriately controlled and sent to the first use side heat exchangers 42a and 42b to endothermically evaporate and gasify to the first
It circulates to the second auxiliary heat exchanger 37 through the pipe 44b.

【0010】この時、例えば室内ユニット43aを暖房
運転にする場合、補助制御弁33aが開成して第1流量
弁45aが閉成し、第2利用側冷媒サイクル50が運転
される。つまり第2冷媒搬送装置40から送られた第2
利用側冷媒サイクル50の冷媒は、第4補助熱交換器3
9へ送られ、第3補助熱交換器33で加熱ガス化され、
第2配管47bを通って第2利用側熱交換器46aへ送
られ第2流量弁48aで流量制御され凝縮液化しながら
暖房を行い、第2配管47aを通って第2冷媒搬送装置
40へ循環する。この時第2利用側冷媒サイクル50の
能力は、主制御弁48aの開度調整により制御すること
ができる。
At this time, for example, when heating the indoor unit 43a, the auxiliary control valve 33a is opened, the first flow valve 45a is closed, and the second use-side refrigerant cycle 50 is operated. That is, the second refrigerant sent from the second refrigerant transfer device 40
The refrigerant of the use side refrigerant cycle 50 is the fourth auxiliary heat exchanger 3
9 and is heated and gasified by the third auxiliary heat exchanger 33,
It is sent to the second use side heat exchanger 46a through the second pipe 47b, the flow rate is controlled by the second flow valve 48a, and heating is performed while condensing and liquefying, and is circulated to the second refrigerant transfer device 40 through the second pipe 47a. To do. At this time, the capacity of the second usage-side refrigerant cycle 50 can be controlled by adjusting the opening degree of the main control valve 48a.

【0011】一方、室内ユニット43a,43bの両方
が暖房運転の場合、熱源側冷媒サイクル57では、圧縮
機31からの高温高圧冷媒は四方弁32から第1補助熱
交換器36に送られ、放熱して凝縮液化して、減圧装置
35で減圧し、熱源側熱交換器34で吸熱蒸発し、四方
弁32を通って圧縮機31へ循環する。この時、第1利
用側冷媒サイクル49の第2補助熱交換器37と第1補
助熱交換器36が熱交換し、第1利用側冷媒サイクル4
9内の液冷媒が加熱されてガス化し、第1配管44bを
通って第1利用側熱交換器42a,42bへ送られ、第
1流量弁45a,45bで適正に流量制御しながら暖房
して放熱液化し、第1配管44aを通って第1冷媒搬送
装置38へ送られ、第2補助熱交換器37へ循環する。
On the other hand, when both the indoor units 43a and 43b are in the heating operation, in the heat source side refrigerant cycle 57, the high-temperature high-pressure refrigerant from the compressor 31 is sent from the four-way valve 32 to the first auxiliary heat exchanger 36 to radiate heat. Then, it is condensed and liquefied, decompressed by the decompression device 35, absorbed and evaporated by the heat source side heat exchanger 34, and circulated to the compressor 31 through the four-way valve 32. At this time, the second auxiliary heat exchanger 37 and the first auxiliary heat exchanger 36 of the first usage-side refrigerant cycle 49 exchange heat, and the first usage-side refrigerant cycle 4
The liquid refrigerant in 9 is heated and gasified, is sent to the first use side heat exchangers 42a and 42b through the first pipe 44b, and is heated while appropriately controlling the flow rate with the first flow valves 45a and 45b. The heat is liquefied, is sent to the first refrigerant transfer device 38 through the first pipe 44a, and is circulated to the second auxiliary heat exchanger 37.

【0012】この時、例えば室内ユニット43aを冷房
運転する場合、補助制御弁33aが開成して第1流量弁
45aが閉成し、第2利用側冷媒サイクル50が運転さ
れる。つまり、第4補助熱交換器39で第3補助熱交換
器33より液化された冷媒を第2冷媒搬送装置40で第
2配管47a送られ、第2流量弁48aで適正に流量制
御されて第2利用側熱交換器46aへ送られ、蒸発冷房
してガス化し第2配管47bから第4補助熱交換器39
へ循環する。
At this time, for example, when the indoor unit 43a is cooled, the auxiliary control valve 33a is opened, the first flow valve 45a is closed, and the second use-side refrigerant cycle 50 is operated. That is, the refrigerant liquefied by the third auxiliary heat exchanger 33 in the fourth auxiliary heat exchanger 39 is sent to the second pipe 47a by the second refrigerant transfer device 40, and the flow rate is appropriately controlled by the second flow valve 48a. The second auxiliary heat exchanger 39 is sent to the second use side heat exchanger 46a, evaporatively cooled and gasified to the second pipe 47b.
Circulate to.

【0013】この暖房運転時の熱源側冷媒サイクル57
では主制御弁34aの開度調整により熱源側熱交換器3
4の蒸発量を制御し、第3補助熱交換器33と第4補助
熱交換器39との熱交換量を制御している。
Heat source side refrigerant cycle 57 during this heating operation
Then, the heat source side heat exchanger 3 is adjusted by adjusting the opening degree of the main control valve 34a.
The amount of evaporation of No. 4 is controlled, and the amount of heat exchange between the third auxiliary heat exchanger 33 and the fourth auxiliary heat exchanger 39 is controlled.

【0014】[0014]

【発明が解決しようとする課題】しかしながら上記従来
のような構成では、熱源側冷媒サイクル57で第1利用
側冷媒サイクル49が暖房運転、第2利用側冷媒サイク
ル50が冷房運転を行っていた状態から、冷房負荷が暖
房負荷を上回った時には、冷房能力を確保するために熱
源側熱交換器34を凝縮器として使用しなければならな
い場合がある。
However, in the above-described conventional configuration, the first source-side refrigerant cycle 49 is in the heating operation and the second source-side refrigerant cycle 50 is in the cooling operation in the heat source side refrigerant cycle 57. Therefore, when the cooling load exceeds the heating load, it may be necessary to use the heat source side heat exchanger 34 as a condenser in order to secure the cooling capacity.

【0015】その時には、四方弁32を切換え第1利用
側サイクル49を冷房運転し、第2利用側冷媒サイクル
50を暖房運転する必要がある。
At that time, it is necessary to switch the four-way valve 32 to perform the cooling operation of the first utilization side cycle 49 and the heating operation of the second utilization side refrigerant cycle 50.

【0016】そのため、暖房運転していた第1利用側冷
媒サイクル49を冷房運転としなければならず、第1冷
媒サイクル49内冷媒の潜熱及び顕熱を奪った後でない
と第1冷媒サイクル49は冷房運転できない。
For this reason, the first use-side refrigerant cycle 49 that has been in the heating operation must be in the cooling operation, and the first refrigerant cycle 49 must be removed after the latent heat and sensible heat of the refrigerant in the first refrigerant cycle 49 have been removed. I can't operate air conditioning.

【0017】よって、省エネ性に問題があると共に、冷
房運転が必要なときに素早く冷房運転できず快適性に課
題を有していた。
Therefore, there is a problem in energy saving and there is a problem in comfort because the cooling operation cannot be quickly performed when the cooling operation is required.

【0018】本発明の目的は、冷暖同時運転時に負荷変
動があった場合でも、利用側サイクルの冷房、暖房運転
の切換えを行わずに対応することで、省エネ性、快適性
を向上することを目的としている。
It is an object of the present invention to improve energy saving and comfort by coping without changing the cooling and heating operation of the use side cycle even when the load changes during the simultaneous cooling and heating operation. Has an aim.

【0019】本発明の他の目的は、冷暖同時運転時に負
荷変動があった場合でも、利用側サイクルの冷房、暖房
運転の切換えを行わずに対応することで、省エネ性、快
適性を向上するとともに、冷房負荷のみの場合には、冷
房用利用側サイクルと暖房用利用側冷媒サイクルを同時
に冷房運転する事で、冷房用の利用側熱交換器面積が増
加でき空調設備を有効に利用し冷房能力及び運転効率を
向上する事で夏場のピーク負荷に対応することを目的と
している。
Another object of the present invention is to improve energy saving and comfort by coping with a load fluctuation during the simultaneous cooling / heating operation without switching the cooling / heating operation of the use side cycle. At the same time, when only the cooling load is used, the cooling-use cycle and the heating-use refrigerant cycle are simultaneously cooled to increase the cooling-use side heat exchanger area and effectively use the air conditioning equipment. The purpose is to cope with peak load in summer by improving capacity and operation efficiency.

