JPH0684828B2 - Multi room air conditioner - Google Patents

Multi room air conditioner

Info

Publication number
JPH0684828B2
JPH0684828B2 JP61115304A JP11530486A JPH0684828B2 JP H0684828 B2 JPH0684828 B2 JP H0684828B2 JP 61115304 A JP61115304 A JP 61115304A JP 11530486 A JP11530486 A JP 11530486A JP H0684828 B2 JPH0684828 B2 JP H0684828B2
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
refrigerant cycle
compressor
source side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61115304A
Other languages
Japanese (ja)
Other versions
JPS62272040A (en
Inventor
正夫 蔵地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP61115304A priority Critical patent/JPH0684828B2/en
Publication of JPS62272040A publication Critical patent/JPS62272040A/en
Publication of JPH0684828B2 publication Critical patent/JPH0684828B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は多室冷暖房装置の冷媒サイクルに関するもので
ある。
TECHNICAL FIELD The present invention relates to a refrigerant cycle of a multi-room air conditioner.

従来の技術 従来多室ヒートポンプ式冷暖房装置の冷媒サイクルは、
第3図のように構成されている。1は圧縮機、2は四方
弁、3は熱源側熱交換器、4は暖房用減圧装置、5は冷
房時暖房用減圧装置4をバイパスする通路を形成する逆
止弁、6a,6bは冷房用減圧装置、7a,7bは暖房時冷房用減
圧装置、6a,6bをバイパスする通路を形成する逆止弁、8
a,8bは利用側熱交換器、9はアキュムレータであり、こ
れらは室外ユニットa,室内ユニットb,cに備えられ、接
続配管d,d′,e,e′によって連接し、衆知の冷媒サイク
ルを構成している。
Conventional technology Conventional refrigerant cycle of multi-chamber heat pump type cooling and heating system
It is constructed as shown in FIG. Reference numeral 1 is a compressor, 2 is a four-way valve, 3 is a heat source side heat exchanger, 4 is a heating decompression device, 5 is a check valve forming a passage bypassing the heating decompression device 4 and 6a and 6b are cooling. Pressure reducing device, 7a, 7b is a pressure reducing device for cooling during heating, a check valve forming a passage bypassing 6a, 6b, 8
a and 8b are heat exchangers on the use side, and 9 is an accumulator, which are provided in the outdoor unit a and the indoor units b and c, and are connected by connecting pipes d, d ′, e and e ′, and are known refrigerant cycles. Are configured.

発明が解決しようとする問題点 しかしながら上記の構成では、室外ユニットと室内ユニ
ットの接続配管が長くなれば冷媒システム内の冷媒封入
量が多くなり液圧縮による圧縮機の損傷の恐れがあると
ともに接続配管の圧力損失によって能力が大きく低下す
る問題点がある。また室内ユニットの運転停止には電磁
弁による冷媒制御が必要であり、さらに室内ユニットの
能力制御には圧縮機の容量制御をしたり、減圧装置の制
御が必要となり複雑な方法となる問題点を有していた。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention However, in the above configuration, if the connection pipe between the outdoor unit and the indoor unit becomes long, the amount of the refrigerant filled in the refrigerant system increases and there is a risk of damage to the compressor due to liquid compression and the connection pipe. There is a problem that the capacity is greatly reduced by the pressure loss of. In addition, it is necessary to control the refrigerant with a solenoid valve to stop the operation of the indoor unit, and to control the capacity of the indoor unit, it is necessary to control the capacity of the compressor and the pressure reducing device, which is a complicated method. Had.

また、室内ユニット間の配管長さや高さによる能力のア
ンバランスが大きいため、据付工事の制限が必要になる
問題点を有していた。
In addition, there is a problem that the installation work must be restricted because there is a large imbalance in capacity due to the length and height of the piping between the indoor units.

