JP2529202B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2529202B2
JP2529202B2 JP61081552A JP8155286A JP2529202B2 JP 2529202 B2 JP2529202 B2 JP 2529202B2 JP 61081552 A JP61081552 A JP 61081552A JP 8155286 A JP8155286 A JP 8155286A JP 2529202 B2 JP2529202 B2 JP 2529202B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
refrigerant cycle
heat source
source side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61081552A
Other languages
Japanese (ja)
Other versions
JPS62238951A (en
Inventor
正夫 蔵地
Original Assignee
松下冷機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下冷機株式会社 filed Critical 松下冷機株式会社
Priority to JP61081552A priority Critical patent/JP2529202B2/en
Publication of JPS62238951A publication Critical patent/JPS62238951A/en
Application granted granted Critical
Publication of JP2529202B2 publication Critical patent/JP2529202B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は冷暖房装置の冷媒サイクルに関するものであ
る。
Description: TECHNICAL FIELD The present invention relates to a refrigerant cycle of an air conditioner.

従来の技術 従来ヒートポンプ式冷暖房装置の冷媒サイクルは、第
2図のように構成されている。1は圧縮機、2は四方
弁、3は熱源側交換器、4は暖房用減圧装置、5は冷房
時暖房用減圧装置4をバイパスする通路を形成する逆止
弁、6は冷房用減圧装置、7は暖房時冷房用減圧装置6
をバイパスする通路を形成する逆止弁、8は利用側熱交
換器、9はアキュムレータであり、これらを環状に連接
し衆知の冷媒サイクルを構成している。近年これらは熱
源側ユニットaと利用側ユニットbに分離し、接続配管
c,c′によって連接しているセパレート型が非常に多く
なってきており、また、この接続配管c,cの長さや高低
差は増々大きくなってきている。
2. Description of the Related Art The refrigerant cycle of a conventional heat pump type cooling and heating device is configured as shown in FIG. Reference numeral 1 is a compressor, 2 is a four-way valve, 3 is a heat source side exchanger, 4 is a heating decompression device, 5 is a check valve forming a passage bypassing the heating decompression device 4 during cooling, and 6 is a cooling decompression device. , 7 is a pressure reducing device 6 for cooling during heating
A check valve that forms a passage that bypasses the heat exchanger, 8 is a heat exchanger on the use side, and 9 is an accumulator, which are connected in an annular shape to form a known refrigerant cycle. In recent years, these have been separated into a heat source side unit a and a use side unit b, and connection piping
The number of separate types connected by c, c'is increasing, and the length and height difference of the connecting pipes c, c are increasing.

発明が解決しようとする問題点 しかしながら上記のような構成では、熱源側ユニット
aと利用側ユニットbの距離や高低差の延長により、接
続配管が長くなるので、接続配管による冷媒の圧力損失
が大きくなり、冷暖房能力が低下(冷えば50mで25%)
するとともに、冷媒封入量の増加による液圧縮や冷凍機
油の回帰不良による圧縮機の損傷が発生する問題を有し
ている。従って、接続配管の長さや高低差に制限を設け
ており、それ以上の長配管や高低差については、衆知の
チラーシステムによって対処していた。しかし、このチ
ラーシステムにおいては、熱搬送材として水を使用して
いるため、配管の腐蝕や漏水の問題又、ポンプ動力の増
大等の問題点を有していた。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention However, in the configuration as described above, the connection pipe becomes long due to the distance between the heat source side unit a and the use side unit b and the extension of the height difference, so that the pressure loss of the refrigerant due to the connection pipe is large. And the cooling and heating capacity declines (25% at 50m if cooled)
In addition, there is a problem that liquid compression due to an increase in the amount of refrigerant filled and damage to the compressor due to poor return of refrigerating machine oil occur. Therefore, the length and height difference of the connecting pipe are limited, and a longer chiller system and a height difference are handled by a chiller system known to the public. However, in this chiller system, since water is used as the heat transfer material, there are problems such as corrosion of the pipe, leakage of water, and increase in pump power.

問題点を解決するための手段 上記問題点を解決するために本発明の冷暖房装置は、
圧縮機,四方弁,熱源側熱交換器,減圧装置および第1
補助熱交換器を環状に連接してなる熱源側冷媒サイクル
と、この第1補助熱交換器と一体に形成され熱交換する
第2補助熱交換器,冷房時と暖房時とで冷媒の流出方向
を変える冷媒搬送装置および利用側熱交換器を環状に連
接してなる利用側冷媒サイクルとを備え、前記利用側冷
媒サイクルの冷媒として前記利用側冷媒サイクル内で液
状態とガス状態とに状態変化する冷媒を用いたのであ
る。
Means for Solving the Problems In order to solve the above problems, the cooling and heating device of the present invention is
Compressor, four-way valve, heat source side heat exchanger, pressure reducing device and first
A heat source side refrigerant cycle in which auxiliary heat exchangers are connected in an annular shape, a second auxiliary heat exchanger formed integrally with the first auxiliary heat exchanger and exchanging heat, a refrigerant outflow direction during cooling and during heating And a use-side refrigerant cycle in which a use-side heat exchanger is connected in a ring shape, the state change between a liquid state and a gas state in the use-side refrigerant cycle as a refrigerant of the use-side refrigerant cycle. That is, the cooling medium is used.

作用 本発明は上記した構成によって、熱源側冷媒サイクル
の構成が変わらないため熱源側熱交換器や圧縮機と利用
側熱交換器の長さや高低差が大きくなっても、圧縮機の
特性が低下せず、また熱源側冷媒サイクルの冷媒封入量
が増加することがないので、液圧縮や冷凍機油の回帰不
足による圧縮機の損傷を防止できることになる。
Action The present invention, due to the above configuration, the configuration of the heat source side refrigerant cycle does not change, even if the length or height difference between the heat source side heat exchanger or the compressor and the use side heat exchanger is large, the characteristics of the compressor are degraded. In addition, since the amount of refrigerant enclosed in the heat source side refrigerant cycle does not increase, damage to the compressor due to liquid compression or insufficient return of refrigerating machine oil can be prevented.

実 施 例 以下本発明の一実施例の冷暖房装置について、図面を
参照しながら説明する。第1図は本発明の一実施例にお
ける冷暖房装置の冷媒サイクルを示すものである。第1
図において、11は圧縮機、12は四方弁、13は熱源側熱交
換器、14は冷房用減圧装置、15は暖房用減圧装置、16は
暖房時冷房用減圧装置14を閉成する逆止弁、17は冷房時
暖房用減圧装置15を閉成する逆止弁、18は第1補助熱交
換器でこれらを環状に連接し、熱源側冷媒サイクルを形
成している。19は第2補助熱交換器で第1補助熱交換器
18と熱交換するように一体に重合されている。20は冷媒
量調整タンクで冷房時と暖房時の冷媒量を調整してい
る。21は冷媒搬送装置で冷房時と暖房時で冷媒の流出方
向が反対となる可逆特性をもっており、これらは熱源側
ユニットdに収納されている。22は利用側熱交換器で利
用側ユニットeに収納され接続配管f,f′で熱源側ユニ
ットdと接続されている。前記第2補助熱交換器19と冷
媒量調整タンク20、冷媒搬送装置21、利用側熱交換器22
および接続配管fを環状に連接し利用側冷媒サイクルを
形成している。
Embodiment Hereinafter, a cooling and heating apparatus according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a refrigerant cycle of an air conditioner according to an embodiment of the present invention. First
In the figure, 11 is a compressor, 12 is a four-way valve, 13 is a heat source side heat exchanger, 14 is a cooling decompression device, 15 is a heating decompression device, and 16 is a check valve that closes the heating cooling decompression device 14. A valve 17, 17 is a check valve for closing the pressure reducing device 15 for heating during cooling, and 18 is a first auxiliary heat exchanger that connects them in a ring shape to form a heat source side refrigerant cycle. 19 is the second auxiliary heat exchanger and the first auxiliary heat exchanger
18 are polymerized together to exchange heat. Reference numeral 20 denotes a refrigerant amount adjusting tank for adjusting the amount of refrigerant during cooling and during heating. Reference numeral 21 denotes a refrigerant transporting device having a reversible characteristic in which the refrigerant outflow directions are opposite during cooling and heating, and these are housed in the heat source side unit d. Reference numeral 22 denotes a use side heat exchanger, which is housed in the use side unit e and connected to the heat source side unit d by connection pipes f and f '. The second auxiliary heat exchanger 19, the refrigerant amount adjustment tank 20, the refrigerant transfer device 21, the use side heat exchanger 22
And the connection pipe f is connected in an annular shape to form a utilization side refrigerant cycle.

以上のように構成された冷暖房装置について、その動
作を説明する。
The operation of the cooling and heating device configured as described above will be described.

冷房運転時は図中実線の冷媒サイクルとなり、熱源側
冷媒サイクルでは、圧縮機11からの高温高圧ガスは四方
弁12を通り熱源側熱交換器13で放熱して凝縮液化し逆止
弁16を通って冷房用膨脹弁14で減圧され第1補助熱交換
器18で蒸発して四方弁12を通り圧縮機11へ循環する。こ
の時利用側冷媒サイクルの第2補助熱交換器19と前記第
1補助熱交換器18が熱交換し、利用側冷媒サイクル内の
ガス冷媒が冷却されて液化し、冷媒量調整タンク20を通
って冷媒搬送装置21に送られ、この冷媒搬送装置21によ
って接続配管fを通って利用側熱交換器22へ送られて冷
房して吸熱蒸発し、ガス化して接続配管f′を通って第
2補助熱交換器19に循環することになる。
During the cooling operation, the refrigerant cycle is shown by the solid line in the figure, and in the heat source side refrigerant cycle, the high temperature high pressure gas from the compressor 11 passes through the four-way valve 12 and radiates heat in the heat source side heat exchanger 13 to be condensed and liquefied to the check valve 16. Then, the pressure is reduced by the expansion valve 14 for cooling, evaporated in the first auxiliary heat exchanger 18, passed through the four-way valve 12, and circulated to the compressor 11. At this time, the second auxiliary heat exchanger 19 and the first auxiliary heat exchanger 18 of the usage-side refrigerant cycle exchange heat, the gas refrigerant in the usage-side refrigerant cycle is cooled and liquefied, and passes through the refrigerant amount adjustment tank 20. Is sent to the refrigerant transfer device 21 and is sent by the refrigerant transfer device 21 to the utilization side heat exchanger 22 through the connection pipe f to be cooled and endothermic evaporated, gasified and passed through the connection pipe f ′ to the second side. It will be circulated to the auxiliary heat exchanger 19.

一方、暖房運転時においては、図中破線の冷媒サイク
ルとなり、熱源側冷媒サイクルでは、圧縮機11からの高
温高圧冷媒は四方弁12から第1補助熱交換器18に送ら
れ、放熱して凝縮液化し、逆止弁17から暖房用減圧装置
15で減圧し、熱源側熱交換器13で吸熱蒸発し、四方弁12
を通って圧縮機11へ循環する。この時利用側冷媒サイク
ルの第2補助熱交換器19と前記第1補助熱交換器18が熱
交換し、利用側冷媒サイクル内の液冷媒が加熱されてガ
ス化し、接続配管f′を通って利用側熱交換器22へ送ら
れ、暖房して放熱液化し接続配管fを通って冷媒搬送装
置21へ送られ、冷媒量調整タンク20から第2補助熱交換
器19へ循環する。
On the other hand, during the heating operation, the refrigerant cycle is indicated by the broken line in the figure, and in the heat source side refrigerant cycle, the high-temperature high-pressure refrigerant from the compressor 11 is sent from the four-way valve 12 to the first auxiliary heat exchanger 18 and radiates heat to condense. Liquefaction and decompressor for heating from check valve 17
The pressure is reduced at 15, and heat is absorbed and evaporated at the heat source side heat exchanger 13.
And circulates to compressor 11. At this time, the second auxiliary heat exchanger 19 and the first auxiliary heat exchanger 18 of the use side refrigerant cycle exchange heat, the liquid refrigerant in the use side refrigerant cycle is heated and gasified, and passes through the connection pipe f ′. It is sent to the usage-side heat exchanger 22, is heated and radiated to liquefy, is sent to the refrigerant transfer device 21 through the connection pipe f, and is circulated from the refrigerant amount adjustment tank 20 to the second auxiliary heat exchanger 19.

以上のように、本実施例によれば、熱源側冷媒サイク
ルと利用側冷媒サイクルを分離し、熱源側冷媒サイクル
は熱源側ユニットdに収められて配管経路が変らないの
で、常に安定した同じ性能が得られると共に、熱源側冷
媒サイクルの配管経路が短かいため配管経路での圧力損
失が大幅に減少し高性能が得られることになる。また、
前記両補助熱交換器は一体に形成しているため、冷媒封
入量も少なく圧縮機への冷媒寝込み量が少ないために液
圧縮がなく、かつ圧縮機から吐出した冷凍機油が冷媒サ
イクル中に滞留せず早く圧縮機にもどるため圧縮機の信
頼性が大幅に向上する。さらに、冷媒封入量が少なく、
一定であるためアキュムレータの必要がない。一方、利
用側冷媒サイクルにおいては、冷媒搬送装置によって冷
媒を循環させているので、熱源側ユニットdと利用側ユ
ニットeを接続する接続配管が長くなったり、高低差が
大きくなっても冷媒循環量が大きく低下しないので大幅
に制限を緩和できることになる。また、熱源側ユニット
の性能は分離されているのでこの接続配管に影響される
ことがなく常に一定であるため、利用側ユニットの性能
も安定した高性能が得られることになる。さらに、前記
両補助熱交換器は一体に形成しているため、小型とな
り、冷媒保有量が少なくなるとともに応答性が良くな
る。
As described above, according to the present embodiment, the heat source side refrigerant cycle and the use side refrigerant cycle are separated, and the heat source side refrigerant cycle is housed in the heat source side unit d and the piping path does not change, so that the same stable performance is always obtained. In addition, since the heat source side refrigerant cycle has a short piping path, pressure loss in the piping path is significantly reduced and high performance can be obtained. Also,
Since both auxiliary heat exchangers are formed integrally, there is no refrigerant compression and the amount of refrigerant stagnation in the compressor is small, so there is no liquid compression, and the refrigeration oil discharged from the compressor stays in the refrigerant cycle. Without returning to the compressor quickly, the reliability of the compressor is greatly improved. Furthermore, the amount of refrigerant enclosed is small,
Since it is constant, there is no need for an accumulator. On the other hand, in the usage-side refrigerant cycle, since the refrigerant is circulated by the refrigerant transport device, the refrigerant circulation amount is long even if the connection pipe connecting the heat source side unit d and the usage side unit e becomes long or the height difference becomes large. Does not decrease significantly, so the restrictions can be greatly relaxed. Further, since the performance of the heat source side unit is separated, it is not affected by this connection pipe and is always constant, so that the performance of the utilization side unit is also stable and high in performance. Further, since both of the auxiliary heat exchangers are integrally formed, the size is reduced, the amount of refrigerant held is reduced, and the responsiveness is improved.

また、利用側冷媒サイクルの冷媒として利用側冷媒サ
イクル内で液状態とガス状態とに状態変化する冷媒を用
いたため、蒸発温度や凝縮温度が一定となり、また、利
用側冷媒サイクルに水を循環させる場合に比べて搬送動
力が大幅に低減できる。
Further, since the refrigerant that changes the state between the liquid state and the gas state in the use side refrigerant cycle is used as the refrigerant of the use side refrigerant cycle, the evaporation temperature and the condensation temperature are constant, and water is circulated in the use side refrigerant cycle. Compared with the case, the transport power can be significantly reduced.

また、利用側冷媒サイクルの冷媒として利用側冷媒サ
イクル内で液状態とガス状態とに状態変化する冷媒を用
い、冷媒搬送装置が冷房時と暖房時とで冷媒の流出方向
を変えたので、第2補助熱交換器と利用側熱交換器とを
連通させる2本の接続配管のうちの一方をガス管とし
て、冷房運転時、暖房運転時ともにガス冷媒を流し、第
2補助熱交換器と利用側熱交換器とを連通させる2本の
接続配管のうちの他方を液管として、冷房運転時、暖房
運転時ともに液冷媒を流すようにし、液管となる接続配
管にガス管となる接続配管より細い内径の配管を用いて
利用側冷媒サイクルの冷媒封入量を低減することができ
る。
Further, as the refrigerant of the usage-side refrigerant cycle, a refrigerant that changes its state between a liquid state and a gas state in the usage-side refrigerant cycle is used, and since the refrigerant transfer device changes the outflow direction of the refrigerant during cooling and during heating, 2 Use one of the two connecting pipes that connect the auxiliary heat exchanger and the use-side heat exchanger as a gas pipe, and let the gas refrigerant flow during both the cooling operation and the heating operation and use the second auxiliary heat exchanger. The other of the two connecting pipes communicating with the side heat exchanger is used as a liquid pipe, and a liquid refrigerant is caused to flow during both the cooling operation and the heating operation, and the connecting pipe serving as the liquid pipe serves as the gas pipe. It is possible to reduce the amount of refrigerant enclosed in the use side refrigerant cycle by using a pipe having a thinner inner diameter.

また、利用側冷媒サイクル中には冷凍機油の必要がな
いので、ガス側接続配管途中の油トラップが不要となり
接続配管工事が簡単になる。
Further, since refrigerating machine oil is not required during the use side refrigerant cycle, an oil trap in the middle of the gas side connecting pipe is not required, and the connecting pipe construction is simplified.

なお、実施例では熱源側冷媒サイクルの冷房用減圧装
置14と暖房用減圧装置17を別にしているが、電動膨脹弁
等の可逆減圧装置を使用してもよい。また、利用側冷媒
サイクルの冷媒搬送装置21を可逆性を有するものとした
が、一方向性の冷媒搬送装置を2台使用してもよい。実
施例では冷媒搬送装置21を液側配管に設けているがガス
側配管でもよい。また、冷媒量調整タンクは冷媒サイク
ル中のどこに設けても複数個設けてもよい。
Although the cooling decompression device 14 and the heating decompression device 17 of the heat source side refrigerant cycle are separately provided in the embodiment, a reversible decompression device such as an electric expansion valve may be used. Further, although the refrigerant transporting device 21 of the utilization side refrigerant cycle is reversible, two unidirectional refrigerant transporting devices may be used. In the embodiment, the refrigerant transfer device 21 is provided in the liquid side pipe, but it may be in the gas side pipe. Further, the refrigerant amount adjusting tank may be provided anywhere in the refrigerant cycle or in plural.

発明の効果 以上のように本発明は、圧縮機,四方弁,熱源側熱交
換器,減圧装置および第1補助熱交換器を環状に連接し
てなる熱源側冷媒サイクルと、この第1補助熱交換器と
一体に形成し熱交換する第2補助熱交換器,冷房時と暖
房時とで冷媒の流出方向を変える冷媒搬送装置および利
用側熱交換器を環状に連接してなる利用側冷媒サイクル
とを備え、前記利用側冷媒サイクルの冷媒として前記利
用側冷媒サイクル内で液状態とガス状態とに状態変化す
る冷媒を用いたので、次の様な効果が得られる。
Effects of the Invention As described above, the present invention provides a heat source side refrigerant cycle in which a compressor, a four-way valve, a heat source side heat exchanger, a pressure reducing device, and a first auxiliary heat exchanger are connected in an annular shape, and the first auxiliary heat A second auxiliary heat exchanger that is integrally formed with the exchanger to perform heat exchange, a refrigerant transport device that changes the outflow direction of the refrigerant during cooling and heating, and a utilization-side refrigerant cycle in which a utilization-side heat exchanger is connected in an annular shape And the use of a refrigerant that changes state between a liquid state and a gas state in the use side refrigerant cycle as the refrigerant of the use side refrigerant cycle, the following effects can be obtained.

a.熱源側冷媒サイクルにおいては、熱源側冷媒サイクル
を熱源側ユニット内に収めることができるため、熱源側
ユニットと利用側ユニットとの距離が長くなる場合で
も、熱源側冷媒サイクルの配管経路の長さが変らず、そ
のため、常に安定した同性能が得られる。
a.In the heat source side refrigerant cycle, since the heat source side refrigerant cycle can be accommodated in the heat source side unit, even if the distance between the heat source side unit and the use side unit becomes long, the length of the piping route of the heat source side refrigerant cycle Does not change, so consistent stable performance is always obtained.

b.熱源側冷媒サイクルの配管経路を短くできるので、配
管経路での圧力損失が大幅に減少し高性能が得られ、冷
媒封入量が少なくなって液圧縮の可能性がなくなり、圧
縮機から吐出した冷凍機油が冷媒サイクル中に滞留せ
ず、早く圧縮機に戻るため圧縮機の信頼性が大幅に向上
する。
b.Since the piping path of the heat source side refrigerant cycle can be shortened, pressure loss in the piping path is greatly reduced and high performance can be obtained. Since the refrigerating machine oil does not stay in the refrigerant cycle and returns to the compressor quickly, the reliability of the compressor is significantly improved.

c.利用側冷媒サイクルにおいては、冷媒搬送装置によっ
て冷媒を循環させているので、第2補助熱交換器と利用
側熱交換器の距離が長くなったり、高低差が大きくなっ
ても冷媒循環量が大きく低下しないので大幅に設置条件
の制限を緩和できる。
c. In the usage-side refrigerant cycle, since the refrigerant is circulated by the refrigerant transfer device, the refrigerant circulation amount is increased even if the distance between the second auxiliary heat exchanger and the usage-side heat exchanger is long or the height difference is large. Does not decrease significantly, so restrictions on installation conditions can be greatly eased.

d.利用側冷媒サイクルは熱源側冷媒サイクルと分離され
ているので、利用側ユニットは安定した高性能が得られ
る。
d. Since the utilization side refrigerant cycle is separated from the heat source side refrigerant cycle, the utilization side unit can obtain stable and high performance.

e.利用側冷媒サイクルの冷媒として利用側冷媒サイクル
内で液状態とガス状態とに状態変化する冷媒を用いたた
め、蒸発温度や凝縮温度が一定となり、また、利用側冷
媒サイクルに水を循環させる場合に比べて搬送動力が大
幅に低減できる。
e. Since a refrigerant that changes state between a liquid state and a gas state in the usage-side refrigerant cycle is used as the refrigerant in the usage-side refrigerant cycle, the evaporation temperature and the condensation temperature are constant, and water is circulated in the usage-side refrigerant cycle. Compared with the case, the transport power can be significantly reduced.

f.利用側冷媒サイクルの冷媒として利用側冷媒サイクル
内で液状態とガス状態とに状態変化する冷媒を用い、冷
媒搬送装置が冷房時と暖房時とで冷媒の流出方向を変え
たので、第2補助熱交換器と利用側熱交換器とを連通さ
せる2本の接続配管のうちの一方をガス管として、冷房
運転時、暖房運転時ともにガス冷媒を流し、第2補助熱
交換器と利用側熱交換器とを連通させる2本の接続配管
のうちの他方を液管として、冷房運転時、暖房運転時と
もに液冷媒を流すようにし、液管となる接続配管にガス
管となる接続配管より細い内径の配管を用いて利用側冷
媒サイクルの冷媒封入量を低減することができる。
f. Since the refrigerant that changes the state between the liquid state and the gas state in the usage-side refrigerant cycle is used as the refrigerant of the usage-side refrigerant cycle, and the refrigerant carrier changes the outflow direction of the refrigerant during cooling and heating, 2 Use one of the two connecting pipes that connect the auxiliary heat exchanger and the use-side heat exchanger as a gas pipe, and let the gas refrigerant flow during both the cooling operation and the heating operation and use the second auxiliary heat exchanger. The other of the two connecting pipes communicating with the side heat exchanger is used as a liquid pipe, and a liquid refrigerant is caused to flow during both the cooling operation and the heating operation, and the connecting pipe serving as the liquid pipe serves as the gas pipe. It is possible to reduce the amount of refrigerant enclosed in the use side refrigerant cycle by using a pipe having a thinner inner diameter.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例における冷暖房装置の冷媒サ
イクル図、第2図は従来の冷暖房装置の冷媒サイクル図
である。 13……熱源側熱交換器、18……第1補助熱交換器、19…
…第2補助熱交換器、21……冷媒搬送装置、22……利用
側熱交換器。
FIG. 1 is a refrigerant cycle diagram of an air conditioner according to an embodiment of the present invention, and FIG. 2 is a refrigerant cycle diagram of a conventional air conditioner. 13 ... Heat source side heat exchanger, 18 ... First auxiliary heat exchanger, 19 ...
… Second auxiliary heat exchanger, 21 …… Refrigerant carrier, 22 …… Use side heat exchanger.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】圧縮機,四方弁,熱源側熱交換器,減圧装
置および第1補助熱交換器を環状に連接してなる熱源側
冷媒サイクルと、この第1補助熱交換器と一体に形成し
熱交換する第2補助熱交換器,冷房時と暖房時とで冷媒
の流出方向を変える冷媒搬送装置および利用側熱交換器
を環状に連接してなる利用側冷媒サイクルとを備え、前
記利用側冷媒サイクルの冷媒として前記利用側冷媒サイ
クル内で液状態とガス状態とに状態変化する冷媒を用い
た冷暖房装置。
1. A heat source side refrigerant cycle comprising a compressor, a four-way valve, a heat source side heat exchanger, a pressure reducing device and a first auxiliary heat exchanger connected in an annular shape, and is integrally formed with the first auxiliary heat exchanger. A second auxiliary heat exchanger for exchanging heat, a refrigerant transfer device that changes the outflow direction of the refrigerant between cooling and heating, and a user-side refrigerant cycle in which a user-side heat exchanger is connected in an annular shape. A cooling / heating device that uses a refrigerant that changes state between a liquid state and a gas state in the utilization-side refrigerant cycle, as the refrigerant of the side refrigerant cycle.
JP61081552A 1986-04-09 1986-04-09 Air conditioner Expired - Lifetime JP2529202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61081552A JP2529202B2 (en) 1986-04-09 1986-04-09 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61081552A JP2529202B2 (en) 1986-04-09 1986-04-09 Air conditioner

Publications (2)

Publication Number Publication Date
JPS62238951A JPS62238951A (en) 1987-10-19
JP2529202B2 true JP2529202B2 (en) 1996-08-28

Family

ID=13749452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61081552A Expired - Lifetime JP2529202B2 (en) 1986-04-09 1986-04-09 Air conditioner

Country Status (1)

Country Link
JP (1) JP2529202B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219452A (en) * 1988-02-26 1989-09-01 Matsushita Refrig Co Ltd Air conditioner
JP3598604B2 (en) 1995-09-08 2004-12-08 ダイキン工業株式会社 Heat transfer device
JP3692630B2 (en) 1995-10-24 2005-09-07 ダイキン工業株式会社 Heat transfer device
EP0857920B1 (en) * 1995-10-24 2004-03-31 Daikin Industries, Limited Air conditioner
JP3582185B2 (en) 1995-10-24 2004-10-27 ダイキン工業株式会社 Heat transfer device
JP3063742B2 (en) * 1998-01-30 2000-07-12 ダイキン工業株式会社 Refrigeration equipment
CN103105013A (en) * 2011-11-15 2013-05-15 上海协合散热器制造有限公司 Automobile air-conditioner system with unpowered air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56146942A (en) * 1980-04-15 1981-11-14 Mitsubishi Electric Corp Air conditioner
JPS58198653A (en) * 1982-05-17 1983-11-18 三菱重工業株式会社 Refrigeration cycle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56146942A (en) * 1980-04-15 1981-11-14 Mitsubishi Electric Corp Air conditioner
JPS58198653A (en) * 1982-05-17 1983-11-18 三菱重工業株式会社 Refrigeration cycle

Also Published As

Publication number Publication date
JPS62238951A (en) 1987-10-19

Similar Documents

Publication Publication Date Title
JPH0634169A (en) Air conditioning device
JP2529202B2 (en) Air conditioner
JP2018159507A (en) GHP Chiller
JP2537811B2 (en) Hot water supply air conditioner
JPH0684828B2 (en) Multi room air conditioner
JPH04103571U (en) Heat pump water heater
JPS58178159A (en) Multistage cascade cooling system
JP2516919B2 (en) Air conditioner
JP2702784B2 (en) Multi-room air conditioner
JPH08178446A (en) Multi-room type cooler/heater
JPS582564A (en) Composite absorption type refrigerator
JPH10318618A (en) Air conditioner
JPH0410522Y2 (en)
JP2685299B2 (en) Multi-room air conditioner
JP2643654B2 (en) Air-cooled heat pump refrigeration system
JPH0351644A (en) Multiroom cooling heating device
JPH0820139B2 (en) Heat storage type heat pump device
JPH01312365A (en) Cooling and heating device
JPH0894192A (en) Vapor compression type refrigerating device
JPH0533886Y2 (en)
JP2974180B2 (en) Multi-room air conditioner
JPS62773A (en) Heat accumulation type refrigerator
JPS6243249Y2 (en)
JPS6051629B2 (en) Air conditioning equipment
JPS6358062A (en) Cooling device by circulation of refrigerant