【0020】さらに、本発明の他の目的は、冷暖同時運
転時に負荷変動があった場合でも、利用側サイクルの冷
房、暖房運転の切換えを行わずに対応することで、省エ
ネ性、快適性を向上するとともに、冷房負荷のみの場合
には、冷房用利用側冷媒サイクルと暖房用利用側冷媒サ
イクルを同時に冷房運転する事で、冷房用の利用側熱交
換器面積が増加でき空調設備を有効に利用し冷房能力及
び運転効率を向上する事で夏場のピーク負荷に対応し、
さらに暖房負荷のみの場合には、冷房用利用側冷媒サイ
クルと暖房用利用側冷媒サイクルを同時に暖房運転を行
う事で設備の有効利用する事を目的としている。
Further, another object of the present invention is to improve energy saving and comfort by coping without changing the cooling and heating operation of the use side cycle even when the load changes during the simultaneous cooling and heating operation. In addition to improving, when only the cooling load is used, the cooling-use side refrigerant cycle and the heating-use side refrigerant cycle can be operated in the cooling mode at the same time to increase the cooling-use side heat exchanger area and make the air conditioning equipment effective. It supports peak load in the summer by improving cooling capacity and operating efficiency by using
Further, in the case of only the heating load, the purpose is to effectively utilize the equipment by simultaneously performing the heating operation of the cooling use side refrigerant cycle and the heating use side refrigerant cycle.

【0021】[0021]

【課題を解決するための手段】この目的を達成するため
に、本発明の多室冷暖房装置は、圧縮機、暖房用第1補
助熱交換器、前記暖房用第1補助熱交換器と並列に設置
され前記暖房用第1補助熱交換器の熱交換量を制御する
能力制御弁、熱源側熱交換器、前記熱源側熱交換器を蒸
発器として使用するために前記熱源側熱交換器の入口に
設置された第1減圧装置、前記熱源側熱交換器を凝縮器
として使用するために前記熱源側熱交換器の出口に設置
された第2減圧装置、冷房用第1補助熱交換器を環状に
連接してなる熱源側冷媒サイクルと、前記暖房用第1補
助熱交換器と一体に形成して熱交換する暖房用第2補助
熱交換器、暖房用冷媒搬送装置、複数の暖房用利用側熱
交換器から成る暖房用利用側冷媒サイクルと、前記冷房
用第1補助熱交換器と一体に形成して熱交換する冷房用
第2補助熱交換器、冷房用冷媒搬送装置、複数の冷房用
利用側熱交換器から成る冷房用利用側冷媒サイクルより
構成されている。
In order to achieve this object, a multi-chamber cooling and heating apparatus of the present invention is provided with a compressor, a first auxiliary heat exchanger for heating, and a first auxiliary heat exchanger for heating. A capacity control valve installed to control the amount of heat exchange of the first auxiliary heat exchanger for heating, a heat source side heat exchanger, and an inlet of the heat source side heat exchanger for using the heat source side heat exchanger as an evaporator A first depressurizing device installed in the, a second depressurizing device installed at the outlet of the heat source side heat exchanger for using the heat source side heat exchanger as a condenser, and a first cooling auxiliary heat exchanger. A heat source side refrigerant cycle connected to the above, and a heating second auxiliary heat exchanger that is integrally formed with the heating first auxiliary heat exchanger to exchange heat, a heating refrigerant transfer device, and a plurality of heating use sides. A heating-use side refrigerant cycle comprising a heat exchanger and the cooling first auxiliary heat exchange Formed integrally with the second auxiliary heat exchanger for cooling the heat exchange for cooling the refrigerant conveying system, and is configured from the cooling the use-side refrigerant cycle comprising a plurality of the cooling utilization side heat exchanger.

【0022】また、圧縮機、暖房用第1補助熱交換器、
前記圧縮機と前記暖房用第1補助熱交換器の間に設置さ
れ前記暖房用第1補助熱交換器を蒸発器として使用する
とき閉成する冷房用第1電磁弁、前記暖房用第1補助熱
交換器の能力を制御する第1膨張弁、冷房用第1補助熱
交換器、前記第1膨張弁と前記冷房用第1補助熱交換器
の間に設置され前記冷房用第1補助熱交換器の能力を制
御する第3膨張弁、熱源側熱交換器、前記第1膨張弁と
前記第2膨張弁の間から前記熱源側熱交換器を連通した
配管の途中に設けられ前記熱源側熱交換器の能力を制御
する第2膨張弁、前記冷房用第1補助熱交換器と前記圧
縮機の間と前記熱源側熱交換器を連通する蒸発回路、前
記蒸発回路の途中に設けられ前記熱源側熱交換器を蒸発
器として使用する場合に開成する蒸発用電磁弁、前記冷
房用第1電磁弁と前記圧縮機の間と前記熱源側熱交換器
を連通する凝縮回路、前記凝縮回路の途中に設けられ前
記熱源側熱交換器を凝縮器として使用するとき閉成する
凝縮用電磁弁、前記第1冷房用電磁弁と前記第1暖房用
補助熱交換器の間から前記冷房用第1補助熱交換器と前
記蒸発回路管の間を結んだ配管の途中に設られ前記暖房
用第1補助熱交換器を凝縮器として使用する場合に開成
する冷房用第2電磁弁より成る熱源側サイクルと、前記
暖房用第1補助熱交換器と一体に形成して熱交換する暖
房用第2補助熱交換器、暖房用冷媒搬送装置、複数の暖
房用利用側熱交換器から成る暖房用利用側冷媒サイクル
と、前記冷房用第1補助熱交換器と一体に形成して熱交
換する冷房用第2補助熱交換器、冷房用冷媒搬送装置、
複数の冷房用利用側熱交換器から成る冷房用利用側冷媒
サイクルより構成されている。
Further, the compressor, the first auxiliary heat exchanger for heating,
A first electromagnetic valve for cooling, which is installed between the compressor and the first auxiliary heat exchanger for heating and is closed when the first auxiliary heat exchanger for heating is used as an evaporator, the first auxiliary for heating A first expansion valve for controlling the capacity of the heat exchanger, a first auxiliary heat exchanger for cooling, a first auxiliary heat exchanger for cooling installed between the first expansion valve and the first auxiliary heat exchanger for cooling Expansion valve for controlling the capacity of the heat source, heat source side heat exchanger, the heat source side heat exchanger provided between the first expansion valve and the second expansion valve in the middle of the pipe communicating the heat source side heat exchanger A second expansion valve that controls the capacity of the exchanger, an evaporation circuit that communicates between the first auxiliary heat exchanger for cooling and the compressor and the heat source side heat exchanger, and the heat source provided in the middle of the evaporation circuit An electromagnetic valve for evaporation that opens when the side heat exchanger is used as an evaporator, the first electromagnetic valve for cooling, and A condenser circuit for communicating between the compressor and the heat source side heat exchanger, a condensing solenoid valve provided in the middle of the condenser circuit and closed when the heat source side heat exchanger is used as a condenser, the first The first auxiliary heat exchanger for heating is provided in the middle of a pipe connecting between the electromagnetic valve for cooling and the first auxiliary heat exchanger for heating and the first auxiliary heat exchanger for cooling and the evaporation circuit pipe. Source side cycle consisting of a second solenoid valve for cooling, which opens when the air conditioner is used as a condenser, and a second auxiliary heat exchanger for heating formed integrally with the first auxiliary heat exchanger for heating. A heating-use refrigerant carrier, a heating-use refrigerant cycle comprising a plurality of heating-use heat exchangers, and a cooling second auxiliary heat which is integrally formed with the cooling first auxiliary heat exchanger to exchange heat. Exchanger, cooling medium carrier for cooling,
The cooling-use side refrigerant cycle is composed of a plurality of cooling-use side heat exchangers.

【0023】また、上記蒸発回路管と暖房用第1補助熱
交換器の間に設置され前記暖房用第1補助熱交換器を蒸
発器として使用する場合に閉成する暖房用電磁弁を備え
たものである。
Further, there is provided a heating solenoid valve which is installed between the evaporation circuit tube and the first heating auxiliary heat exchanger and is closed when the first heating auxiliary heat exchanger is used as an evaporator. It is a thing.

【0024】[0024]

【作用】本発明は上記した構成によって、冷暖同時運転
時に負荷変動があった場合でも、利用側サイクルの冷
房、暖房運転の切換えを行わずに対応できる。
With the above-described structure, the present invention can cope with load fluctuations during simultaneous cooling and heating operation without switching between cooling and heating operations in the use side cycle.

【0025】また、本発明は上記した構成によって、冷
暖同時運転時に負荷変動があった場合でも、利用側サイ
クルの冷房、暖房運転の切換えを行わずに対応でき、冷
房負荷のみの場合には、冷房用利用側冷媒サイクルと暖
房用利用側冷媒サイクルを同時に冷房運転することがで
きる。
Further, according to the above-described structure, the present invention can cope with the load fluctuation during the simultaneous cooling and heating operation without switching the cooling and heating operations of the use side cycle, and in the case of only the cooling load, The cooling-use side refrigerant cycle and the heating-use side refrigerant cycle can be simultaneously cooled.

【0026】さらに、本発明は上記した構成によって、
冷暖同時運転時に負荷変動があった場合でも、利用側サ
イクルの冷房、暖房運転の切換えを行わずに対応でき、
冷房負荷のみの場合には、冷房用利用側サイクルと暖房
用利用側冷媒サイクルを同時に冷房運転することがで
き、さらに暖房負荷のみの場合には、冷房用利用側冷媒
サイクルと暖房用利用側冷媒サイクルを同時に暖房運転
することができる。
Furthermore, the present invention has the above-mentioned structure.
Even if there is a load change during simultaneous cooling and heating operation, it can be handled without switching between cooling and heating operation of the user side cycle,
In the case of only the cooling load, the cooling use side cycle and the heating use side refrigerant cycle can be simultaneously operated in the cooling operation, and in the case of only the heating load, the cooling use side refrigerant cycle and the heating use side refrigerant cycle. The cycle can be heated at the same time.

【0027】[0027]

【実施例】以下、本発明の第1の実施例を図1を用いて
説明する。図1は第1の実施例における多室冷暖房装置
の冷媒サイクル図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a refrigerant cycle diagram of the multi-room cooling and heating apparatus according to the first embodiment.

【0028】図1において、51は暖房用第1補助熱交
換器である。52は第1減圧装置である。53は熱源側
熱交換器である。54は第2減圧装置である。55は冷
房用第1補助熱交換器である。56は能力制御のために
暖房用第1補助熱交換器51をバイパスさせる能力制御
弁である。
In FIG. 1, reference numeral 51 is a first auxiliary heat exchanger for heating. Reference numeral 52 is a first pressure reducing device. 53 is a heat source side heat exchanger. 54 is a second pressure reducing device. Reference numeral 55 is a first auxiliary heat exchanger for cooling. Reference numeral 56 is a capacity control valve that bypasses the first heating auxiliary heat exchanger 51 for capacity control.

【0029】これらを環状に連接して熱源側冷媒サイク
ル57’を形成している。58は暖房用第2補助熱交換
器であり、暖房用第1補助熱交換器51と熱交換するよ
うに一体に形成された積層熱交換器を使用している。5
9は暖房用冷媒搬送装置であり、60は冷房用第2補助
熱交換器であり、冷房用第1補助熱交換器55と熱交換
するように一体に形成さている。61は冷房用冷媒搬送
装置である。
These are annularly connected to form a heat source side refrigerant cycle 57 '. Reference numeral 58 denotes a heating second auxiliary heat exchanger, which uses a laminated heat exchanger integrally formed so as to exchange heat with the heating first auxiliary heat exchanger 51. 5
Reference numeral 9 is a heating refrigerant transfer device, 60 is a second cooling auxiliary heat exchanger, and is integrally formed so as to exchange heat with the first cooling auxiliary heat exchanger 55. Reference numeral 61 is a cooling medium transfer device.

【0030】熱源側冷媒サイクル57、暖房用第2補助
熱交換器51、暖房用冷媒搬送装置59、冷房用第2補
助熱交換器60、冷房用冷媒搬送装置61は熱源ユニッ
ト41’に収納されている。
The heat source side refrigerant cycle 57, the heating second auxiliary heat exchanger 51, the heating refrigerant transfer device 59, the cooling second auxiliary heat exchanger 60, and the cooling refrigerant transfer device 61 are housed in the heat source unit 41 '. ing.

【0031】62a,62bは暖房用利用側熱交換器で
あり、63a,63bは暖房用能力制御弁である。
Reference numerals 62a and 62b are heating side heat exchangers, and 63a and 63b are heating capacity control valves.

【0032】64a,64bは冷房用利用側熱交換器で
あり、65a,65bは冷房用能力制御弁である。
Reference numerals 64a and 64b are cooling side heat exchangers, and 65a and 65b are cooling capacity control valves.

【0033】暖房用利用側熱交換器62a,62b、暖
房用能力制御弁63a,63b、冷房用利用側熱交換器
64a,64b、冷房用能力制御弁65a,65bは室
内ユニット66a,66bに収納されている。
The heating side heat exchangers 62a and 62b, the heating capacity control valves 63a and 63b, the cooling side heat exchangers 64a and 64b, and the cooling capacity control valves 65a and 65b are housed in the indoor units 66a and 66b. Has been done.

【0034】暖房用第2補助熱交換器58暖房用冷媒搬
送装置59、暖房用利用側熱交換器62a,62bを第
1接続配管67a,67bで環状に連接して暖房用利用
側冷媒サイクル68を形成している。
The second auxiliary heat exchanger for heating 58, the heating refrigerant transfer device 59, and the heating side heat exchangers 62a and 62b are connected in a ring shape by the first connecting pipes 67a and 67b. Is formed.

【0035】冷房用第2補助熱交換器60、冷房用冷媒
搬送装置61、冷房用利用側熱交換器64a,64bを
第2接続配管69a,69bで環状に連接して冷房用利
用側冷媒サイクル70を形成している。
The second auxiliary heat exchanger for cooling 60, the cooling medium transfer device 61, and the cooling side heat exchangers 64a and 64b are annularly connected by the second connecting pipes 69a and 69b to cool the cooling side refrigerant cycle. 70 is formed.

【0036】以上のように構成された多室冷暖房装置に
ついて、ここでは問題となっている冷房、暖房の同時運
転時に負荷が変化し熱源側熱交換器53の機能を凝縮器
から蒸発器あるいは、蒸発器から凝縮器に変化させなけ
ればならなくなった場合の動作について説明する。
In the multi-room cooling and heating apparatus configured as described above, the load changes during simultaneous operation of cooling and heating, which is a problem here, and the function of the heat source side heat exchanger 53 is changed from the condenser to the evaporator or The operation when the evaporator needs to be changed to the condenser will be described.

【0037】まず、運転開始時には暖房負荷が大きくそ
の後、冷房負荷が増加し熱源側熱交換器53の機能を蒸
発器から凝縮器とする場合について考える。
First, consider a case in which the heating load is large at the start of operation and then the cooling load increases, and the function of the heat source side heat exchanger 53 is changed from the evaporator to the condenser.

【0038】運転開始時には、能力制御弁56は閉止
し、第2減圧装置54は全開と成っており、熱源側熱交
換器53は蒸発器として用いられる。
At the start of the operation, the capacity control valve 56 is closed, the second pressure reducing device 54 is fully opened, and the heat source side heat exchanger 53 is used as an evaporator.

【0039】熱源側冷媒サイクル57では、圧縮機31
から出た高温高圧ガスは暖房用第1補助熱交換器51で
放熱して凝縮液化し、第1減圧装置52で減圧される第
2減圧装置を通る。第2減圧装置54は全開のためここ
では冷媒の状態は変化しない。
In the heat source side refrigerant cycle 57, the compressor 31
The high-temperature and high-pressure gas discharged from the heat-dissipating unit radiates heat in the first auxiliary heat exchanger 51 for heating to be condensed and liquefied, and then passes through the second pressure reducing device whose pressure is reduced by the first pressure reducing device 52. Since the second pressure reducing device 54 is fully opened, the state of the refrigerant does not change here.

【0040】熱源側熱交換器53および冷房用第1補助
熱交換器55で吸熱蒸発し、圧縮機1に戻る。
The heat source side heat exchanger 53 and the cooling first auxiliary heat exchanger 55 absorb heat to evaporate and return to the compressor 1.

【0041】この時、暖房用利用側冷媒サイクル68で
は、暖房用冷媒搬送装置59から出た冷媒は暖房用第2
補助熱交換器58で暖房用第1補助熱交換器51から吸
熱して乾き度が大きくなる。その後、暖房用利用側熱交
換器62a,62bに送られて室内空気に放熱して乾き
度が小さくなり、暖房用能力制御弁63a,63bで流
量調節されて暖房用冷媒搬送装置59に戻る。
At this time, in the heating use side refrigerant cycle 68, the refrigerant discharged from the heating refrigerant transfer device 59 is the second heating refrigerant.
The auxiliary heat exchanger 58 absorbs heat from the first heating auxiliary heat exchanger 51 to increase the dryness. After that, it is sent to the heating use side heat exchangers 62a and 62b to radiate heat to the indoor air to reduce the dryness, and the flow rate is adjusted by the heating capacity control valves 63a and 63b, and then the heating refrigerant transfer device 59 is returned.

【0042】一方、冷房用利用側冷媒サイクル70で
は、冷房用冷媒搬送装置61から出た冷媒は冷房用能力
制御弁65a,65bで流量調節されて冷房用利用側熱
交換器64a,64bで室内空気から吸熱して乾き度が
大きくなる。その後、冷房用第2補助熱交換器60に送
られて冷房用第1補助熱交換器55に放熱して乾き度が
小さくなり、冷房用冷媒搬送装置61に戻る。
On the other hand, in the cooling-use side refrigerant cycle 70, the flow rate of the refrigerant discharged from the cooling-use refrigerant carrier device 61 is adjusted by the cooling capacity control valves 65a and 65b, and the indoors in the cooling-use side heat exchangers 64a and 64b. It absorbs heat from the air and becomes more dry. Then, it is sent to the cooling second auxiliary heat exchanger 60 and radiates heat to the cooling first auxiliary heat exchanger 55 to reduce the dryness, and then returns to the cooling refrigerant transfer device 61.

【0043】そして、暖房の同時運転時に負荷が変化し
熱源側熱交換器53の機能を凝縮器から蒸発器に変化さ
せなければならなくなった場合、それまで全開であった
第2減圧装置54を絞り、第1減圧装置52を全開とす
ることで対応できる。
When the load changes during simultaneous heating operation and the function of the heat source side heat exchanger 53 has to be changed from the condenser to the evaporator, the second decompression device 54, which has been fully open until then, is used. This can be dealt with by fully opening the throttle and the first pressure reducing device 52.

【0044】その他の動作に付いては、負荷変化する以
前と同様であるため省略する。また、熱源側熱交換器5
3の機能を凝縮器から蒸発器に変化する場合について
は、容易に推定でくるのでここでは説明を省略する。
The other operations are the same as those before the load is changed, and the description thereof will be omitted. In addition, the heat source side heat exchanger 5
The case where the function of 3 is changed from the condenser to the evaporator can be easily estimated, and the description thereof is omitted here.

【0045】この第1の実施例によれば、第1減圧装置
52と第2減圧装置54の開度制御で熱源側熱交換器5
3の機能を凝縮器と蒸発器に変化させることにより、暖
房用利用側サイクル68を冷房運転し、冷房用利用側サ
イクル70を暖房運転することなく室内ユニット66
a,66bの熱負荷に応じて冷房運転及び、暖房運転す
ることができるため、省エネ性及び快適性を向上でき
る。
According to the first embodiment, the heat source side heat exchanger 5 is controlled by controlling the opening of the first pressure reducing device 52 and the second pressure reducing device 54.
By changing the function of 3 to the condenser and the evaporator, the heating use side cycle 68 is cooled, and the cooling use side cycle 70 is not heated.
Since the cooling operation and the heating operation can be performed according to the heat loads of a and 66b, energy saving and comfort can be improved.

【0046】次に、第2の実施例について説明する。図
2は本発明の第2の実施例における多室冷暖房装置の冷
媒サイクル図を示すものである。図2において第1の実
施例と同じ構成のものについては同一の符号を付け説明
は省略する。
Next, the second embodiment will be described. FIG. 2 is a refrigerant cycle diagram of the multi-room cooling and heating apparatus according to the second embodiment of the present invention. In FIG. 2, the same components as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted.

【0047】71は熱源側熱交換器53を凝縮器として
使用する時に開成する凝縮用電磁弁、72は熱源側熱交
換器53を蒸発器として使用する時に開成する蒸発用電
磁弁、73は熱源側熱交換器53と圧縮器31の吸込口
に連通する蒸発回路、73’は熱源側熱交換器53と圧
縮機31の吐出口に連通する凝縮回路、74は第1膨張
弁、75は熱源側熱交換器の能力53を制御する第2膨
張弁、76は冷房用第1補助熱交換器55の能力を制御
する第3膨張弁である。
Reference numeral 71 denotes a condensing electromagnetic valve which is opened when the heat source side heat exchanger 53 is used as a condenser, 72 is an evaporation electromagnetic valve which is opened when the heat source side heat exchanger 53 is used as an evaporator, and 73 is a heat source. An evaporation circuit communicating with the side heat exchanger 53 and the suction port of the compressor 31, 73 'is a condensing circuit communicating with the heat source side heat exchanger 53 and the discharge port of the compressor 31, 74 is a first expansion valve, and 75 is a heat source. A second expansion valve that controls the capacity 53 of the side heat exchanger, and a third expansion valve 76 that controls the capacity of the first cooling auxiliary heat exchanger 55.

【0048】77は暖房用利用側サイクル68を冷房運
転するとき閉成する冷房用第1電磁弁、78は通常閉成
されている冷房用第2電磁弁である。
Reference numeral 77 is a first solenoid valve for cooling which is closed when the heating-use side cycle 68 is in a cooling operation, and 78 is a second solenoid valve for cooling which is normally closed.

【0049】以上のように構成された多室冷暖房装置に
ついて、冷暖同時運転の場合と冷房負荷んのみがある場
合について動作の説明を行う。
The operation of the multi-room cooling / heating apparatus configured as described above will be described for the case of simultaneous heating / cooling operation and the case where there is only a cooling load.

【0050】まず、運転開始時には暖房負荷が大きくそ
の後、冷房負荷が増加し熱源側熱交換器53の機能を蒸
発器から凝縮器とする場合について考える。
First, consider a case where the heating load is large at the start of operation and then the cooling load increases, and the function of the heat source side heat exchanger 53 is changed from the evaporator to the condenser.

【0051】運転開始時には、凝縮用電磁弁71及び冷
房用第2電磁弁78は閉成し、蒸発用電磁弁72及び冷
房用第1電磁弁77は開成し、第1膨張弁74は全開す
る。
At the start of operation, the condensing solenoid valve 71 and the second cooling solenoid valve 78 are closed, the evaporation solenoid valve 72 and the first cooling solenoid valve 77 are opened, and the first expansion valve 74 is fully opened. .

【0052】熱源側冷媒サイクル57’’では、圧縮機
31から出た高温高圧ガスは暖房用第1補助熱交換器5
1で放熱して凝縮液化し、第1膨張弁74を通るが、第
1膨張弁74は全開のためここでは冷媒状態は変化しな
い。
In the heat source side refrigerant cycle 57 '', the high temperature and high pressure gas discharged from the compressor 31 is supplied to the first auxiliary heat exchanger 5 for heating.
At 1, the heat is radiated to condense and liquefy, and passes through the first expansion valve 74, but since the first expansion valve 74 is fully opened, the refrigerant state does not change here.

【0053】第1膨張弁74を通った冷媒は、第2膨張
弁75、第3膨張弁76で減圧されると同時に熱源側熱
交換器53と冷房用第1補助熱交換器に分配される。
The refrigerant having passed through the first expansion valve 74 is decompressed by the second expansion valve 75 and the third expansion valve 76, and at the same time, distributed to the heat source side heat exchanger 53 and the cooling first auxiliary heat exchanger. .

【0054】分配された冷媒は、それぞれ熱源側熱交換
器53、冷房用補助熱交換器で吸熱して蒸発ガス化す
る。
The distributed refrigerant absorbs heat in the heat source side heat exchanger 53 and the cooling auxiliary heat exchanger, respectively, and is vaporized and gasified.

【0055】熱源側熱交換器53に送られた冷媒はバイ
パス管72を通って蒸発用電磁弁に送られ、冷房用第1
補助熱交換器55を通った冷媒と合流して圧縮器31に
循環しする。
The refrigerant sent to the heat source side heat exchanger 53 is sent to the solenoid valve for evaporation through the bypass pipe 72, and the first cooling
It merges with the refrigerant that has passed through the auxiliary heat exchanger 55 and circulates in the compressor 31.

【0056】暖房用冷媒サイクル68及び冷房用冷媒サ
イクル70については、第1の実施例と同様のため動作
の説明は省略する。
Since the heating refrigerant cycle 68 and the cooling refrigerant cycle 70 are the same as those in the first embodiment, their explanations are omitted.

【0057】負荷変動により、冷房能力を確保するため
に、それまで蒸発器として使用していた熱源側熱交換器
53を凝縮器としてしようする場合、凝縮用電磁弁71
を開成し、蒸発用電磁弁72を閉成し、第3膨張弁76
を全開して、第1膨張弁74及び第2膨張弁75にて減
圧すると同時に暖房用第1補助熱交換器51と熱源側熱
交換器53に冷媒を分配することになる。
When the heat source side heat exchanger 53, which has been used as an evaporator until then, is used as a condenser in order to secure the cooling capacity due to load fluctuation, the condenser solenoid valve 71 is used.
Open, the evaporation solenoid valve 72 is closed, and the third expansion valve 76 is opened.
Is fully opened, the pressure is reduced by the first expansion valve 74 and the second expansion valve 75, and at the same time, the refrigerant is distributed to the heating first auxiliary heat exchanger 51 and the heat source side heat exchanger 53.

【0058】その他の動作に付いては、負荷変動の以前
と同様であるため説明は省略する。次に、冷房負荷のみ
の場合の動作について説明する。
The other operations are the same as those before the load change, and the description thereof will be omitted. Next, the operation when only the cooling load is described.

【0059】凝縮用電磁弁71及び冷房用第2電磁弁を
開成し、蒸発用電磁弁72及び冷房用第1電磁弁77を
閉成、第2膨張弁75は全開とする。
The condensing solenoid valve 71 and the cooling second solenoid valve are opened, the evaporation solenoid valve 72 and the cooling first solenoid valve 77 are closed, and the second expansion valve 75 is fully opened.

【0060】熱源側冷媒サイクル57’’では、圧縮機
31から出た高温高圧ガスは凝縮用電磁弁71を通って
熱源側熱交換器53で放熱して凝縮液化し、第2膨張弁
75を通るが、第2膨張弁75は全開のためここでは状
態は変化しない。
In the heat source side refrigerant cycle 57 ″, the high temperature high pressure gas discharged from the compressor 31 passes through the condensing electromagnetic valve 71 to radiate heat in the heat source side heat exchanger 53 to be condensed and liquefied, and the second expansion valve 75 is set. Although it passes, the state does not change here because the second expansion valve 75 is fully opened.

【0061】第2膨張弁75を通った冷媒は、第1膨張
弁76、第3膨張弁76で減圧されると同時に暖房用第
1補助熱交換器55と冷房用第1補助熱交換器55に分
配される。
The refrigerant having passed through the second expansion valve 75 is decompressed by the first expansion valve 76 and the third expansion valve 76, and at the same time, the heating first auxiliary heat exchanger 55 and the cooling first auxiliary heat exchanger 55. Will be distributed to.

【0062】分配された冷媒は、それぞれ暖房用第1補
助熱交換器51、冷房用補助熱交換器55で吸熱して蒸
発ガス化する。
The distributed refrigerant absorbs heat in the first heating auxiliary heat exchanger 51 and the cooling auxiliary heat exchanger 55, respectively, and is vaporized into gas.

【0063】暖房用第1補助熱交換器51に送られた冷
媒はバ冷房用第2電磁弁78を通って、冷房用第1補助
熱交換器55に送られた冷媒と合流して圧縮器31に循
環する。
The refrigerant sent to the first auxiliary heating heat exchanger 51 for heating passes through the second electromagnetic valve 78 for cooling air, merges with the refrigerant sent to the first auxiliary heat exchanger 55 for cooling, and then becomes a compressor. Circulate to 31.

【0064】一方、冷房用冷媒サイクル70について
は、第1の実施例と同様のため動作の説明は省略する。
On the other hand, the cooling medium cycle 70 for cooling is the same as that of the first embodiment, and therefore its explanation is omitted.

【0065】暖房用冷媒サイクル68については、暖房
用冷媒搬送装置59から出た冷媒は暖房用能力制御弁6
3a,63bで流量調節されて暖房用利用側熱交換器6
2a,62bで室内空気から吸熱して乾き度が大きくな
る。その後、暖房用第2補助熱交換器58に送られて暖
房用第1補助熱交換器58に放熱して乾き度が小さくな
り、暖房用冷媒搬送装置61に戻る。尚、熱源側熱交換
器53の機能を凝縮器から蒸発器に変化する場合につい
ては、容易に推定でくるのでここでは説明を省略する。
In the heating refrigerant cycle 68, the refrigerant discharged from the heating refrigerant transfer device 59 is the heating capacity control valve 6.
Flow rate is adjusted by 3a and 63b, and the heating side heat exchanger 6 for heating is used.
2a and 62b absorb heat from the indoor air to increase the dryness. Then, it is sent to the second heating auxiliary heat exchanger 58 and radiates heat to the first heating auxiliary heat exchanger 58 to reduce the dryness, and then returns to the heating refrigerant transfer device 61. The case where the function of the heat source side heat exchanger 53 is changed from the condenser to the evaporator can be easily estimated, and therefore the description thereof is omitted here.

【0066】この第2の実施例によれば、凝縮用電磁弁
71開成し、蒸発用電磁弁72を閉成して、熱源側熱交
換器53の機能を凝縮器と蒸発器に変化させることによ
り、暖房用利用側サイクル68を冷房運転し、冷房用利
用側サイクル70を暖房運転することなく室内ユニット
66a,66bの熱負荷に応じて冷房運転及び、暖房運
転することができるため、省エネ性及び快適性を向上で
きる。
According to the second embodiment, the condenser solenoid valve 71 is opened and the evaporation solenoid valve 72 is closed to change the function of the heat source side heat exchanger 53 to the condenser and the evaporator. As a result, the heating use-side cycle 68 can be cooled, and the cooling use-side cycle 70 can be cooled and heated according to the heat load of the indoor units 66a and 66b without the heating-use cycle 70 being heated. And the comfort can be improved.

【0067】さらに、冷房負荷のみの場合には、凝縮用
電磁弁71、冷房用第2電磁弁78を開成し、蒸発用電
磁弁72、冷房用第1電磁弁77を閉成することによ
り、暖房用冷媒サイクル68を冷房運転でき、冷房用の
利用側熱交換器面積が増加でき空調設備を有効に利用し
運転効率を上げる事で夏場のピーク負荷に対応できる。
Further, in the case of only the cooling load, the condensing solenoid valve 71 and the second cooling solenoid valve 78 are opened, and the evaporation solenoid valve 72 and the first cooling solenoid valve 77 are closed. The heating refrigerant cycle 68 can be cooled, the area of the heat exchanger on the use side for cooling can be increased, the air conditioning equipment can be effectively used, and the operation efficiency can be improved to cope with the peak load in the summer.

【0068】次に、第3の実施例について説明する。図
3は本発明の第3の実施例における多室冷暖房装置の冷
媒サイクル図を示すものである。図3において第2の実
施例と同じ構成のものについては同一の符号を付け説明
は省略する。また、動作についても冷暖同時運転、冷房
負荷のみの運転については第2の実施例と同様のため説
明を省略し、暖房負荷のみの運転について説明を行う。
Next, the third embodiment will be described. FIG. 3 is a refrigerant cycle diagram of a multi-room cooling / heating apparatus according to the third embodiment of the present invention. In FIG. 3, the same components as those in the second embodiment are designated by the same reference numerals and the description thereof will be omitted. Also, regarding the operation, the simultaneous cooling / heating operation and the operation with only the cooling load are the same as those in the second embodiment, and therefore the description thereof will be omitted, and the operation with only the heating load will be described.

【0069】凝縮用電磁弁71、暖房用電磁弁79を閉
成し、蒸発用電磁弁72、冷房用第1電磁弁77、冷房
用第2電磁弁78を開成、第2膨張弁75を全開とす
る。
The solenoid valve 71 for condensing and the solenoid valve 79 for heating are closed, the solenoid valve 72 for evaporation, the first solenoid valve 77 for cooling, the second solenoid valve 78 for cooling are opened, and the second expansion valve 75 is fully opened. And

【0070】熱源側冷媒サイクル57’’では、圧縮機
31から出た高温高圧ガスは冷房用第1電磁弁77を通
って暖房用第1補助熱交換器51及び冷房用第2電磁弁
78に送られた後、冷房用補助熱交換器55に分配され
る。
In the heat source side refrigerant cycle 57 '', the high-temperature high-pressure gas discharged from the compressor 31 passes through the first cooling electromagnetic valve 77 to the heating first auxiliary heat exchanger 51 and the cooling second electromagnetic valve 78. After being sent, it is distributed to the auxiliary heat exchanger 55 for cooling.

【0071】分配された冷媒は、暖房用第1補助熱交換
器51、冷房用補助熱交換器55で放熱し凝縮液化され
第1膨張弁74、第3膨張弁76に送られて減圧され
る。
The distributed refrigerant radiates heat in the first heating auxiliary heat exchanger 51 and the cooling auxiliary heat exchanger 55, is condensed and liquefied, and is sent to the first expansion valve 74 and the third expansion valve 76 to be decompressed. .

【0072】減圧された冷媒は、第2膨張弁75を通る
時に合流するが、第2膨張弁75は全開のためここでは
冷媒の状態は変化しない。
The depressurized refrigerant merges when passing through the second expansion valve 75, but the state of the refrigerant does not change here because the second expansion valve 75 is fully opened.

【0073】熱源側熱交換器53で吸熱して蒸発ガス化
し、バイパス管73を通り蒸発用電磁弁72に送られた
後、圧縮機に循環し、熱源側冷媒サイクル57’を形成
する。
The heat source side heat exchanger 53 absorbs heat to evaporate it into gas, which is sent to the evaporation solenoid valve 72 through the bypass pipe 73 and then circulated to the compressor to form the heat source side refrigerant cycle 57 '.

【0074】この時、暖房用利用側冷媒サイクル68で
は、暖房用冷媒搬送装置59から出た冷媒は暖房用第2
補助熱交換器58で暖房用第1補助熱交換器51から吸
熱して乾き度が大きくなる。その後、暖房用利用側熱交
換器62a,62bに送られて室内空気に放熱して乾き
度が小さくなり、暖房用能力制御弁63a,63bで流
量調節されて暖房用冷媒搬送装置59に戻る。
At this time, in the heating-use side refrigerant cycle 68, the refrigerant discharged from the heating-use refrigerant transport device 59 is the second heating-use refrigerant.
The auxiliary heat exchanger 58 absorbs heat from the first heating auxiliary heat exchanger 51 to increase the dryness. After that, it is sent to the heating use side heat exchangers 62a and 62b to radiate heat to the indoor air to reduce the dryness, and the flow rate is adjusted by the heating capacity control valves 63a and 63b, and then the heating refrigerant transfer device 59 is returned.

【0075】一方、冷房用利用側冷媒サイクル70で
は、冷房用冷媒搬送装置61から出た冷媒は冷房用第2
補助熱交換器60で冷房用第1補助熱交換器55から吸
熱して乾き度が大きくなる。その後、冷房用利用側熱交
換器64a,64bに送られて室内空気に放熱して乾き
度が小さくなり、冷房用能力制御弁65a,65bで流
量調節されて冷房用冷媒搬送装置61に戻る。
On the other hand, in the cooling-use side refrigerant cycle 70, the refrigerant discharged from the cooling-use refrigerant carrying device 61 is the second cooling-use refrigerant.
The auxiliary heat exchanger 60 absorbs heat from the first cooling auxiliary heat exchanger 55 to increase the dryness. After that, it is sent to the cooling side heat exchangers 64a and 64b to radiate heat to the room air to reduce the dryness, and the flow rate is adjusted by the cooling capacity control valves 65a and 65b to return to the cooling medium transfer device 61.

【0076】この第3の実施例によれば、凝縮用電磁弁
71開成し、蒸発用電磁弁72を閉成して、熱源側熱交
換器53の機能を凝縮器と蒸発器に変化させることによ
り、暖房用利用側サイクル68を冷房運転し、冷房用利
用側サイクル70を暖房運転することなく室内ユニット
66a,66bの熱負荷に応じて冷房運転及び、暖房運
転することができるため、省エネ性及び快適性を向上で
きる。
According to the third embodiment, the condenser solenoid valve 71 is opened and the evaporation solenoid valve 72 is closed to change the function of the heat source side heat exchanger 53 to the condenser and the evaporator. As a result, the heating use-side cycle 68 can be cooled, and the cooling use-side cycle 70 can be cooled and heated according to the heat load of the indoor units 66a and 66b without the heating-use cycle 70 being heated. And the comfort can be improved.

【0077】また、冷房負荷のみの場合には、凝縮用電
磁弁71、冷房用第2電磁弁78を開成し、蒸発用電磁
弁72、冷房用第1電磁弁77を閉成することにより、
暖房用冷媒サイクル68を冷房運転でき、冷房用の利用
側熱交換器面積が増加でき空調設備を有効に利用し運転
効率を上げる事で夏場のピーク負荷に対応できる。
When only the cooling load is applied, the condensing solenoid valve 71 and the second cooling solenoid valve 78 are opened, and the evaporation solenoid valve 72 and the first cooling solenoid valve 77 are closed.
The heating refrigerant cycle 68 can be cooled, the area of the heat exchanger on the use side for cooling can be increased, the air conditioning equipment can be effectively used, and the operation efficiency can be improved to cope with the peak load in the summer.

【0078】さらに、暖房負荷にみの場合には、凝縮用
電磁弁71、暖房用電磁弁79を閉成し、蒸発用電磁弁
72、冷房用第1電磁弁77、冷房用第2電磁弁78を
開成、第2膨張弁75を全開とすることで冷房用冷媒サ
イクル70を暖房運転でき利用側熱交換器の面積を増加
でき空調設備を有効利用できる。
Further, in the case of only the heating load, the condensing solenoid valve 71 and the heating solenoid valve 79 are closed, and the evaporation solenoid valve 72, the cooling first solenoid valve 77, and the cooling second solenoid valve. By opening 78 and fully opening the second expansion valve 75, the cooling refrigerant cycle 70 can be operated for heating, the area of the heat exchanger on the use side can be increased, and the air conditioning equipment can be effectively used.

【0079】[0079]

【発明の効果】以上説明したように、圧縮機、暖房用第
1補助熱交換器、前記暖房用第1補助熱交換器と並列に
設置され前記暖房用第1補助熱交換器の熱交換量を制御
する能力制御弁、熱源側熱交換器、前記熱源側熱交換器
を蒸発器として使用するために前記熱源側熱交換器の入
口に設置された第1減圧装置、前記熱源側熱交換器を凝
縮器として使用するために前記熱源側熱交換器の出口に
設置された第2減圧装置、冷房用第1補助熱交換器を環
状に連接してなる熱源側冷媒サイクルと、前記暖房用第
1補助熱交換器と一体に形成して熱交換する暖房用第2
補助熱交換器、暖房用冷媒搬送装置、複数の暖房用利用
側熱交換器から成る暖房用利用側冷媒サイクルと、前記
冷房用第1補助熱交換器と一体に形成して熱交換する冷
房用第2補助熱交換器、冷房用冷媒搬送装置、複数の冷
房用利用側熱交換器から成る冷房用利用側冷媒サイクル
から構成されているので、冷暖同時運転時に負荷変動が
あった場合でも、利用側サイクルの冷房、暖房運転の切
換えを行わずに対応することで、省エネ性、快適性を向
上することができる。
As described above, the heat exchange amount of the compressor, the first auxiliary heat exchanger for heating, and the first auxiliary heat exchanger for heating, which are installed in parallel with the first auxiliary heat exchanger for heating. Control valve for controlling the heat source side heat exchanger, a first pressure reducing device installed at the inlet of the heat source side heat exchanger to use the heat source side heat exchanger as an evaporator, the heat source side heat exchanger For use as a condenser, a second pressure reducing device installed at the outlet of the heat source side heat exchanger, a heat source side refrigerant cycle formed by annularly connecting a first cooling auxiliary heat exchanger, and the heating first side heat exchanger. 1 Second heating for integrally exchanging heat with auxiliary heat exchanger
A heating use-side refrigerant cycle composed of an auxiliary heat exchanger, a heating refrigerant transfer device, and a plurality of heating use-side heat exchangers, and cooling for integrally forming heat with the cooling first auxiliary heat exchanger Since the second auxiliary heat exchanger, the cooling refrigerant transfer device, and the cooling-use side refrigerant cycle composed of a plurality of cooling-use side heat exchangers are used, even if there is a load change during the simultaneous cooling and heating operation, it can be used. Energy saving and comfort can be improved by coping without switching the cooling and heating operations of the side cycle.

【0080】また、圧縮機、暖房用第1補助熱交換器、
前記圧縮機と前記暖房用第1補助熱交換器の間に設置さ
れ前記暖房用第1補助熱交換器を蒸発器として使用する
とき閉成する冷房用第1電磁弁、前記暖房用第1補助熱
交換器の能力を制御する第1膨張弁、冷房用第1補助熱
交換器、前記第1膨張弁と前記冷房用第1補助熱交換器
の間に設置され前記冷房用第1補助熱交換器の能力を制
御する第3膨張弁、熱源側熱交換器、前記第1膨張弁と
前記第2膨張弁の間から前記熱源側熱交換器を連通した
配管の途中に設けられ前記熱源側熱交換器の能力を制御
する第2膨張弁、前記冷房用第1補助熱交換器と前記圧
縮機の間と前記熱源側熱交換器を連通する蒸発回路、前
記蒸発回路の途中に設けられ前記熱源側熱交換器を蒸発
器として使用する場合に開成する蒸発用電磁弁、前記冷
房用第1電磁弁と前記圧縮機の間と前記熱源側熱交換器
を連通する凝縮回路、前記凝縮回路の途中に設けられ前
記熱源側熱交換器を凝縮器として使用するとき閉成する
凝縮用電磁弁、前記第1冷房用電磁弁と前記第1暖房用
補助熱交換器の間から前記冷房用第1補助熱交換器と前
記蒸発回路管の間を結んだ配管の途中に設られ前記暖房
用第1補助熱交換器を凝縮器として使用する場合に開成
する冷房用第2電磁弁より成る熱源側サイクルと、前記
暖房用第1補助熱交換器と一体に形成して熱交換する暖
房用第2補助熱交換器、暖房用冷媒搬送装置、複数の暖
房用利用側熱交換器から成る暖房用利用側冷媒サイクル
と、前記冷房用第1補助熱交換器と一体に形成して熱交
換する冷房用第2補助熱交換器、冷房用冷媒搬送装置、
複数の冷房用利用側熱交換器から成る冷房用利用側冷媒
サイクルから構成されているので、冷暖同時運転時に負
荷変動があった場合でも、利用側サイクルの冷房、暖房
運転の切換えを行わずに対応することで、省エネ性、快
適性を向上するとともに、冷房負荷のみの場合には、冷
房用利用側サイクルと暖房用利用側冷媒サイクルを同時
に冷房運転する事で、冷房用の利用側熱交換器面積が増
加でき空調設備を有効に利用し冷房能力及び運転効率を
上げる事で夏場のピーク負荷に対応することができる。
Further, the compressor, the first auxiliary heat exchanger for heating,
A first electromagnetic valve for cooling, which is installed between the compressor and the first auxiliary heat exchanger for heating and is closed when the first auxiliary heat exchanger for heating is used as an evaporator, the first auxiliary for heating A first expansion valve for controlling the capacity of the heat exchanger, a first auxiliary heat exchanger for cooling, a first auxiliary heat exchanger for cooling installed between the first expansion valve and the first auxiliary heat exchanger for cooling Expansion valve for controlling the capacity of the heat source, heat source side heat exchanger, the heat source side heat exchanger provided between the first expansion valve and the second expansion valve in the middle of the pipe communicating the heat source side heat exchanger A second expansion valve that controls the capacity of the exchanger, an evaporation circuit that communicates between the first auxiliary heat exchanger for cooling and the compressor and the heat source side heat exchanger, and the heat source provided in the middle of the evaporation circuit An electromagnetic valve for evaporation that opens when the side heat exchanger is used as an evaporator, the first electromagnetic valve for cooling, and A condenser circuit for communicating between the compressor and the heat source side heat exchanger, a condensing solenoid valve provided in the middle of the condenser circuit and closed when the heat source side heat exchanger is used as a condenser, the first The first auxiliary heat exchanger for heating is provided in the middle of a pipe connecting between the electromagnetic valve for cooling and the first auxiliary heat exchanger for heating and the first auxiliary heat exchanger for cooling and the evaporation circuit pipe. Source side cycle consisting of a second solenoid valve for cooling, which opens when the air conditioner is used as a condenser, and a second auxiliary heat exchanger for heating formed integrally with the first auxiliary heat exchanger for heating. A heating-use refrigerant carrier, a heating-use refrigerant cycle comprising a plurality of heating-use heat exchangers, and a cooling second auxiliary heat which is integrally formed with the cooling first auxiliary heat exchanger to exchange heat. Exchanger, cooling medium carrier for cooling,
Since it is composed of a cooling-use refrigerant cycle consisting of multiple cooling-use heat exchangers, even if there is a load change during simultaneous heating and cooling operation, switching between cooling and heating operation in the usage cycle is not performed. By responding to this, energy saving and comfort are improved, and when only the cooling load is used, the cooling side cycle for heating and the cooling cycle for heating side are simultaneously operated to cool the heat exchange side for cooling. It is possible to increase the equipment area and effectively use the air conditioning equipment to improve the cooling capacity and the operation efficiency, so that it is possible to cope with the peak load in the summer.

【0081】さらに、上記蒸発回路管と暖房用第1補助
熱交換器の間に設置され前記暖房用第1補助熱交換器を
蒸発器として使用する場合に閉成する暖房用電磁弁を備
えたので、冷暖同時運転時に負荷変動があった場合で
も、利用側サイクルの冷房、暖房運転の切換えを行わず
に対応することで、省エネ性、快適性を向上するととも
に、冷房負荷のみの場合には、冷房用利用側冷媒サイク
ルと暖房用利用側冷媒サイクルを同時に冷房運転する事
で、冷房用の利用側熱交換器面積が増加でき空調設備を
有効に利用し冷房能力及び運転効率を上げる事で夏場の
ピーク負荷に対応し、さらに暖房負荷のみの場合には、
冷房用利用側冷媒サイクルと暖房用利用側冷媒サイクル
を同時に暖房運転を行う事で設備の有効利用する事がで
きる。
Further, there is provided a heating solenoid valve installed between the evaporation circuit tube and the first heating auxiliary heat exchanger and closed when the first heating auxiliary heat exchanger is used as an evaporator. Therefore, even if there is a load change during simultaneous cooling and heating operation, energy saving and comfort are improved by responding without switching between cooling and heating operation on the use side cycle, and in the case of only cooling load By simultaneously cooling the cooling-use side refrigerant cycle and the heating-use side refrigerant cycle, the area of the cooling-use side heat exchanger can be increased, and the cooling capacity and operating efficiency can be improved by effectively using the air conditioning equipment. In case of peak load in summer and only heating load,
By simultaneously performing the heating operation of the cooling-use side refrigerant cycle and the heating-use side refrigerant cycle, the equipment can be effectively used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における多室冷暖房装置
の冷媒サイクル図
FIG. 1 is a refrigerant cycle diagram of a multi-room cooling and heating apparatus according to a first embodiment of the present invention.

【図2】本発明の第2の実施例における多室冷暖房装置
の冷媒サイクル図
FIG. 2 is a refrigerant cycle diagram of a multi-room cooling and heating apparatus according to a second embodiment of the present invention.

【図3】本発明の第3の実施例における多室冷暖房装置
の冷媒サイクル図
FIG. 3 is a refrigerant cycle diagram of a multi-room cooling and heating device according to a third embodiment of the present invention.

【図4】従来の多室冷暖房装置の冷媒サイクル図FIG. 4 is a refrigerant cycle diagram of a conventional multi-room cooling and heating device.

【符号の説明】[Explanation of symbols]

31 圧縮機 51 暖房用第1補助熱交換器 52 第1減圧装置 53 熱源側熱交換器 54 第2減圧装置 55 冷房用第1補助熱交換器 56 能力制御弁 57’,57’’,57’’’ 熱源側冷媒サイクル 58 暖房用第2補助熱交換器 59 暖房用冷媒搬送装置 60 冷房用第2補助熱交換器 61 冷房用冷媒搬送装置 62a,62b 暖房用利用側熱交換器 64a,64b 冷房用利用側熱交換器 68 暖房用利用側冷媒サイクル 70 冷房用利用側冷媒サイクル 71 凝縮用電磁弁 72 蒸発用電磁弁 73 蒸発回路 73’ 凝縮回路 74 第1膨張弁 75 第2膨張弁 76 第3膨張弁 77 冷房用第1電磁弁 78 冷房用第2電磁弁 79 暖房用電磁弁 31 Compressor 51 First Auxiliary Heat Exchanger for Heating 52 First Pressure Reduction Device 53 Heat Source Side Heat Exchanger 54 Second Pressure Reduction Device 55 First Auxiliary Heat Exchanger for Cooling 56 Capacity Control Valve 57 ', 57 ", 57' '' Heat source side refrigerant cycle 58 Heating second auxiliary heat exchanger 59 Heating refrigerant transfer device 60 Cooling second auxiliary heat exchanger 61 Cooling refrigerant transfer device 62a, 62b Heating use side heat exchanger 64a, 64b Cooling -Use side heat exchanger 68 Heating-use side refrigerant cycle 70 Cooling-use side refrigerant cycle 71 Condensing solenoid valve 72 Evaporating solenoid valve 73 Evaporating circuit 73 'Condensing circuit 74 First expansion valve 75 Second expansion valve 76 Third Expansion valve 77 Cooling first solenoid valve 78 Cooling second solenoid valve 79 Heating solenoid valve

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、暖房用第1補助熱交換器、前記
暖房用第1補助熱交換器と並列に設置され前記暖房用第
1補助熱交換器の熱交換量を制御する能力制御弁、熱源
側熱交換器、前記熱源側熱交換器を蒸発器として使用す
るために前記熱源側熱交換器の入口に設置された第1減
圧装置、前記熱源側熱交換器を凝縮器として使用するた
めに前記熱源側熱交換器の出口に設置された第2減圧装
置、冷房用第1補助熱交換器を環状に連接してなる熱源
側冷媒サイクルと、前記暖房用第1補助熱交換器と一体
に形成して熱交換する暖房用第2補助熱交換器、暖房用
冷媒搬送装置、複数の暖房用利用側熱交換器から成る暖
房用利用側冷媒サイクルと、前記冷房用第1補助熱交換
器と一体に形成して熱交換する冷房用第2補助熱交換
器、冷房用冷媒搬送装置、複数の冷房用利用側熱交換器
から成る冷房用利用側冷媒サイクルとを備えた多室冷暖
房装置。
1. A compressor, a heating first auxiliary heat exchanger, and a capacity control valve installed in parallel with the heating first auxiliary heat exchanger to control the heat exchange amount of the heating first auxiliary heat exchanger. A heat source side heat exchanger, a first pressure reducing device installed at an inlet of the heat source side heat exchanger for using the heat source side heat exchanger as an evaporator, and the heat source side heat exchanger as a condenser A second pressure reducing device installed at the outlet of the heat source side heat exchanger, a heat source side refrigerant cycle in which a cooling first auxiliary heat exchanger is connected in an annular shape, and the heating first auxiliary heat exchanger, A second auxiliary heat exchanger for heating that is integrally formed and exchanges heat, a heating medium transfer device for heating, and a heating-use side refrigerant cycle comprising a plurality of heating-use side heat exchangers, and the first cooling-use auxiliary heat exchange. Second auxiliary heat exchanger for cooling, which is formed integrally with the air conditioner to exchange heat, and a cooling medium conveying device for cooling And a multi-chamber cooling and heating device comprising a cooling-use side refrigerant cycle comprising a plurality of cooling-use side heat exchangers.
【請求項2】 圧縮機、暖房用第1補助熱交換器、前記
圧縮機と前記暖房用第1補助熱交換器の間に設置され前
記暖房用第1補助熱交換器を蒸発器として使用するとき
閉成する冷房用第1電磁弁、前記暖房用第1補助熱交換
器の能力を制御する第1膨張弁、冷房用第1補助熱交換
器、前記第1膨張弁と前記冷房用第1補助熱交換器の間
に設置され前記冷房用第1補助熱交換器の能力を制御す
る第3膨張弁、熱源側熱交換器、前記第1膨張弁と前記
第2膨張弁の間から前記熱源側熱交換器を連通した配管
の途中に設けられ前記熱源側熱交換器の能力を制御する
第2膨張弁、前記冷房用第1補助熱交換器と前記圧縮機
の間と前記熱源側熱交換器を連通する蒸発回路、前記蒸
発回路の途中に設けられ前記熱源側熱交換器を蒸発器と
して使用する場合に開成する蒸発用電磁弁、前記冷房用
第1電磁弁と前記圧縮機の間と前記熱源側熱交換器を連
通する凝縮回路、前記凝縮回路の途中に設けられ前記熱
源側熱交換器を凝縮器として使用するとき閉成する凝縮
用電磁弁、前記第1冷房用電磁弁と前記第1暖房用補助
熱交換器の間から前記冷房用第1補助熱交換器と前記蒸
発回路管の間を結んだ配管の途中に設られ前記暖房用第
1補助熱交換器を凝縮器として使用する場合に開成する
冷房用第2電磁弁より成る熱源側サイクルと、前記暖房
用第1補助熱交換器と一体に形成して熱交換する暖房用
第2補助熱交換器、暖房用冷媒搬送装置、複数の暖房用
利用側熱交換器から成る暖房用利用側冷媒サイクルと、
前記冷房用第1補助熱交換器と一体に形成して熱交換す
る冷房用第2補助熱交換器、冷房用冷媒搬送装置、複数
の冷房用利用側熱交換器から成る冷房用利用側冷媒サイ
クルとを備えた多室冷暖房装置。
2. A compressor, a first auxiliary heat exchanger for heating, which is installed between the compressor and the first auxiliary heat exchanger for heating and uses the first auxiliary heat exchanger for heating as an evaporator. A first electromagnetic valve for cooling which is closed at this time, a first expansion valve for controlling the capacity of the first auxiliary heat exchanger for heating, a first auxiliary heat exchanger for cooling, the first expansion valve and the first cooling air A third expansion valve installed between auxiliary heat exchangers for controlling the capacity of the first auxiliary heat exchanger for cooling, a heat source side heat exchanger, the heat source between the first expansion valve and the second expansion valve A second expansion valve provided in the middle of a pipe communicating with the side heat exchanger to control the capacity of the heat source side heat exchanger, between the first cooling auxiliary heat exchanger and the compressor, and the heat source side heat exchange Circuit that communicates with the evaporator, when the heat source side heat exchanger provided in the middle of the evaporation circuit is used as an evaporator An evaporation solenoid valve that is opened, a condenser circuit that connects the heat source side heat exchanger between the cooling first solenoid valve and the compressor, and a heat source side heat exchanger that is provided in the middle of the condensation circuit And a solenoid valve for condensing which is closed when used as a connection between the first solenoid valve for cooling and the first heat exchanger for heating and the first heat exchanger for cooling and the evaporation circuit tube. A heat source side cycle including a second solenoid valve for cooling, which is provided when the first auxiliary heat exchanger for heating is used as a condenser, and is integrated in the first auxiliary heat exchanger for heating. A second auxiliary heat exchanger for heating, which is formed into a heat exchanger for heating, a refrigerant transfer device for heating, and a heating-use-side refrigerant cycle comprising a plurality of heating-use-side heat exchangers;
A second cooling-use auxiliary heat exchanger that is formed integrally with the first cooling-use heat exchanger to exchange heat, a cooling-use refrigerant transport device, and a cooling-use-side refrigerant cycle including a plurality of cooling-use-side heat exchangers. And a multi-room cooling and heating system.
【請求項3】 上記蒸発回路管と暖房用第1補助熱交換
器の間に設置され前記暖房用第1補助熱交換器を蒸発器
として使用する場合に閉成する暖房用電磁弁を備えた請
求項2記載の多室冷暖房装置。
3. A heating solenoid valve installed between the evaporation circuit tube and the first heating auxiliary heat exchanger and closed when the first heating auxiliary heat exchanger is used as an evaporator. The multi-room air conditioner according to claim 2.
JP22693692A 1992-08-26 1992-08-26 Multichamber room cooler/heater Pending JPH0674589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22693692A JPH0674589A (en) 1992-08-26 1992-08-26 Multichamber room cooler/heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22693692A JPH0674589A (en) 1992-08-26 1992-08-26 Multichamber room cooler/heater

Publications (1)

Publication Number Publication Date
JPH0674589A true JPH0674589A (en) 1994-03-15

Family

ID=16852933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22693692A Pending JPH0674589A (en) 1992-08-26 1992-08-26 Multichamber room cooler/heater

Country Status (1)

Country Link
JP (1) JPH0674589A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1291587A2 (en) * 1995-09-08 2003-03-12 Daikin Industries, Ltd. Heat transfer device
JP2012242020A (en) * 2011-05-20 2012-12-10 Denso Corp Heat pump apparatus
KR101284487B1 (en) * 2011-03-24 2013-07-16 가부시키가이샤 고베 세이코쇼 Power generation apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1291587A2 (en) * 1995-09-08 2003-03-12 Daikin Industries, Ltd. Heat transfer device
EP1291587A3 (en) * 1995-09-08 2003-06-04 Daikin Industries, Ltd. Heat transfer device
KR101284487B1 (en) * 2011-03-24 2013-07-16 가부시키가이샤 고베 세이코쇼 Power generation apparatus
JP2012242020A (en) * 2011-05-20 2012-12-10 Denso Corp Heat pump apparatus

Similar Documents

Publication Publication Date Title
JPH04263758A (en) Heat pump hot-water supplier
US8800319B2 (en) Refrigerating cycle device used in an air conditioning apparatus, a refrigerating device and the like
US11892203B2 (en) Method of operating refrigeration cycle device
JP2006292313A (en) Geothermal unit
JP3140333B2 (en) Heat pump equipment
JPH0432669A (en) Heat pump system controlling method therefor
JPH05306849A (en) Multi-room cooler/heater
JPH0682110A (en) Multi-room air-conditioning apparatus
JPH0674589A (en) Multichamber room cooler/heater
JPH03294754A (en) Air conditioner
JPH05126422A (en) Apparatus for cooling and heating
JP2618057B2 (en) Two-stage compression cooling / heating hot water supply system
JP2002174469A (en) Multichamber air conditioner
JP2702784B2 (en) Multi-room air conditioner
JP2705044B2 (en) Air conditioner
WO2022202840A1 (en) Refrigerant circuit and vehicle heat pump device
JP2712641B2 (en) Air conditioner
JPH0351644A (en) Multiroom cooling heating device
KR100419479B1 (en) Auxiliary refrigerator mounted heat pump system
JP3569546B2 (en) Air conditioner
CN114623627A (en) Method and system for improving refrigerant compression heat pump of artificial environment chamber
JPH10141815A (en) Air conditioner
JPH04263749A (en) Panel cooling and heating device
JPH0351668A (en) Multi-chamber type air conditioner
JPH07151401A (en) Recovery heat pump