問題点を解決するための手段 上記問題点を解決するために本発明の多室冷暖房装置
は、圧縮機,熱源側熱交換器,減圧装置および第1補助
熱交換器を環状に連接してなる熱源側冷媒サイクルとこ
の第1補助熱交換器と一体に形成し、熱交換する第2補
助熱交換器と、冷媒搬送装置、複数の利用側熱交換器を
有する利用側冷媒サイクルを備えたものである。
Means for Solving the Problems In order to solve the above problems, the multi-room cooling and heating apparatus of the present invention comprises a compressor, a heat source side heat exchanger, a pressure reducing device and a first auxiliary heat exchanger connected in an annular shape. A heat source side refrigerant cycle and a second auxiliary heat exchanger that is integrally formed with this first auxiliary heat exchanger to exchange heat, a refrigerant transfer device, and a usage side refrigerant cycle having a plurality of usage side heat exchangers Is.

作用 本発明は上記した構成によって、熱源側冷媒サイクルの
構成が変わらないため熱源側熱交換器や圧縮機と利用側
熱交換器の長さや高低差が大きくなっても、圧縮機の特
性が低下せず、熱源側冷媒サイクルの冷媒封入量が増加
することがないので、液圧縮や冷凍機油の回帰不良によ
る圧縮機の損傷を防止できる。
Action The present invention, due to the above configuration, the configuration of the heat source side refrigerant cycle does not change, even if the length or height difference between the heat source side heat exchanger or the compressor and the use side heat exchanger is large, the characteristics of the compressor are degraded. Without doing so, the amount of refrigerant enclosed in the heat source side refrigerant cycle does not increase, so that damage to the compressor due to liquid compression or poor return of refrigerating machine oil can be prevented.

また、各利用側熱交換器間の配管長さや高低差による能
力のアンバランスもなく、室内ユニットの能力制御も室
内ユニットの風量で簡単に調整できるものである。
Further, there is no imbalance in the capacity due to the length of the pipes or the difference in height between the heat exchangers on the use side, and the capacity control of the indoor unit can be easily adjusted by the air volume of the indoor unit.

実施例 以下本発明の一実施例の冷暖房装置について、図面を参
照しながら説明する。第1図は本発明の実施例における
多室冷暖房装置の冷媒サイクルを示すものである。第1
図において、11は圧縮機、12は四方弁、13は熱源側熱交
換器、14は冷房用減圧装置、15は暖房用減圧装置、16は
暖房時冷房用減圧装置14を閉成する逆止弁、17は冷房時
暖房用減圧装置15を閉成する逆止弁、18は第1補助熱交
換器でこれらを環状に連接し、熱源側冷媒サイクルを形
成している。19は第2補助熱交換器で第1補助熱交換器
18と熱交換するように一体に形成されている。20は冷媒
量調整タンクで冷房時の暖房時の冷凍量を調整してい
る。21は冷媒搬送装置で冷房時と暖房時で冷媒の流出方
向が反対となる可逆特性をもっており、これらは室外ユ
ニットfに収納されている。i,i′,j,j′、22a,22bは利
用側熱交換器で室内ユニットg,hに収納され接続配管で
室外ユニットfと接続されている。前記第2補助熱交換
器19と冷媒量調整タンク20,冷媒搬送装置21,利用側熱交
換器22a,22bおよび接続配管i,i′,j,j′を環状連接し利
用側冷媒サイクルを形成している。
Embodiment An air conditioner according to an embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a refrigerant cycle of a multi-room cooling and heating apparatus according to an embodiment of the present invention. First
In the figure, 11 is a compressor, 12 is a four-way valve, 13 is a heat source side heat exchanger, 14 is a cooling decompression device, 15 is a heating decompression device, and 16 is a check valve that closes the heating cooling decompression device 14. A valve, 17 is a check valve for closing the pressure reducing device 15 for heating during cooling, and 18 is a first auxiliary heat exchanger that connects them in an annular shape to form a heat source side refrigerant cycle. 19 is the second auxiliary heat exchanger and the first auxiliary heat exchanger
It is integrally formed to exchange heat with 18. Reference numeral 20 is a refrigerant amount adjustment tank for adjusting the amount of refrigeration during heating during cooling. Reference numeral 21 denotes a refrigerant transfer device having a reversible characteristic that the refrigerant outflow directions are opposite during cooling and heating, and these are housed in the outdoor unit f. i, i ', j, j', 22a, 22b are utilization side heat exchangers housed in the indoor units g, h and connected to the outdoor unit f by connecting pipes. The second auxiliary heat exchanger 19, the refrigerant amount adjusting tank 20, the refrigerant transfer device 21, the use side heat exchangers 22a, 22b and the connecting pipes i, i ', j, j'are annularly connected to form a use side refrigerant cycle. is doing.

以上のように構成された多室冷暖房装置について、その
動作を説明する。
The operation of the multi-room air conditioner configured as above will be described.

冷房運転時は図中実線の冷媒サイクルとなり、熱源側冷
媒サイクルでは、圧縮機11からの高温高圧ガスは四方弁
12を通り熱源側熱交換器13で放熱して凝縮液化し、逆止
弁16を通って冷房用膨脹弁14で減圧され第1補助熱交換
器18で蒸発して四方弁12を通り圧縮機12へ循環する。こ
の時利用側冷媒サイクルの第2補助熱交換器19と前記第
1補助熱交換器18が熱交換し、利用側冷媒サイクル内の
ガス冷媒が冷却されて液化し、冷媒量調整タンク20を通
って冷媒搬送装置21に送られ、この冷媒搬送装置21によ
って接続配管i,jを通って利用側熱交換器22a,22bへ送ら
れて吸熱蒸発し、ガス化して接続配管i′,j′を通って
第2補助熱交換器19に循環することになる。
During the cooling operation, the refrigerant cycle is shown by the solid line in the figure, and in the refrigerant cycle on the heat source side, the high-temperature high-pressure gas from the compressor 11 is a four-way valve.
The heat is radiated through the heat source side heat exchanger 13 to condense and liquefy, passes through the check valve 16 and is decompressed by the cooling expansion valve 14, evaporated through the first auxiliary heat exchanger 18, passes through the four-way valve 12, and passes through the compressor. Cycle to 12. At this time, the second auxiliary heat exchanger 19 and the first auxiliary heat exchanger 18 of the usage-side refrigerant cycle exchange heat, the gas refrigerant in the usage-side refrigerant cycle is cooled and liquefied, and passes through the refrigerant amount adjustment tank 20. To the use side heat exchangers 22a and 22b through the connection pipes i and j to endothermically evaporate and gasify to form the connection pipes i ′ and j ′. It will be circulated through the second auxiliary heat exchanger 19.

一方、暖房運転時においては、図中破線の冷媒サイクル
となり、熱源側冷媒サイクルでは、圧縮機11からの高温
高圧冷媒は四方弁12から第1補助熱交換器18に送られ、
放熱して凝縮液化し、逆止弁17から暖房用減圧装置15で
減圧し、熱源側熱交換器13で吸熱蒸発し、四方弁12を通
って圧縮機11へ循環する。この時利用側冷媒サイクルの
第2補助熱交換器19と前記第1補助熱交換器18が熱交換
し、利用側冷媒サイクル内の液冷媒が加熱されてガス化
し、接続配管i′,j′を通って利用側熱交換器22へ送ら
れ、暖房して放熱液化し接続配管i,jを通って冷媒搬送
装置21へ送られ、冷媒量調整タンク20から第2補助熱交
換器19へ循環する。
On the other hand, during the heating operation, the refrigerant cycle is indicated by the broken line in the figure, and in the heat source side refrigerant cycle, the high-temperature high-pressure refrigerant from the compressor 11 is sent from the four-way valve 12 to the first auxiliary heat exchanger 18,
The heat is radiated to be condensed and liquefied, the pressure is reduced from the check valve 17 by the heating pressure reducing device 15, the heat is absorbed and evaporated by the heat source side heat exchanger 13, and the heat is circulated to the compressor 11 through the four-way valve 12. At this time, the second auxiliary heat exchanger 19 and the first auxiliary heat exchanger 18 of the usage-side refrigerant cycle exchange heat, the liquid refrigerant in the usage-side refrigerant cycle is heated and gasified, and the connecting pipes i ', j' Is sent to the heat exchanger 22 on the use side, is heated to radiate liquid and is sent to the refrigerant transfer device 21 through the connection pipes i and j, and is circulated from the refrigerant amount adjustment tank 20 to the second auxiliary heat exchanger 19. To do.

以上のように、本実施例によれば、熱源側冷媒サイクル
と利用側冷媒サイクルを分離し、熱源側冷媒サイクルは
室外ユニットに収められて配管経路が変らないので、常
に安定した同じ性能が得られると共に、熱源側冷媒サイ
クルの配管経路が短かいため配管経路での圧力損失が大
幅に減少し高性能が得られることになる。また冷媒封入
量も少なく圧縮機への冷媒寝込み量が少ないために液圧
縮がなく、かつ圧縮機から吐出した冷凍機油が冷媒サイ
クル中に滞留せず早く圧縮機にもどるため圧縮機の信頼
性が大幅に向上する。さらに、冷媒封入量が少なく、一
定であるためアキュムレータの必要がない。一方、利用
側冷媒サイクルにおいては、冷媒搬送装置によって冷媒
を循環させているので、室外ユニットと室内ユニットを
接続する接続配管が長くなったり、高低差が大きくなっ
ても冷媒循環量が大きく低下しないので大幅に制限を緩
和できることになる。また、室外ユニットの性能は分離
されているのでこの接続配管に影響されることがなく常
に一定であるため、室内ユニットの性能も安定した高性
能が得られることになる。
As described above, according to the present embodiment, the heat source side refrigerant cycle and the utilization side refrigerant cycle are separated, and the heat source side refrigerant cycle is housed in the outdoor unit and the piping path does not change, so that the same stable performance is always obtained. In addition, since the heat source side refrigerant cycle has a short piping path, pressure loss in the piping path is significantly reduced and high performance is obtained. In addition, since the amount of refrigerant enclosed is small and the amount of refrigerant stagnation in the compressor is small, there is no liquid compression, and the refrigeration oil discharged from the compressor does not stay in the refrigerant cycle and returns to the compressor quickly, so the reliability of the compressor is high. Greatly improved. Further, since the amount of refrigerant enclosed is small and constant, no accumulator is required. On the other hand, in the use side refrigerant cycle, since the refrigerant is circulated by the refrigerant carrier device, the connection pipe connecting the outdoor unit and the indoor unit becomes long, and the refrigerant circulation amount does not greatly decrease even if the height difference increases. Therefore, the restrictions can be greatly relaxed. Further, since the performance of the outdoor unit is separated and is not affected by this connection pipe and is always constant, the performance of the indoor unit can be stable and high performance can be obtained.

また、利用側冷媒サイクル中には冷凍機油の必要がない
ので、ガス側接続配管途中の油トラップが不要となり接
続配管工事が簡単になる。また、第2図のように室外ユ
ニット23が複数台設置される場合でも室内ユニット24へ
の接続配管は2本で可能であり、工事が簡単となり費用
も安くなる。
Further, since refrigerating machine oil is not required during the use side refrigerant cycle, an oil trap in the middle of the gas side connecting pipe is not required, and the connecting pipe construction is simplified. Further, even when a plurality of outdoor units 23 are installed as shown in FIG. 2, it is possible to connect two pipes to the indoor unit 24, which simplifies the construction and reduces the cost.

なお、実施例では熱源側冷媒サイクルの冷房用減圧装置
14と暖房用減圧装置17を別としているが、電動膨脹弁等
の可逆減圧装置を使用してもよい。また、利用側冷媒サ
イクルの冷媒搬送装置21を可逆性を有するものとした
が、一方向性の冷媒搬送装置を2台使用してもよい。実
施例では冷媒搬送装置21を液側配管に設けているが、ガ
ス側配管でもよい。また、冷媒量調整タンクは冷媒サイ
クル中のどこに設けても複数個設けても複数個設けても
よい。
In the embodiment, the pressure reducing device for cooling the heat source side refrigerant cycle
Although 14 and the heating decompression device 17 are separately provided, a reversible decompression device such as an electric expansion valve may be used. Further, although the refrigerant transporting device 21 of the utilization side refrigerant cycle is reversible, two unidirectional refrigerant transporting devices may be used. Although the refrigerant transfer device 21 is provided in the liquid side pipe in the embodiment, it may be provided in the gas side pipe. Further, the refrigerant amount adjusting tank may be provided anywhere in the refrigerant cycle, or a plurality of refrigerant adjusting tanks may be provided.

発明の効果 以上のように本発明は、圧縮機,熱源側熱交換器,減圧
装置および第1補助熱交換器を環状に連接してなる熱源
側冷媒サイクルとこの第1補助熱交換器と一体に形成し
熱交する第2補助熱交換器と冷媒搬送装置および利用側
熱交換器を環状に連接してなる利用側冷媒サイクルとを
分離して設けたので、熱源側冷媒サイクルは配管経路が
変らないため、常に安定した同性能が得られるととも
に、熱源側冷媒サイクルの配管経路が短かいので配管経
路での圧力損失が大幅に減少し高性能が得られることに
なる。また冷媒封入量も少なくなり、圧縮機への冷媒寝
込み量が少ないために液圧縮がなく、かつ圧縮機から吐
出した冷凍機油が冷媒サイクル中に滞留せず早く圧縮機
にもどるため圧縮機の信頼性が大幅に向上する。一方、
利用側冷媒サイクルにおいては、冷媒搬送装置によって
冷媒を循環させているので、第2補助熱交換器と利用側
熱交換器の距離が長くなったり、高低差が大きくなって
も冷媒循環量が大きく低下しないので大幅に制限を緩和
できる効果がある。また、熱源側冷媒サイクルが分離さ
れているので、性能は常に一定であり、従って利用側熱
変換器の性能は安定した高性能が得られる効果がある。
EFFECTS OF THE INVENTION As described above, according to the present invention, a heat source side refrigerant cycle in which a compressor, a heat source side heat exchanger, a pressure reducing device, and a first auxiliary heat exchanger are connected in an annular shape and the first auxiliary heat exchanger are integrated. Since the second auxiliary heat exchanger that forms and heat-exchanges with each other, and the use-side refrigerant cycle in which the refrigerant transfer device and the use-side heat exchanger are connected in an annular shape are separated from each other, the heat-source-side refrigerant cycle has a pipe path. Since it does not change, stable performance is always obtained, and since the heat source side refrigerant cycle has a short piping path, pressure loss in the piping path is greatly reduced and high performance is obtained. In addition, the amount of refrigerant enclosed is small, there is no liquid compression because the amount of refrigerant stagnation in the compressor is small, and the refrigerating machine oil discharged from the compressor does not stay in the refrigerant cycle and returns to the compressor quickly. Significantly improved. on the other hand,
In the usage-side refrigerant cycle, since the refrigerant is circulated by the refrigerant transfer device, the refrigerant circulation amount is large even if the distance between the second auxiliary heat exchanger and the usage-side heat exchanger is long or the height difference is large. Since it does not decrease, it has the effect of significantly relaxing the restrictions. Further, since the heat source side refrigerant cycle is separated, the performance is always constant, and therefore, the utilization side heat converter has the effect of obtaining stable and high performance.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例における冷暖房装置の冷媒サイ
クル図、第2図は本発明の他の実施例における室内ユニ
ットの接続図、第3図は従来の冷暖房装置の冷媒サイク
ル図である。 13……熱源側熱交換器、18……第1補助熱交換器、19…
…第2補助熱交換器、21……冷媒搬送装置、22……利用
側熱交換器。
FIG. 1 is a refrigerant cycle diagram of an air conditioner according to an embodiment of the present invention, FIG. 2 is a connection diagram of indoor units according to another embodiment of the present invention, and FIG. 3 is a refrigerant cycle diagram of a conventional air conditioner. 13 ... Heat source side heat exchanger, 18 ... First auxiliary heat exchanger, 19 ...
… Second auxiliary heat exchanger, 21 …… Refrigerant carrier, 22 …… Use side heat exchanger.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】圧縮機,熱源側熱交換器,減圧装置および
第1補助熱交換器を環状に連接してなる熱源側冷媒サイ
クルと、この第1補助熱交換器と一体に形成し、熱交換
する第2補助熱交換器と冷媒搬送装置および複数の利用
側熱交換器を有する利用側冷媒サイクルとを備えた多室
冷暖房装置。
1. A heat source side refrigerant cycle comprising a compressor, a heat source side heat exchanger, a pressure reducing device and a first auxiliary heat exchanger connected in an annular shape, and a heat generating unit formed integrally with the first auxiliary heat exchanger. A multi-chamber cooling and heating device including a second auxiliary heat exchanger to be exchanged, a refrigerant transfer device, and a usage-side refrigerant cycle having a plurality of usage-side heat exchangers.
【請求項2】上記圧縮機に能力制御圧縮機を搭載した特
許請求の範囲第1項記載の多室冷暖房装置。
2. The multi-room cooling and heating apparatus according to claim 1, wherein a capacity control compressor is mounted on the compressor.
【請求項3】上記熱源側冷媒サイクルと利用側冷媒サイ
クルの使用冷媒の異なる特許請求の範囲第1項記載の多
室冷暖房装置。
3. The multi-room cooling and heating apparatus according to claim 1, wherein the heat source side refrigerant cycle and the use side refrigerant cycle use different refrigerants.
【請求項4】上記第1補助熱交換器と第2補助熱交換器
に積層式熱交換器を使用した特許請求の範囲第1項記載
の多室冷暖房装置。
4. The multi-room cooling and heating apparatus according to claim 1, wherein a laminated heat exchanger is used as the first auxiliary heat exchanger and the second auxiliary heat exchanger.
JP61115304A 1986-05-20 1986-05-20 Multi room air conditioner Expired - Fee Related JPH0684828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61115304A JPH0684828B2 (en) 1986-05-20 1986-05-20 Multi room air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61115304A JPH0684828B2 (en) 1986-05-20 1986-05-20 Multi room air conditioner

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP25975695A Division JPH08178446A (en) 1995-10-06 1995-10-06 Multi-room type cooler/heater

Publications (2)

Publication Number Publication Date
JPS62272040A JPS62272040A (en) 1987-11-26
JPH0684828B2 true JPH0684828B2 (en) 1994-10-26

Family

ID=14659314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61115304A Expired - Fee Related JPH0684828B2 (en) 1986-05-20 1986-05-20 Multi room air conditioner

Country Status (1)

Country Link
JP (1) JPH0684828B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219452A (en) * 1988-02-26 1989-09-01 Matsushita Refrig Co Ltd Air conditioner
JP2763579B2 (en) * 1989-04-17 1998-06-11 松下冷機株式会社 Air conditioning
JPH037827A (en) * 1989-06-02 1991-01-16 Matsushita Refrig Co Ltd Multiple-room heating and cooling apparatus
JPH037841A (en) * 1989-06-02 1991-01-16 Matsushita Refrig Co Ltd Multi-room heating device
JPH03113218A (en) * 1989-09-27 1991-05-14 Matsushita Refrig Co Ltd Multiple-room cooling and heating system
JPH03137435A (en) * 1989-10-23 1991-06-12 Matsushita Refrig Co Ltd Multichamber cooling heating device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58124132A (en) * 1982-01-20 1983-07-23 Mitsubishi Electric Corp Airconditioning equipment combined with hot water supply device

Also Published As

Publication number Publication date
JPS62272040A (en) 1987-11-26

Similar Documents

Publication Publication Date Title
JP2554208B2 (en) Heat pump water heater
CA1284892C (en) Triple integrated heat pump circuit
US8800319B2 (en) Refrigerating cycle device used in an air conditioning apparatus, a refrigerating device and the like
JP2001289465A (en) Air conditioner
JP2553738B2 (en) Heat pump system and its control method
JPH0684828B2 (en) Multi room air conditioner
JP2529202B2 (en) Air conditioner
JPH05306849A (en) Multi-room cooler/heater
KR101557708B1 (en) Refrigeration cycle radiator system heat exchanger
JP2537811B2 (en) Hot water supply air conditioner
JPH03294754A (en) Air conditioner
JPH02161263A (en) Air conditioner
JP2702784B2 (en) Multi-room air conditioner
JPH08178446A (en) Multi-room type cooler/heater
JP2685299B2 (en) Multi-room air conditioner
JPH0351644A (en) Multiroom cooling heating device
JP2516919B2 (en) Air conditioner
JP2644874B2 (en) Multi-room air conditioner
JP2863245B2 (en) Multi-room air conditioner
JP2561701B2 (en) Air source heat pump device
JPH01312365A (en) Cooling and heating device
JPH0244131A (en) Cooler-heater
JPS6358062A (en) Cooling device by circulation of refrigerant
JP2974180B2 (en) Multi-room air conditioner
JPH0212541Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees