JPH07151401A - Recovery heat pump - Google Patents

Recovery heat pump

Info

Publication number
JPH07151401A
JPH07151401A JP5297696A JP29769693A JPH07151401A JP H07151401 A JPH07151401 A JP H07151401A JP 5297696 A JP5297696 A JP 5297696A JP 29769693 A JP29769693 A JP 29769693A JP H07151401 A JPH07151401 A JP H07151401A
Authority
JP
Japan
Prior art keywords
temperature side
heat
heat pump
high temperature
low temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5297696A
Other languages
Japanese (ja)
Inventor
Akira Morikawa
朗 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP5297696A priority Critical patent/JPH07151401A/en
Publication of JPH07151401A publication Critical patent/JPH07151401A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the utility and functionality of a thermal apparatus of a recovery heat pump. CONSTITUTION:A heat pump circuit where refrigerant passages are independent of each other, includes a high temperature side heat pump circuit Sa where a high boiling point refrigerant Ra is circulated over high temperature side condensation Ca and high temperature side vaporization means Ea, and a low temperature side heat pump circuit Sb where a low boiling point refrigerant Rb is circulated over low temperature side condenser means Cb and low temperature side vaporization means Eb. The low temperature side condenser means Cb includes a condenser Cbi for delivery of inter-circuit heat for mutual heat exchange with the high temperature side vaporization means Ea and a condenser Cbo for delivery of outside-heat for heat exchange with an outside-circuit heat radiation object Mh. Otherwise, the high temperature side vaporization means Ea inclides an evaporator for delivery of inter-circuit heat for heat exchange with the low temperature side condenser means Cb and an evaporator for delivery of outside-circuit heat for heat exchange with an outside-circuit heat absorption object.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は複元ヒートポンプに関
し、詳しくは、冷媒経路が互いに独立したヒートポンプ
回路として、高沸点冷媒を高温側凝縮手段と高温側蒸発
手段とにわたって循環させる高温側ヒートポンプ回路
と、低沸点冷媒を低温側凝縮手段と低温側蒸発手段とに
わたって循環させる低温側ヒートポンプ回路とを設け、
前記高温側蒸発手段と前記低温側凝縮手段とを相互に熱
交換させる構成としたヒートポンプに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dual heat pump, and more particularly, as a heat pump circuit having independent refrigerant paths, a high temperature side heat pump circuit for circulating a high boiling point refrigerant between a high temperature side condensing means and a high temperature side evaporating means. , A low temperature side heat pump circuit for circulating the low boiling point refrigerant over the low temperature side condensing means and the low temperature side evaporating means,
The present invention relates to a heat pump configured to mutually exchange heat between the high temperature side evaporating means and the low temperature side condensing means.

【0002】[0002]

【従来の技術】上記の複元ヒートポンプは(図8参
照)、高温側ヒートポンプ回路Saにおける高温側蒸発
手段Eaと低温側ヒートポンプ回路Sbにおける低温側
凝縮手段Cbとを相互に熱交換させる構成とすることに
より、低温側凝縮手段Cbを高温側蒸発手段Eaの吸熱
源(すなわち、高温側ヒートポンプ回路Saに対する低
熱源)として作用させ、かつ、高温側蒸発手段Eaを低
温側凝縮手段Cbの放熱源(すなわち、低温側ヒートポ
ンプ回路Sbに対する高熱源)として作用させる形態と
し、これにより、高温側ヒートポンプ回路Saと低温側
ヒートポンプ回路Sbとによる段階的なヒートポンプ作
用(換言すれば冷凍作用)をもって、高温側ヒートポン
プ回路Saにおける高温側凝縮手段Caでの発生高温
と、低温側ヒートポンプ回路Sbにおける低温側蒸発手
段Ebでの発生低温との間に、大きな温度差を確保でき
るようしたものである。
2. Description of the Related Art The above-mentioned dual heat pump (see FIG. 8) has a structure in which a high temperature side evaporating means Ea in a high temperature side heat pump circuit Sa and a low temperature side condensing means Cb in a low temperature side heat pump circuit Sb exchange heat with each other. As a result, the low temperature side condensing means Cb acts as a heat absorption source of the high temperature side evaporating means Ea (that is, a low heat source for the high temperature side heat pump circuit Sa), and the high temperature side evaporating means Ea serves as a heat radiation source of the low temperature side condensing means Cb ( That is, the high-temperature side heat pump circuit Sb is operated as a high heat source), and thus the high-temperature side heat pump circuit Sa and the low-temperature side heat pump circuit Sb have a stepwise heat pump action (in other words, a refrigerating action) and a high-temperature side heat pump circuit. High temperature generated in the high temperature side condensation means Ca in the circuit Sa and low temperature side heat pump Between the generation low at a low temperature side evaporator means Eb in road Sb, is obtained by that can secure a large temperature difference.

【0003】そして従来、この種のヒートポンプにおい
ては、同図8に示すように、相互に熱交換させる高温側
蒸発手段Eaと低温側凝縮手段Cbとについて、互いが
唯一の熱交換対象となるように、すなわち、高温側蒸発
手段Eaについては常に低温側凝縮手段Cbのみが吸熱
源となり、かつ、低温側凝縮手段Cbについては常に高
温側蒸発手段Eaのみが放熱源となるように、それら高
温側蒸発手段Eaと低温側凝縮手段Cbとを構成してい
た。
Conventionally, in this type of heat pump, as shown in FIG. 8, the high temperature side evaporating means Ea and the low temperature side condensing means Cb, which exchange heat with each other, are the only objects of heat exchange. That is, for the high temperature side evaporating means Ea, only the low temperature side condensing means Cb is always the heat absorbing source, and for the low temperature side condensing means Cb, only the high temperature side evaporating means Ea is always the heat radiating source. The evaporation means Ea and the low temperature side condensation means Cb were configured.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記の従来技
術では、高温側蒸発手段Eaの吸熱能力と低温側凝縮手
段Cbの放熱能力とが合致して、それら高温側蒸発手段
Eaと低温側凝縮手段Cbとの間の熱授受で熱的過不足
が生じないような形態でしか両ヒートポンプ回路Sa,
Sbを運転できないため、熱装置として融通性に欠け、
このことから、装置機能性の面で下記(イ),(ロ),
(ハ)の如き不都合があった。
However, in the above prior art, the heat absorption capacity of the high temperature side evaporation means Ea and the heat dissipation capacity of the low temperature side condensation means Cb match, and the high temperature side evaporation means Ea and the low temperature side condensation means are matched. Both heat pump circuits Sa, only in such a form that thermal excess and deficiency do not occur in heat exchange with the means Cb.
Since Sb cannot be operated, it lacks flexibility as a heat device,
From this, in terms of device functionality, the following (a), (b),
There was an inconvenience such as (C).

【0005】(イ)冷媒経路が互いに独立した高温側ヒ
ートポンプ回路Sa、及び、低温側ヒートポンプ回路S
bは、基本的には各々が独立したヒートポンプ機能(冷
凍機能)を有するにもかかわらず、一方のヒートポンプ
回路における運転上の制約によって他方のヒートポンプ
回路の運転が能力的に規制され、このため、その他方の
ヒートポンプ回路の側の熱的用途において、その要求に
対し的確かつ安定的に対応できない問題があった。
(A) High temperature side heat pump circuit Sa and low temperature side heat pump circuit S whose refrigerant paths are independent of each other
Although b basically has an independent heat pump function (refrigeration function), the operation of the other heat pump circuit is capacitatively restricted due to the operational restriction in one heat pump circuit. In the other thermal application of the heat pump circuit side, there is a problem that the demand cannot be accurately and stably met.

【0006】つまり、高温側凝縮手段Caの放熱運転条
件(加熱用途では加熱運転条件)等、高温側ヒートポン
プ回路Saにおける運転上の制約から高温側ヒートポン
プ回路Saの運転状態が能力的に規定されて、高温側蒸
発手段Eaの吸熱能力が規定されることに対し、低温側
ヒートポンプ回路Sbについても、低温側凝縮手段Cb
の放熱能力が高温側蒸発手段Eaの吸熱能力に対し合致
するように、運転状態が能力的に規制され、このため、
低温側蒸発手段Ebの吸熱能力(冷却用途では冷却能
力)が、その低温側蒸発手段Ebの吸熱対象側から要求
される吸熱能力と大きく相違してしまうといったことが
生じる。
That is, the operating condition of the high temperature side heat pump circuit Sa is satisfactorily regulated due to operational restrictions in the high temperature side heat pump circuit Sa such as the heat radiation operating condition of the high temperature side condensing means Ca (heating operating condition in heating application). While the heat absorption capacity of the high temperature side evaporating means Ea is regulated, the low temperature side condensing means Cb also applies to the low temperature side heat pump circuit Sb.
The operating state is capacitatively regulated so that the heat dissipation capacity of the high temperature side evaporation means Ea matches the heat absorption capacity of the high temperature side evaporation means Ea.
The heat absorption capacity (cooling capacity in the case of cooling) of the low temperature side evaporation means Eb may be greatly different from the heat absorption capacity required from the heat absorption target side of the low temperature side evaporation means Eb.

【0007】また逆に、低温側蒸発手段Ebの吸熱運転
条件(冷却用途では冷却運転条件)等、低温側ヒートポ
ンプ回路Sbにおける運転上の制約から低温側ヒートポ
ンプ回路Sbの運転状態が能力的に規定されて、低温側
凝縮手段Cbの放熱能力が規定されることに対し、高温
側ヒートポンプ回路Saについても、高温側蒸発手段E
aの吸熱能力が低温側凝縮手段Cbの放熱能力に対し合
致するように、運転状態が能力的に規制され、このた
め、高温側凝縮手段Caの放熱能力(加熱用途では加熱
能力)が、その高温側凝縮手段Caの放熱対象側から要
求される放熱能力と大きく相違してしまうといったこと
も生じる。
On the contrary, the operating condition of the low temperature side heat pump circuit Sb is satisfactorily defined due to operational restrictions of the low temperature side heat pump circuit Sb, such as the heat absorption operating condition of the low temperature side evaporating means Eb (cooling operating condition for cooling application). Accordingly, the heat radiation capacity of the low temperature side condensing means Cb is regulated, whereas the high temperature side heat pump circuit Sa also has the high temperature side evaporating means E.
The operating state is regulated so that the heat absorption capacity of a matches the heat radiation capacity of the low temperature side condensing means Cb. Therefore, the heat radiation capacity (heating capacity in heating applications) of the high temperature side condensing means Ca is There is also a case where the heat radiation capacity of the high temperature side condensation means Ca greatly differs from the heat radiation ability required from the heat radiation target side.

【0008】(ロ)上記の如く、一方のヒートポンプ回
路における運転上の制約によって他方のヒートポンプ回
路の運転が能力的に規制されることで、その他方のヒー
トポンプ回路自身の保有能力を有効に発揮できず、この
ことから、装置全体として保有能力に対する有効利用率
(換言すれば、能力的な装置稼働率)といったものが低
いものとなり、相対的に装置コストが割高となる問題が
あった。
(B) As described above, the operation restriction of one heat pump circuit restricts the operation of the other heat pump circuit, so that the other heat pump circuit itself can effectively exhibit its own holding capacity. From this, therefore, there is a problem that the effective utilization rate (in other words, the capacity utilization rate of the capacity) with respect to the possession capacity of the entire apparatus becomes low, and the apparatus cost becomes relatively high.

【0009】つまり、低温側ヒートポンプ回路Sbにお
いて保有能力に余裕があり、また、低温側ヒートポンプ
回路Sbそれ自身については運転上の制約も無くて、低
温側ヒートポンプ回路Sb単独であれば種々の熱的用途
に対し、低温側蒸発手段Ebをさらに大きな吸熱能力で
使用したり、低温側凝縮手段Cbをさらに大きな放熱能
力で使用し得るにもかかわらず、高温側ヒートポンプ回
路Saの側の運転上の制約から低温側ヒートポンプ回路
Sbの運転が低能力レベルに制限されるといった状況が
生じ、このことから、低温側ヒートポンプ回路Sbにお
ける保有能力の有効利用率が低いものとなる。
That is, the low-temperature side heat pump circuit Sb has a sufficient holding capacity, and the low-temperature side heat pump circuit Sb itself has no operational restrictions. Although the low temperature side evaporating means Eb can be used with a larger heat absorbing capacity or the low temperature side condensing means Cb can be used with a larger heat radiating capacity, the operational restrictions on the high temperature side heat pump circuit Sa side can be used. Therefore, a situation occurs in which the operation of the low temperature side heat pump circuit Sb is limited to a low capacity level, which results in a low effective utilization rate of the holding capacity in the low temperature side heat pump circuit Sb.

【0010】また逆に、高温側ヒートポンプ回路Saに
おいて保有能力に余裕があり、また、高温側ヒートポン
プ回路Saそれ自身については運転上の制約も無くて、
高温側ヒートポンプ回路Sa単独であれば種々の熱的用
途に対し、高温側凝縮手段Caをさらに大きな放熱能力
で使用したり、高温側蒸発手段Eaをさらに大きな吸熱
能力で使用し得るにもかかわらず、低温側ヒートポンプ
回路Sbの側の運転上の制約から高温側ヒートポンプ回
路Saの運転が低能力レベルに制限されるといった状況
も生じ、このことから、高温側ヒートポンプ回路Saに
おける保有能力の有効利用率が低いものとなる。
On the contrary, the high temperature side heat pump circuit Sa has a sufficient holding capacity, and the high temperature side heat pump circuit Sa itself has no operational restrictions.
Although the high-temperature side heat pump circuit Sa alone can be used for various thermal applications, the high-temperature side condensing means Ca can be used with a larger heat radiation capacity and the high temperature side evaporating means Ea can be used with a larger heat absorption capacity. There is also a situation in which the operation of the high temperature side heat pump circuit Sa is limited to a low capacity level due to the operational restriction on the low temperature side heat pump circuit Sb side. From this, the effective utilization rate of the possessed capacity in the high temperature side heat pump circuit Sa Will be low.

【0011】(ハ)高温側凝縮手段Caでの発生高温と
低温側蒸発手段Ebでの発生低温との間に大きな温度差
を確保できることが利点であるものの、低温側蒸発手段
Ebで吸熱した熱は全て高温側凝縮手段Caでのみ放熱
し、また、高温側凝縮手段Caで放熱する熱は全て低温
側蒸発手段Ebでのみ吸熱するといった構成であること
から、放熱対象(加熱用途では加熱対象)について、互
いの温度レベルが大きく異なる複数の放熱対象が存在す
る場合や、放熱対象の温度レベルが状況によって大きく
変化する場合等、放熱対象に対し高温側凝縮手段Caを
必要以上に大きな温度差で放熱機能させざるを得ないと
いった状況が生じ、また、吸熱対象(冷却用途では冷却
対象)について、互いの温度レベルが大きく異なる複数
の吸熱対象が存在する場合や、吸熱対象の温度レベルが
状況によって大きく変化する場合等、吸熱対象に対し低
温側蒸発手段Ebを必要以上に大きな温度差で吸熱機能
させざるを得ないといった状況が生じる。
(C) Although it is advantageous that a large temperature difference can be secured between the high temperature generated in the high temperature side condensation means Ca and the low temperature generated in the low temperature side evaporation means Eb, the heat absorbed by the low temperature side evaporation means Eb is obtained. Is radiated only by the high temperature side condensing means Ca, and all the heat radiated by the high temperature side condensing means Ca is absorbed only by the low temperature side evaporating means Eb. As for the case where there are a plurality of heat dissipation targets whose temperature levels are significantly different from each other, or when the temperature level of the heat dissipation targets varies greatly depending on the situation, the high temperature side condensation means Ca may have a larger temperature difference than necessary with respect to the heat dissipation targets. There is a situation where there is no choice but to use a heat dissipation function, and there are multiple endothermic targets that have greatly different temperature levels. Or if that, like if the temperature level of the heat absorption target is greatly changed depending on the situation, situation arises such inevitably is endothermic feature in a large temperature difference than necessary low-temperature side evaporator means Eb to endothermic subject.

【0012】ところが、高温側凝縮手段Caや低温側蒸
発手段Ebを放吸熱対象に対し過大な温度差をもって放
吸熱作用させる、すなわち、過大な温度差で放吸熱対象
と熱交換させる場合、その熱交換に伴う有効エネルギ損
失が大きくなって、省エネ上、不利となる問題がある。
However, when the high temperature side condensing means Ca and the low temperature side evaporating means Eb are made to radiate and absorb heat with respect to the heat radiating object, that is, when heat is exchanged with the heat radiating object with an excessive temperature difference, the heat There is a problem that effective energy loss due to replacement becomes large, which is disadvantageous in terms of energy saving.

【0013】しかも、高温側凝縮手段Caにおいて、そ
の冷媒凝縮温度と放熱対象温度との間に過大な温度差が
あることで、また、低温側蒸発手段Ebにおいて、その
冷媒蒸発温度と吸熱対象温度との間に過大な温度差があ
ることで、冷媒圧力の異常低下や異常上昇を招き易くな
るなど、ヒートポンプ回路の運転そのものが不安定とな
る問題もある。
Moreover, in the high temperature side condensation means Ca, there is an excessive temperature difference between the refrigerant condensation temperature and the heat radiation target temperature, and in the low temperature side evaporation means Eb, the refrigerant evaporation temperature and the heat absorption target temperature. There is also a problem that the operation itself of the heat pump circuit becomes unstable, because the refrigerant pressure is likely to be abnormally lowered or abnormally increased due to an excessive temperature difference.

【0014】本発明の目的は、複元ヒートポンプの熱装
置としての融通性を高めて、上記の如き装置機能性の面
での問題の解消を図る点にある。
An object of the present invention is to increase the flexibility of the dual heat pump as a heat device and solve the above-mentioned problems in terms of device functionality.

