JP2685299B2 - Multi-room air conditioner - Google Patents

Multi-room air conditioner

Info

Publication number
JP2685299B2
JP2685299B2 JP1186506A JP18650689A JP2685299B2 JP 2685299 B2 JP2685299 B2 JP 2685299B2 JP 1186506 A JP1186506 A JP 1186506A JP 18650689 A JP18650689 A JP 18650689A JP 2685299 B2 JP2685299 B2 JP 2685299B2
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
refrigerant
source side
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1186506A
Other languages
Japanese (ja)
Other versions
JPH0351668A (en
Inventor
正夫 蔵地
Original Assignee
松下冷機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下冷機株式会社 filed Critical 松下冷機株式会社
Priority to JP1186506A priority Critical patent/JP2685299B2/en
Publication of JPH0351668A publication Critical patent/JPH0351668A/en
Application granted granted Critical
Publication of JP2685299B2 publication Critical patent/JP2685299B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は多室冷暖房装置の冷媒サイクルに関するもの
である。
Description: TECHNICAL FIELD The present invention relates to a refrigerant cycle of a multi-room air conditioner.

従来の技術 従来の熱源側冷媒サイクルと利用側冷媒サイクルに分
離された多室冷暖房装置は、特開昭62−272040号公報に
示されている。
2. Description of the Related Art A conventional multi-chamber cooling / heating apparatus separated into a heat source side refrigerant cycle and a use side refrigerant cycle is disclosed in JP-A-62-272040.

以下、図面を参照しながら上記従来の多室冷暖房装置
について説明する。
Hereinafter, the conventional multi-room air conditioner will be described with reference to the drawings.

第2図において、11は圧縮機、12は四方弁、13は熱源
側熱交換器、14は冷房用減圧装置、15は暖房用減圧装
置、16は暖房時冷房用減圧装置14を閉成する逆止弁、17
は冷房時暖房用減圧装置15を閉成する逆止弁、18は第1
補助熱交換器であり、これらを環状に連接して熱源側冷
媒サイクルを形成している。
In FIG. 2, 11 is a compressor, 12 is a four-way valve, 13 is a heat source side heat exchanger, 14 is a cooling decompression device, 15 is a heating decompression device, and 16 is a heating cooling decompression device 14. Check valve, 17
Is a check valve that closes the decompression device 15 for heating during cooling, and 18 is the first
It is an auxiliary heat exchanger, and these are connected in a ring to form a heat source side refrigerant cycle.

19は第2補助熱交換器で、第1補助熱交換器18と熱交
換するように一体に形成されている。20は冷媒量調整タ
ンクで、冷房時と暖房時の冷媒量を調整している。21は
冷媒搬送装置で、冷房時と暖房時とで冷媒の流出方向が
反対となる可逆性をもっており、これらは室外ユニット
fに収納されている。22a,22bは利用側熱交換器で、室
内ユニットg,hに収納され、接続配管i,i′,j,j′で室外
ユニットfと接続されている。そして、第2補助熱交換
器19,冷媒量調整タンク20,冷媒搬送装置21,利用側熱交
換器22a,22bおよび接続配管i,i′,j,j′を環状に連接し
て利用側冷媒サイクルを形成している。
Reference numeral 19 denotes a second auxiliary heat exchanger, which is formed integrally with the first auxiliary heat exchanger 18 so as to exchange heat. Reference numeral 20 denotes a refrigerant amount adjusting tank for adjusting the amount of refrigerant during cooling and during heating. Reference numeral 21 denotes a refrigerant transfer device, which has a reversibility in which the refrigerant outflow directions are opposite during cooling and during heating, and these are stored in the outdoor unit f. 22a and 22b are use side heat exchangers housed in the indoor units g and h, and connected to the outdoor unit f by connection pipes i, i ', j and j'. Then, the second auxiliary heat exchanger 19, the refrigerant amount adjustment tank 20, the refrigerant transfer device 21, the use side heat exchangers 22a and 22b and the connection pipes i, i ′, j, j ′ are connected in an annular shape to the use side refrigerant. Forming a cycle.

以上のように構成された多室冷暖房装置について、以
下その動作を説明する。
The operation of the multi-room air conditioner configured as above will be described below.

冷房運転時は図中実線矢印の冷媒サイクルとなり、熱
源側冷媒サイクルでは、圧縮機11からの高温高圧のガス
冷媒は四方弁12を通り熱源側熱交換器13で放熱して凝縮
液化し、逆止弁16を通って冷房用膨張弁14で減圧され第
1補助熱交換器18で蒸発して四方弁12を通り圧縮機11へ
循環する。この時利用側冷媒サイクルの第2補助熱交換
器19と第1補助熱交換器18が熱交換し、利用側冷媒サイ
クル内のガス冷媒が冷却されて液化し、冷媒量調整タン
ク20を通って冷媒搬送装置21に送られ、この冷媒搬送装
置21によって接続配管i,jを通って利用側熱交換器22a,2
2bへ送られて吸熱蒸発し、ガス化して接続配管i′,j′
を通って第2補助熱交換器19に循環することになる。
During the cooling operation, the refrigerant cycle is indicated by the solid arrow in the figure.In the heat source side refrigerant cycle, the high temperature and high pressure gas refrigerant from the compressor 11 passes through the four-way valve 12 and radiates heat in the heat source side heat exchanger 13 to be condensed and liquefied. The pressure is reduced by the cooling expansion valve 14 through the stop valve 16, evaporated in the first auxiliary heat exchanger 18, passed through the four-way valve 12, and circulated to the compressor 11. At this time, the second auxiliary heat exchanger 19 and the first auxiliary heat exchanger 18 of the use side refrigerant cycle exchange heat, the gas refrigerant in the use side refrigerant cycle is cooled and liquefied, and passes through the refrigerant amount adjusting tank 20. It is sent to the refrigerant transfer device 21, and by this refrigerant transfer device 21 passes through the connection pipes i, j and the use side heat exchangers 22a, 2
It is sent to 2b where it is absorbed and vaporized, gasified, and connected pipes i ', j'
And circulates to the second auxiliary heat exchanger 19.