【0015】[0015]

【課題を解決するための手段】[Means for Solving the Problems]

〔第1特徴構成〕本発明による複元ヒートポンプの第1
特徴構成は、冷媒経路が互いに独立したヒートポンプ回
路として、高沸点冷媒を高温側凝縮手段と高温側蒸発手
段とにわたって循環させる高温側ヒートポンプ回路と、
低沸点冷媒を低温側凝縮手段と低温側蒸発手段とにわた
って循環させる低温側ヒートポンプ回路とを設け、前記
高温側蒸発手段と前記低温側凝縮手段とを相互に熱交換
させる構成とした複元ヒートポンプにおいて、前記低温
側凝縮手段を、前記高温側蒸発手段と相互熱交換させる
回路間熱授受用の凝縮器と、前記高温側ヒートポンプ回
路及び低温側ヒートポンプ回路の外部における回路外放
熱対象と熱交換させる回路外熱授受用の凝縮器とで構成
してあることにある。
[First Characteristic Configuration] First of the dual heat pump according to the present invention
The characteristic configuration is a heat pump circuit in which the refrigerant paths are independent of each other, a high temperature side heat pump circuit for circulating the high boiling point refrigerant over the high temperature side condensing means and the high temperature side evaporating means,
A dual heat pump having a configuration in which a low-temperature heat pump circuit that circulates a low-boiling-point refrigerant over the low-temperature side condensation means and the low-temperature side evaporation means is provided, and the high-temperature side evaporation means and the low-temperature side condensation means are heat-exchanged with each other. A circuit for exchanging heat between the low temperature side condensing means and the high temperature side evaporating means for exchanging heat with each other, and a circuit for exchanging heat with an external heat radiation target outside the high temperature side heat pump circuit and the low temperature side heat pump circuit It is composed of a condenser for exchanging external heat.

【0016】〔第2特徴構成〕本発明による複元ヒート
ポンプの第2特徴構成は、冷媒経路が互いに独立したヒ
ートポンプ回路として、高沸点冷媒を高温側凝縮手段と
高温側蒸発手段とにわたって循環させる高温側ヒートポ
ンプ回路と、低沸点冷媒を低温側凝縮手段と低温側蒸発
手段とにわたって循環させる低温側ヒートポンプ回路と
を設け、前記高温側蒸発手段と前記低温側凝縮手段とを
相互に熱交換させる構成とした複元ヒートポンプにおい
て、前記高温側蒸発手段を、前記低温側凝縮手段と相互
熱交換させる回路間熱授受用の蒸発器と、前記高温側ヒ
ートポンプ回路及び低温側ヒートポンプ回路の外部にお
ける回路外吸熱対象と熱交換させる回路外熱授受用の蒸
発器とで構成してあることにある。
[Second Characteristic Configuration] A second characteristic configuration of the dual heat pump according to the present invention is a heat pump circuit having independent refrigerant paths, in which high boiling point refrigerant is circulated between the high temperature side condensing means and the high temperature side evaporating means. A side heat pump circuit, a low temperature side heat pump circuit for circulating a low boiling point refrigerant over the low temperature side condensing means and the low temperature side evaporating means, and a structure for mutually exchanging heat between the high temperature side evaporating means and the low temperature side condensing means; In the dual heat pump, an evaporator for heat transfer between circuits for mutually exchanging heat between the high temperature side evaporating means and the low temperature side condensing means, and an external heat absorption target outside the high temperature side heat pump circuit and the low temperature side heat pump circuit And an evaporator for exchanging heat outside the circuit for exchanging heat with.

【0017】〔第3特徴構成〕本発明による複元ヒート
ポンプの第3特徴構成は、冷媒経路が互いに独立したヒ
ートポンプ回路として、高沸点冷媒を高温側凝縮手段と
高温側蒸発手段とにわたって循環させる高温側ヒートポ
ンプ回路と、低沸点冷媒を低温側凝縮手段と低温側蒸発
手段とにわたって循環させる低温側ヒートポンプ回路と
を設け、前記高温側蒸発手段と前記低温側凝縮手段とを
相互に熱交換させる構成とした複元ヒートポンプにおい
て、前記低温側凝縮手段を、前記高温側蒸発手段と相互
熱交換させる回路間熱授受用の凝縮器と、前記高温側ヒ
ートポンプ回路及び低温側ヒートポンプ回路の外部にお
ける回路外放熱対象と熱交換させる回路外熱授受用の凝
縮器とで構成し、前記高温側蒸発手段を、前記の回路間
熱授受用凝縮器と相互熱交換させる回路間熱授受用の蒸
発器と、前記高温側ヒートポンプ回路及び低温側ヒート
ポンプ回路の外部における回路外吸熱対象と熱交換させ
る回路外熱授受用の蒸発器とで構成してあることにあ
る。
[Third Characteristic Configuration] A third characteristic configuration of the dual heat pump according to the present invention is a heat pump circuit in which refrigerant paths are independent from each other, and is a high temperature for circulating a high boiling point refrigerant between the high temperature side condensing means and the high temperature side evaporating means. A side heat pump circuit, a low temperature side heat pump circuit for circulating a low boiling point refrigerant over the low temperature side condensing means and the low temperature side evaporating means, and a structure for mutually exchanging heat between the high temperature side evaporating means and the low temperature side condensing means; In the dual heat pump, a condenser for heat exchange between circuits for mutually exchanging heat between the low temperature side condensing means and the high temperature side evaporating means, and an external heat radiation target outside the high temperature side heat pump circuit and the low temperature side heat pump circuit And a condenser for external heat transfer for exchanging heat with the high temperature side evaporating means, and a condenser for heat transfer between circuits described above. An evaporator for exchanging heat between circuits for mutual heat exchange, and an evaporator for exchanging heat for outside the circuit for exchanging heat with the outside heat absorption target outside the high temperature side heat pump circuit and the low temperature side heat pump circuit. It is in.

【0018】[0018]

【作用】[Action]

〔第1特徴構成の作用〕第1特徴構成においては(図1
参照)、低温側凝縮手段Cbを構成する回路間熱授受用
の凝縮器Cbiと回路外熱授受用の凝縮器Cboとのう
ち、回路間熱授受用の凝縮器Cbiが高温側蒸発手段E
aの吸熱源(すなわち、高温側ヒートポンプ回路Saに
対する低熱源)として機能し、これに対し、回路外熱授
受用の凝縮器Cboは低温側ヒートポンプ回路Sbの運
転において、高温側ヒートポンプ回路Sa及び低温側ヒ
ートポンプ回路Sbの外部における回路外放熱対象Mh
に対し放熱機能する。
[Operation of First Characteristic Configuration] In the first characteristic configuration (see FIG.
Among the condensers Cbi for heat transfer between circuits and the condenser Cbo for heat transfer outside the circuit constituting the low temperature side condensing means Cb, the condenser Cbi for heat transfer between circuits is the high temperature side evaporating means E.
a functions as a heat absorption source of a (that is, a low heat source for the high temperature side heat pump circuit Sa), whereas the condenser Cbo for external heat transfer is a high temperature side heat pump circuit Sa and a low temperature side during operation of the low temperature side heat pump circuit Sb. External heat radiation target Mh outside the side heat pump circuit Sb
For heat dissipation function.

【0019】つまり、第1特徴構成において低温側ヒー
トポンプ回路Sbは、高温側ヒートポンプ回路Saにお
ける高温側蒸発手段Eaを放熱源とする運転のみなら
ず、高温側ヒートポンプ回路Sa及び低温側ヒートポン
プ回路Sbの外部における回路外放熱対象Mhを放熱源
とする運転も実施できる。
That is, in the first characteristic configuration, the low temperature side heat pump circuit Sb is not limited to the operation using the high temperature side evaporation means Ea in the high temperature side heat pump circuit Sa as a heat radiation source, but also the high temperature side heat pump circuit Sa and the low temperature side heat pump circuit Sb. It is also possible to perform an operation using the external circuit heat radiation target Mh as a heat radiation source.

【0020】〔第2特徴構成の作用〕第2特徴構成にお
いては(図3参照)、高温側蒸発手段Eaを構成する回
路間熱授受用の蒸発器Eaiと回路外熱授受用の蒸発器
Eaoとのうち、回路間熱授受用の蒸発器Eaiが低温
側凝縮手段Cbの放熱源(すなわち、低温側ヒートポン
プ回路Sbに対する高熱源)として機能し、これに対
し、回路外熱授受用の蒸発器Eaoは高温側ヒートポン
プ回路Saの運転において、高温側ヒートポンプ回路S
a及び低温側ヒートポンプ回路Sbの外部における回路
外吸熱対象Mcに対し吸熱機能する。
[Operation of Second Characteristic Configuration] In the second characteristic configuration (see FIG. 3), an evaporator Eai for transferring heat between circuits and an evaporator Eao for transferring heat outside the circuit, which constitute the high temperature side evaporation means Ea. Among them, the evaporator Eai for exchanging heat between circuits functions as a heat source of the low temperature side condensing means Cb (that is, a high heat source for the low temperature side heat pump circuit Sb), while the evaporator for exchanging heat outside the circuit is Eao is the high temperature side heat pump circuit S during the operation of the high temperature side heat pump circuit Sa.
The heat absorption function is performed with respect to the external circuit heat absorption target Mc outside the a and the low temperature side heat pump circuit Sb.

【0021】つまり、第2特徴構成において高温側ヒー
トポンプ回路Saは、低温側ヒートポンプ回路Sbにお
ける低温側凝縮手段Cbを吸熱源とする運転のみなら
ず、高温側ヒートポンプ回路Sa及び低温側ヒートポン
プ回路Sbの外部における回路外吸熱対象Mcを吸熱源
とする運転も実施できる。
That is, in the second characteristic configuration, the high temperature side heat pump circuit Sa is not only operated by using the low temperature side condensing means Cb in the low temperature side heat pump circuit Sb as a heat absorption source, but also by the high temperature side heat pump circuit Sa and the low temperature side heat pump circuit Sb. It is also possible to perform an operation in which the external heat absorption target Mc is used as the heat absorption source.

【0022】〔第3特徴構成の作用〕第3特徴構成にお
いては(図7参照)、低温側凝縮手段Cbを構成する回
路間熱授受用の凝縮器Cbiと回路外熱授受用の凝縮器
Cboとのうち、回路間熱授受用の凝縮器Cbiが高温
側蒸発手段Eaの吸熱源(すなわち、高温側ヒートポン
プ回路Saに対する低熱源)として機能し、これに対
し、回路外熱授受用の凝縮器Cboは低温側ヒートポン
プ回路Sbの運転において、高温側ヒートポンプ回路S
a及び低温側ヒートポンプ回路Sbの外部における回路
外放熱対象Mhに対し放熱機能する。
[Operation of Third Characteristic Configuration] In the third characteristic configuration (see FIG. 7), a condenser Cbi for exchanging heat between circuits and a condenser Cbo for exchanging heat outside the circuit, which constitute the low temperature side condenser means Cb. Among them, the condenser Cbi for heat exchange between circuits functions as a heat absorption source of the high temperature side evaporating means Ea (that is, a low heat source for the high temperature side heat pump circuit Sa), while the condenser for heat exchange outside the circuit is Cbo is a high temperature side heat pump circuit S during operation of the low temperature side heat pump circuit Sb.
The heat radiation function is performed with respect to the external heat radiation target Mh outside the a and the low temperature side heat pump circuit Sb.

【0023】また、高温側蒸発手段Eaを構成する回路
間熱授受用の蒸発器Eaiと回路外熱授受用の蒸発器E
aoとのうち、回路間熱授受用の蒸発器Eaiが上記の
回路間熱授受用凝縮器Cbiの放熱源(すなわち、低温
側ヒートポンプ回路Sbに対する高熱源)として機能
し、これに対し、回路外熱授受用の蒸発器Eaoは高温
側ヒートポンプ回路Saの運転において、高温側ヒート
ポンプ回路Sa及び低温側ヒートポンプ回路Sbの外部
における回路外吸熱対象Mcに対し吸熱機能する。
Further, the evaporator Eai for exchanging heat between circuits and the evaporator E for exchanging heat outside the circuit which constitute the high temperature side evaporating means Ea.
Among ao, the evaporator Eai for heat exchange between circuits functions as a heat radiation source of the condenser Cbi for heat exchange between circuits (that is, a high heat source for the heat pump circuit Sb on the low temperature side), and The evaporator Eao for heat transfer functions to absorb heat from the outside heat absorption target Mc outside the high temperature side heat pump circuit Sa and the low temperature side heat pump circuit Sb during the operation of the high temperature side heat pump circuit Sa.

【0024】つまり、第3特徴構成において低温側ヒー
トポンプ回路Sbは、高温側ヒートポンプ回路Saにお
ける高温側蒸発手段Eaを放熱源とする運転のみなら
ず、高温側ヒートポンプ回路Sa及び低温側ヒートポン
プ回路Sbの外部における回路外放熱対象Mhを放熱源
とする運転も実施でき、また、高温側ヒートポンプ回路
Saは、低温側ヒートポンプ回路Sbにおける低温側凝
縮手段Cbを吸熱源とする運転のみならず、高温側ヒー
トポンプ回路Sa及び低温側ヒートポンプ回路Sbの外
部における回路外吸熱対象Mcを吸熱源とする運転も実
施できる。
That is, in the third characteristic configuration, the low temperature side heat pump circuit Sb is not only operated by using the high temperature side evaporation means Ea in the high temperature side heat pump circuit Sa as a heat radiation source, but also the high temperature side heat pump circuit Sa and the low temperature side heat pump circuit Sb. It is possible to perform an operation using the external circuit heat radiation target Mh as a heat radiation source. Further, the high temperature side heat pump circuit Sa performs not only the low temperature side condensing means Cb of the low temperature side heat pump circuit Sb as a heat absorbing source but also the high temperature side heat pump. It is also possible to perform an operation in which the external heat absorption target Mc outside the circuit Sa and the low temperature side heat pump circuit Sb is used as the heat absorption source.

【0025】[0025]

【発明の効果】【The invention's effect】

〔第1特徴構成の効果〕本発明の第1特徴構成によれ
ば、複元ヒートポンプの熱装置としての融通性を高め
て、下記(a)〜(c)の効果を得ることができる。
[Effects of First Characteristic Configuration] According to the first characteristic structure of the present invention, the versatility of the compound heat pump as a heat device can be enhanced, and the following effects (a) to (c) can be obtained.

【0026】(a)高温側ヒートポンプ回路における運
転上の制約から高温側蒸発手段の吸熱能力が規定され、
これに対し、回路間熱授受用凝縮器の放熱能力が高温側
蒸発手段の吸熱能力に合致するように規制されるにして
も、回路外熱授受用凝縮器の放熱能力調整による低温側
ヒートポンプ回路の能力調整をもって、低温側蒸発手段
の吸熱能力を、その低温側蒸発手段の吸熱対象側から要
求される吸熱能力に調整するといったことが可能とな
る。
(A) The heat absorption capacity of the high temperature side evaporating means is defined due to operational restrictions in the high temperature side heat pump circuit,
On the other hand, even if the heat radiation capacity of the inter-circuit heat transfer condenser is regulated to match the heat absorption capacity of the high temperature side evaporating means, the low temperature side heat pump circuit is adjusted by adjusting the heat radiation capacity of the outside circuit heat transfer condenser. It is possible to adjust the heat absorption capacity of the low temperature side evaporation means to the heat absorption capacity required from the heat absorption target side of the low temperature side evaporation means by adjusting the capacity.

【0027】つまり、高温側ヒートポンプ回路の側の運
転上の制約にかかわらず、低温側ヒートポンプ回路の側
における熱的用途の要求に対し、ある範囲で的確かつ安
定的に対応することが可能となる。
That is, regardless of the operational restrictions on the high temperature side heat pump circuit side, it is possible to accurately and stably respond to the demand for thermal use on the low temperature side heat pump circuit side within a certain range. .

【0028】(b)高温側ヒートポンプ回路の側の運転
上の制約から低温側ヒートポンプ回路における回路間熱
授受用凝縮器の運転が低能力レベルに制限されるとして
も、低温側ヒートポンプ回路の全体としては、回路間熱
授受用凝縮器と回路外熱授受用凝縮器との両者の放熱運
転をもって高能力レベルで運転することができ、これに
より、高温側ヒートポンプ回路の側の運転上の制約にか
かわらず、低温側ヒートポンプ回路独自の保有能力を有
効に活用する形態で、低温側ヒートポンプ回路における
低温側蒸発手段や回路外熱授受用凝縮器を種々の熱用途
に対し大きな吸放熱能力で使用するといったことが可能
となる。
(B) Even if the operation of the inter-circuit heat transfer condenser in the low temperature side heat pump circuit is limited to a low capacity level due to operational restrictions on the high temperature side heat pump circuit side, the low temperature side heat pump circuit as a whole Can be operated at a high capacity level by radiating both the inter-circuit heat transfer condenser and the out-of-circuit heat transfer condenser, which allows for operation restrictions on the high temperature side heat pump circuit side. Instead, the low-temperature side heat pump circuit's unique holding capacity is effectively utilized, and the low-temperature side heat pump circuit's low-temperature side evaporating means and external circuit heat transfer condenser are used with great heat absorption / radiation capacity for various heat applications. It becomes possible.

【0029】つまり、低温側ヒートポンプ回路における
保有能力の有効利用率、ひいては装置全体としての保有
能力の有効利用率を向上することができて、相対的に装
置コストを割安にすることができる。
That is, the effective utilization rate of the holding capacity in the low temperature side heat pump circuit, and consequently the effective utilization rate of the holding capacity of the entire apparatus can be improved, and the apparatus cost can be relatively reduced.

【0030】(c)高温側凝縮手段の発生高温と低温側
蒸発手段の発生低温との間に大きな温度差を確保できる
といった利点は従前と同様に保持しながらも、放熱対象
について、互いの温度レベルが大きく異なる複数の放熱
対象が存在する場合や、放熱対象の温度レベルが状況に
よって大きく変化する場合等、高温側凝縮手段と、それ
よりも発生温度が低い回路外熱授受用凝縮器とを、放熱
対象の温度レベルに応じて選別的に放熱機能させること
が可能となる。
(C) While maintaining the advantage that a large temperature difference can be secured between the high temperature generated by the high temperature side condensing means and the low temperature generated by the low temperature side evaporation means, while maintaining the same as before, the temperature of the heat radiating object can be kept at the mutual temperature. When there are multiple heat dissipation targets with greatly different levels, or when the temperature level of the heat dissipation targets changes significantly depending on the situation, etc., the high temperature side condenser means and the outside circuit heat transfer condenser with a lower generated temperature than that The heat radiation function can be selectively performed according to the temperature level of the heat radiation target.

【0031】そして、このことにより、放熱対象に対し
過大な温度差で凝縮手段を放熱機能(熱交換)させると
いった状況を少なくすることができて、過大な温度差で
の放熱運転に起因する有効エネルギ損失の増大やヒート
ポンプ回路運転の不安定化を抑止できる。
As a result, it is possible to reduce the situation in which the condensing means performs the heat radiation function (heat exchange) with an excessive temperature difference with respect to the object to be radiated, and it is possible to effectively perform the heat radiation operation with an excessive temperature difference. An increase in energy loss and instability of heat pump circuit operation can be suppressed.

【0032】〔第2特徴構成の効果〕本発明の第2特徴
構成によれば、複元ヒートポンプの熱装置としての融通
性を高めて、下記(d)〜(f)の効果を得ることがで
きる。
[Effects of Second Characteristic Configuration] According to the second characteristic structure of the present invention, it is possible to enhance the flexibility of the compound heat pump as a heat device and obtain the following effects (d) to (f). it can.

【0033】(d)低温側ヒートポンプ回路における運
転上の制約から低温側凝縮手段の放熱能力が規定され、
これに対し、回路間熱授受用蒸発器の吸熱能力が低温側
凝縮手段の放熱能力に合致するように規制されるにして
も、回路外熱授受用蒸発器の吸熱能力調整による高温側
ヒートポンプ回路の能力調整をもって、高温側凝縮手段
の放熱能力を、その高温側凝縮手段の放熱対象側から要
求される放熱能力に調整するといったことが可能とな
る。
(D) The heat dissipation capability of the low temperature side condenser means is defined due to operational restrictions in the low temperature side heat pump circuit,
On the other hand, even if the heat absorption capacity of the inter-circuit heat transfer evaporator is regulated so as to match the heat dissipation capacity of the low temperature side condensation means, the high temperature side heat pump circuit is adjusted by adjusting the heat absorption capacity of the outside circuit heat transfer evaporator. It is possible to adjust the heat dissipation capacity of the high temperature side condenser means to the heat dissipation capacity required by the heat dissipation target side of the high temperature side condenser means by adjusting the capacity of the above.

【0034】つまり、低温側ヒートポンプ回路の側の運
転上の制約にかかわらず、高温側ヒートポンプ回路の側
における熱的用途の要求に対し、ある範囲で的確かつ安
定的に対応することが可能となる。
In other words, regardless of the operational restrictions on the low temperature side heat pump circuit side, it is possible to accurately and stably meet the demand for thermal use on the high temperature side heat pump circuit side within a certain range. .

【0035】(e)低温側ヒートポンプ回路の側の運転
上の制約から高温側ヒートポンプ回路における回路間熱
授受用蒸発器の運転が低能力レベルに制限されるとして
も、高温側ヒートポンプ回路の全体としては、回路間熱
授受用蒸発器と回路外熱授受用蒸発器との両者の吸熱運
転をもって高能力レベルで運転することができ、これに
より、低温側ヒートポンプ回路の側の運転上の制約にか
かわらず、高温側ヒートポンプ回路独自の保有能力を有
効に活用する形態で、高温側ヒートポンプ回路における
高温側凝縮手段や回路外熱授受用蒸発器を種々の熱用途
に対し大きな放吸熱能力で使用するといったことが可能
となる。
(E) Even if the operation of the inter-circuit heat transfer evaporator in the high temperature side heat pump circuit is restricted to a low capacity level due to operational restrictions on the low temperature side heat pump circuit side, the high temperature side heat pump circuit as a whole Is capable of operating at a high capacity level by endothermic operation of both the inter-circuit heat transfer evaporator and the outside-circuit heat transfer evaporator, which prevents operating restrictions on the low temperature side heat pump circuit side. Instead, the high temperature side heat pump circuit's unique holding capacity is effectively utilized, and the high temperature side condensing means in the high temperature side heat pump circuit and the external heat transfer evaporator are used with a large heat releasing and absorbing capacity for various heat applications. It becomes possible.

【0036】つまり、高温側ヒートポンプ回路における
保有能力の有効利用率、ひいては装置全体としての保有
能力の有効利用率を向上することができて、相対的に装
置コストを割安にすることができる。
That is, the effective utilization rate of the holding capacity in the high temperature side heat pump circuit, and consequently the effective utilization rate of the holding capacity of the entire apparatus, can be improved, and the apparatus cost can be relatively reduced.

【0037】(f)高温側凝縮手段の発生高温と低温側
蒸発手段の発生低温との間に大きな温度差を確保できる
といった利点は従前と同様に保持しながらも、吸熱対象
について、互いの温度レベルが大きく異なる複数の吸熱
対象が存在する場合や、吸熱対象の温度レベルが状況に
よって大きく変化する場合等、低温側蒸発手段と、それ
よりも発生温度が高い回路外熱授受用蒸発器とを、吸熱
対象の温度レベルに応じて選別的に吸熱機能させること
が可能となる。
(F) The advantage that a large temperature difference can be secured between the high temperature generated by the high temperature side condensing means and the low temperature generated by the low temperature side evaporation means is maintained as before, but the temperature of the heat absorbing objects is kept at the mutual temperature. If there are multiple endothermic objects with greatly different levels, or if the temperature level of the endothermic objects changes significantly depending on the situation, etc., the low temperature side evaporating means and the external heat transfer evaporator with a higher generated temperature than that are used. The heat absorption function can be selectively performed according to the temperature level of the heat absorption target.

【0038】そして、このことにより、吸熱対象に対し
過大な温度差で蒸発手段を吸熱機能(熱交換)させると
いった状況を少なくすることができて、過大な温度差で
の吸熱運転に起因する有効エネルギ損失の増大やヒート
ポンプ回路運転の不安定化を抑止できる。
As a result, it is possible to reduce the situation in which the evaporating means has an endothermic function (heat exchange) with an excessive temperature difference with respect to the endothermic object, which is effective due to the endothermic operation with an excessive temperature difference. An increase in energy loss and instability of heat pump circuit operation can be suppressed.

【0039】〔第3特徴構成の効果〕本発明の第3特徴
構成によれば、上記の第1特徴構成による(a)〜
(c)の効果と、第2特徴構成による(d)〜(f)の
効果との双方を得ることができ、複元ヒートポンプの熱
装置としての融通性、装置機能性をさらに高く確保する
ことができる。
[Effect of Third Characteristic Configuration] According to the third characteristic configuration of the present invention, (a) to (a) of the first characteristic configuration described above
It is possible to obtain both the effect of (c) and the effects of (d) to (f) according to the second characteristic configuration, and to secure higher flexibility and device functionality as a heat device of the multiple heat pump. You can

【0040】[0040]

【実施例】【Example】

〔第1実施例〕図1及び図2は高沸点冷媒Raと低沸点
冷媒Rbとの二種の冷媒を用いて給湯と冷暖房を行う二
元ヒートポンプ装置を示し、図1では給湯と冷房を行う
「夏期モード」での冷媒流れを、また、図2では給湯と
暖房を行う「冬期モード」での冷媒流れを示す。
[First Embodiment] FIGS. 1 and 2 show a binary heat pump device for hot water supply and cooling and heating using two kinds of refrigerants, a high boiling point refrigerant Ra and a low boiling point refrigerant Rb. In FIG. 1, hot water supply and cooling are performed. FIG. 2 shows the refrigerant flow in the “summer mode”, and FIG. 2 shows the refrigerant flow in the “winter mode” for hot water supply and heating.

【0041】Cpaは高沸点冷媒Raを循環させる高温
側圧縮機、Cpbは低沸点冷媒Rbを循環させる低温側
圧縮機であり、Nwは給湯器Zwにおいて給湯用水Wを
加熱する水加熱用熱交換器、Noは外気OAを吸放熱対
象とする室外熱交換器、Niは冷暖房対象域に供給する
空気SAを温調(冷房では冷却、暖房では加熱)する室
内熱交換器である。
Cpa is a high temperature side compressor that circulates the high boiling point refrigerant Ra, Cpb is a low temperature side compressor that circulates the low boiling point refrigerant Rb, and Nw is a heat exchanger for heating water for heating the hot water W in the water heater Zw. A unit, No is an outdoor heat exchanger that absorbs and radiates the outside air OA, and Ni is an indoor heat exchanger that controls the temperature of the air SA supplied to the cooling and heating target area (cooling in cooling, heating in heating).

【0042】Foは室外熱交換器Noに外気OAを通風
する外気ファン、Fiは室内熱交換器Niにより温調し
た空気SAを冷暖房対象域に給送する給気ファンであ
る。
Fo is an outside air fan that ventilates the outside air OA to the outdoor heat exchanger No, and Fi is an air supply fan that feeds the air SA whose temperature is controlled by the indoor heat exchanger Ni to the cooling / heating target area.

【0043】Nxは、相互熱交換経路として蒸発器経路
Exと凝縮器経路Cxを備える中継熱交換器であり、こ
の中継熱交換器Nxでは、蒸発器経路Exに対し減圧膨
張後の高沸点冷媒Raを供給し、かつ、凝縮器経路Cx
に対し高圧気相の低沸点冷媒Rbを供給することで、そ
れら経路Ex,Cx間での熱交換(すなわち、凝縮熱,
気化熱の授受)により、蒸発器経路Exでは高沸点冷媒
Raを通過に伴い蒸発させ、かつ、凝縮器経路Cxでは
低沸点冷媒Rbを通過に伴い凝縮させる。
Nx is a relay heat exchanger having an evaporator passage Ex and a condenser passage Cx as mutual heat exchange passages. In this relay heat exchanger Nx, a high boiling point refrigerant after decompression expansion with respect to the evaporator passage Ex. Supply Ra and condenser path Cx
By supplying the high-boiling-point low-boiling-point refrigerant Rb to Rx, heat exchange between the paths Ex and Cx (that is, heat of condensation,
By exchanging heat of vaporization), the high-boiling-point refrigerant Ra is evaporated in the evaporator path Ex as it passes, and the low-boiling-point refrigerant Rb is condensed in the condenser path Cx as it passes.

【0044】ex1は中継熱交換器Nxの蒸発器経路E
xに対する第1膨張弁、ex2は室内熱交換器Niに対
する第2膨張弁、ex3は室外熱交換器Noに対する第
3膨張弁であり、これら膨張弁ex1,ex2,ex3
は、本来の膨張弁として機能させる状態と単なる流量調
整弁として機能させる状態とに切り換え可能に構成して
ある。
Ex1 is the evaporator path E of the relay heat exchanger Nx.
The first expansion valve for x, ex2 is the second expansion valve for the indoor heat exchanger Ni, and ex3 is the third expansion valve for the outdoor heat exchanger No. These expansion valves ex1, ex2, ex3
Is configured to be switchable between a state in which it functions as an original expansion valve and a state in which it functions as a simple flow rate adjusting valve.

【0045】v1〜v5は、冷媒経路の切り換えや冷媒
流量の調整を行う第1ないし第5の調整弁である。
Reference numerals v1 to v5 are first to fifth adjusting valves for switching the refrigerant path and adjusting the refrigerant flow rate.

【0046】なお、図中、黒塗りの弁は閉弁状態を示
し、白抜きの弁は開弁状態を示す。
In the figure, the black valves show the closed state, and the white valves show the open state.

【0047】この二元ヒートポンプ装置では、夏期モー
ド及び冬期モードの夫々において、冷媒経路が互に独立
した高温側ヒートポンプ回路Saと低温側ヒートポンプ
回路Sbを装置内に形成し、高温側ヒートポンプ回路S
aでは、高沸点冷媒Raを高温側圧縮機Cpaにより高
温側凝縮手段Caと高温側蒸発手段Eaとにわたって循
環させ、一方、低温側ヒートポンプ回路Sbでは、低沸
点冷媒Rbを低温側圧縮機Cpbにより低温側凝縮手段
Cbと低温側蒸発手段Ebとにわたって循環させる装置
形態としてある。
In this dual heat pump device, a high temperature side heat pump circuit Sa and a low temperature side heat pump circuit Sb having independent refrigerant paths are formed in the device in each of the summer mode and the winter mode, and the high temperature side heat pump circuit S is formed.
In a, the high boiling point refrigerant Ra is circulated by the high temperature side compressor Cpa over the high temperature side condensing means Ca and the high temperature side evaporating means Ea, while in the low temperature side heat pump circuit Sb, the low boiling point refrigerant Rb is passed by the low temperature side compressor Cpb. This is an apparatus configuration in which the low temperature side condensation means Cb and the low temperature side evaporation means Eb are circulated.

【0048】また、夏期モード及び冬期モードの夫々に
おいて、低温側ヒートポンプ回路Sbにおける低温側凝
縮手段Cbは、回路間熱授受用の凝縮器Cbiと回路外
熱授受用の凝縮器Cboとで構成し、そして、回路間熱
授受用の凝縮器Cbiは、高温側ヒートポンプ回路Sa
における高温側蒸発手段Eaと相互熱交換させ、一方、
回路外熱授受用の凝縮器Cboは、高温側ヒートポンプ
回路Sa及び低温側ヒートポンプ回路Sbの外部におけ
る回路外放熱対象Mhと熱交換させる装置形態としてあ
る。
In each of the summer mode and the winter mode, the low temperature side condensing means Cb in the low temperature side heat pump circuit Sb is composed of a condenser Cbi for exchanging heat between circuits and a condenser Cbo for exchanging heat outside the circuit. , And the condenser Cbi for heat exchange between circuits is the high temperature side heat pump circuit Sa.
And heat exchange with the high temperature side evaporation means Ea in
The condenser Cbo for exchanging heat from the outside of the circuit is in a device form for exchanging heat with the outside heat radiation target Mh outside the high temperature side heat pump circuit Sa and the low temperature side heat pump circuit Sb.

【0049】つまり、熱の基本的な取扱い形態として
は、低温側ヒートポンプ回路Sbにより低温の吸熱対象
L(冷却用途では冷却対象)から汲み上げて昇温した熱
のうち、一部については回路外熱授受用の凝縮器Cbo
において中温の回路外放熱対象Mh(加熱用途では中温
の加熱対象)に放熱し、他部については、回路間熱授受
用の凝縮器Cbiを介し高温側ヒートポンプ回路Saに
受け渡して、高温側ヒートポンプ回路Saによりさらに
昇温した上で、高温側凝縮手段Caにおいて高温の放熱
対象H(加熱用途では高温の加熱対象)に放熱する。
That is, as a basic form of handling heat, a part of the heat that is pumped up by the low temperature side heat pump circuit Sb from the low temperature endothermic target L (cooling target in the cooling application) and is heated outside the circuit. Transfer condenser Cbo
In the middle temperature outside heat dissipation target Mh (in the heating application, the middle temperature heating target), the other part is transferred to the high temperature side heat pump circuit Sa via the inter-circuit heat transfer condenser Cbi, and is transferred to the high temperature side heat pump circuit. After the temperature is further raised by Sa, the heat is radiated to the high-temperature heat radiating target H (high-temperature heat target in the heating application) in the high temperature side condensing means Ca.

【0050】夏期モード、及び、冬期モード夫々の具体
的運転形態については次の通りである。
Specific operation modes of the summer mode and the winter mode are as follows.

【0051】(夏期モード)夏期モードでは(図1参
照)、中継熱交換器Nxにおける蒸発器経路Exを高温
側蒸発手段Eaとし、かつ、水加熱用熱交換器Nwを高
温側凝縮手段Caとして、高温側ヒートポンプ回路Sa
を形成する。
(Summer Mode) In the summer mode (see FIG. 1), the evaporator path Ex in the relay heat exchanger Nx serves as the high temperature side evaporating means Ea, and the water heating heat exchanger Nw serves as the high temperature side condensing means Ca. , High temperature side heat pump circuit Sa
To form.

【0052】また、室内熱交換器Niを低温側蒸発手段
Ebとし、かつ、中継熱交換器Nxにおける凝縮器経路
Cxを回路間熱授受用の凝縮器Cbiとし、さらに、室
外熱交換器Noを回路外熱授受用の凝縮器Cboとし
て、低温側ヒートポンプ回路Sbを形成する。
The indoor heat exchanger Ni is used as the low temperature side evaporation means Eb, the condenser path Cx in the relay heat exchanger Nx is used as the inter-circuit heat transfer condenser Cbi, and the outdoor heat exchanger No is used. A low temperature side heat pump circuit Sb is formed as a condenser Cbo for transferring and receiving heat from outside the circuit.

【0053】すなわち、具体的冷媒流れとして高沸点冷
媒Raについては、高温側圧縮機Cpaから吐出される
高圧気相(図中、黒塗りの太線で示す)の高沸点冷媒R
aを水加熱用熱交換器Nwにおいて高温の凝縮温度で凝
縮させ、この凝縮熱により前記の高温放熱対象Hとして
の給湯用水Wを給湯可能温度に加熱する。
That is, for the high-boiling-point refrigerant Ra as a concrete refrigerant flow, the high-boiling-point refrigerant R in the high-pressure gas phase (indicated by a thick black line in the figure) discharged from the high temperature side compressor Cpa.
a is condensed in the water heating heat exchanger Nw at a high condensing temperature, and the condensing heat heats the hot water supply water W as the high temperature heat radiation target H to a hot water supplyable temperature.

【0054】水加熱用熱交換器Nwから送出される液相
(図中、ハッチングを施した太線で示す)の高沸点冷媒
Raは、第1膨張弁ex1により減圧膨張させて低圧湿
り蒸気の状態(図中、点ハッチングを施した太線で示
す)で中継熱交換器Nxの蒸発器経路Exに送り、この
蒸発器経路Exにおいて凝縮器経路Cxの側から与えら
れる低沸点冷媒Rbの凝縮熱により中温の蒸発温度で蒸
発させる。
The high-boiling-point refrigerant Ra in the liquid phase (shown by the hatched thick line in the figure) delivered from the water heating heat exchanger Nw is decompressed and expanded by the first expansion valve ex1 to form a low-pressure wet vapor state. (Indicated by a thick line with dot hatching in the figure), it is sent to the evaporator path Ex of the relay heat exchanger Nx, and due to the heat of condensation of the low boiling point refrigerant Rb given from the side of the condenser path Cx in the evaporator path Ex. Evaporate at medium evaporation temperature.

【0055】そして、中継熱交換器Nxの蒸発器経路E
xから低圧気相の状態(図中、白抜きの太線で示す)で
送出される高沸点冷媒Raを高温側圧縮機Cpaの吸入
側に戻す。
Then, the evaporator path E of the relay heat exchanger Nx
The high-boiling-point refrigerant Ra delivered from x in the low-pressure gas phase state (indicated by a white thick line in the figure) is returned to the suction side of the high-temperature side compressor Cpa.

【0056】一方、低沸点冷媒Rbについては、低温側
圧縮機Cpbから吐出される高圧気相(黒塗りの太線)
の低沸点冷媒Rbを、中継熱交換器Nxにおける凝縮器
経路Cxと室外熱交換器Noとに分流供給して、これら
凝縮器経路Cx及び室外熱交換器Noの夫々において中
温の凝縮温度で凝縮させ、これにより、凝縮器経路Cx
での凝縮熱を蒸発器経路Exの側の高沸点冷媒Raに対
し付与するとともに、室外熱交換器Noでの凝縮熱を前
記の中温の回路外放熱対象Mhとしての外気OAに放熱
する。
On the other hand, for the low boiling point refrigerant Rb, the high pressure gas phase discharged from the low temperature side compressor Cpb (black thick line)
Low-boiling-point refrigerant Rb of the relay heat exchanger Nx is split-flow-supplied to the condenser path Cx and the outdoor heat exchanger No, and the condenser path Cx and the outdoor heat exchanger No are condensed at medium condensing temperatures. Which causes the condenser path Cx
The heat of condensation in the above is given to the high-boiling-point refrigerant Ra on the side of the evaporator path Ex, and the heat of condensation in the outdoor heat exchanger No is radiated to the outside air OA as the medium temperature outside heat radiation target Mh.

【0057】中継熱交換器Nxにおける凝縮器経路C
x、及び、室外熱交換器Noの夫々から送出される液相
(ハッチングを施した太線)の低沸点冷媒Rbは、第2
膨張弁ex2により減圧膨張させて低圧湿り蒸気の状態
(点ハッチングを施した太線)で室内熱交換器Niに送
り、この室内熱交換器Niにおいて低温の蒸発温度で蒸
発させ、この蒸発の際の吸熱(気化熱奪取)により前記
の低温吸熱対象Lとしての温調対象空気SAを冷却す
る。
Condenser path C in relay heat exchanger Nx
x and the low boiling point refrigerant Rb in the liquid phase (thick line with hatching) sent from each of the outdoor heat exchanger No.
The low pressure wet steam is expanded by the expansion valve ex2 and sent to the indoor heat exchanger Ni in a low-pressure wet vapor state (thick line with hatching), and is evaporated at a low evaporation temperature in the indoor heat exchanger Ni. The temperature control target air SA as the low temperature heat absorption target L is cooled by heat absorption (desorption of heat of vaporization).

【0058】そして、室内熱交換器Niから低圧気相の
状態(白抜きの太線)で送出される低沸点冷媒Rbを低
温側圧縮機Cpbの吸入側に戻す。
Then, the low boiling point refrigerant Rb delivered from the indoor heat exchanger Ni in a low pressure gas phase state (white thick line) is returned to the suction side of the low temperature side compressor Cpb.

【0059】なお、この夏期モードにおいては、給湯器
Zwにおいて所望の給湯能力が得られるように、高温側
圧縮機Cpaの出力調整により高温側凝縮手段Caとし
ての水加熱用熱交換器Nwの加熱能力(放熱能力)を調
整する。
In the summer mode, the heating of the water heating heat exchanger Nw as the high temperature side condensing means Ca is performed by adjusting the output of the high temperature side compressor Cpa so that a desired hot water supply capacity can be obtained in the water heater Zw. Adjust the capacity (heat dissipation capacity).

【0060】また、この給湯能力の調整とともに、冷暖
房対象域が所望の冷房状態になり、かつ、中継熱交換器
Nxにおいて回路間熱授受用凝縮器Cbiとしての凝縮
器経路Cxの放熱能力が高温側蒸発手段Eaとしての蒸
発器経路Exの吸熱能力に合致するように、低温側圧縮
機Cpbの出力調整により低温側蒸発手段Ebとしての
室内熱交換器Niの冷却能力(吸熱能力)を調整すると
ともに、第1調整弁v1及び第2調整弁v2の調整によ
り、回路間熱授受用凝縮器Cbiとしての凝縮器経路C
xの放熱能力と、回路外熱授受用凝縮器Cboとしての
室外熱交換器Noの放熱能力とを調整する。
With the adjustment of the hot water supply capacity, the cooling / heating target area is brought into a desired cooling state, and the heat dissipation capacity of the condenser path Cx as the inter-circuit heat transfer condenser Cbi in the relay heat exchanger Nx is high. The cooling capacity (heat absorption capacity) of the indoor heat exchanger Ni as the low temperature side evaporation means Eb is adjusted by adjusting the output of the low temperature side compressor Cpb so as to match the heat absorption capacity of the evaporator path Ex as the side evaporation means Ea. At the same time, by adjusting the first adjusting valve v1 and the second adjusting valve v2, the condenser path C as the inter-circuit heat transfer condenser Cbi
The heat radiation capacity of x and the heat radiation capacity of the outdoor heat exchanger No as the condenser Cbo for external heat transfer are adjusted.

【0061】(冬期モード)冬期モードでは(図2参
照)、夏期モードと同様、中継熱交換器Nxにおける蒸
発器経路Exを高温側蒸発手段Eaとし、かつ、水加熱
用熱交換器Nwを高温側凝縮手段Caとして、高温側ヒ
ートポンプ回路Saを形成する。
(Winter Mode) In the winter mode (see FIG. 2), as in the summer mode, the evaporator path Ex in the relay heat exchanger Nx serves as the high temperature side evaporating means Ea, and the water heating heat exchanger Nw has a high temperature. A high temperature side heat pump circuit Sa is formed as the side condensing means Ca.

【0062】一方、室外熱交換器Noを低温側蒸発手段
Ebとし、かつ、中継熱交換器Nxにおける凝縮器経路
Cxを回路間熱授受用の凝縮器Cbiとし、さらに、室
内熱交換器Niを回路外熱授受用の凝縮器Cboとし
て、低温側ヒートポンプ回路Sbを形成する。
On the other hand, the outdoor heat exchanger No is used as the low temperature side evaporation means Eb, the condenser path Cx in the relay heat exchanger Nx is used as the inter-circuit heat transfer condenser Cbi, and the indoor heat exchanger Ni is used. A low temperature side heat pump circuit Sb is formed as a condenser Cbo for transferring and receiving heat from outside the circuit.

【0063】すなわち、具体的冷媒流れとして高沸点冷
媒Raについては、夏期モードと同様、高温側圧縮機C
paから吐出される高圧気相(黒塗りの太線)の高沸点
冷媒Raを水加熱用熱交換器Nwにおいて高温の凝縮温
度で凝縮させ、この凝縮熱により前記の高温放熱対象H
としての給湯用水Wを給湯可能温度に加熱する。
That is, for the high boiling point refrigerant Ra as a specific refrigerant flow, the high temperature side compressor C is used as in the summer mode.
The high-boiling-point refrigerant Ra of a high-pressure gas phase (thick black line) discharged from pa is condensed at a high condensing temperature in the water heating heat exchanger Nw, and this condensing heat causes the above-mentioned high-temperature heat dissipation target H
The hot water W for heating is heated to a temperature at which hot water can be supplied.

【0064】水加熱用熱交換器Nwから送出される液相
(ハッチングを施した太線)の高沸点冷媒Raは、第1
膨張弁ex1により減圧膨張させて低圧湿り蒸気の状態
(点ハッチングを施した太線)で中継熱交換器Nxの蒸
発器経路Exに送り、この蒸発器経路Exにおいて凝縮
器経路Cxの側から与えられる低沸点冷媒Rbの凝縮熱
により中温の蒸発温度で蒸発させる。
The high-boiling-point refrigerant Ra in the liquid phase (thick line with hatching) sent from the water heating heat exchanger Nw is the first
It is expanded under reduced pressure by the expansion valve ex1 and sent to the evaporator path Ex of the relay heat exchanger Nx in the state of low-pressure wet steam (thick line with point hatching), and is given from the condenser path Cx side in this evaporator path Ex. The heat of condensation of the low boiling point refrigerant Rb evaporates at a medium evaporation temperature.

【0065】そして、中継熱交換器Nxの蒸発器経路E
xから低圧気相の状態(白抜きの太線)で送出される高
沸点冷媒Raを高温側圧縮機Cpaの吸入側に戻す。
Then, the evaporator path E of the relay heat exchanger Nx
The high-boiling-point refrigerant Ra sent from x in the low-pressure gas phase state (white thick line) is returned to the suction side of the high-temperature side compressor Cpa.

【0066】一方、低沸点冷媒Rbについては、低温側
圧縮機Cpbから吐出される高圧気相(黒塗りの太線)
の低沸点冷媒Rbを、中継熱交換器Nxにおける凝縮器
経路Cxと室内熱交換器Niとに分流供給して、これら
凝縮器経路Cx及び室内熱交換器Niの夫々において中
温の凝縮温度で凝縮させ、これにより、凝縮器経路Cx
での凝縮熱を蒸発器経路Exの側の高沸点冷媒Raに対
し付与するとともに、室内熱交換器Niでの凝縮熱によ
り前記の中温の回路外放熱対象Mhとしての温調対象空
気SAを加熱する。
On the other hand, for the low boiling point refrigerant Rb, the high pressure gas phase discharged from the low temperature side compressor Cpb (black thick line)
Low-boiling-point refrigerant Rb of the relay heat exchanger Nx is diverted and supplied to the condenser path Cx and the indoor heat exchanger Ni, and condensed in each of the condenser path Cx and the indoor heat exchanger Ni at an intermediate condensing temperature. Which causes the condenser path Cx
The condensation heat in the high-boiling-point refrigerant Ra on the side of the evaporator path Ex, and the condensation heat in the indoor heat exchanger Ni heats the temperature-controlled air SA as the medium-temperature outside heat radiation target Mh. To do.

【0067】中継熱交換器Nxにおける凝縮器経路C
x、及び、室内熱交換器Niの夫々から送出される液相
(ハッチングを施した太線)の低沸点冷媒Rbは、第3
膨張弁ex3により減圧膨張させて低圧湿り蒸気の状態
(点ハッチングを施した太線)で室外熱交換器Noに送
り、この室外熱交換器Noにおいて低温の蒸発温度で蒸
発させ、この蒸発の際、前記の低温吸熱対象Lとしての
外気OAから吸熱(気化熱奪取)させる。
Condenser path C in relay heat exchanger Nx
x and the low-boiling-point refrigerant Rb in the liquid phase (thick line with hatching) sent from each of the indoor heat exchanger Ni are the third
It is decompressed and expanded by the expansion valve ex3 and sent to the outdoor heat exchanger No in a low-pressure wet steam state (thick line with hatching), and is evaporated at a low evaporation temperature in this outdoor heat exchanger No. The outside air OA as the above-mentioned low temperature heat absorption target L is made to absorb heat (take heat of vaporization).

【0068】そして、室外熱交換器Noから低圧気相の
状態(白抜きの太線)で送出される低沸点冷媒Rbを低
温側圧縮機Cpbの吸入側に戻す。
Then, the low boiling point refrigerant Rb delivered from the outdoor heat exchanger No in a low pressure gas phase state (white thick line) is returned to the suction side of the low temperature side compressor Cpb.

【0069】なお、この冬期モードにおいては、給湯器
Zwにおいて所望の給湯能力が得られるように、高温側
圧縮機Cpaの出力調整により高温側凝縮手段Caとし
ての水加熱用熱交換器Nwの加熱能力(放熱能力)を調
整する。
In this winter mode, the water heating heat exchanger Nw as the high temperature side condenser Ca is heated by adjusting the output of the high temperature side compressor Cpa so that the desired hot water supply capacity can be obtained in the water heater Zw. Adjust the capacity (heat dissipation capacity).

【0070】また、この給湯能力の調整とともに、冷暖
房対象域が所望の暖房状態になり、かつ、中継熱交換器
Nxにおいて回路間熱授受用凝縮器Cbiとしての凝縮
器経路Cxの放熱能力が高温側蒸発手段Eaとしての蒸
発器経路Exの吸熱能力に合致するように、低温側圧縮
機Cpbの出力調整、並びに、第1調整弁v1及び第3
調整弁v3の調整をもって、回路外熱授受用凝縮器Cb
oとしての室内熱交換器Niの加熱能力(放熱能力)
と、回路間熱授受用凝縮器Cbiとしての凝縮器経路C
xの放熱能力とを調整する。
In addition to the adjustment of the hot water supply capacity, the heating / cooling target area becomes a desired heating state, and the heat dissipation capacity of the condenser path Cx as the inter-circuit heat transfer condenser Cbi in the relay heat exchanger Nx becomes high. The output adjustment of the low temperature side compressor Cpb, and the first adjustment valve v1 and the third adjustment valve v1 and the third adjustment valve v1 so as to match the heat absorption capacity of the evaporator path Ex as the side evaporation means Ea.
By adjusting the adjusting valve v3, the condenser Cb for external heat transfer
Heating capacity of indoor heat exchanger Ni as o (radiation capacity)
And a condenser path C as a condenser Cbi for heat transfer between circuits
x heat dissipation capability.

【0071】〔第2実施例〕図3及び図4は高沸点冷媒
Raと低沸点冷媒Rbとの二種の冷媒を用いて冷蔵と冷
暖房を行う二元ヒートポンプ装置を示し、図3では冷蔵
と冷房を行う「夏期モード」での冷媒流れを、また、図
4では冷蔵と暖房を行う「冬期モード」での冷媒流れを
示す。
[Second Embodiment] FIGS. 3 and 4 show a binary heat pump device for refrigerating and cooling / heating using two kinds of refrigerants, a high boiling point refrigerant Ra and a low boiling point refrigerant Rb. In FIG. Fig. 4 shows the refrigerant flow in the "summer mode" for cooling, and Fig. 4 shows the refrigerant flow in the "winter mode" for refrigeration and heating.

【0072】なお、この第2実施例に示す二元ヒートポ
ンプ装置では、高沸点冷媒Raとして、前述の第1実施
例での二元ヒートポンプ装置で採用する高沸点冷媒より
沸点の低い冷媒を用い、また、低沸点冷媒Rbとして
も、前述の第1実施例での二元ヒートポンプ装置で採用
する低沸点冷媒よりさらに沸点の低い冷媒を用いる。
In the binary heat pump apparatus shown in the second embodiment, as the high boiling point refrigerant Ra, a refrigerant having a lower boiling point than the high boiling point refrigerant adopted in the binary heat pump apparatus in the first embodiment is used. Also, as the low boiling point refrigerant Rb, a refrigerant having a lower boiling point than the low boiling point refrigerant used in the binary heat pump device in the first embodiment described above is used.

【0073】Cpaは高沸点冷媒Raを循環させる高温
側圧縮機、Cpbは低沸点冷媒Rbを循環させる低温側
圧縮機であり、Nrは冷蔵庫Zrの庫内を冷却する庫内
冷却用熱交換器、Noは外気OAを吸放熱対象とする室
外熱交換器、Niは冷暖房対象域に供給する空気SAを
温調(冷房では冷却、暖房では加熱)する室内熱交換器
である。
Cpa is a high temperature side compressor that circulates the high boiling point refrigerant Ra, Cpb is a low temperature side compressor that circulates the low boiling point refrigerant Rb, and Nr is a heat exchanger for cooling the inside of the refrigerator Zr. , No is an outdoor heat exchanger that absorbs and radiates the outside air OA, and Ni is an indoor heat exchanger that controls the temperature of the air SA supplied to the cooling and heating target area (cooling in cooling, heating in heating).

【0074】Foは室外熱交換器Noに外気OAを通風
する外気ファン、Fiは室内熱交換器Niにより温調し
た空気SAを冷暖房対象域に給送する給気ファンであ
る。
Fo is an outside air fan for ventilating the outside air OA to the outdoor heat exchanger No, and Fi is an air supply fan for feeding the air SA temperature-controlled by the indoor heat exchanger Ni to the cooling / heating target area.

【0075】Nyは、相互熱交換経路として蒸発器経路
Eyと凝縮器経路Cyを備える中継熱交換器であり、こ
の中継熱交換器Nyでは、蒸発器経路Eyに対し減圧膨
張後の高沸点冷媒Raを供給し、かつ、凝縮器経路Cy
に対し高圧気相の低沸点冷媒Rbを供給することで、そ
れら経路Ey,Cy間での熱交換(すなわち、凝縮熱,
気化熱の授受)により、蒸発器経路Eyでは高沸点冷媒
Raを通過に伴い蒸発させ、かつ、凝縮器経路Cyでは
低沸点冷媒Rbを通過に伴い凝縮させる。
Ny is a relay heat exchanger having an evaporator passage Ey and a condenser passage Cy as mutual heat exchange passages. In this relay heat exchanger Ny, a high boiling point refrigerant after decompression expansion with respect to the evaporator passage Ey. Ra is supplied and the condenser path Cy
By supplying the low-boiling-point refrigerant Rb in the high-pressure gas phase to the heat exchange between the paths Ey and Cy (that is, the heat of condensation,
By exchanging heat of vaporization), the high-boiling-point refrigerant Ra is evaporated in the evaporator path Ey as it passes, and the low-boiling-point refrigerant Rb is condensed in the condenser path Cy as it passes.

【0076】ex2は室内熱交換器Niに対する第2膨
張弁、ex3は室外熱交換器Noに対する第3膨張弁、
ex4は中継熱交換器Nyの蒸発器経路Eyに対する第
4膨張弁、ex5は庫内冷却用熱交換器Nrに対する第
5膨張弁であり、これらex2〜ex5は、本来の膨張
弁として機能させる状態と単なる流量調整弁として機能
させる状態とに切り換え可能に構成してある。
Ex2 is a second expansion valve for the indoor heat exchanger Ni, ex3 is a third expansion valve for the outdoor heat exchanger No,
ex4 is a fourth expansion valve for the evaporator passage Ey of the relay heat exchanger Ny, ex5 is a fifth expansion valve for the internal cooling heat exchanger Nr, and these ex2 to ex5 are functions as the original expansion valve. And a state in which it functions as a simple flow rate adjusting valve.

【0077】v2〜v5は冷媒経路の切り換えを行う第
2ないし第5の調整弁である。
Reference numerals v2 to v5 are second to fifth adjusting valves for switching the refrigerant paths.

【0078】なお、図中、黒塗りの弁は閉弁状態を示
し、白抜きの弁は開弁状態を示す。
In the figure, the black valves show the closed state, and the white valves show the open state.

【0079】この二元ヒートポンプ装置では、夏期モー
ド及び冬期モードの夫々において、冷媒経路が互に独立
した高温側ヒートポンプ回路Saと低温側ヒートポンプ
回路Sbを装置内に形成し、高温側ヒートポンプ回路S
aでは、高沸点冷媒Raを高温側圧縮機Cpaにより高
温側凝縮手段Caと高温側蒸発手段Eaとにわたって循
環させ、一方、低温側ヒートポンプ回路Sbでは、低沸
点冷媒Rbを低温側圧縮機Cpbにより低温側凝縮手段
Cbと低温側蒸発手段Ebとにわたって循環させる装置
形態としてある。
In this binary heat pump device, a high temperature side heat pump circuit Sa and a low temperature side heat pump circuit Sb having mutually independent refrigerant paths are formed in the device in each of the summer mode and the winter mode, and the high temperature side heat pump circuit S is formed.
In a, the high boiling point refrigerant Ra is circulated by the high temperature side compressor Cpa over the high temperature side condensing means Ca and the high temperature side evaporating means Ea, while in the low temperature side heat pump circuit Sb, the low boiling point refrigerant Rb is passed by the low temperature side compressor Cpb. This is an apparatus configuration in which the low temperature side condensation means Cb and the low temperature side evaporation means Eb are circulated.

【0080】また、夏期モード及び冬期モードの夫々に
おいて、高温側ヒートポンプ回路Saにおける高温側蒸
発手段Eaは、回路間熱授受用の蒸発器Eaiと回路外
熱授受用の蒸発器Eaoとで構成し、そして、回路間熱
授受用の蒸発器Eaiは、低温側ヒートポンプ回路Sb
における低温側凝縮手段Cbと相互熱交換させ、一方、
回路外熱授受用の蒸発器Eaoは、高温側ヒートポンプ
回路Sa及び低温側ヒートポンプ回路Sbの外部におけ
る回路外吸熱対象Mcと熱交換させる装置形態としてあ
る。
In each of the summer mode and the winter mode, the high temperature side evaporating means Ea in the high temperature side heat pump circuit Sa is composed of an evaporator Eai for transferring heat between circuits and an evaporator Eao for transferring heat outside the circuit. And, the evaporator Eai for heat exchange between circuits is the low temperature side heat pump circuit Sb.
At the low temperature side condensing means Cb,
The external circuit heat transfer evaporator Eao is in the form of a device that exchanges heat with the external circuit heat absorption target Mc outside the high temperature side heat pump circuit Sa and the low temperature side heat pump circuit Sb.

【0081】つまり、熱の基本的な取扱い形態として
は、低温側ヒートポンプ回路Sbにより低温の吸熱対象
L(冷却用途では冷却対象)から汲み上げて昇温させた
熱を回路間熱授受用の蒸発器Eaiにおいて高温側ヒー
トポンプ回路Saに吸熱させるとともに、中温の回路外
吸熱対象Mc(冷却用途では中温の冷却対象)からも回
路外熱授受用の蒸発器Eaoにおいて高温側ヒートポン
プ回路Saに吸熱させ、そして、これら吸熱させた熱を
高温側ヒートポンプ回路Saにより昇温した上で、高温
側凝縮手段Caにおいて高温の放熱対象H(加熱用途で
は高温の加熱対象)に放熱する。
That is, as a basic form of heat treatment, the evaporator for transferring heat between the circuits heats the pumped-up heat from the low-temperature heat absorption target L (cooling target in cooling application) by the low-temperature side heat pump circuit Sb. In Eai, the high temperature side heat pump circuit Sa is made to absorb heat, and also from the medium temperature outside circuit heat absorption target Mc (medium temperature cooling target in cooling application), the high temperature side heat pump circuit Sa is made to absorb heat in the outside circuit heat transfer evaporator Eao, and Then, after the absorbed heat is raised by the high temperature side heat pump circuit Sa, it is radiated to the high temperature heat radiating target H (high temperature heating target in the heating application) in the high temperature side condensing means Ca.

【0082】夏期モード、及び、冬期モード夫々の具体
的運転形態については次の通りである。
Specific operation modes of the summer mode and the winter mode are as follows.

【0083】(夏期モード)夏期モードでは(図3参
照)、室外熱交換器Noを高温側凝縮手段Caとし、か
つ、中継熱交換器Nyにおける蒸発器経路Eyを回路間
熱授受用の蒸発器Eaiとし、さらに、室内熱交換器N
iを回路外熱授受用の蒸発器Eaoとして、高温側ヒー
トポンプ回路Saを形成する。
(Summer Mode) In the summer mode (see FIG. 3), the outdoor heat exchanger No is used as the high temperature side condensing means Ca, and the evaporator path Ey in the relay heat exchanger Ny is used for the heat transfer between circuits. Eai and indoor heat exchanger N
The high temperature side heat pump circuit Sa is formed by using i as an evaporator Eao for transferring and receiving heat outside the circuit.

【0084】また、中継熱交換器Nyにおける凝縮器経
路Cyを低温側凝縮手段Cbとし、かつ、庫内冷却用熱
交換器Nrを低温側蒸発手段Ebとして、低温側ヒート
ポンプ回路Sbを形成する。
Further, the condenser path Cy in the relay heat exchanger Ny is used as the low temperature side condensing means Cb, and the internal heat exchanger Nr is used as the low temperature side evaporation means Eb to form the low temperature side heat pump circuit Sb.

【0085】すなわち、具体的冷媒流れとして高沸点冷
媒Raについては、高温側圧縮機Cpaから吐出される
高圧気相(図中、黒塗りの太線で示す)の高沸点冷媒R
aを室外熱交換器Noにおいて高温の凝縮温度で凝縮さ
せ、この凝縮熱を前記の高温放熱対象Hとしての外気O
Aに放熱する。
That is, for the high-boiling-point refrigerant Ra as a concrete refrigerant flow, the high-boiling-point refrigerant R in the high-pressure gas phase (indicated by a thick black line in the figure) discharged from the high temperature side compressor Cpa.
a is condensed at a high condensation temperature in the outdoor heat exchanger No, and the heat of condensation is converted into the outside air O as the high-temperature heat radiation target H.
Dissipate heat to A.

【0086】室外熱交換器Noから送出される液相(図
中、ハッチングを施した太線で示す)の高沸点冷媒Ra
は、第2及び第4膨張弁ex2,ex4により減圧膨張
させて低圧湿り蒸気の状態(図中、点ハッチングを施し
た太線で示す)で中継熱交換器Nyの蒸発器経路Eyと
室内熱交換器Niとに分流供給して、これら蒸発器経路
Ey及び室内熱交換器Niの夫々において中温の蒸発温
度で蒸発させ、これにより、中継熱交換器Nyにおいて
凝縮器経路Cyの側から低沸点冷媒Rbの凝縮熱を吸熱
するとともに、前記の中温の回路外吸熱対象Mcとして
の温調対象空気SAからも吸熱して、その温調対象空気
SAを冷却する。
High-boiling-point refrigerant Ra in the liquid phase (shown by hatched thick line in the figure) delivered from the outdoor heat exchanger No.
Is a low-pressure wet steam state after being decompressed and expanded by the second and fourth expansion valves ex2 and ex4 (indicated by a thick line with dot hatching in the figure), and the indoor heat exchange with the evaporator path Ey of the relay heat exchanger Ny. It is separately supplied to the evaporator Ni and vaporized at a medium evaporation temperature in each of the evaporator passage Ey and the indoor heat exchanger Ni, so that the low boiling point refrigerant from the condenser passage Cy side in the relay heat exchanger Ny. In addition to absorbing the condensation heat of Rb, it also absorbs heat from the temperature control target air SA as the medium temperature external heat absorption target Mc, and cools the temperature control target air SA.

【0087】そして、中継熱交換器Nyの蒸発器経路E
y、及び、室内熱交換器Niの夫々から低圧気相の状態
(図中、白抜きの太線で示す)で送出される高沸点冷媒
Raを高温側圧縮機Cpaの吸入側に戻す。
Then, the evaporator path E of the relay heat exchanger Ny
y and the high-boiling-point refrigerant Ra sent out from each of the indoor heat exchangers Ni in a low-pressure gas phase state (indicated by a thick white line in the drawing) is returned to the suction side of the high-temperature side compressor Cpa.

【0088】一方、低沸点冷媒Rbについては、低温側
圧縮機Cpbから吐出される高圧気相(黒塗りの太線)
の低沸点冷媒Rbを、中継熱交換器Nyにおける凝縮器
経路Cyにおいて中温の凝縮温度で凝縮させ、この凝縮
熱を中継熱交換器Nyにおける蒸発器経路Eyの高沸点
冷媒Raに付与する。
On the other hand, for the low boiling point refrigerant Rb, the high pressure gas phase discharged from the low temperature side compressor Cpb (black thick line)
The low boiling point refrigerant Rb is condensed in the condenser path Cy in the relay heat exchanger Ny at an intermediate condensing temperature, and the heat of condensation is applied to the high boiling point refrigerant Ra in the evaporator path Ey in the relay heat exchanger Ny.

【0089】中継熱交換器Nyの凝縮器経路Cyから送
出される液相(ハッチングを施した太線)の低沸点冷媒
Rbは、第5膨張弁ex5により減圧膨張させて低圧湿
り蒸気の状態(点ハッチングを施した太線)で庫内冷却
用熱交換器Nrに送って、この庫内冷却用熱交換器Nr
において低温の蒸発温度で蒸発させ、この蒸発の際の吸
熱(気化熱奪取)により前記の低温吸熱対象Lとしての
冷蔵庫Zr内の空気を冷却する。
The low-boiling-point refrigerant Rb in the liquid phase (thick line with hatching) sent out from the condenser path Cy of the relay heat exchanger Ny is decompressed and expanded by the fifth expansion valve ex5 to be in a low-pressure wet vapor state (point The thick line (hatched) is sent to the inside cooling heat exchanger Nr, and this inside cooling heat exchanger Nr is sent.
At the low evaporation temperature, the air in the refrigerator Zr as the low temperature endothermic object L is cooled by heat absorption (vaporization heat removal) at the time of this evaporation.

【0090】そして、庫内冷却用熱交換器Nrから低圧
気相の状態(白抜きの太線)で送出される低沸点冷媒R
bを低温側圧縮機Cpbの吸入側に戻す。
Then, the low boiling point refrigerant R sent out from the heat exchanger Nr for cooling the inside of the refrigerator in a low-pressure vapor phase state (white thick line).
b is returned to the suction side of the low temperature side compressor Cpb.

【0091】なお、この夏期モードにおいては、冷蔵庫
Zrにおいて所望の冷蔵能力が得られるように、低温側
圧縮機Cpbの出力調整により低温側蒸発手段Ebとし
ての庫内冷却用熱交換器Nrの冷却能力(吸熱能力)を
調整する。
In this summer mode, in order to obtain a desired refrigerating capacity in the refrigerator Zr, the output of the low temperature side compressor Cpb is adjusted to cool the inside heat exchanger Nr as the low temperature side evaporation means Eb. Adjust the capacity (heat absorption capacity).

【0092】また、この冷蔵能力の調整とともに、冷暖
房対象域が所望の冷房状態になり、かつ、中継熱交換器
Nyにおいて回路間熱授受用蒸発器Eaiとしての蒸発
器経路Eyの吸熱能力が低温側凝縮手段Cbとしての凝
縮器経路Cyの放熱能力に合致するように、高温側圧縮
機Cpaの出力調整、並びに、第2膨張弁ex2及び第
4膨張弁ex4の調整をもって、回路外熱授受用蒸発器
Eaoとしての室内熱交換器Niの冷却能力(吸熱能
力)と、回路間熱授受用蒸発器Eaiとしての蒸発器経
路Eyの吸熱能力とを調整する。
In addition to the adjustment of the refrigerating capacity, the cooling / heating target area is brought into the desired cooling state, and the heat absorption capacity of the evaporator path Ey as the inter-circuit heat transfer evaporator Eai in the relay heat exchanger Ny is low. For the heat transfer outside the circuit by adjusting the output of the high temperature side compressor Cpa and adjusting the second expansion valve ex2 and the fourth expansion valve ex4 so as to match the heat radiation capacity of the condenser path Cy as the side condensation means Cb. The cooling capacity (heat absorption capacity) of the indoor heat exchanger Ni as the evaporator Eao and the heat absorption capacity of the evaporator path Ey as the inter-circuit heat transfer evaporator Eai are adjusted.

【0093】(冬期モード)冬期モードでは(図4参
照)、室内熱交換器Niを高温側凝縮手段Caとし、か
つ、中継熱交換器Nyにおける蒸発器経路Eyを回路間
熱授受用の蒸発器Eaiとし、さらに、室外熱交換器N
oを回路外熱授受用の蒸発器Eaoとして、高温側ヒー
トポンプ回路Saを形成する。
(Winter Mode) In the winter mode (see FIG. 4), the indoor heat exchanger Ni is used as the high temperature side condensing means Ca, and the evaporator path Ey in the relay heat exchanger Ny is an evaporator for exchanging heat between circuits. Eai, and outdoor heat exchanger N
The high temperature side heat pump circuit Sa is formed by using o as an evaporator Eao for exchanging heat outside the circuit.

【0094】また、低温側ヒートポンプ回路Sbについ
ては夏期モードと同様、中継熱交換器Nyにおける凝縮
器経路Cyを低温側凝縮手段Cbとし、かつ、庫内冷却
用熱交換器Nrを低温側蒸発手段Ebとして、低温側ヒ
ートポンプ回路Sbを形成する。
As for the low temperature side heat pump circuit Sb, as in the summer mode, the condenser path Cy in the relay heat exchanger Ny is used as the low temperature side condensing means Cb, and the inside cooling heat exchanger Nr is used as the low temperature side evaporating means. As Eb, the low temperature side heat pump circuit Sb is formed.

【0095】すなわち、具体的冷媒流れとして高沸点冷
媒Raについては、高温側圧縮機Cpaから吐出される
高圧気相(黒塗りの太線)の高沸点冷媒Raを室内熱交
換器Niにおいて高温の凝縮温度で凝縮させ、この凝縮
熱により前記の高温放熱対象Hとしての温調対象空気S
Aを加熱する。
That is, for the high boiling point refrigerant Ra as a concrete refrigerant flow, the high boiling point refrigerant Ra in the high pressure gas phase (thick black line) discharged from the high temperature side compressor Cpa is condensed at high temperature in the indoor heat exchanger Ni. The temperature control target air S as the high temperature heat radiation target H is condensed by the temperature
Heat A.

【0096】室内熱交換器Niから送出される液相(ハ
ッチングを施した太線)の高沸点冷媒Raは、第3及び
第4膨張弁ex3,ex4により減圧膨張させて低圧湿
り蒸気の状態(点ハッチングを施した太線)で中継熱交
換器Nyの蒸発器経路Eyと室外熱交換器Noとに分流
供給して、これら蒸発器経路Ey及び室外熱交換器No
の夫々において中温の蒸発温度で蒸発させ、これによ
り、中継熱交換器Nyにおける凝縮器経路Cyの側から
低沸点冷媒Rbの凝縮熱を吸熱するとともに、前記の中
温の回路外吸熱対象Mcとしての外気OAからも吸熱す
る。
The high-boiling-point refrigerant Ra in the liquid phase (thick line with hatching) delivered from the indoor heat exchanger Ni is decompressed and expanded by the third and fourth expansion valves ex3 and ex4 to form a low-pressure wet vapor state (point A thick line (hatched) is used to separately supply the evaporator path Ey and the outdoor heat exchanger No of the relay heat exchanger Ny, and the evaporator path Ey and the outdoor heat exchanger No.
In each of the relay heat exchangers Ny, thereby absorbing the condensation heat of the low-boiling-point refrigerant Rb from the side of the condenser path Cy in the relay heat exchanger Ny, and as the medium-temperature external heat absorption target Mc. It also absorbs heat from the outside air OA.

【0097】そして、中継熱交換器Nyの蒸発器経路E
y、及び、室外熱交換器Noの夫々から低圧気相の状態
(白抜きの太線)で送出される高沸点冷媒Raを高温側
圧縮機Cpaの吸入側に戻す。
Then, the evaporator path E of the relay heat exchanger Ny
y and the high-boiling-point refrigerant Ra sent out from each of the outdoor heat exchanger No in a low-pressure gas phase state (white thick line) is returned to the suction side of the high temperature side compressor Cpa.

【0098】一方、低沸点冷媒Rbについては、低温側
圧縮機Cpbから吐出される高圧気相(黒塗りの太線)
の低沸点冷媒Rbを、中継熱交換器Nyにおける凝縮器
経路Cyにおいて中温の凝縮温度で凝縮させ、この凝縮
熱を中継熱交換器Nyにおける蒸発器経路Eyの高沸点
冷媒Raに付与する。
On the other hand, for the low boiling point refrigerant Rb, the high pressure gas phase discharged from the low temperature side compressor Cpb (black thick line)
The low boiling point refrigerant Rb is condensed in the condenser path Cy in the relay heat exchanger Ny at an intermediate condensing temperature, and the heat of condensation is applied to the high boiling point refrigerant Ra in the evaporator path Ey in the relay heat exchanger Ny.

【0099】中継熱交換器Nyの凝縮器経路Cyから送
出される液相(ハッチングを施した太線)の低沸点冷媒
Rbは、第5膨張弁ex5により減圧膨張させて低圧湿
り蒸気の状態(点ハッチングを施した太線)で庫内冷却
用熱交換器Nrに送って、この庫内冷却用熱交換器Nr
において低温の蒸発温度で蒸発させ、この蒸発の際の吸
熱(気化熱奪取)により前記の低温吸熱対象Lとしての
冷蔵庫Zr内の空気を冷却する。
The low-boiling-point refrigerant Rb in the liquid phase (thick line with hatching) sent out from the condenser path Cy of the relay heat exchanger Ny is decompressed and expanded by the fifth expansion valve ex5 to be in a low-pressure wet vapor state (point The thick line (hatched) is sent to the inside cooling heat exchanger Nr, and this inside cooling heat exchanger Nr is sent.
At the low evaporation temperature, the air in the refrigerator Zr as the low temperature endothermic object L is cooled by heat absorption (vaporization heat removal) at the time of this evaporation.

【0100】そして、庫内冷却用熱交換器Nrから低圧
気相の状態(白抜きの太線)で送出される低沸点冷媒R
bを低温側圧縮機Cpbの吸入側に戻す。
Then, the low boiling point refrigerant R sent out from the heat exchanger Nr for cooling the inside of the refrigerator in a low pressure gas phase state (white thick line).
b is returned to the suction side of the low temperature side compressor Cpb.

【0101】なお、この冬期モードにおいては、冷蔵庫
Zrにおいて所望の冷蔵能力が得られるように、低温側
圧縮機Cpbの出力調整により低温側蒸発手段Ebとし
ての庫内冷却用熱交換器Nrの冷却能力(吸熱能力)を
調整する。
In this winter mode, in order to obtain a desired refrigerating capacity in the refrigerator Zr, the output of the low temperature side compressor Cpb is adjusted to cool the inside heat exchanger Nr as the low temperature side evaporation means Eb. Adjust the capacity (heat absorption capacity).

【0102】また、この冷蔵能力の調整とともに、冷暖
房対象域が所望の暖房状態になり、かつ、中継熱交換器
Nyにおいて回路間熱授受用蒸発器Eaiとしての蒸発
器経路Eyの吸熱能力が低温側凝縮手段Cbとしての凝
縮器経路Cyの放熱能力に合致するように、高温側圧縮
機Cpaの出力調整により高温側凝縮手段Caとしての
室内熱交換器Niの加熱能力(放熱能力)を調整すると
ともに、第3膨張弁ex3及び第4膨張弁ex4の調整
により、回路外熱授受用蒸発器Eaoとしての室外熱交
換器Noの吸熱能力と、回路間熱授受用蒸発器Eaiと
しての蒸発器経路Eyの吸熱能力とを調整する。
Further, with the adjustment of the refrigerating capacity, the cooling / heating target area is brought into a desired heating state, and the heat absorption capacity of the evaporator path Ey as the inter-circuit heat transfer evaporator Eai in the relay heat exchanger Ny is low. The heating capacity (heat radiation capacity) of the indoor heat exchanger Ni as the high temperature side condensation means Ca is adjusted by adjusting the output of the high temperature side compressor Cpa so as to match the heat radiation capacity of the condenser path Cy as the side condensation means Cb. At the same time, by adjusting the third expansion valve ex3 and the fourth expansion valve ex4, the heat absorption capacity of the outdoor heat exchanger No serving as the external heat transfer evaporator Eao and the evaporator path serving as the inter-circuit heat transfer evaporator Eai. Adjust the heat absorption capacity of Ey.

【0103】〔第3実施例〕図5及び図6は、沸点が互
いに異なる三種の冷媒R1,R2,R3を用いて、給湯
と冷暖房と冷蔵を行う三元ヒートポンプ装置を示し、図
5では給湯と冷房と冷蔵を行う「夏期モード」での冷媒
流れを、また、図6では給湯と暖房と冷蔵を行う「冬期
モード」での冷媒流れを示す。
[Third Embodiment] FIG. 5 and FIG. 6 show a three-way heat pump device for supplying hot water, cooling and heating, and refrigerating by using three kinds of refrigerants R1, R2, and R3 having different boiling points. FIG. 6 shows the refrigerant flow in the “summer mode” for cooling and refrigeration, and FIG. 6 shows the refrigerant flow in the “winter mode” for hot water supply, heating and refrigeration.

【0104】Cp1は三種の冷媒R1〜R3のうち沸点
が最も高い第1冷媒R1を循環させる第1圧縮機、Cp
2は第1冷媒R1の次に沸点が高い第2冷媒R2を循環
させる第2圧縮機、Cp3は沸点が最も低い第3冷媒R
3を循環させる第3圧縮機であり、その他、前述の第1
実施例または第2実施例に示したものと同等のものにつ
いては、第1及び第2実施例で用いた符号と同じ符号を
付してある。
Cp1 is a first compressor for circulating the first refrigerant R1 having the highest boiling point among the three kinds of refrigerants R1 to R3, Cp1
2 is a second compressor that circulates a second refrigerant R2 having the next highest boiling point after the first refrigerant R1, and Cp3 is a third refrigerant R having the lowest boiling point.
It is a third compressor that circulates 3 and other than the above-mentioned first
The same parts as those shown in the embodiment or the second embodiment are designated by the same reference numerals as those used in the first and second embodiments.

【0105】この第3実施例に示す三元ヒートポンプ装
置は、第1実施例に示した二元ヒートポンプ装置におけ
る低温側ヒートポンプ回路Sbと、第2実施例に示した
二元ヒートポンプ装置における高温側ヒートポンプ回路
Saとを共通回路として、それら二元ヒートポンプ装置
を組み合わした構成であり、夏期モード及び冬期モード
夫々の運転形態は次の通りである。
The ternary heat pump device shown in the third embodiment is the low temperature side heat pump circuit Sb in the binary heat pump device shown in the first embodiment and the high temperature side heat pump in the binary heat pump device shown in the second embodiment. The circuit Sa and the binary heat pump device are combined as a common circuit, and the operation modes in the summer mode and the winter mode are as follows.

【0106】(夏期モード)第1冷媒R1については、
第1圧縮機Cp1から吐出される高圧気相(図中、黒塗
りの太線で示す)の第1冷媒R1を水加熱用熱交換器N
wにおいて高温の凝縮温度で凝縮させ、この凝縮熱によ
り給湯用水Wを給湯可能温度に加熱する。
(Summer mode) Regarding the first refrigerant R1,
The first refrigerant R1 in the high pressure gas phase (indicated by the thick black line in the figure) discharged from the first compressor Cp1 is used as the water heating heat exchanger N.
At w, the water is condensed at a high condensation temperature, and the water for hot water supply W is heated to a temperature at which hot water can be supplied by this condensation heat.

【0107】水加熱用熱交換器Nwから送出される液相
(図中、ハッチングを施した太線で示す)の第1冷媒R
1は、第1膨張弁ex1により減圧膨張させて低圧湿り
蒸気の状態(図中、点ハッチングを施した太線で示す)
で、高温側の中継熱交換器Nxにおける蒸発器経路Ex
に送り、この蒸発器経路Exにおいて凝縮器経路Cxの
側から与えられる第2冷媒R2の凝縮熱により高温寄り
中温の蒸発温度で蒸発させる。
The first refrigerant R in the liquid phase (indicated by the thick line with hatching in the figure) delivered from the water heating heat exchanger Nw
1 is a state of low-pressure wet steam after being decompressed and expanded by the first expansion valve ex1 (indicated by a thick line with dot hatching in the figure)
Then, the evaporator path Ex in the relay heat exchanger Nx on the high temperature side
In the evaporator path Ex, the heat of condensation of the second refrigerant R2 provided from the side of the condenser path Cx evaporates at a higher intermediate temperature.

【0108】そして、高温側の中継熱交換器Nxにおけ
る蒸発器経路Exから低圧気相の状態(図中、白抜きの
太線で示す)で送出される第1冷媒R1を第1圧縮機C
p1の吸入側に戻す。
Then, the first refrigerant R1 delivered in the low-pressure gas phase state (indicated by a thick white line in the figure) from the evaporator path Ex in the relay heat exchanger Nx on the high temperature side is supplied to the first compressor C.
Return to the suction side of p1.

【0109】第2冷媒R2については、第2圧縮機Cp
2から吐出される高圧気相(黒塗りの太線)の第2冷媒
R2を、高温側の中継熱交換器Nxにおける凝縮器経路
Cxと室外熱交換器Noとに分流供給して、これら凝縮
器経路Cx及び室外熱交換器Noの夫々において高温寄
り中温の凝縮温度で凝縮させ、これにより、高温側の中
継熱交換器Nxにおいて凝縮器経路Cxでの凝縮熱を蒸
発器経路Exの側の第1冷媒R1に対し付与するととも
に、室外熱交換器Noでの凝縮熱を外気OAに放熱す
る。
For the second refrigerant R2, the second compressor Cp
The second refrigerant R2 in the high-pressure gas phase (thick black line) discharged from 2 is diverted to the condenser path Cx and the outdoor heat exchanger No in the relay heat exchanger Nx on the high temperature side, and these condensers are supplied. In each of the path Cx and the outdoor heat exchanger No, the heat is condensed at a condensing temperature close to the high temperature, whereby the heat of condensation in the condenser path Cx in the relay heat exchanger Nx on the high temperature side is converted to the first heat on the side of the evaporator path Ex. The heat of condensation in the outdoor heat exchanger No is radiated to the outside air OA while being given to one refrigerant R1.

【0110】高温側の中継熱交換器Nxにおける凝縮器
経路Cx、及び、室外熱交換器Noの夫々から送出され
る液相(ハッチングを施した太線)の第2冷媒R1は、
第2及び第4膨張弁ex2,ex4により減圧膨張させ
て低圧湿り蒸気の状態(点ハッチングを施した太線)
で、低温側の中継熱交換器Nyにおける蒸発器経路Ey
と室内熱交換器Niとに分流供給して、これら蒸発器経
路Ey及び室内熱交換器Niの夫々において低温寄り中
温の蒸発温度で蒸発させ、これにより、低温側の中継熱
交換器Nyにおいて凝縮器経路Cyの側から第3冷媒R
3の凝縮熱を吸熱するとともに、室内熱交換器Niおい
て温調対象空気SAからも吸熱し、その温調対象空気S
Aを冷却する。
The second refrigerant R1 in the liquid phase (thick line with hatching) sent from each of the condenser path Cx in the relay heat exchanger Nx on the high temperature side and the outdoor heat exchanger No,
Low-pressure wet steam state after decompressing and expanding by the second and fourth expansion valves ex2 and ex4 (dotted thick line)
Then, the evaporator path Ey in the relay heat exchanger Ny on the low temperature side
And the indoor heat exchanger Ni are separately supplied, and vaporized at an evaporation temperature of a medium temperature, which is close to a low temperature, in each of the evaporator path Ey and the indoor heat exchanger Ni, thereby condensing in the relay heat exchanger Ny on the low temperature side. The third refrigerant R from the side of the device path Cy
In addition to absorbing the heat of condensation of No. 3, the indoor heat exchanger Ni also absorbs heat from the temperature control target air SA, and the temperature control target air S
Cool A.

【0111】そして、低温側の中継熱交換器Nyにおけ
る蒸発器経路Ey、及び、室内熱交換器Niの夫々から
低圧気相の状態(白抜きの太線)で送出される第2冷媒
R2を第2圧縮機Cp2の吸入側に戻す。
Then, the second refrigerant R2 sent out in a low-pressure gas phase state (white thick line) from each of the evaporator path Ey in the relay heat exchanger Ny on the low temperature side and the indoor heat exchanger Ni is 2 Return to the suction side of the compressor Cp2.

【0112】さらに第3冷媒R3については、第3圧縮
機Cp3から吐出される高圧気相(黒塗りの太線)の第
3冷媒R3を、低温側の中継熱交換器Nyにおける凝縮
器経路Cyにおいて低温寄り中温の凝縮温度で凝縮さ
せ、この凝縮熱を低温側の中継熱交換器Nyにおける蒸
発器経路Eyの第2冷媒R2に付与する。
As for the third refrigerant R3, the high-pressure gas-phase (thick black line) third refrigerant R3 discharged from the third compressor Cp3 is passed through the condenser path Cy in the relay heat exchanger Ny on the low temperature side. Condensation is performed at a condensing temperature near the low temperature, and this condensation heat is applied to the second refrigerant R2 in the evaporator path Ey in the relay heat exchanger Ny on the low temperature side.

【0113】低温側の中継熱交換器Nyにおける凝縮器
経路Cyから送出される液相(ハッチングを施した太
線)の第3冷媒R3は、第5膨張弁ex5により減圧膨
張させて低圧湿り蒸気の状態(点ハッチングを施した太
線)で庫内冷却用熱交換器Nrに送って、この庫内冷却
用熱交換器Nrにおいて低温の蒸発温度で蒸発させ、こ
の蒸発の際の吸熱(気化熱奪取)により冷蔵庫Zr内の
空気を冷却する。
The third refrigerant R3 in the liquid phase (thick line with hatching) delivered from the condenser path Cy in the relay heat exchanger Ny on the low temperature side is decompressed and expanded by the fifth expansion valve ex5 to form low-pressure wet steam. It is sent to the inside cooling heat exchanger Nr in the state (thick line with hatching), and is evaporated at a low evaporation temperature in this inside cooling heat exchanger Nr, and the heat absorption (vaporization heat removal) at the time of this evaporation is carried out. ), The air in the refrigerator Zr is cooled.

【0114】そして、庫内冷却用熱交換器Nrから低圧
気相の状態(白抜きの太線)で送出される第3冷媒R3
を第3圧縮機Cp3の吸入側に戻す。
Then, the third refrigerant R3 is sent from the heat exchanger Nr for cooling the inside of the refrigerator in a low-pressure gas phase state (white thick line).
To the suction side of the third compressor Cp3.

【0115】(冬期モード)第1冷媒Raについては、
夏期モードと同様、第1圧縮機Cp1から吐出される高
圧気相(黒塗りの太線)の第1冷媒R1を水加熱用熱交
換器Nwにおいて高温の凝縮温度で凝縮させ、この凝縮
熱により給湯用水Wを給湯可能温度に加熱する。
(Winter Mode) Regarding the first refrigerant Ra,
Similar to the summer mode, the first refrigerant R1 in the high-pressure gas phase (thick black line) discharged from the first compressor Cp1 is condensed at a high condensing temperature in the water heating heat exchanger Nw, and hot water is supplied by this condensing heat. The water W is heated to a temperature at which hot water can be supplied.

【0116】水加熱用熱交換器Nwから送出される液相
(ハッチングを施した太線)の第1冷媒R1は、第1膨
張弁ex1により減圧膨張させて低圧湿り蒸気の状態
(点ハッチングを施した太線)で高温側の中継熱交換器
Nxにおける蒸発器経路Exに送り、この蒸発器経路E
xにおいて凝縮器経路Cxの側から与えられる第2冷媒
R2の凝縮熱により高温寄り中温の蒸発温度で蒸発させ
る。
The first refrigerant R1 in the liquid phase (thick line with hatching) delivered from the water heating heat exchanger Nw is decompressed and expanded by the first expansion valve ex1 to form a low-pressure wet vapor state (dotted hatching). The thick line) is sent to the evaporator path Ex in the relay heat exchanger Nx on the high temperature side, and this evaporator path E
At x, the heat of condensation of the second refrigerant R2 given from the side of the condenser path Cx evaporates at a high-temperature medium-temperature evaporation temperature.

【0117】そして、高温側の中継熱交換器Nxにおけ
る蒸発器経路Exから低圧気相の状態(白抜きの太線)
で送出される第1冷媒R1を第1圧縮機Cp1の吸入側
に戻す。
Then, the state of the low pressure gas phase from the evaporator path Ex in the relay heat exchanger Nx on the high temperature side (white thick line)
The first refrigerant R1 sent out in step 1 is returned to the suction side of the first compressor Cp1.

【0118】第2冷媒R2については、第2圧縮機Cp
2から吐出される高圧気相(黒塗りの太線)の第2冷媒
R2を、高温側の中継熱交換器Nxにおける凝縮器経路
Cxと室内熱交換器Niとに分流供給して、これら凝縮
器経路Cx及び室内熱交換器Niの夫々において高温寄
り中温の凝縮温度で凝縮させ、これにより、高温側の中
継熱交換器Nxにおいて凝縮器経路Cxでの凝縮熱を蒸
発器経路Exの側の第1冷媒R1に対し付与するととも
に、室内熱交換器Niでの凝縮熱により温調対象空気S
Aを加熱する。
For the second refrigerant R2, the second compressor Cp
The second refrigerant R2 in the high pressure gas phase (thick black line) discharged from 2 is diverted to the condenser path Cx and the indoor heat exchanger Ni in the relay heat exchanger Nx on the high temperature side, and these condensers are supplied. In each of the route Cx and the indoor heat exchanger Ni, the heat is condensed at a condensing temperature close to the high temperature, so that the heat of condensation in the condenser route Cx in the relay heat exchanger Nx on the high temperature side is converted to the first heat on the side of the evaporator route Ex. The temperature control target air S is given by the heat of condensation in the indoor heat exchanger Ni while being given to one refrigerant R1.
Heat A.

【0119】高温側の中継熱交換器Nxにおける凝縮器
経路Cx、及び、室内熱交換器Niの夫々から送出され
る液相(ハッチングを施した太線)の第2冷媒R2は、
第3及び第4膨張弁ex3,ex4により減圧膨張させ
て低圧湿り蒸気の状態(点ハッチングを施した太線)
で、低温側の中継熱交換器Nyにおける蒸発器経路Ey
と室外熱交換器Noとに分流供給して、これら蒸発器経
路Ey及び室外熱交換器Noの夫々において低温寄り中
温の蒸発温度で蒸発させ、これにより、低温側の中継熱
交換器Nyにおいて凝縮器経路Cyの側から第3冷媒R
3の凝縮熱を吸熱するとともに、室外熱交換器Noにお
いて外気OAからも吸熱する。
The second refrigerant R2 in the liquid phase (thick line with hatching) delivered from each of the condenser path Cx in the relay heat exchanger Nx on the high temperature side and the indoor heat exchanger Ni,
Low-pressure wet steam state after being decompressed and expanded by the third and fourth expansion valves ex3 and ex4 (dotted thick line)
Then, the evaporator path Ey in the relay heat exchanger Ny on the low temperature side
And the outdoor heat exchanger No. are supplied in a branched manner to evaporate at a low-temperature intermediate temperature evaporation temperature in each of the evaporator path Ey and the outdoor heat exchanger No., thereby condensing in the relay heat exchanger Ny on the low temperature side. The third refrigerant R from the side of the device path Cy
The heat of condensation of No. 3 is absorbed, and the heat of the outdoor heat exchanger No is also absorbed from the outside air OA.

【0120】そして、低温側の中継熱交換器Nyにおけ
る蒸発器経路Ey、及び、室外熱交換器Noの夫々から
低圧気相の状態(白抜きの太線)で送出される第2冷媒
R2を第2圧縮機Cp2の吸入側に戻す。
Then, the second refrigerant R2 delivered in a low-pressure gas phase state (white thick line) from each of the evaporator passage Ey in the relay heat exchanger Ny on the low temperature side and the outdoor heat exchanger No. 2 Return to the suction side of the compressor Cp2.

【0121】第3冷媒R3については、第3圧縮機Cp
3から吐出される高圧気相(黒塗りの太線)の第3冷媒
R3を、低温側の中継熱交換器Nyにおける凝縮器経路
Cyにおいて低温寄り中温の凝縮温度で凝縮させ、この
凝縮熱を低温側の中継熱交換器Nyにおける蒸発器経路
Eyの第2冷媒R2に付与する。
For the third refrigerant R3, the third compressor Cp
The high-pressure gas phase (thick black line) third refrigerant R3 discharged from No. 3 is condensed in the condenser path Cy in the relay heat exchanger Ny on the low temperature side at a condensing temperature close to the low temperature, and the heat of condensation is low. It is applied to the second refrigerant R2 in the evaporator path Ey in the relay heat exchanger Ny on the side.

【0122】低温側の中継熱交換器Nyにおける凝縮器
経路Cyから送出される液相(ハッチングを施した太
線)の第3冷媒R3は、第5膨張弁ex5により減圧膨
張させて低圧湿り蒸気の状態(点ハッチングを施した太
線)で庫内冷却用熱交換器Nrに送って、この庫内冷却
用熱交換器Nrにおいて低温の蒸発温度で蒸発させ、こ
の蒸発の際の吸熱(気化熱奪取)により冷蔵庫Zr内の
空気を冷却する。
The third refrigerant R3 in the liquid phase (thick line with hatching) delivered from the condenser path Cy in the relay heat exchanger Ny on the low temperature side is decompressed and expanded by the fifth expansion valve ex5 to form low-pressure wet steam. In the state (thick line with hatching), it is sent to the inside cooling heat exchanger Nr, and is evaporated at a low evaporation temperature in this inside cooling heat exchanger Nr, and the heat absorption (vaporization heat removal) at the time of this evaporation is carried out. ), The air in the refrigerator Zr is cooled.

【0123】そして、庫内冷却用熱交換器Nrから低圧
気相の状態(白抜きの太線)で送出される第3冷媒R3
を第3圧縮機Cp3の吸入側に戻す。
Then, the third refrigerant R3 is sent out from the inside cooling heat exchanger Nr in a low-pressure gas phase state (white thick line).
To the suction side of the third compressor Cp3.

【0124】つまり、この三元ヒートポンプ装置では夏
期モード及び冬期モードの夫々において、三種の冷媒の
うち第1冷媒R1と第2冷媒R2とについて見れば前述
の第1実施例に示した二元ヒートポンプ装置と同等の装
置形態、すなわち、高沸点冷媒Raとしての第1冷媒R
1を高温側凝縮手段Caと高温側蒸発手段Eaとにわた
って循環させる高温側ヒートポンプ回路Sa、及び、低
沸点冷媒Rbとしての第2冷媒R2を低温側凝縮手段C
bと低温側蒸発手段Ebとにわたって循環させる低温側
ヒートポンプ回路Sbの夫々を装置内に形成するととも
に、その低温側ヒートポンプ回路Sbにおける低温側凝
縮手段Cbは、回路間熱授受用の凝縮器Cbiと回路外
熱授受用の凝縮器Cboとで構成して、回路間熱授受用
の凝縮器Cbiは、高温側ヒートポンプ回路Saにおけ
る高温側蒸発手段Eaと相互熱交換させ、また、回路外
熱授受用の凝縮器Cboは、高温側ヒートポンプ回路S
a及び低温側ヒートポンプ回路Sbの外部における回路
外放熱対象Mhと熱交換させるといった装置形態を採用
している。
In other words, in this ternary heat pump device, in the summer mode and the winter mode, the first refrigerant R1 and the second refrigerant R2 among the three kinds of refrigerants are viewed as the binary heat pump shown in the first embodiment. Device configuration equivalent to the device, that is, the first refrigerant R as the high boiling point refrigerant Ra
The high temperature side heat pump circuit Sa that circulates 1 through the high temperature side condensing means Ca and the high temperature side evaporating means Ea, and the second refrigerant R2 as the low boiling point refrigerant Rb is the low temperature side condensing means C.
b and the low temperature side heat pump circuit Sb which circulates between the low temperature side evaporation means Eb are formed in the apparatus, and the low temperature side condensing means Cb in the low temperature side heat pump circuit Sb is a condenser Cbi for inter-circuit heat transfer. The condenser Cbi for external heat transfer between circuits is configured to exchange heat with the high temperature side evaporating means Ea in the high temperature side heat pump circuit Sa, and the external circuit heat transfer is performed. The condenser Cbo is a high temperature side heat pump circuit S
The apparatus configuration is such that heat is exchanged with the external heat radiation target Mh outside the a and the low temperature side heat pump circuit Sb.

【0125】そして、夏期モードにおいては(図5参
照)、高温側の中継熱交換器Nxにおける蒸発器経路E
xを高温側蒸発手段Eaとし、かつ、水加熱用熱交換器
Nwを高温側凝縮手段Caとして、高温側ヒートポンプ
回路Saを形成し、これに対し、低温側の中継熱交換器
Nyにおける蒸発器経路Eyと室内熱交換器Niとを低
温側蒸発手段Ebとし、かつ、高温側の中継熱交換器N
xにおける凝縮器経路Cxを回路間熱授受用の凝縮器C
biとし、さらに、室外熱交換器Noを回路外熱授受用
の凝縮器Cboとして、低温側ヒートポンプ回路Sbを
形成している。
In the summer mode (see FIG. 5), the evaporator path E in the relay heat exchanger Nx on the high temperature side is used.
The high temperature side heat pump circuit Sa is formed by using x as the high temperature side evaporating means Ea and the water heating heat exchanger Nw as the high temperature side condensing means Ca, while the evaporator in the low temperature side relay heat exchanger Ny is formed. The route Ey and the indoor heat exchanger Ni are used as the low temperature side evaporation means Eb, and the high temperature side relay heat exchanger N is used.
The condenser path Cx at x is the condenser C for exchanging heat between circuits.
Further, the low temperature side heat pump circuit Sb is formed by using the outdoor heat exchanger No as the bi and the outdoor heat exchanger No as the condenser Cbo for exchanging the external heat.

【0126】また冬期モードにおいては(図6参照)、
高温側の中継熱交換器Nxにおける蒸発器経路Exを高
温側蒸発手段Eaとし、かつ、水加熱用熱交換器Nwを
高温側凝縮手段Caとして、高温側ヒートポンプ回路S
aを形成するのに対し、低温側の中継熱交換器Nyにお
ける蒸発器経路Eyと室外熱交換器Noとを低温側蒸発
手段Ebとし、かつ、高温側の中継熱交換器Nxにおけ
る凝縮器経路Cxを回路間熱授受用の凝縮器Cbiと
し、さらに、室内熱交換器Niを回路外熱授受用の凝縮
器Cboとして、低温側ヒートポンプ回路Sbを形成し
ている。
In the winter mode (see FIG. 6),
The high temperature side heat pump circuit S is constituted by using the evaporator path Ex in the high temperature side relay heat exchanger Nx as the high temperature side evaporation means Ea and the water heating heat exchanger Nw as the high temperature side condensing means Ca.
In contrast to forming a, the evaporator path Ey and the outdoor heat exchanger No in the low temperature side relay heat exchanger Ny are used as the low temperature side evaporation means Eb, and the condenser path in the high temperature side relay heat exchanger Nx is used. The low temperature side heat pump circuit Sb is formed by using Cx as a condenser Cbi for heat exchange between circuits and further using the indoor heat exchanger Ni as a condenser Cbo for heat exchange between outside circuits.

【0127】一方、三種の冷媒のうち第2冷媒R2と第
3冷媒R3とについて見れば前述の第2実施例に示した
二元ヒートポンプ装置と同等の装置形態、すなわち、高
沸点冷媒Ra’としての第2冷媒R2を高温側凝縮手段
Ca’と高温側蒸発手段Ea’とにわたって循環させる
高温側ヒートポンプ回路Sa’、及び、低沸点冷媒R
b’としての第2冷媒R2を低温側凝縮手段Cb’と低
温側蒸発手段Eb’とにわたって循環させる低温側ヒー
トポンプ回路Sb’の夫々を装置内に形成するととも
に、その高温側ヒートポンプ回路Sa’における高温側
蒸発手段Ea’は、回路間熱授受用の蒸発器Eai’と
回路外熱授受用の蒸発器Eao’とで構成して、回路間
熱授受用の蒸発器Eai’は、低温側ヒートポンプ回路
Sb’における低温側凝縮手段Cb’と相互熱交換さ
せ、また、回路外熱授受用の蒸発器Eao’は、高温側
ヒートポンプ回路Sa’及び低温側ヒートポンプ回路S
b’の外部における回路外吸熱対象Mcと熱交換させる
といった装置形態を採用している。
On the other hand, regarding the second refrigerant R2 and the third refrigerant R3 among the three kinds of refrigerants, as the apparatus form equivalent to the binary heat pump apparatus shown in the above-mentioned second embodiment, that is, as the high boiling point refrigerant Ra '. High temperature side heat pump circuit Sa 'for circulating the second refrigerant R2 of the second refrigerant R2 over the high temperature side condensing means Ca' and the high temperature side evaporating means Ea ', and the low boiling point refrigerant R
Each of the low temperature side heat pump circuits Sb 'for circulating the second refrigerant R2 as b'through the low temperature side condensing means Cb' and the low temperature side evaporating means Eb 'is formed in the apparatus, and in the high temperature side heat pump circuit Sa'. The high temperature side evaporating means Ea ′ is composed of an evaporator Eai ′ for heat transfer between circuits and an evaporator Eao ′ for heat transfer between outside circuits, and the evaporator Eai ′ for heat transfer between circuits is a low temperature side heat pump. The evaporator Eao 'for exchanging heat with the low temperature side condensing means Cb' in the circuit Sb 'and for exchanging heat outside the circuit includes a high temperature side heat pump circuit Sa' and a low temperature side heat pump circuit S.
An apparatus configuration is adopted in which heat is exchanged with the external heat absorption target Mc outside the b '.

【0128】そして、夏期モードにおいては(図5参
照)、高温側の中継熱交換器Nxにおける凝縮器経路C
xと室外熱交換器Noを高温側凝縮手段Ca’とし、か
つ、低温側の中継熱交換器Nyにおける蒸発器経路Ey
を回路間熱授受用の蒸発器Eai’とし、さらに、室内
熱交換器Niを回路外熱授受用の蒸発器Eao’とし
て、高温側ヒートポンプ回路Sa’を形成し、これに対
し、低温側の中継熱交換器Nyにおける凝縮器経路Cy
を低温側凝縮手段Cb’とし、かつ、庫内冷却用熱交換
器Nrを低温側蒸発手段Eb’として、低温側ヒートポ
ンプ回路Sb’を形成している。
In the summer mode (see FIG. 5), the condenser path C in the high temperature side relay heat exchanger Nx is used.
x and the outdoor heat exchanger No are the high temperature side condensing means Ca ′, and the evaporator path Ey in the low temperature side relay heat exchanger Ny.
Is used as an evaporator Eai ′ for heat transfer between circuits, and the indoor heat exchanger Ni is used as an evaporator Eao ′ for heat transfer between outside circuits to form a high temperature side heat pump circuit Sa ′. Condenser path Cy in relay heat exchanger Ny
Is used as the low temperature side condensing means Cb ', and the internal heat exchanger Nr for low temperature side is used as the low temperature side evaporation means Eb' to form the low temperature side heat pump circuit Sb '.

【0129】また冬期モードにおいては(図6参照)、
高温側の中継熱交換器Nxにおける凝縮器経路Cxと室
内熱交換器Niを高温側凝縮手段Ca’とし、かつ、低
温側の中継熱交換器Nyにおける蒸発器経路Eyを回路
間熱授受用の蒸発器Eai’とし、さらに、室外熱交換
器Noを回路外熱授受用の蒸発器Eao’として、高温
側ヒートポンプ回路Sa’を形成するのに対し、低温側
の中継熱交換器Nyにおける凝縮器経路Cyを低温側凝
縮手段Cb’とし、かつ、庫内冷却用熱交換器Nrを低
温側蒸発手段Eb’として、低温側ヒートポンプ回路S
b’を形成している。
In the winter mode (see FIG. 6),
The condenser path Cx and the indoor heat exchanger Ni in the high temperature side relay heat exchanger Nx are used as the high temperature side condensing means Ca ′, and the evaporator path Ey in the low temperature side relay heat exchanger Ny is used for inter-circuit heat transfer. The high temperature side heat pump circuit Sa 'is formed by using the evaporator Eai' as the evaporator Eao 'and the outdoor heat exchanger No as the outside circuit heat transfer evaporator Eao', while the condenser in the relay heat exchanger Ny on the low temperature side is formed. The path Cy is used as the low temperature side condensing means Cb ′, and the internal heat exchanger Nr is used as the low temperature side evaporation means Eb ′, and the low temperature side heat pump circuit S is used.
forming b '.

【0130】〔第4実施例〕図7は、種々の用途に用い
る二元ヒートポンプ装置を示し、互いに冷媒経路が独立
したヒートポンプ回路として、高温側ヒートポンプ回路
Saと低温側ヒートポンプ回路Sbとを備え、高温側ヒ
ートポンプ回路Saでは、高沸点冷媒Raを高温側圧縮
機Cpa、高温側凝縮手段Ca、高温側膨張手段ex
a、及び、高温側蒸発手段Eaの順に循環させ、一方、
低温側ヒートポンプ回路Sbでは、低沸点冷媒Rbを低
温側圧縮機Cpb、低温側凝縮手段Cb、低温側膨張手
段exb、及び、低温側蒸発手段Ebの順に循環させる
構成としてある。
[Fourth Embodiment] FIG. 7 shows a binary heat pump device used for various purposes, and includes a high temperature side heat pump circuit Sa and a low temperature side heat pump circuit Sb as heat pump circuits having mutually independent refrigerant paths, In the high temperature side heat pump circuit Sa, the high boiling point refrigerant Ra is supplied to the high temperature side compressor Cpa, the high temperature side condensing means Ca, and the high temperature side expanding means ex.
a and high temperature side evaporation means Ea are circulated in this order, while
In the low temperature side heat pump circuit Sb, the low boiling point refrigerant Rb is circulated in the order of the low temperature side compressor Cpb, the low temperature side condensing means Cb, the low temperature side expansion means exb, and the low temperature side evaporation means Eb.

【0131】そして、低温側ヒートポンプ回路Sbにお
ける低温側凝縮手段Cbは、回路間熱授受用の凝縮器C
biと回路外熱授受用の凝縮器Cboとで構成し、これ
ら凝縮器Cbi,Cboのうち回路間熱授受用の凝縮器
Cbiは、高温側ヒートポンプ回路Saにおける高温側
蒸発手段Eaと相互熱交換させ、一方、回路外熱授受用
の凝縮器Cboは、高温側ヒートポンプ回路Sa及び低
温側ヒートポンプ回路Sbの外部における回路外放熱対
象Mhと熱交換させるようにしてある。
The low temperature side condensing means Cb in the low temperature side heat pump circuit Sb is the condenser C for transferring heat between circuits.
The condenser Cbi for exchanging heat between circuits among the condensers Cbi and Cbo is a condenser Cbo for exchanging heat from outside the circuit, and the condenser Cbi for exchanging heat between circuits is a mutual heat exchange with the high temperature side evaporation means Ea in the high temperature side heat pump circuit Sa. On the other hand, the condenser Cbo for exchanging heat outside the circuit is designed to exchange heat with the outside heat radiation target Mh outside the high temperature side heat pump circuit Sa and the low temperature side heat pump circuit Sb.

【0132】また、高温側ヒートポンプ回路Saにおけ
る高温側蒸発手段Eaは、回路間熱授受用の蒸発器Ea
iと回路外熱授受用の蒸発器Eaoとで構成し、これら
蒸発器Eai,Eaoのうち回路間熱授受用の蒸発器E
aiは、低温側ヒートポンプ回路Saにおける前記の回
路間熱授受用凝縮器Cbiと相互熱交換させ、一方、回
路外熱授受用の蒸発器Eaoは、高温側ヒートポンプ回
路Sa及び低温側ヒートポンプ回路Sbの外部における
回路外吸熱対象Mcと熱交換させるようにしてある。
The high temperature side evaporation means Ea in the high temperature side heat pump circuit Sa is an evaporator Ea for transferring heat between circuits.
i and an evaporator Eao for exchanging heat outside the circuit, and among these evaporators Eai and Eao, an evaporator E for exchanging heat between circuits
ai mutually exchanges heat with the inter-circuit heat transfer condenser Cbi in the low temperature side heat pump circuit Sa, while the outside circuit heat transfer evaporator Eao includes the high temperature side heat pump circuit Sa and the low temperature side heat pump circuit Sb. The heat is exchanged with the external circuit heat absorption target Mc.

【0133】つまり、熱の基本的な取扱い形態として
は、低温側ヒートポンプ回路Sbにより低温の吸熱対象
L(冷却用途では冷却対象)から汲み上げて昇温した熱
のうち、一部については回路外熱授受用の凝縮器Cbo
において中温の回路外放熱対象Mh(加熱用途では中温
の加熱対象)に放熱し、他部については、回路間熱授受
用の凝縮器Cbiを介し高温側ヒートポンプ回路Saに
受け渡す。
That is, as a basic form of heat treatment, a part of the heat that is pumped up from the low temperature endothermic target L (cooling target in the case of cooling) by the low temperature side heat pump circuit Sb and is heated outside the circuit. Transfer condenser Cbo
In, the heat is radiated to the medium temperature outside heat radiation target Mh (the medium temperature heating target in the heating application), and the other part is transferred to the high temperature side heat pump circuit Sa via the inter-circuit heat transfer condenser Cbi.

【0134】そして、高温側ヒートポンプ回路Saで
は、低温側ヒートポンプ回路Sbからの上記熱を回路間
熱授受用の蒸発器Eaiにおいて吸熱するとともに、中
温の回路外吸熱対象Mc(冷却用途では中温の冷却対
象)からも回路外熱授受用の蒸発器Eaoにおいて吸熱
し、これら吸熱した熱を昇温した上で高温側凝縮手段C
aにおいて高温の放熱対象H(加熱用途では高温の加熱
対象)に放熱する。
In the high temperature side heat pump circuit Sa, the heat from the low temperature side heat pump circuit Sb is absorbed in the inter-circuit heat transfer evaporator Eai, and at the same time, the medium temperature outside heat absorption object Mc (medium temperature cooling for cooling purpose) is used. The object) also absorbs heat in the evaporator Eao for transferring heat outside the circuit, raises the temperature of the absorbed heat, and then the high temperature side condensing means C
In a, heat is radiated to the high-temperature heat-dissipation target H (high-temperature heat-target in heating applications).

【0135】なお、vbi,vboは、低温側ヒートポ
ンプ回路Sbにおいて、回路間熱授受用の凝縮器Cbi
と回路外熱授受用の凝縮器Cboとの放熱能力比を調整
するための流量調整弁であり、また、vai,vao
は、高温側ヒートポンプ回路Saにおいて、回路間熱授
受用の蒸発器Eaiと回路外熱授受用の蒸発器Eaoと
の吸熱能力比を調整するための流量調整弁であり、この
第3実施例における二元ヒートポンプ装置においては、
これら流量調整弁vai,vao,vbi,vboの調
整と、高温側圧縮機Cpa及び低温側圧縮機Cpbの出
力調整とにより、回路間熱授受用凝縮器Cbiの放熱能
力と回路間熱授受用蒸発器Eaiの吸熱能力とを合致さ
せるようにしながら、低温側蒸発手段Ebの吸熱能力や
高温側凝縮手段Caの放熱能力、あるいは、回路外熱授
受用凝縮器Cboの放熱能力や回路外熱授受用蒸発器E
aoの吸熱能力といった各能力の調整を行う。
Note that vbi and vbo are condensers Cbi for exchanging heat between circuits in the low temperature side heat pump circuit Sb.
And a condenser Cbo for exchanging heat from the outside of the circuit, which is a flow rate adjusting valve for adjusting the heat radiation capacity ratio, and also vai, vao
Is a flow rate adjusting valve for adjusting the heat absorption capacity ratio of the evaporator Eai for heat exchange between circuits and the evaporator Eao for heat exchange between outside circuits in the high temperature side heat pump circuit Sa. In the dual heat pump device,
By adjusting the flow rate adjusting valves vai, vao, vbi, vbo and adjusting the outputs of the high temperature side compressor Cpa and the low temperature side compressor Cpb, the heat radiation capacity of the inter-circuit heat transfer condenser Cbi and the inter-circuit heat transfer evaporation While matching the heat absorption capacity of the condenser Eai, the heat absorption capacity of the low temperature side evaporation means Eb and the heat dissipation capacity of the high temperature side condensation means Ca, or the heat dissipation capacity of the outside circuit heat transfer condenser Cbo and the outside circuit heat transfer Evaporator E
Adjust each capacity such as ao's heat absorption capacity.

【0136】〔別実施例〕[Other Example]

【0137】(1)高温側凝縮手段Caや回路外熱授受
用凝縮器Cboの放熱対象は、空気や水に限定されるも
のではなく、空気以外の気体や水以外の液体、あるい
は、固体等であってもよい。
(1) The object of heat radiation of the high temperature side condensing means Ca and the external heat transfer condenser Cbo is not limited to air or water, but a gas other than air or a liquid other than water, or a solid or the like. May be

【0138】また、それら高温側凝縮手段Caや回路外
熱授受用凝縮器Cboを加熱用途に用いる場合、その加
熱用途も給湯や暖房に限定されるものではなく、種々の
加熱用途に適用できる。
When the high temperature side condensation means Ca and the outside-circuit heat transfer condenser Cbo are used for heating purposes, the heating applications are not limited to hot water supply and heating, but can be applied to various heating applications.

【0139】(2)低温側蒸発手段Ebや回路外熱授受
用蒸発器Eaoの吸熱対象は、空気や水に限定されるも
のではなく、空気以外の気体や水以外の液体、あるい
は、固体等であってもよい。
(2) The heat absorption target of the low temperature side evaporation means Eb and the outside circuit heat transfer evaporator Eao is not limited to air or water, but a gas other than air or a liquid other than water, or a solid or the like. May be

【0140】また、それら低温側蒸発手段Ebや回路外
熱授受用蒸発器Eaoを冷却用途に用いる場合、その冷
却用途も冷蔵や冷房に限定されるものではなく、種々の
冷却用途に適用できる。
When the low temperature side evaporating means Eb and the external heat transfer evaporator Eao are used for cooling purposes, the cooling applications are not limited to refrigeration and cooling but can be applied to various cooling applications.

【0141】(3)回路間熱授受用凝縮器Cbiと高温
側蒸発手段Ea(あるいは、回路間熱授受用蒸発器Ea
i)との具体的相互熱交換、また、回路間熱授受用蒸発
器Eaiと低温側凝縮手段Cb(あるいは、回路間熱授
受用凝縮器Cbi)との具体的相互熱交換には、夫々、
種々の熱交換構造を採用できる。
(3) Inter-circuit heat transfer condenser Cbi and high temperature side evaporation means Ea (or inter-circuit heat transfer evaporator Ea)
i) specific mutual heat exchange, and specific mutual heat exchange between the inter-circuit heat transfer evaporator Eai and the low temperature side condensing means Cb (or the inter-circuit heat transfer condenser Cbi), respectively.
Various heat exchange structures can be adopted.

【0142】尚、特許請求の範囲の項に図面との対照を
便利にするため符号を記すが、該記入により本発明は添
付図面の構成に限定されるものではない。
It should be noted that reference numerals are added to the claims for convenience of comparison with the drawings, but the present invention is not limited to the structures of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例における夏期モードの冷媒流れを示
す回路図
FIG. 1 is a circuit diagram showing a refrigerant flow in a summer mode in a first embodiment.

【図2】第1実施例における冬期モードの冷媒流れを示
す回路図
FIG. 2 is a circuit diagram showing a refrigerant flow in a winter mode in the first embodiment.

【図3】第2実施例における夏期モードの冷媒流れを示
す回路図
FIG. 3 is a circuit diagram showing a refrigerant flow in a summer mode in the second embodiment.

【図4】第2実施例における冬期モードの冷媒流れを示
す回路図
FIG. 4 is a circuit diagram showing a refrigerant flow in a winter mode in the second embodiment.

【図5】第3実施例における夏期モードの冷媒流れを示
す回路図
FIG. 5 is a circuit diagram showing a refrigerant flow in a summer mode in the third embodiment.

【図6】第3実施例における冬期モードの冷媒流れを示
す回路図
FIG. 6 is a circuit diagram showing a refrigerant flow in a winter mode according to a third embodiment.

【図7】第4実施例における基本回路図FIG. 7 is a basic circuit diagram in the fourth embodiment.

【図8】従来例を示す回路図FIG. 8 is a circuit diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

Ra 高沸点冷媒 Rb 低沸点冷媒 Sa 高温側ヒートポンプ回路 Sb 低温側ヒートポンプ回路 Ca 高温側凝縮手段 Cb 低温側凝縮手段 Cbi 回路間熱授受用凝縮器 Cbo 回路外熱授受用凝縮器 Ea 高温側蒸発手段 Eb 低温側蒸発手段 Eai 回路間熱授受用蒸発器 Eao 回路外熱授受用蒸発器 Mh 回路外放熱対象 Mc 回路外吸熱対象 Ra High boiling point refrigerant Rb Low boiling point refrigerant Sa High temperature side heat pump circuit Sb Low temperature side heat pump circuit Ca High temperature side condensing means Cb Low temperature side condensing means Cbi Circuit heat transfer condenser Cbo Circuit outside heat transfer condenser Ea High temperature side evaporation means Eb Evaporator for low temperature side Eai Evaporator for heat transfer between circuits Eao Evaporator for heat transfer outside circuit Mh Target for heat dissipation outside circuit Mc Target for heat absorption outside circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 冷媒経路が互いに独立したヒートポンプ
回路として、高沸点冷媒(Ra)を高温側凝縮手段(C
a)と高温側蒸発手段(Ea)とにわたって循環させる
高温側ヒートポンプ回路(Sa)と、低沸点冷媒(R
b)を低温側凝縮手段(Cb)と低温側蒸発手段(E
b)とにわたって循環させる低温側ヒートポンプ回路
(Sb)とを設け、 前記高温側蒸発手段(Ea)と前記低温側凝縮手段(C
b)とを相互に熱交換させる構成とした複元ヒートポン
プであって、 前記低温側凝縮手段(Cb)を、前記高温側蒸発手段
(Ea)と相互熱交換させる回路間熱授受用の凝縮器
(Cbi)と、前記高温側ヒートポンプ回路(Sa)及
び低温側ヒートポンプ回路(Sb)の外部における回路
外放熱対象(Mh)と熱交換させる回路外熱授受用の凝
縮器(Cbo)とで構成してある複元ヒートポンプ。
1. A high-boiling-point refrigerant (Ra) is used as a high-temperature side condensing means (C) as a heat pump circuit having independent refrigerant paths.
a) and a high temperature side heat pump circuit (Sa) that circulates between the high temperature side evaporation means (Ea) and a low boiling point refrigerant (R).
b) is a low temperature side condensation means (Cb) and a low temperature side evaporation means (E
b) is provided with a low temperature side heat pump circuit (Sb), the high temperature side evaporating means (Ea) and the low temperature side condensing means (C).
A dual heat pump configured to mutually exchange heat with b), wherein the condenser for inter-circuit heat transfer exchanges heat between the low temperature side condensing means (Cb) and the high temperature side evaporating means (Ea). (Cbi) and an external heat transfer condenser (Cbo) for exchanging heat with an external heat radiation target (Mh) outside the high temperature side heat pump circuit (Sa) and the low temperature side heat pump circuit (Sb). There is a compound heat pump.
【請求項2】 冷媒経路が互いに独立したヒートポンプ
回路として、高沸点冷媒(Ra)を高温側凝縮手段(C
a)と高温側蒸発手段(Ea)とにわたって循環させる
高温側ヒートポンプ回路(Sa)と、低沸点冷媒(R
b)を低温側凝縮手段(Cb)と低温側蒸発手段(E
b)とにわたって循環させる低温側ヒートポンプ回路
(Sb)とを設け、 前記高温側蒸発手段(Ea)と前記低温側凝縮手段(C
b)とを相互に熱交換させる構成とした複元ヒートポン
プであって、 前記高温側蒸発手段(Ea)を、前記低温側凝縮手段
(Cb)と相互熱交換させる回路間熱授受用の蒸発器
(Eai)と、前記高温側ヒートポンプ回路(Sa)及
び低温側ヒートポンプ回路(Sb)の外部における回路
外吸熱対象(Mc)と熱交換させる回路外熱授受用の蒸
発器(Eao)とで構成してある複元ヒートポンプ。
2. A high-boiling-point refrigerant (Ra) serving as a high-temperature side condensing means (C) as a heat pump circuit having refrigerant paths independent of each other.
a) and a high temperature side heat pump circuit (Sa) that circulates between the high temperature side evaporation means (Ea) and a low boiling point refrigerant (R).
b) is a low temperature side condensation means (Cb) and a low temperature side evaporation means (E
b) is provided with a low temperature side heat pump circuit (Sb), the high temperature side evaporating means (Ea) and the low temperature side condensing means (C).
A dual heat pump configured to mutually exchange heat with b), wherein the evaporator for inter-circuit heat transfer exchanges heat between the high temperature side evaporation means (Ea) and the low temperature side condensation means (Cb). (Eai), and an evaporator (Eao) for external heat transfer for exchanging heat with the external heat absorption target (Mc) outside the high temperature side heat pump circuit (Sa) and the low temperature side heat pump circuit (Sb). There is a compound heat pump.
【請求項3】 冷媒経路が互いに独立したヒートポンプ
回路として、高沸点冷媒(Ra)を高温側凝縮手段(C
a)と高温側蒸発手段(Ea)とにわたって循環させる
高温側ヒートポンプ回路(Sa)と、低沸点冷媒(R
b)を低温側凝縮手段(Cb)と低温側蒸発手段(E
b)とにわたって循環させる低温側ヒートポンプ回路
(Sb)とを設け、 前記高温側蒸発手段(Ea)と前記低温側凝縮手段(C
b)とを相互に熱交換させる構成とした複元ヒートポン
プであって、 前記低温側凝縮手段(Cb)を、前記高温側蒸発手段
(Ea)と相互熱交換させる回路間熱授受用の凝縮器
(Cbi)と、前記高温側ヒートポンプ回路(Sa)及
び低温側ヒートポンプ回路(Sb)の外部における回路
外放熱対象(Mh)と熱交換させる回路外熱授受用の凝
縮器(Cbo)とで構成し、 前記高温側蒸発手段(Ea)を、前記の回路間熱授受用
凝縮器(Cbi)と相互熱交換させる回路間熱授受用の
蒸発器(Eai)と、前記高温側ヒートポンプ回路(S
a)及び低温側ヒートポンプ回路(Sb)の外部におけ
る回路外吸熱対象(Mc)と熱交換させる回路外熱授受
用の蒸発器(Eao)とで構成してある複元ヒートポン
プ。
3. A high-boiling-point refrigerant (Ra) serving as a high-temperature-side condensing means (C) as a heat pump circuit having independent refrigerant paths.
a) and a high temperature side heat pump circuit (Sa) that circulates between the high temperature side evaporation means (Ea) and a low boiling point refrigerant (R).
b) is a low temperature side condensation means (Cb) and a low temperature side evaporation means (E
b) is provided with a low temperature side heat pump circuit (Sb), the high temperature side evaporating means (Ea) and the low temperature side condensing means (C).
A dual heat pump configured to mutually exchange heat with b), wherein the condenser for inter-circuit heat transfer exchanges heat between the low temperature side condensing means (Cb) and the high temperature side evaporating means (Ea). (Cbi) and an external heat transfer condenser (Cbo) for exchanging heat with an external heat radiation target (Mh) outside the high temperature side heat pump circuit (Sa) and the low temperature side heat pump circuit (Sb). , An inter-circuit heat transfer evaporator (Eai) for exchanging heat between the high temperature side evaporation means (Ea) and the inter circuit heat transfer condenser (Cbi), and the high temperature side heat pump circuit (S).
A dual heat pump configured by a) and an evaporator (Eao) for external heat exchange for exchanging heat with an external heat absorption target (Mc) outside the low temperature side heat pump circuit (Sb).
JP5297696A 1993-11-29 1993-11-29 Recovery heat pump Pending JPH07151401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5297696A JPH07151401A (en) 1993-11-29 1993-11-29 Recovery heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5297696A JPH07151401A (en) 1993-11-29 1993-11-29 Recovery heat pump

Publications (1)

Publication Number Publication Date
JPH07151401A true JPH07151401A (en) 1995-06-16

Family

ID=17849977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5297696A Pending JPH07151401A (en) 1993-11-29 1993-11-29 Recovery heat pump

Country Status (1)

Country Link
JP (1) JPH07151401A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216383A (en) * 2009-06-30 2009-09-24 Toyo Eng Works Ltd Multiple heat pump type steam/hot water generating device
JP2013245867A (en) * 2012-05-25 2013-12-09 Mitsubishi Electric Corp Dual refrigeration device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216383A (en) * 2009-06-30 2009-09-24 Toyo Eng Works Ltd Multiple heat pump type steam/hot water generating device
JP2013245867A (en) * 2012-05-25 2013-12-09 Mitsubishi Electric Corp Dual refrigeration device

Similar Documents

Publication Publication Date Title
JPH04263758A (en) Heat pump hot-water supplier
JP3140333B2 (en) Heat pump equipment
JP2004003801A (en) Refrigeration equipment using carbon dioxide as refrigerant
KR101543750B1 (en) Multi heat-exchanging heatpump system with variable inflow type of circulating water
JP2553738B2 (en) Heat pump system and its control method
JPH07151401A (en) Recovery heat pump
JPH09159300A (en) Air cooling absorption heat pump chiller using ammonia-water absorption cycle
JPH05126422A (en) Apparatus for cooling and heating
JP2702784B2 (en) Multi-room air conditioner
JP2000240980A (en) Refrigerator/air conditioner
JPH0351644A (en) Multiroom cooling heating device
JPH0674589A (en) Multichamber room cooler/heater
US20240027104A1 (en) Refrigeration cycle apparatus
JP2685299B2 (en) Multi-room air conditioner
WO2022202840A1 (en) Refrigerant circuit and vehicle heat pump device
JP3948815B2 (en) Multi-effect absorption refrigerator
JP3948814B2 (en) Multi-effect absorption refrigerator
KR100419479B1 (en) Auxiliary refrigerator mounted heat pump system
JPH0650631A (en) Heat pump device for both cooling and heating operations
JPS6358062A (en) Cooling device by circulation of refrigerant
JP2962395B2 (en) Thermal storage type air conditioner
JPH05118690A (en) Multi-chamber cooling and heating device
JPH07190521A (en) Cooling/heating switchover type heat pump equipment
JP3208254B2 (en) Heat pump equipment
JPH07167518A (en) Heat pump type air conditioning humidifier

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090310

LAPS Cancellation because of no payment of annual fees