一方、暖房運転時においては、図中破線矢印の冷媒サ
イクルとなり、熱源側冷媒サイクルでは、圧縮機11から
の高温高圧のガス冷媒は四方弁12から第1補助熱交換器
18に送られ、放熱して凝縮液化し、逆止弁17から暖房用
膨張弁15で減圧し、熱源側熱交換器13で吸熱蒸発し、四
方弁12を通って圧縮機11へ循環する。この時利用側冷媒
サイクルの第2補助熱交換器19と第1補助熱交換器18が
熱交換し、利用側冷媒サイクル内の液冷媒が加熱されて
ガス化し、接続配管i′,j′を通って利用側熱交換器22
a,22bへ送られ、暖房して放熱液化し、接続配管i,jを通
って冷媒搬送装置21へ送られ、冷媒量調整タンク20から
第2補助熱交換器19へ循環する。
On the other hand, during the heating operation, the refrigerant cycle is indicated by the broken line arrow in the figure, and in the heat source side refrigerant cycle, the high-temperature and high-pressure gas refrigerant from the compressor 11 flows from the four-way valve 12 to the first auxiliary heat exchanger.
After being sent to 18, the heat is radiated to condense and liquefy, and the pressure is reduced from the check valve 17 by the heating expansion valve 15, absorbed and evaporated by the heat source side heat exchanger 13, and circulated to the compressor 11 through the four-way valve 12. At this time, the second auxiliary heat exchanger 19 and the first auxiliary heat exchanger 18 of the use side refrigerant cycle exchange heat, the liquid refrigerant in the use side refrigerant cycle is heated and gasified, and the connecting pipes i ′, j ′ are connected. Through heat exchanger 22
It is sent to a, 22b, heated and radiated to liquefy heat, sent to the refrigerant transfer device 21 through the connection pipes i, j, and circulated from the refrigerant amount adjusting tank 20 to the second auxiliary heat exchanger 19.

発明が解決しようとする課題 しかしながら上記の構成では、最大能力は限られてお
り、ピーク負荷に見合った装置能力としなければならな
い。従って設備容量が大きくなり、イニシャルコストや
ランニングコストの増加となり、省エネルギーとならな
い課題を有していた。
However, in the above-mentioned configuration, the maximum capacity is limited, and the apparatus capacity must correspond to the peak load. Therefore, the equipment capacity becomes large, the initial cost and the running cost increase, and there is a problem that energy saving is not achieved.

本発明は上記課題に鑑み、短時間のピーク負荷に対応
した装置を備え、設備容量の削減によるイニシャルコス
トやランニングコストの低減とともに省エネルギー化を
図った多室冷暖房装置を提供するものである。
In view of the above problems, the present invention provides a multi-room cooling and heating apparatus that includes a device that copes with a short-time peak load and that saves energy as well as reduces the initial cost and running cost by reducing the facility capacity.

課題を解決するための手段 上記課題を解決するために本発明は、圧縮機,四方
弁,熱源側熱交換器,冷暖房用減圧装置および第1補助
熱交換器を環状に連接してなる熱源側冷媒サイクルと、
この第1補助熱交換器と一体に形成し熱交換する第2補
助熱交換器,冷房時と暖房時とで冷媒の流出方向を変え
る冷媒搬送装置および複数の利用側熱交換器を環状に連
接してなる利用側冷媒サイクルとを備え、前記利用側冷
媒サイクルの冷媒として前記利用側冷媒サイクル内で液
状態とガス状態とに状態変化する冷媒を用いた多室冷暖
房装置において、三方切換手段を介して前記第1補助熱
交換器と並列に蓄熱用熱交換器を接続し、二方向の流量
比率を調整する三方流量弁を介して前記第2補助熱交換
器と並列に蓄熱を放熱する利用側放熱用熱交換器を接続
し、三方切換手段を介して前記熱源側熱交換器と前記冷
暖房用減圧装置との間に熱源側放熱用熱交換器を接続
し、前記蓄熱用熱交換器と前記利用側放熱用熱交換器及
び前記熱源側放熱用熱交換器を有する蓄熱槽を備えたの
である。
Means for Solving the Problems In order to solve the above problems, the present invention provides a heat source side formed by connecting a compressor, a four-way valve, a heat source side heat exchanger, a cooling / heating decompression device, and a first auxiliary heat exchanger in an annular shape. A refrigerant cycle,
A second auxiliary heat exchanger that is integrally formed with the first auxiliary heat exchanger to exchange heat, a refrigerant transfer device that changes the outflow direction of the refrigerant during cooling and heating, and a plurality of utilization-side heat exchangers that are connected in an annular shape. In the multi-chamber cooling and heating device using a refrigerant that changes its state into a liquid state and a gas state in the usage-side refrigerant cycle as a refrigerant of the usage-side refrigerant cycle, a three-way switching means is provided. Utilizing a heat storage heat exchanger connected in parallel with the first auxiliary heat exchanger via the three-way flow valve for adjusting the flow ratio in two directions to radiate the stored heat in parallel with the second auxiliary heat exchanger. Side heat radiating heat exchanger is connected, and a heat source side radiating heat exchanger is connected between the heat source side heat exchanger and the cooling / heating decompression device via a three-way switching means, and the heat storage heat exchanger is For the heat exchanger for heat radiation on the use side and for heat radiation on the heat source side Than is provided with a heat storage tank with exchanger.

作用 本発明は上記した構成によって、夜間に第1補助熱交
換器を通る流路から蓄熱用熱交換器を通る流路に三方切
換手段を切換えて熱源側冷媒サイクルのみを運転して蓄
熱槽内の蓄熱材を加熱または冷却して蓄熱しておき、ピ
ーク負荷時に、利用側冷媒サイクル内の冷媒の一部を利
用側放熱用熱交換器を送って蓄熱槽内の蓄熱材と熱交換
させるとともに、利用側冷媒サイクル内の残りの冷媒を
第2補助熱交換器へ送って第1補助熱交換器と熱交換さ
せることにより、利用側冷媒サイクルの冷暖房能力を増
大させることができる。
Effect The present invention has the above-described configuration, and switches the three-way switching means from the flow path that passes through the first auxiliary heat exchanger to the flow path that passes through the heat storage heat exchanger at night to operate only the heat source side refrigerant cycle in the heat storage tank. The heat storage material is heated or cooled to store heat, and at the time of peak load, a part of the refrigerant in the use side refrigerant cycle is sent to the use side heat radiation heat exchanger to exchange heat with the heat storage material in the heat storage tank. The cooling and heating capacity of the usage-side refrigerant cycle can be increased by sending the remaining refrigerant in the usage-side refrigerant cycle to the second auxiliary heat exchanger for heat exchange with the first auxiliary heat exchanger.

また、このとき、熱源側冷媒サイクル内の冷媒が熱源
側放熱用熱交換器を通るように三方切換手段を切換える
と、第1補助熱交換器での熱交換能力が増大し、第1補
助熱交換器と熱交換する利用側冷媒サイクルの第2補助
熱交換器での熱交換量が増え、さらに、利用側冷媒サイ
クルの冷暖房能力を増大させることができる。
At this time, if the three-way switching means is switched so that the refrigerant in the heat source side refrigerant cycle passes through the heat source side heat radiation heat exchanger, the heat exchange capacity of the first auxiliary heat exchanger increases, and the first auxiliary heat exchanger increases. The amount of heat exchange in the second auxiliary heat exchanger of the usage-side refrigerant cycle that exchanges heat with the exchanger is increased, and further the cooling / heating capacity of the usage-side refrigerant cycle can be increased.

また、蓄熱槽内の蓄熱材との熱交換だけで利用側冷媒
サイクルの冷暖房が行える場合は、熱源側冷媒サイクル
の運転を停止し、利用側冷媒サイクル内の冷媒の全部を
利用側放熱用熱交換器へ送って蓄熱槽内の蓄熱材と熱交
換させることにより、第2補助熱交換器での無駄な放熱
もしくは吸熱がなく、また、熱源側冷媒サイクルを運転
するためのエネルギーの消費がないため、省エネルギー
で効率の良い冷暖房が可能になる。また、従来と同様の
蓄熱槽を利用しないサイクルでの冷暖房運転も可能であ
る。
Also, when cooling and heating of the usage-side refrigerant cycle can be performed only by exchanging heat with the heat storage material in the heat storage tank, the operation of the heat source-side refrigerant cycle is stopped, and all the refrigerant in the usage-side refrigerant cycle is released to the usage-side heat dissipation heat. By sending to the exchanger and exchanging heat with the heat storage material in the heat storage tank, there is no unnecessary heat dissipation or heat absorption in the second auxiliary heat exchanger, and there is no consumption of energy for operating the heat source side refrigerant cycle. Therefore, it is possible to save energy and efficiently perform heating and cooling. Further, it is possible to perform heating / cooling operation in a cycle that does not use the heat storage tank as in the conventional case.

このように、本発明の多室冷暖房装置は、短時間のピ
ーク負荷に対応することができ、圧縮機を小容量とし設
備容量を小さくできるので、イニシャルコスト及びラン
ニングコストの低減となるとともに省エネルギー化に効
果がある。
As described above, the multi-room cooling and heating apparatus of the present invention can cope with a peak load for a short time, can reduce the capacity of the compressor to have a small installation capacity, and thus can reduce the initial cost and the running cost and save energy. Has an effect on.

実 施 例 以下、本発明の一実施例の多室冷暖房装置について、
図面を参照しながら説明する。第1図は本発明の多室冷
暖房装置の冷媒サイクル図を示すものである。
Example Hereinafter, a multi-room air conditioner of one embodiment of the present invention will be described.
This will be described with reference to the drawings. FIG. 1 shows a refrigerant cycle diagram of the multi-room air conditioner of the present invention.

図において、23は蓄熱槽であり、内部に水等の蓄熱材
を充填し、その蓄熱材と熱交換し蓄熱させる蓄熱用熱交
換器24と、同じく蓄熱材と熱交換し蓄熱を放熱させる利
用側冷媒サイクルに設けた利用側放熱用熱交換器25aと
熱源側冷媒サイクルに設けた熱源側放熱用熱交換器25b
を備えている。
In the figure, 23 is a heat storage tank, which is filled with a heat storage material such as water inside, and a heat storage heat exchanger 24 for exchanging heat with the heat storage material, and also for exchanging heat with the heat storage material to radiate the stored heat. Side heat dissipation heat exchanger 25a provided in the side refrigerant cycle and heat source side heat dissipation heat exchanger 25b provided in the heat source side refrigerant cycle
It has.

26a,26bは、第1補助熱交換器18への冷媒流路と蓄熱
用熱交換器24への冷媒流路とを切換える三方切換弁、27
a,27bは、第2補助熱交換器19と利用側放熱用熱交換器2
5aへの二方向の冷媒流量比率を調整する三方流量弁、28
a,28bは、熱源側熱交換器13と冷房用減圧装置14及び暖
房用減圧装置との間に熱源側放熱用熱交換器25bを介在
させる冷媒流路にするか介在させない冷媒流路にするか
を切換える三方切換弁である。
Reference numerals 26a and 26b denote three-way switching valves for switching the refrigerant flow path to the first auxiliary heat exchanger 18 and the refrigerant flow path to the heat storage heat exchanger 24, and 27
a and 27b are the second auxiliary heat exchanger 19 and the user side heat radiation heat exchanger 2
Three-way flow valve to adjust the two-way refrigerant flow ratio to 5a, 28
a and 28b are refrigerant flow passages in which the heat source side heat radiating heat exchanger 25b is interposed between the heat source side heat exchanger 13 and the cooling decompression device 14 and the heating decompression device, or refrigerant passages which are not interposed. This is a three-way switching valve that switches between

以上のように構成された多室冷暖房装置について、以
下その動作を説明する。
The operation of the multi-room air conditioner configured as above will be described below.

夜間等で冷房の必要がないときに冷房のピーク負荷に
備えるときは、熱源側冷媒サイクルのみを図中実線矢印
のサイクルで運転する蓄熱運転を行う。このとき、圧縮
機11からの冷媒は、四方弁12を通って熱源側熱交換器13
で冷却され凝縮液化し、逆止弁16を通って冷房用膨張弁
14で減圧され、三方切換弁26aを通り蓄熱用熱交換器24
に流通し、蓄熱用熱交換器24において蓄熱材と熱交換し
て吸熱蒸発ガス化し、三方切換弁26bを通って四方弁12
から圧縮機11へ循環する。これにより、蓄熱槽23内の蓄
熱材を0℃程度に冷却させて蓄熱しておく。
When preparing for the peak load of cooling when there is no need for cooling at night or the like, heat storage operation is performed in which only the heat source side refrigerant cycle is operated in the cycle indicated by the solid line arrow in the figure. At this time, the refrigerant from the compressor 11 passes through the four-way valve 12 and the heat source side heat exchanger 13
It is cooled and condensed into a liquefied liquid, and passes through the check valve 16 to expand the cooling valve.
It is decompressed at 14, passes through the three-way switching valve 26a, and the heat storage heat exchanger 24
Flow through the three-way switching valve 26b and the four-way valve 12 through the three-way switching valve 26b.
To compressor 11. As a result, the heat storage material in the heat storage tank 23 is cooled to about 0 ° C. to store heat.

そして、冷房ピーク負荷のときは、熱源側冷媒サイク
ルでは、三方切換弁26a、26bを切換えて第1補助熱交換
器18を蒸発器とする図中実線矢印のサイクルの冷房運転
を行うとともに、三方切換弁28a,28bを切換え熱源側熱
交換器13からの冷媒を熱源側放熱用熱交換器25bに流
し、熱源側放熱用熱交換器25bにおいて夜間の蓄熱運転
により0℃程度に冷却された蓄熱材と熱交換させて冷却
し、過冷却度を大きくして冷媒のエンタルピー差を大き
くし第1補助熱交換器18における冷房能力を向上させ
る。
Then, at the peak load of cooling, in the heat source side refrigerant cycle, the three-way switching valves 26a, 26b are switched to perform the cooling operation of the cycle indicated by the solid arrow in the figure in which the first auxiliary heat exchanger 18 is used as the evaporator. The switching valves 28a and 28b are switched, the refrigerant from the heat source side heat exchanger 13 is caused to flow into the heat source side heat radiation heat exchanger 25b, and the heat storage is cooled to about 0 ° C. by the nighttime heat storage operation in the heat source side heat radiation heat exchanger 25b. The material is heat-exchanged for cooling, the degree of supercooling is increased, the enthalpy difference of the refrigerant is increased, and the cooling capacity of the first auxiliary heat exchanger 18 is improved.

一方、利用側冷媒サイクルでは、図中実線矢印に示す
ように、冷媒搬送装置21からの冷媒は、接続配管i,jを
通って利用側熱交換器22a,22bへ送られて、利用側熱交
換器22a,22bにおいて吸熱蒸発し、ガス化し、接続配管
i′,j′を通り、三方流量弁27aに送られる。三方流量
弁27aに送られた冷媒の一部は利用側放熱用熱交換器25a
に送られ、残りの冷媒は第2補助熱交換器19に送られ
る。なお、利用側放熱用熱交換器25aに送られる冷媒量
と第2補助熱交換器19に送られる冷媒量の流量比率は負
荷に合わせて三方流量弁27a,27bで調整される。三方流
量弁27aから利用側放熱用熱交換器25aに送られた冷媒
は、利用側放熱用熱交換器25aにおいて夜間の蓄熱運転
により0℃程度に冷却された蓄熱材と熱交換することに
よって冷却凝縮して液化し三方流量弁27bへ送られ、三
方流量弁27aから第2補助熱交換器19へ送られた冷媒
は、第2補助熱交換器19において第1補助熱交換器18と
熱交換することによって冷却凝縮して液化し三方流量弁
27bへ送られる。そして三方流量弁27bで合流した冷媒
は、冷媒量調整タンク20から冷媒搬送装置21へ循環す
る。
On the other hand, in the use side refrigerant cycle, as shown by the solid line arrow in the figure, the refrigerant from the refrigerant transfer device 21 is sent to the use side heat exchangers 22a, 22b through the connection pipes i, j, and the use side heat is transferred. In the exchangers 22a and 22b, they are endothermicly evaporated, gasified, and sent to the three-way flow valve 27a through the connecting pipes i'and j '. A part of the refrigerant sent to the three-way flow valve 27a is part of the heat radiating heat exchanger 25a on the use side.
And the remaining refrigerant is sent to the second auxiliary heat exchanger 19. The flow rate ratio between the amount of refrigerant sent to the heat radiating side for heat utilization 25a and the amount of refrigerant sent to the second auxiliary heat exchanger 19 is adjusted by the three-way flow valves 27a, 27b according to the load. The refrigerant sent from the three-way flow valve 27a to the heat radiating heat exchanger 25a on the use side is cooled by exchanging heat with the heat storage material cooled to about 0 ° C. by the heat storage operation at night in the heat radiating heat exchanger 25a on the use side. The refrigerant that is condensed and liquefied and sent to the three-way flow valve 27b and sent from the three-way flow valve 27a to the second auxiliary heat exchanger 19 exchanges heat with the first auxiliary heat exchanger 18 in the second auxiliary heat exchanger 19. By cooling and condensing and liquefying, the three-way flow valve
Sent to 27b. Then, the refrigerant merged by the three-way flow valve 27b circulates from the refrigerant amount adjustment tank 20 to the refrigerant transfer device 21.

従って、この時、利用側冷媒サイクルの冷房能力は、
熱源側熱交換器13からの冷媒を熱源側放熱用熱交換器25
bに流して冷却し過冷却度を大きくすることにより従来
よりも能力が向上した熱源側冷媒サイクルの第1補助熱
交換器18による冷房能力に、放熱用熱交換器25aによる
冷房能力が加わり、冷房ピーク負荷に対応できる。
Therefore, at this time, the cooling capacity of the use-side refrigerant cycle is
The heat exchanger 25 for radiating the refrigerant from the heat source side heat exchanger 13 to the heat source side
The cooling capacity by the heat radiating heat exchanger 25a is added to the cooling capacity by the first auxiliary heat exchanger 18 of the heat source side refrigerant cycle whose capacity is improved by flowing it to b to increase the supercooling degree, It can handle peak load of cooling.

また、暖房の必要がないときに暖房のピーク負荷に備
えるときは、熱源側冷媒サイクルのみを図中破線矢印の
サイクルで運転する蓄熱運転を行う。このとき、圧縮機
11,四方弁12からの冷媒は、三方切換弁26bから蓄熱用熱
交換器24へ送られ、蓄熱用熱交換器24において蓄熱材と
熱交換して冷却凝縮して液化し、三方切換弁26aから逆
止弁17を通って暖房用膨張弁15で減圧され、熱源側熱交
換器13で吸熱蒸発し、四方弁12から圧縮機11へ循環す
る。これにより、蓄熱槽23内の蓄熱材を加熱させて蓄熱
しておく。
Further, when preparing for the peak load of heating when there is no need for heating, heat storage operation is performed in which only the heat source side refrigerant cycle is operated in the cycle indicated by the dashed arrow in the figure. At this time, the compressor
11, the refrigerant from the four-way valve 12 is sent from the three-way switching valve 26b to the heat storage heat exchanger 24, where it exchanges heat with the heat storage material to cool, condense and liquefy, and then the three-way switching valve 26a. The pressure is reduced by the heating expansion valve 15 through the check valve 17, absorbed and evaporated by the heat source side heat exchanger 13, and circulated from the four-way valve 12 to the compressor 11. As a result, the heat storage material in the heat storage tank 23 is heated to store heat.

そして、暖房ピーク負荷のときは、熱源側冷媒サイク
ルでは、三方切換弁26a,26bを切換えて第1補助熱交換
器18を凝縮器とする図中破線矢印のサイクルの暖房運転
を行うとともに、三方切換弁28a,28bを切換え暖房用膨
張弁15からの冷媒を熱源側放熱用熱交換器25bに流し、
熱源側放熱用熱交換器25bにおいて蓄熱運転により加熱
されて高温状態になっている蓄熱材と熱交換させて加熱
し、蒸発能力を向上させて第1補助熱交換器18における
暖房能力を向上させる。
Then, during the heating peak load, in the heat source side refrigerant cycle, the three-way switching valves 26a, 26b are switched to perform the heating operation in the cycle indicated by the broken line arrow in the drawing in which the first auxiliary heat exchanger 18 is the condenser, and The switching valves 28a, 28b are switched to flow the refrigerant from the heating expansion valve 15 into the heat source side heat radiation heat exchanger 25b,
In the heat exchanger 25b for radiating heat on the heat source side, heat is exchanged with the heat storage material that has been heated by the heat storage operation and is in a high temperature state for heating, and the evaporation capacity is improved and the heating capacity in the first auxiliary heat exchanger 18 is improved. .

一方、利用側冷媒サイクルでは、図中破線矢印に示す
ように、冷媒搬送装置21からの冷媒は、冷媒量調整タン
ク20から三方流量弁27bに送られる。三方流量弁27bに送
られた冷媒の一部は利用側放熱用熱交換器25aに送ら
れ、残りの冷媒は第2補助熱交換器19に送られる。な
お、利用側放熱用熱交換器25aに送られる冷媒量と第2
補助熱交換器19に送られる冷媒量の流量比率は負荷に合
わせて三方流量弁27a,27bで調整される。三方流量弁27b
から利用側放熱用熱交換器25aに送られた冷媒は、利用
側放熱用熱交換器25aにおいて蓄熱運転により高温状態
となっている蓄熱材と熱交換することによって加熱され
吸熱蒸発してガス化し三方流量弁27aへ送られ、三方流
量弁27bから第2補助熱交換器19へ送られた冷媒は、第
2補助熱交換器19において第1補助熱交換器18と熱交換
することによって加熱され吸熱蒸発してガス化し三方流
量弁27aへ送られる。そして三方流量弁27aで合流した冷
媒は、接続配管i′,j′を通って利用側熱交換器22a,22
bへ送られて、利用側熱交換器22a,22bにおいて放熱凝縮
し液化し、接続配管i,jを通って冷媒搬送装置21へ循環
する。
On the other hand, in the usage-side refrigerant cycle, the refrigerant from the refrigerant transfer device 21 is sent from the refrigerant amount adjustment tank 20 to the three-way flow valve 27b, as indicated by the dashed arrow in the figure. A part of the refrigerant sent to the three-way flow valve 27b is sent to the utilization side heat radiation heat exchanger 25a, and the remaining refrigerant is sent to the second auxiliary heat exchanger 19. In addition, the amount of the refrigerant sent to the heat radiating heat exchanger 25a on the use side and the second
The flow rate ratio of the amount of refrigerant sent to the auxiliary heat exchanger 19 is adjusted by the three-way flow valves 27a and 27b according to the load. Three-way flow valve 27b
The refrigerant sent from the user-side heat radiation heat exchanger 25a to the user-side heat-radiation heat exchanger 25a is heated by heat exchange with the heat storage material that is in a high temperature state due to the heat storage operation in the user-side heat radiation heat exchanger 25a and is endothermic vaporized and gasified. The refrigerant sent to the three-way flow valve 27a and sent from the three-way flow valve 27b to the second auxiliary heat exchanger 19 is heated by exchanging heat with the first auxiliary heat exchanger 18 in the second auxiliary heat exchanger 19. It is endothermically evaporated and gasified, and sent to the three-way flow valve 27a. Then, the refrigerants joined by the three-way flow valve 27a pass through the connecting pipes i ', j', and the use side heat exchangers 22a, 22 '.
It is sent to b, is radiatively condensed and liquefied in the use side heat exchangers 22a and 22b, and circulates to the refrigerant transfer device 21 through the connection pipes i and j.

従って、この時、利用側冷媒サイクルの暖房能力は、
暖房用膨張弁15からの冷媒を熱源側放熱用熱交換器25b
に流して加熱し蒸発能力を大きくすることにより従来よ
りも能力が向上した熱源側冷媒サイクルの第1補助熱交
換器18による暖房能力に、放熱用熱交換器25aによる暖
房能力が加わり、暖房ピーク負荷に対応できる。
Therefore, at this time, the heating capacity of the use-side refrigerant cycle is
The heat exchanger 25b for radiating the refrigerant from the heating expansion valve 15 to the heat source side
The heating capacity by the first auxiliary heat exchanger 18 of the heat source side refrigerant cycle, which is improved by increasing the evaporation capacity by flowing the heat to the heating capacity by the heat dissipation heat exchanger 25a, adds the heating peak. Can handle loads.

また、冷暖房のピーク負荷があまり大きくなく、熱源
側冷媒サイクルの第1補助熱交換器18による冷暖房能力
を通常より向上させる必要のないときは、熱源側放熱用
熱交換器25bに冷媒が流れないように三方切換弁28a,28b
を切換える。この場合、熱源側放熱用熱交換器25bによ
る蓄熱の消費がなくなるため、放熱用熱交換器25aによ
る蓄熱の取出し可能時間を長くすることができる。
Further, when the peak load of cooling and heating is not so large and it is not necessary to improve the cooling and heating capacity of the first auxiliary heat exchanger 18 in the heat source side refrigerant cycle more than usual, the refrigerant does not flow to the heat source side heat radiating heat exchanger 25b. So that the three-way switching valve 28a, 28b
Switch. In this case, since the heat storage by the heat source side heat radiating heat exchanger 25b is not consumed, the time when the heat radiating heat exchanger 25a can take out the heat storage can be lengthened.

また、熱源側放熱用熱交換器25bに冷媒が流れるよう
に三方切換弁28a,28bを切換え、利用側冷媒サイクル内
の冷媒の全部を第2補助熱交換器19へ送るように三方流
量弁27a,27bを調節すれば、利用側冷媒サイクルで直接
蓄熱を取出せなくなるが、熱源側放熱用熱交換器25bで
の熱交換により従来よりも能力が向上した熱源側冷媒サ
イクルの第1補助熱交換器18による冷暖房能力を、利用
側冷媒サイクルの冷暖房に長時間利用できる。
In addition, the three-way switching valves 28a, 28b are switched so that the refrigerant flows through the heat-source-side heat-radiating heat exchanger 25b, and the three-way flow valve 27a so that all the refrigerant in the usage-side refrigerant cycle is sent to the second auxiliary heat exchanger 19. , 27b, heat cannot be directly taken out in the use-side refrigerant cycle, but the first auxiliary heat exchanger in the heat-source-side refrigerant cycle has improved capacity by heat exchange in the heat-source-side heat dissipation heat exchanger 25b. The heating / cooling capacity of 18 can be used for a long time for cooling / heating of the user side refrigerant cycle.

また、蓄熱槽23内の蓄熱材との熱交換だけで利用側冷
媒サイクルの冷暖房が行える場合は、熱源側冷媒サイク
ルの運転を停止し、三方流量弁27a,27bにより利用側冷
媒サイクル内の冷媒の全部を利用側放熱用熱交換器25a
へ送って蓄熱槽23内の蓄熱材と熱交換させる。この場
合、第2補助熱交換器19に冷媒が流れないことにより、
第2補助熱交換器19での無駄な放熱もしくは吸熱がな
く、また、熱源側冷媒サイクルを運転するためのエネル
ギーの消費がないため、省エネルギーで効率の良い冷暖
房が可能になる。
Further, when cooling and heating of the use side refrigerant cycle can be performed only by heat exchange with the heat storage material in the heat storage tank 23, the operation of the heat source side refrigerant cycle is stopped, and the refrigerant in the use side refrigerant cycle is controlled by the three-way flow valves 27a, 27b. The heat exchanger for heat radiation 25a
To heat exchange with the heat storage material in the heat storage tank 23. In this case, since the refrigerant does not flow to the second auxiliary heat exchanger 19,
Since there is no unnecessary heat dissipation or heat absorption in the second auxiliary heat exchanger 19 and no energy is consumed for operating the heat source side refrigerant cycle, it is possible to save energy and efficiently perform heating / cooling.

また、蓄熱をしていない場合または蓄熱が全て消費さ
れた場合は、三方切換弁26a,26bと三方流量弁27a,27bと
三方切換弁28a,28bにより冷媒の流れが第2図と同じに
なるようにできる。
When heat is not stored or when all the heat is consumed, the flow of refrigerant becomes the same as in FIG. 2 by the three-way switching valves 26a, 26b, three-way flow valves 27a, 27b, and three-way switching valves 28a, 28b. You can

以上、蓄熱運転で蓄熱槽23内の蓄熱材に蓄えた蓄熱
を、冷暖房負荷の大きさに応じて利用することについて
述べてきたが、起動時に蓄熱を利用すれば、立上がり特
性を向上させることができる。また、暖房運転で熱源側
冷媒サイクルの熱源側熱交換器13に霜が着いたときは、
熱源側放熱用熱交換器25bを冷媒が流れるように三方切
換弁28a,28bを切換えて、熱源側放熱用熱交換器25bで加
熱された冷媒を熱源側熱交換器13に流すことにより、熱
源側熱交換器13に着いた霜を早く解かすことができる。
As described above, the heat storage stored in the heat storage material in the heat storage tank 23 in the heat storage operation has been described to be used according to the size of the cooling / heating load.However, if the heat storage is used at the time of startup, the startup characteristics can be improved. it can. Further, when frost is formed on the heat source side heat exchanger 13 of the heat source side refrigerant cycle in the heating operation,
By switching the three-way switching valves 28a, 28b so that the refrigerant flows through the heat source side heat radiating heat exchanger 25b, and flowing the refrigerant heated by the heat source side heat radiating heat exchanger 25b to the heat source side heat exchanger 13, the heat source The frost on the side heat exchanger 13 can be quickly thawed.

なお、本実施例では、蓄熱槽23を室外ユニットfに設
けた例を説明したが、蓄熱槽23は室外ユニットfの外に
設けても構わない。また、圧縮機11には能力制御型の圧
縮機を使用することができる。また、熱源側冷媒サイク
ルと利用側冷媒サイクルの使用冷媒を異なったものとす
ることができる。また、第1補助熱交換器18と第2補助
熱交換器19とは積層式熱交換器で構成することができ
る。
In this embodiment, the heat storage tank 23 is provided in the outdoor unit f, but the heat storage tank 23 may be provided outside the outdoor unit f. Further, a capacity control type compressor can be used for the compressor 11. Further, the refrigerant used in the heat source side refrigerant cycle and the refrigerant used in the utilization side refrigerant cycle can be different. Further, the first auxiliary heat exchanger 18 and the second auxiliary heat exchanger 19 can be configured as a laminated heat exchanger.

以上のように本実施例は、三方切換手段26a,26bを介
して第1補助熱交換器18と並列に蓄熱用熱交換器24を接
続し、二方向の流量比率を調整する三方流量弁27a,27b
を介して第2補助熱交換器19と並列に蓄熱を放熱する利
用側放熱用熱交換器25aを接続し、三方切換手段28a,28b
を介して熱源側熱交換器13と冷暖房用減圧装置14,15と
の間に熱源側放熱用熱交換器25bを接続し、蓄熱用熱交
換器24と利用側放熱用熱交換器25a及び熱源側放熱用熱
交換器25bを有する蓄熱槽23を備えたことにより、予め
夜間等冷暖房の必要のないときに蓄熱用熱交換器24で蓄
熱槽23内の蓄熱材を加熱または冷却して蓄熱しておき、
ピーク負荷が比較的大きい時には、利用側放熱用熱交換
器25aと熱源側放熱用熱交換器25bの両方で、また、ピー
ク負荷が比較的小さい時には、利用側放熱用熱交換器25
aと熱源側放熱用熱交換器25bのどちらか一方で、蓄熱を
取出すことによって利用側冷媒サイクルの冷暖房能力を
増大させ、短時間のピーク負荷に対応することができ
る。従って、圧縮機11を小容量とし設備容量を小さくで
きるので、イニシャルコスト及びランニングコストの低
減となるとともに省エネルギー化に効果がある。
As described above, in the present embodiment, the heat storage heat exchanger 24 is connected in parallel with the first auxiliary heat exchanger 18 via the three-way switching means 26a, 26b, and the three-way flow valve 27a for adjusting the two-way flow rate ratio is used. , 27b
A heat exchanger 25a for radiating the stored heat is connected in parallel with the second auxiliary heat exchanger 19 through the three-way switching means 28a, 28b.
The heat source side heat exchanger 13 and the cooling and heating decompression devices 14, 15 are connected to the heat source side heat radiation heat exchanger 25b, and the heat storage heat exchanger 24 and the use side heat radiation heat exchanger 25a and the heat source. By providing the heat storage tank 23 having the side heat radiating heat exchanger 25b, the heat storage heat exchanger 24 heats or cools the heat storage material in the heat storage tank 23 to store heat when there is no need for heating and cooling in advance such as at night. Aside
When the peak load is relatively large, both the use side heat dissipation heat exchanger 25a and the heat source side heat dissipation heat exchanger 25b, and when the peak load is relatively small, the use side heat dissipation heat exchanger 25b
It is possible to increase the cooling / heating capacity of the usage-side refrigerant cycle by taking out heat from either a or the heat-source-side heat-dissipating heat exchanger 25b to cope with a short-time peak load. Therefore, the compressor 11 can be made to have a small capacity and the equipment capacity can be made small, so that the initial cost and the running cost can be reduced and the energy can be saved.

また、蓄熱槽23内の蓄熱材との熱交換だけで利用側冷
媒サイクルの冷暖房が行える場合は、熱源側冷媒サイク
ルの運転を停止し、利用側冷媒サイクル内の冷媒の全部
を利用側放熱用熱交換器25aへ送ることにより、第2補
助熱交換器19での無駄な放熱もしくは吸熱がなく、ま
た、熱源側冷媒サイクルを運転するためのエネルギーの
消費がないため、省エネルギーで効率の良い冷暖房が可
能になる。
Further, when cooling and heating of the use side refrigerant cycle can be performed only by heat exchange with the heat storage material in the heat storage tank 23, the operation of the heat source side refrigerant cycle is stopped, and all the refrigerant in the use side refrigerant cycle is used for the use side heat radiation. By sending to the heat exchanger 25a, there is no unnecessary heat dissipation or heat absorption in the second auxiliary heat exchanger 19, and there is no energy consumption for operating the heat source side refrigerant cycle, so energy-saving and efficient cooling and heating Will be possible.

また、起動時に蓄熱を利用することにより、立上がり
特性を向上させることができ、また、暖房運転時に熱源
側放熱用熱交換器25bで加熱された冷媒を熱源側熱交換
器13に流すことにより、暖房運転を維持しながら熱源側
熱交換器13に着いた霜を早く解かすことができる。
Further, by utilizing the heat storage at startup, it is possible to improve the rising characteristics, and by flowing the refrigerant heated by the heat source side heat radiation heat exchanger 25b during the heating operation to the heat source side heat exchanger 13, The frost on the heat source side heat exchanger 13 can be quickly thawed while maintaining the heating operation.

発明の効果 以上のように本発明は、三方切換手段を介して第1補
助熱交換器と並列に蓄熱用熱交換器を接続し、二方向の
流量比率を調整する三方流量弁を介して第2補助熱交換
器と並列に蓄熱を放熱する利用側放熱用熱交換器を接続
し、三方切換手段を介して熱源側熱交換器と冷暖房用減
圧装置との間に熱源側放熱用熱交換器を接続し、前記蓄
熱用熱交換器と前記利用側放熱用熱交換器及び前記熱源
側放熱用熱交換器を有する蓄熱槽を備えたことにより、
予め夜間等冷暖房の必要のないときに蓄熱用熱交換器で
蓄熱槽内の蓄熱材を加熱または冷却して蓄熱しておき、
ピーク負荷が比較的大きい時には、利用側放熱用熱交換
器と熱源側放熱用熱交換器の両方で、また、ピーク負荷
が比較的小さい時には、利用側放熱用熱交換器と熱源側
放熱用熱交換器のどちらか一方で、蓄熱を取出すことに
よって利用側冷媒サイクルの冷暖房能力を増大させ、短
時間のピーク負荷に対応することができる。従って、圧
縮機を小容量とし設備容量を小さくできるので、イニシ
ャルコスト及びランニングコストの低減となるとともに
省エネルギー化に効果がある。
EFFECTS OF THE INVENTION As described above, according to the present invention, the heat storage heat exchanger is connected in parallel with the first auxiliary heat exchanger via the three-way switching means, and the three-way flow valve for adjusting the flow rate ratio in the two directions is used. 2 A heat exchanger for heat radiation on the use side for radiating heat storage is connected in parallel with the auxiliary heat exchanger, and a heat exchanger for heat radiation on the heat source side is provided between the heat exchanger on the heat source side and the decompressor for cooling and heating via the three-way switching means. By providing a heat storage tank having the heat storage heat exchanger, the use side heat radiation heat exchanger, and the heat source side heat radiation heat exchanger.
When there is no need for heating and cooling at night, etc., the heat storage heat exchanger heats or cools the heat storage material in the heat storage tank to store heat in advance.
When the peak load is relatively large, both the heat exchanger for heat radiation on the usage side and the heat exchanger for heat radiation on the heat source side, and when the peak load is relatively small, the heat exchanger for heat radiation on the usage side and heat radiation for heat source side. By extracting heat from either one of the exchangers, the cooling / heating capacity of the use-side refrigerant cycle can be increased to cope with peak load for a short time. Therefore, since the capacity of the compressor can be reduced to a small capacity, the initial cost and the running cost can be reduced, and energy can be saved.

また、蓄熱槽内の蓄熱材との熱交換だけで利用側冷媒
サイクルの冷暖房が行える場合は、熱源側冷媒サイクル
の運転を停止し、利用側冷媒サイクル内の冷媒の全部を
利用側放熱用熱交換器へ送ることにより、第2補助熱交
換器での無駄な放熱もしくは吸熱がなく、また、熱源側
冷媒サイクルを運転するためのエネルギーの消費がない
ため、省エネルギーで効率の良い冷暖房が可能になる。
Also, when cooling and heating of the usage-side refrigerant cycle can be performed only by exchanging heat with the heat storage material in the heat storage tank, the operation of the heat source-side refrigerant cycle is stopped, and all the refrigerant in the usage-side refrigerant cycle is released to the usage-side heat dissipation heat. By sending to the exchanger, there is no unnecessary heat dissipation or heat absorption in the second auxiliary heat exchanger, and there is no energy consumption for operating the heat source side refrigerant cycle, so energy-saving and efficient cooling and heating are possible. Become.

また、起動時に蓄熱を利用することにより、立上がり
特性を向上させることができ、また、暖房運転時に熱源
側放熱用熱交換器で加熱された冷媒を熱源側熱交換器に
流すことにより、暖房運転を維持しながら熱源側熱交換
器に着いた霜を早く解かすことができる。
In addition, by using the heat storage at startup, it is possible to improve the rising characteristics, and by flowing the refrigerant heated by the heat source side heat radiation heat exchanger to the heat source side heat exchanger during heating operation, While maintaining the above, the frost on the heat source side heat exchanger can be quickly thawed.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例における多室冷暖房装置の冷
媒サイクル図、第2図は従来の多室冷暖房装置の冷媒サ
イクル図である。 13……熱源側熱交換器、18……第1補助熱交換器、19…
…第2補助熱交換器、21……冷媒搬送装置、22a,22b…
…利用側熱交換器、23……蓄熱槽、24……蓄熱用熱交換
器、25a……利用側放熱用熱交換器、25b……熱源側放熱
用熱交換器。
FIG. 1 is a refrigerant cycle diagram of a multi-room air conditioner in one embodiment of the present invention, and FIG. 2 is a refrigerant cycle diagram of a conventional multi-room air conditioner. 13 ... heat source side heat exchanger, 18 ... first auxiliary heat exchanger, 19 ...
… Second auxiliary heat exchanger, 21 …… Refrigerant carrier, 22a, 22b…
… Use side heat exchanger, 23 …… Heat storage tank, 24 …… Heat storage heat exchanger, 25a …… Use side heat dissipation heat exchanger, 25b …… Heat source side heat dissipation heat exchanger.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】圧縮機,四方弁,熱源側熱交換器,冷暖房
用減圧装置および第1補助熱交換器を環状に連接してな
る熱源側冷媒サイクルと、この第1補助熱交換器と一体
に形成し熱交換する第2補助熱交換器,冷房時と暖房時
とで冷媒の流出方向を変える冷媒搬送装置および複数の
利用側熱交換器を環状に連接してなる利用側冷媒サイク
ルと、三方切換手段を介して前記第1補助熱交換器と並
列に接続された蓄熱用熱交換器と、二方向の流量比率を
調整する三方流量弁を介して前記第2補助熱交換器と並
列に接続された蓄熱を放熱する利用側放熱用熱交換器
と、三方切換手段を介して前記熱源側熱交換器と前記冷
暖房用減圧装置との間に接続された熱源側放熱用熱交換
器と、前記蓄熱用熱交換器と前記利用側放熱用熱交換器
及び前記熱源側放熱用熱交換器を有する蓄熱槽とを備
え、前記利用側冷媒サイクルの冷媒として前記利用側冷
媒サイクル内で液状態とガス状態とに状態変化する冷媒
を用いた多室冷暖房装置。
1. A heat source side refrigerant cycle comprising a compressor, a four-way valve, a heat source side heat exchanger, a cooling / heating decompression device and a first auxiliary heat exchanger connected in an annular shape, and a first auxiliary heat exchanger. A second auxiliary heat exchanger that forms and heat-exchanges with each other, a refrigerant transfer device that changes the outflow direction of the refrigerant during cooling and heating, and a usage-side refrigerant cycle that is formed by connecting a plurality of usage-side heat exchangers in an annular shape, A heat storage heat exchanger connected in parallel with the first auxiliary heat exchanger via a three-way switching means, and a second auxiliary heat exchanger in parallel via a three-way flow valve for adjusting a flow ratio in two directions. A heat exchanger for heat radiation on the use side for radiating the stored heat, and a heat exchanger for heat radiation on the heat source side connected between the heat source side heat exchanger and the cooling / heating decompression device via a three-way switching means, The heat exchanger for heat storage, the heat exchanger for heat radiation on the use side, and the heat radiation on the heat source side And a thermal storage tank having a heat exchanger, a multi-chamber air conditioner using the refrigerant changes state to a liquid state and a gas state at the use-side in the refrigerant cycle as the refrigerant in the use-side refrigerant cycle.
【請求項2】圧縮機に能力制御圧縮機を搭載した特許請
求の範囲第1項記載の多室冷暖房装置。
2. The multi-room cooling and heating apparatus according to claim 1, wherein the compressor is equipped with a capacity control compressor.
【請求項3】熱源側冷媒サイクルと利用側冷媒サイクル
の使用冷媒の異なる特許請求の範囲第1項記載の多室冷
暖房装置。
3. The multi-room cooling and heating apparatus according to claim 1, wherein different refrigerants are used in the heat source side refrigerant cycle and the use side refrigerant cycle.
【請求項4】第1補助熱交換器と第2補助熱交換器に積
層式熱交換器を使用した特許請求の範囲第1項記載の多
室冷暖房装置。
4. The multi-room cooling and heating apparatus according to claim 1, wherein a laminated heat exchanger is used for the first auxiliary heat exchanger and the second auxiliary heat exchanger.
JP1186506A 1989-07-19 1989-07-19 Multi-room air conditioner Expired - Fee Related JP2685299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1186506A JP2685299B2 (en) 1989-07-19 1989-07-19 Multi-room air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1186506A JP2685299B2 (en) 1989-07-19 1989-07-19 Multi-room air conditioner

Publications (2)

Publication Number Publication Date
JPH0351668A JPH0351668A (en) 1991-03-06
JP2685299B2 true JP2685299B2 (en) 1997-12-03

Family

ID=16189691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1186506A Expired - Fee Related JP2685299B2 (en) 1989-07-19 1989-07-19 Multi-room air conditioner

Country Status (1)

Country Link
JP (1) JP2685299B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103256775A (en) * 2012-02-16 2013-08-21 上海伟晟制冷设备有限公司 Centralized refrigeration device for kitchen refrigerators for ship

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4873454U (en) * 1971-12-13 1973-09-13
JPS5545210Y2 (en) * 1975-06-20 1980-10-23
JPS5575737U (en) * 1978-11-20 1980-05-24
JPS5878463U (en) * 1981-11-20 1983-05-27 株式会社東芝 heat pump cycle equipment

Also Published As

Publication number Publication date
JPH0351668A (en) 1991-03-06

Similar Documents

Publication Publication Date Title
JPH04263758A (en) Heat pump hot-water supplier
JPH05280818A (en) Multi-chamber type cooling or heating device
JP2553738B2 (en) Heat pump system and its control method
JPH05306849A (en) Multi-room cooler/heater
JP2685299B2 (en) Multi-room air conditioner
JPH0682110A (en) Multi-room air-conditioning apparatus
JP2702784B2 (en) Multi-room air conditioner
JPH05126422A (en) Apparatus for cooling and heating
JPH03294754A (en) Air conditioner
JP2763579B2 (en) Air conditioning
JPH0351644A (en) Multiroom cooling heating device
JPH0684828B2 (en) Multi room air conditioner
JP2646877B2 (en) Thermal storage refrigeration cycle device
JP2618057B2 (en) Two-stage compression cooling / heating hot water supply system
JP2516919B2 (en) Air conditioner
JP2537811B2 (en) Hot water supply air conditioner
JP2974180B2 (en) Multi-room air conditioner
JPH0674589A (en) Multichamber room cooler/heater
JPH02287063A (en) Apparatus and operation method for heat pump of direct-expansion heat-storage type
JPH0351669A (en) Multi-chamber type air conditioner
JPH05256533A (en) Multiroom cooling heating device
JP2751695B2 (en) Heat storage type cooling device
JP2644870B2 (en) Multi-room air conditioner
JPH0828993A (en) Heat storage type air conditioner
JP2561701B2 (en) Air source heat pump device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees