JP2018159507A - GHP Chiller - Google Patents

GHP Chiller Download PDF

Info

Publication number
JP2018159507A
JP2018159507A JP2017056707A JP2017056707A JP2018159507A JP 2018159507 A JP2018159507 A JP 2018159507A JP 2017056707 A JP2017056707 A JP 2017056707A JP 2017056707 A JP2017056707 A JP 2017056707A JP 2018159507 A JP2018159507 A JP 2018159507A
Authority
JP
Japan
Prior art keywords
heat medium
refrigerant
heat
heat exchanger
connection port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017056707A
Other languages
Japanese (ja)
Inventor
則通 村井
Norimichi Murai
則通 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2017056707A priority Critical patent/JP2018159507A/en
Publication of JP2018159507A publication Critical patent/JP2018159507A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide GHP chiller that can maintain high heat exchange efficiency in both heating operation and cooling operation.SOLUTION: GHP chiller includes a circulation state switching mechanism 51 for maintaining an opposed flow state in which a refrigerant circulation direction is opposite to a first heat medium circulation direction by switching either one of the refrigerant circulation direction that is a circulation direction of refrigerant circulating through a first heat medium heat exchanger 33 and the first heat medium circulation direction that is a circulation direction of a first heat medium circulating through the first heat medium heat exchanger 33 with switching between heating operation and cooling operation by an operation switching mechanism 34.SELECTED DRAWING: Figure 1

Description

本発明は、熱需要部にて温熱又は冷熱を供給する第1熱媒体を循環する第1熱媒体循環路と、冷媒を循環する冷媒循環路と、当該冷媒循環路を循環する冷媒を圧縮するエンジン駆動式圧縮機と、冷媒循環路を循環する冷媒を膨張させる膨張弁と、前記エンジン駆動式圧縮機にて圧縮された冷媒の凝縮熱にて第1熱媒体を加熱する加熱器又は前記膨張弁にて膨張された冷媒の蒸発熱にて第1熱媒体を冷却する冷却器として働く第1熱媒体熱交換器と、第2熱媒体を放熱源として冷媒を凝縮する凝縮器又は第2熱媒体を吸熱源として冷媒を蒸発する蒸発器として働く第2熱媒体熱交換器と、前記第1熱媒体熱交換器を前記加熱器として働かせると共に前記第2熱媒体熱交換器を前記蒸発器として働かせる加熱運転と、前記第1熱媒体熱交換器を前記冷却器として働かせると共に前記第2熱媒体熱交換器を前記凝縮器として働かせる冷却運転とを切り換える運転切換機構とを備えるGHPチラーに関する。   The present invention compresses a first heat medium circulation path that circulates a first heat medium that supplies hot or cold heat in a heat demand section, a refrigerant circulation path that circulates refrigerant, and a refrigerant that circulates through the refrigerant circulation path. An engine-driven compressor, an expansion valve that expands the refrigerant circulating in the refrigerant circuit, and a heater that heats the first heat medium with the heat of condensation of the refrigerant compressed by the engine-driven compressor or the expansion A first heat medium heat exchanger that functions as a cooler that cools the first heat medium by the evaporation heat of the refrigerant expanded by the valve, and a condenser or second heat that condenses the refrigerant using the second heat medium as a heat radiation source. A second heat medium heat exchanger that functions as an evaporator that evaporates refrigerant using a medium as a heat absorption source, and the first heat medium heat exchanger that functions as the heater and the second heat medium heat exchanger as the evaporator Heating operation to work, and the first heat medium heat exchanger About GHP chiller and a driving switching mechanism of the second heat medium heat exchanger switching between cooling operation to act as the condenser with work as a cooler.

従来、空調や冷凍機等の用に供されるGHPチラーは、通常、冷媒循環路としてのヒートポンプ回路において、冷媒と水等の第1熱媒体とを熱交換する第1熱媒体熱交換器を加熱器として働かせると共に第2熱媒体熱交換器を蒸発器として働かせる加熱運転と、第1熱媒体熱交換器を冷却器として働かせると共に第2熱媒体熱交換器を凝縮器として働かせる冷却運転とを切り換える運転切換機構を備えて構成されている(特許文献1を参照)。   Conventionally, a GHP chiller used for an air conditioner, a refrigerator, or the like usually includes a first heat medium heat exchanger that exchanges heat between a refrigerant and a first heat medium such as water in a heat pump circuit as a refrigerant circuit. A heating operation in which the second heat medium heat exchanger functions as an evaporator and a cooling operation in which the first heat medium heat exchanger functions as a cooler and the second heat medium heat exchanger functions as a condenser. An operation switching mechanism for switching is provided (see Patent Document 1).

特開2014−053332号公報JP 2014-053332 A

通常、2流体熱交換器においては、2流体間の熱交換効率を高めるべく、2流体が対向流となる形態で2流体間の熱交換が実行されるよう、両者の通流路が形成されている。
これに対し、上記特許文献1に開示される通常のGHPチラーにおいては、運転切換機構として冷媒循環路を循環する冷媒の通流方向を切り換える四方弁を備えている。加熱運転と冷却運転とを切り換える場合、第1熱媒体熱交換器を通流する冷媒の通流方向が、加熱運転と冷却運転とで逆方向となる。一方で、第1熱媒体循環路を介して第1熱媒体熱交換器を通流する第1熱媒体の通流方向は、加熱運転と冷却運転とで同一方向である。
In general, in a two-fluid heat exchanger, in order to increase the heat exchange efficiency between two fluids, a flow path between the two fluids is formed so that heat exchange between the two fluids is performed in a form in which the two fluids are opposed to each other. ing.
On the other hand, the normal GHP chiller disclosed in Patent Document 1 includes a four-way valve that switches the flow direction of the refrigerant circulating in the refrigerant circulation path as an operation switching mechanism. When switching between the heating operation and the cooling operation, the flow direction of the refrigerant flowing through the first heat medium heat exchanger is reversed between the heating operation and the cooling operation. On the other hand, the flow direction of the first heat medium flowing through the first heat medium heat exchanger via the first heat medium circuit is the same in the heating operation and the cooling operation.

このため、特許文献1に代表される従来のGHPチラーにおいては、第1熱媒体熱交換器において、加熱運転と冷却運転との何れか一方において、冷媒と第1熱媒とが対向流とならず、効率が低下するため、改善の余地があった。   For this reason, in the conventional GHP chiller represented by Patent Document 1, in the first heat medium heat exchanger, in either one of the heating operation and the cooling operation, the refrigerant and the first heat medium are opposed to each other. However, there was room for improvement because efficiency decreased.

本発明は、上述の課題に鑑みてなされたものであり、その目的は、加熱運転と冷却運転との双方において高い熱交換効率を維持できるGHPチラーを提供する点にある。   This invention is made | formed in view of the above-mentioned subject, The objective is to provide the GHP chiller which can maintain high heat exchange efficiency in both a heating operation and a cooling operation.

上記目的を達成するためのGHPチラーは、
熱需要部にて温熱又は冷熱を供給する第1熱媒体を循環する第1熱媒体循環路と、
冷媒を循環する冷媒循環路と、
当該冷媒循環路を循環する冷媒を圧縮するエンジン駆動式圧縮機と、
前記冷媒循環路を循環する冷媒を膨張する膨張弁と、
前記エンジン駆動式圧縮機にて圧縮された冷媒の凝縮熱にて第1熱媒体を加熱する加熱器又は前記膨張弁にて膨張された冷媒の蒸発熱にて第1熱媒体を冷却する冷却器として働く第1熱媒体熱交換器と、
第2熱媒体を放熱源として冷媒を凝縮する凝縮器又は第2熱媒体を吸熱源として冷媒を蒸発する蒸発器として働く第2熱媒体熱交換器と、
前記第1熱媒体熱交換器を前記加熱器として働かせると共に前記第2熱媒体熱交換器を前記蒸発器として働かせる加熱運転と、前記第1熱媒体熱交換器を前記冷却器として働かせると共に前記第2熱媒体熱交換器を前記凝縮器として働かせる冷却運転とを切り換える運転切換機構とを備えるGHPチラーであって、その特徴構成は、
前記運転切換機構による前記加熱運転と前記冷却運転との切り換えに伴って、前記第1熱媒体熱交換器を通流する冷媒の通流方向である冷媒通流方向と、前記第1熱媒体熱交換器を通流する第1熱媒体の通流方向である第1熱媒体通流方向との何れか一方を切り換えて、前記冷媒通流方向と前記第1熱媒体通流方向とが対向する対向流状態を維持する点にある。
The GHP chiller to achieve the above objective is
A first heat medium circuit that circulates a first heat medium that supplies hot or cold heat in the heat demand section;
A refrigerant circulation path for circulating the refrigerant;
An engine-driven compressor that compresses the refrigerant circulating in the refrigerant circuit;
An expansion valve for expanding the refrigerant circulating in the refrigerant circuit;
A heater that heats the first heat medium with the heat of condensation of the refrigerant compressed by the engine-driven compressor, or a cooler that cools the first heat medium with the heat of evaporation of the refrigerant expanded by the expansion valve A first heat medium heat exchanger that acts as
A second heat medium heat exchanger that acts as a condenser that condenses the refrigerant using the second heat medium as a heat dissipation source or an evaporator that evaporates the refrigerant using the second heat medium as a heat absorption source;
A heating operation in which the first heat medium heat exchanger functions as the heater and the second heat medium heat exchanger as the evaporator; and the first heat medium heat exchanger as the cooler and the first A GHP chiller comprising an operation switching mechanism that switches between a cooling operation that causes a two heat medium heat exchanger to function as the condenser,
Along with switching between the heating operation and the cooling operation by the operation switching mechanism, a refrigerant flow direction that is a flow direction of the refrigerant flowing through the first heat medium heat exchanger, and the first heat medium heat The refrigerant flow direction and the first heat medium flow direction are opposed to each other by switching either one of the first heat medium flow direction that is the flow direction of the first heat medium flowing through the exchanger. It is the point which maintains a counterflow state.

上記特徴構成によれば、運転切換機構による加熱運転と冷却運転との切り換えに伴って、通流状態切換機構が、第1熱媒体熱交換器を通流する冷媒の通流方向である冷媒通流方向と、第1熱媒体熱交換器を通流する第1熱媒体の通流方向である第1熱媒体通流方向との何れか一方を切り換えるから、第1熱媒体熱交換器において、加熱運転と冷却運転の何れにおいても、冷媒通流方向と第1熱媒体通流方向とが対向する対向流状態を維持することができ、加熱運転と冷却運転との何れかにおいて熱交換効率が低下することを避けることができる。
因みに、第1熱媒体熱交換器を加熱器として働かせる場合、当該第1熱媒体熱交換器を通流する冷媒は凝縮温度で略一定になるが、高温高圧のガス冷媒が第1熱媒体熱交換器へ流入し、冷却され凝縮温度に達するまでは温度変化し、更に、出口近傍で数度過冷却されるときに温度変化して、液化した冷媒が熱交換器から出ていくことになる。
一方、第1熱媒体熱交換器を冷却器として働かせる場合、当該第1熱媒体熱交換器を通流する冷媒は蒸発温度で略一定になるが、高温高圧の液冷媒が、膨張弁で減圧され、低温液冷媒として熱交換器に流入し、ガス化(蒸発)された後、数度過熱されるときに温度変化し、当該過熱状態のガス冷媒が、熱交換器から出ていくことになる。
以上の如く、第1熱媒体熱交換器を通過する冷媒は、加熱器として働く場合でも冷却器として働く場合の何れにあっても、温度変化することとなるため、上述の如く、冷媒通流方向と第1熱媒体通流方向とが対向する対向流状態を維持することで、加熱運転と冷却運転との何れかにおいて熱交換効率が低下することを避けることができるのである。
According to the above characteristic configuration, in accordance with the switching between the heating operation and the cooling operation by the operation switching mechanism, the flow state switching mechanism is the refrigerant flow that is the flow direction of the refrigerant flowing through the first heat medium heat exchanger. Since one of the flow direction and the first heat medium flow direction that is the flow direction of the first heat medium flowing through the first heat medium heat exchanger is switched, in the first heat medium heat exchanger, In both the heating operation and the cooling operation, a counter flow state in which the refrigerant flow direction and the first heat medium flow direction face each other can be maintained, and the heat exchange efficiency can be improved in either the heating operation or the cooling operation. Decreasing can be avoided.
Incidentally, when the first heat medium heat exchanger is operated as a heater, the refrigerant flowing through the first heat medium heat exchanger becomes substantially constant at the condensation temperature, but the high-temperature and high-pressure gas refrigerant is the first heat medium heat. It flows into the exchanger and changes in temperature until it is cooled and reaches the condensation temperature. Further, when it is subcooled several times near the outlet, the temperature changes and the liquefied refrigerant comes out of the heat exchanger. .
On the other hand, when the first heat medium heat exchanger is operated as a cooler, the refrigerant flowing through the first heat medium heat exchanger becomes substantially constant at the evaporation temperature, but the high-temperature and high-pressure liquid refrigerant is depressurized by the expansion valve. After flowing into the heat exchanger as a low-temperature liquid refrigerant, gasified (evaporated) and then heated several times, the temperature changes, and the overheated gas refrigerant comes out of the heat exchanger. Become.
As described above, the refrigerant passing through the first heat medium heat exchanger changes in temperature regardless of whether it functions as a heater or as a cooler. By maintaining the counterflow state in which the direction and the first heat medium flow direction face each other, it is possible to avoid a decrease in heat exchange efficiency in either the heating operation or the cooling operation.

GHPチラーの更なる特徴構成は、
前記第1熱媒体熱交換器は、第1熱媒体第1接続口と第1熱媒体第2接続口とを介して前記第1熱媒体循環路に連通接続され、
前記熱需要部は、第1熱媒体第3接続口と第1熱媒体第4接続口とを介して前記第1熱媒体循環路に連通接続され、
前記通流状態切換機構は、前記第1熱媒体第3接続口を前記第1熱媒体第1接続口に連通接続すると共に、前記第1熱媒体第4接続口を前記第1熱媒体第2接続口に連通接続する第1接続状態と、
前記第1熱媒体第3接続口を前記第1熱媒体第2接続口に連通接続すると共に、前記第1熱媒体第4接続口を前記第1熱媒体第1接続口に連通接続する第2接続状態とを切り換える弁機構から構成されている点にある。
Further features of the GHP chiller
The first heat medium heat exchanger is connected in communication with the first heat medium circuit via a first heat medium first connection port and a first heat medium second connection port,
The heat demand section is connected in communication with the first heat medium circulation path through a first heat medium third connection port and a first heat medium fourth connection port.
The flow state switching mechanism communicates and connects the first heat medium third connection port to the first heat medium first connection port, and connects the first heat medium fourth connection port to the first heat medium second connection port. A first connection state communicating with the connection port;
The first heat medium third connection port is connected in communication with the first heat medium second connection port, and the first heat medium fourth connection port is connected in communication with the first heat medium first connection port. It is in the point comprised from the valve mechanism which switches a connection state.

上記特徴構成によれば、弁機構による第1接続状態と第2接続状態の切り換えという簡易な構成により、第1熱媒体熱交換器において、第1熱媒体通流方向を適切に切り換える形態で、加熱運転と冷却運転の何れにおいても冷媒と第1熱媒体との対向流状態を維持できる。   According to the above characteristic configuration, in the first heat medium heat exchanger, the first heat medium flow direction is appropriately switched by a simple structure of switching between the first connection state and the second connection state by the valve mechanism, The counter flow state between the refrigerant and the first heat medium can be maintained in both the heating operation and the cooling operation.

GHPチラーの更なる特徴構成は、
前記冷媒循環路は、前記加熱運転と前記冷却運転との双方で、冷媒を少なくとも前記エンジン駆動式圧縮機と前記第2熱媒体熱交換器と前記運転切換機構とに冷媒を通流する第1冷媒通流路と、前記第1熱媒体熱交換器と前記膨張弁とに冷媒を通流する第2冷媒通流路を備え、
前記通流状態切換機構は、前記第1冷媒通流路の一方の流路端である第1冷媒通流路第1流路端を、前記第2冷媒通流路の一方の流路端である第2冷媒通流路第1流路端に連通接続する第3接続状態と、
前記第1冷媒通流路の他方の流路端である第1冷媒通流路第2流路端を、前記第2冷媒通流路の他方の流路端である第2冷媒通流路第2流路端に連通接続する第4接続状態とを切り換える弁機構から構成されている点にある。
Further features of the GHP chiller
The refrigerant circulation path causes the refrigerant to flow through at least the engine-driven compressor, the second heat medium heat exchanger, and the operation switching mechanism in both the heating operation and the cooling operation. A refrigerant flow path, a second refrigerant flow path for flowing the refrigerant to the first heat medium heat exchanger and the expansion valve,
The flow state switching mechanism has a first refrigerant flow channel first flow channel end that is one flow channel end of the first refrigerant flow channel at one flow channel end of the second refrigerant flow channel. A third connection state in which the second refrigerant flow path is connected to the first flow path end;
The second refrigerant flow path that is the other flow path end of the second refrigerant flow path is the second refrigerant flow path that is the other flow path end of the first refrigerant flow path. It is in the point comprised from the valve mechanism which switches the 4th connection state connected in communication with the 2 flow-path end.

上記特徴構成によれば、弁機構による第3接続状態と第4接続状態の切り換えという簡易な構成により、第1熱媒体熱交換器において、冷媒通流方向を適切に切り換える形態で、加熱運転と冷却運転の何れにおいても冷媒と第1熱媒体との対向流状態を維持できる。   According to the above characteristic configuration, in the first heat medium heat exchanger, the refrigerant flow direction is appropriately switched in the heating operation by the simple configuration of switching between the third connection state and the fourth connection state by the valve mechanism. In any cooling operation, the counter flow state between the refrigerant and the first heat medium can be maintained.

GHPチラーの更なる特徴構成は、
前記弁機構は、第1四方弁から構成されている点にある。
Further features of the GHP chiller
The valve mechanism is composed of a first four-way valve.

当該構成により、比較的簡易な四方弁にて弁機構を実現でき、構成の簡素化を図ることができる。   With this configuration, the valve mechanism can be realized with a relatively simple four-way valve, and the configuration can be simplified.

GHPチラーの更なる特徴構成は、
前記運転切換機構は、前記冷媒循環路において、前記エンジン駆動式圧縮機と、前記第1熱媒体熱交換器と、前記膨張弁と、前記第2熱媒体熱交換器とに記載の順に冷媒を通流させる前記加熱運転と、前記エンジン駆動式圧縮機と、前記第2熱媒体熱交換器と、前記膨張弁と、前記第1熱媒体熱交換器とに記載の順に冷媒を通流させる前記冷却運転とを切り換える第2四方弁から構成されている点にある。
Further features of the GHP chiller
The operation switching mechanism supplies the refrigerant in the refrigerant circulation path in the order described in the engine-driven compressor, the first heat medium heat exchanger, the expansion valve, and the second heat medium heat exchanger. The refrigerant is passed in the order described in the heating operation to flow, the engine-driven compressor, the second heat medium heat exchanger, the expansion valve, and the first heat medium heat exchanger. It is in the point comprised from the 2nd four-way valve which switches cooling operation.

当該構成により、比較的簡易な四方弁にて運転切換機構を実現でき、構成の簡素化を図ることができる。   With this configuration, the operation switching mechanism can be realized with a relatively simple four-way valve, and the configuration can be simplified.

第1実施形態に係るGHPチラーで加熱運転を実行している場合の概略構成図Schematic configuration diagram when heating operation is executed by the GHP chiller according to the first embodiment 第1実施形態に係るGHPチラーで冷却運転を実行している場合の概略構成図Schematic configuration diagram when cooling operation is executed by the GHP chiller according to the first embodiment 第2実施形態に係るGHPチラーの概略構成図Schematic configuration diagram of a GHP chiller according to a second embodiment 別実施形態に係るGHPチラーの概略構成図Schematic configuration diagram of a GHP chiller according to another embodiment

本発明の実施形態に係るGHPチラー100は、加熱運転と冷却運転との双方において高い熱交換効率を維持できるGHPチラーに関する。
以下、図面に基づいてGHPチラー100の実施形態を説明する。
The GHP chiller 100 according to the embodiment of the present invention relates to a GHP chiller that can maintain high heat exchange efficiency in both the heating operation and the cooling operation.
Hereinafter, an embodiment of the GHP chiller 100 will be described with reference to the drawings.

〔第1実施形態〕
第1実施形態に係るGHPチラー100は、図1、2に示すように、熱需要部50にて温熱又は冷熱を供給する第1熱媒体を循環する第1熱媒体循環路C2と、当該第1熱媒体循環路C2にて第1熱媒体を圧送する圧送ポンプPと、冷媒を循環する冷媒循環路C1と、当該冷媒循環路C1を循環する冷媒を圧縮するエンジン駆動式圧縮機35と、冷媒循環路C1を循環する冷媒を膨張する膨張弁32と、エンジン駆動式圧縮機35にて圧縮された冷媒の凝縮熱にて水等の第1熱媒体を加熱する加熱器、又は膨張弁32にて膨張された冷媒の蒸発熱にて第1熱媒体を冷却する冷却器として働く第1熱媒体熱交換器33と、空気等の第2熱媒体を放熱源として冷媒を凝縮する凝縮器又は第2熱媒体を吸熱源として冷媒を蒸発する蒸発器として働く第2熱媒体熱交換器36とを備えている。
上記エンジン駆動式圧縮機35は、例えば都市ガス13Aを燃料として、エンジンEにて駆動されるものである。
[First Embodiment]
As shown in FIGS. 1 and 2, the GHP chiller 100 according to the first embodiment includes a first heat medium circulation path C <b> 2 that circulates a first heat medium that supplies hot or cold heat in the heat demand section 50, and the first A pressure pump P that pumps the first heat medium in the one heat medium circulation path C2, a refrigerant circulation path C1 that circulates the refrigerant, an engine-driven compressor 35 that compresses the refrigerant that circulates in the refrigerant circulation path C1, An expansion valve 32 that expands the refrigerant circulating in the refrigerant circuit C1, a heater that heats the first heat medium such as water by the condensation heat of the refrigerant compressed by the engine-driven compressor 35, or the expansion valve 32 A first heat medium heat exchanger 33 that functions as a cooler that cools the first heat medium with the heat of evaporation of the refrigerant expanded in Step 1, and a condenser that condenses the refrigerant using a second heat medium such as air as a heat radiation source, or Works as an evaporator that evaporates the refrigerant using the second heat medium as the heat sink And a second heat medium heat exchanger 36.
The engine-driven compressor 35 is driven by the engine E using, for example, city gas 13A as fuel.

更に、GHPチラー100は、第1熱媒体熱交換器33を加熱器として働かせると共に第2熱媒体熱交換器36を蒸発器として働かせる加熱運転と、第1熱媒体熱交換器33を冷却器として働かせると共に第2熱媒体熱交換器36を凝縮器として働かせる冷却運転とを切り換える運転切換機構を備えている。
説明を追加すると、当該運転切換機構は、冷媒循環路C1において、エンジン駆動式圧縮機35、第1熱媒体熱交換器33、膨張弁32、第2熱媒体熱交換器36とに記載の順に冷媒を通流させる加熱運転(図1に示す状態)と、エンジン駆動式圧縮機35、第2熱媒体熱交換器36、膨張弁32、及び第1熱媒体熱交換器33とに記載の順に冷媒を通流させる冷却運転(図2に示す状態)とを切り換える第2四方弁34から構成されている。
Further, the GHP chiller 100 includes a heating operation in which the first heat medium heat exchanger 33 serves as a heater and the second heat medium heat exchanger 36 serves as an evaporator, and the first heat medium heat exchanger 33 serves as a cooler. An operation switching mechanism is provided that switches between a cooling operation that causes the second heat medium heat exchanger 36 to function as a condenser.
When the explanation is added, the operation switching mechanism is arranged in the order described in the engine-driven compressor 35, the first heat medium heat exchanger 33, the expansion valve 32, and the second heat medium heat exchanger 36 in the refrigerant circuit C1. The heating operation in which the refrigerant flows (state shown in FIG. 1), the engine-driven compressor 35, the second heat medium heat exchanger 36, the expansion valve 32, and the first heat medium heat exchanger 33, in that order. It comprises a second four-way valve 34 that switches between a cooling operation (the state shown in FIG. 2) for allowing the refrigerant to flow.

さて、上述ように構成されているGHPチラー100にあっては、第1熱媒体熱交換器33は、冷媒と水等の第1熱媒体とを交換する二流体熱交換器として構成され、当該2流体熱交換器は、熱交換効率を向上させる観点から、冷媒と第1熱媒体とを対向流で熱交換するよう構成することが好ましい。
そこで、GHPチラー100にあっては、運転切換機構としての第2四方弁34による加熱運転と冷却運転との切り換えに伴って、第1熱媒体熱交換器33を通流する冷媒の通流方向である冷媒通流方向と、第1熱媒体熱交換器33を通流する第1熱媒体の通流方向である第1熱媒体通流方向とが対向する対向流状態を維持する通流状態切換機構を備える。
Now, in the GHP chiller 100 configured as described above, the first heat medium heat exchanger 33 is configured as a two-fluid heat exchanger that exchanges a refrigerant and a first heat medium such as water. The two-fluid heat exchanger is preferably configured to exchange heat between the refrigerant and the first heat medium in a counterflow from the viewpoint of improving heat exchange efficiency.
Therefore, in the GHP chiller 100, the flow direction of the refrigerant flowing through the first heat medium heat exchanger 33 in accordance with the switching between the heating operation and the cooling operation by the second four-way valve 34 as the operation switching mechanism. In which the refrigerant flow direction is opposite to the first heat medium flow direction that is the flow direction of the first heat medium flowing through the first heat medium heat exchanger 33. A switching mechanism is provided.

説明を追加すると、当該第1実施形態に係るGHPチラー100にあっては、通流状態切換機構は、第1熱媒体循環路C2を通流する第1熱媒体の通流状態を切り換える形態で、対向流状態を維持する。   If the explanation is added, in the GHP chiller 100 according to the first embodiment, the flow state switching mechanism switches the flow state of the first heat medium flowing through the first heat medium circulation path C2. Maintain the counterflow state.

具体的には、第1熱媒体熱交換器33を、第1熱媒体第1接続口33aと第1熱媒体第2接続口33bとを介して第1熱媒体循環路C2に連通接続する形態で設けると共に、熱需要部50を、第1熱媒体第3接続口50aと第1熱媒体第4接続口50bとを介して第1熱媒体循環路C2に連通接続する形態で設ける。
更に、第1熱媒体第3接続口50aを第1熱媒体第1接続口33aに連通接続すると共に、第1熱媒体第4接続口50bを第1熱媒体第2接続口33bに連通接続する第1接続状態(図1に示す接続状態)と、第1熱媒体第3接続口50aを第1熱媒体第2接続口33bに連通接続すると共に、第1熱媒体第4接続口50bを第1熱媒体第1接続口33aに連通接続する第2接続状態(図2に示す接続状態)とに切り換える第1四方弁51(弁機構の一例)を通流状態切換機構として、第1熱媒体循環路C2に設けている。
Specifically, the first heat medium heat exchanger 33 is connected to the first heat medium circulation path C2 through the first heat medium first connection port 33a and the first heat medium second connection port 33b. In addition, the heat demand section 50 is provided in such a form that it is connected in communication with the first heat medium circuit C2 through the first heat medium third connection port 50a and the first heat medium fourth connection port 50b.
Further, the first heat medium third connection port 50a is connected in communication with the first heat medium first connection port 33a, and the first heat medium fourth connection port 50b is connected in communication with the first heat medium second connection port 33b. The first connection state (connection state shown in FIG. 1), the first heat medium third connection port 50a is connected to the first heat medium second connection port 33b, and the first heat medium fourth connection port 50b is connected to the first heat medium fourth connection port 50b. 1st four-way valve 51 (an example of a valve mechanism) which switches to the 2nd connection state (connection state shown in Drawing 2) connected in communication with 1 heat carrier 1st connection port 33a It is provided in the circulation path C2.

制御装置(図示せず)は、加熱運転と冷却運転とを切り換える運転切換機構としての第2四方弁34の切り換えに伴って、通流状態切換機構としての第1四方弁51にて第1通流状態と第2通流状態とを切り換え制御する形態で、第1熱媒体熱交換器33を通流する冷媒と第1熱媒体とを、加熱運転と冷却運転の何れにおいても対向流状態に維持する。   The control device (not shown) performs the first communication with the first four-way valve 51 as the flow state switching mechanism in accordance with the switching of the second four-way valve 34 as the operation switching mechanism for switching between the heating operation and the cooling operation. The refrigerant flowing through the first heat medium heat exchanger 33 and the first heat medium are brought into a counter flow state in both the heating operation and the cooling operation in the form of switching control between the flow state and the second flow state. maintain.

〔第2実施形態〕
上記第1実施形態に係るGHPチラー100にあっては、通流状態切換機構は、第1熱媒体循環路C2を通流する第1熱媒体の通流状態を切り換える形態で、第1熱媒体熱交換器33での冷媒と第1熱媒体との対向流状態を維持する構成例を示した。これに対し、当該第2実施形態に係るGHPチラー100にあっては、通流状態切換機構が、冷媒循環路C1を通流する冷媒の通流状態を切り換える形態で、第1熱媒体熱交換器33での冷媒と第1熱媒体との対向流状態を維持する。
当該第2実施形態に係るGHPチラー100は、上述した点以外の構成については、上記第1実施形態と同一の構成であるため、上記第1実施形態と同一の符号を付すと共に、その説明を割愛する。
[Second Embodiment]
In the GHP chiller 100 according to the first embodiment, the flow state switching mechanism switches the flow state of the first heat medium flowing through the first heat medium circulation path C2, and the first heat medium The structural example which maintains the counterflow state of the refrigerant | coolant and 1st heat medium in the heat exchanger 33 was shown. On the other hand, in the GHP chiller 100 according to the second embodiment, the flow state switching mechanism switches the flow state of the refrigerant flowing through the refrigerant circulation path C1, and the first heat medium heat exchange is performed. The counter flow state between the refrigerant and the first heat medium in the vessel 33 is maintained.
Since the GHP chiller 100 according to the second embodiment has the same configuration as the first embodiment except for the above-described points, the same reference numerals as those in the first embodiment are used, and the description thereof is omitted. Omit.

当該第2実施形態に係るGHPチラー100では、図3に示すように、冷媒循環路C1が、加熱運転と冷却運転との双方で、冷媒を少なくともエンジン駆動式圧縮機35と第2熱媒体熱交換器36と第2四方弁34とに冷媒を通流する第1冷媒通流路C1aと、第1熱媒体熱交換器33と膨張弁32とに冷媒を通流する第2冷媒通流路C1bとから構成されている。
尚、第1冷媒通流路C1aは、第2四方弁34と後述する第1四方弁37との間の流路部位と、第2熱媒体熱交換器36と後述する第1四方弁37との間の流路部位とを含むものである。
また、第2冷媒通流路C1bは、第1熱媒体熱交換器33と後述する第1四方弁37との間の流路部位と、膨張弁32と後述する第1四方弁37との間の流路部位とを含むものである。
In the GHP chiller 100 according to the second embodiment, as shown in FIG. 3, the refrigerant circulation path C1 uses at least the engine-driven compressor 35 and the second heat medium heat in both the heating operation and the cooling operation. A first refrigerant passage C1a that allows the refrigerant to flow through the exchanger 36 and the second four-way valve 34, and a second refrigerant passage that allows the refrigerant to flow through the first heat medium heat exchanger 33 and the expansion valve 32. C1b.
The first refrigerant passage C1a includes a flow path portion between the second four-way valve 34 and a first four-way valve 37 described later, a second heat medium heat exchanger 36, and a first four-way valve 37 described later. And a flow path portion between them.
The second refrigerant passage C1b is provided between the first heat medium heat exchanger 33 and a first four-way valve 37 described later, and between the expansion valve 32 and a first four-way valve 37 described later. The flow path part is included.

更に、第1冷媒通流路C1aの一方の流路端である第1冷媒通流路第1流路端C1a1を第2冷媒通流路C1bの一方の流路端である第2冷媒通流路第1流路端C1b1に連通接続する第3接続状態(図3に示す接続状態)と、第1冷媒通流路C1aの他方の流路端である第1冷媒通流路第2流路端C1a2を第2冷媒通流路C1bの他方の流路端である第2冷媒通流路第2流路端C1b2に連通接続する第4接続状態(図4に示す接続状態)とを切り換える第1四方弁37(弁機構の一例)を通流状態切換機構として、冷媒循環路C1に設けている。   Further, the first refrigerant flow path C1a, which is one flow path end of the first refrigerant flow path C1a, is used as the second refrigerant flow path, which is the first flow path end of the second refrigerant flow path C1b. A third connection state (connection state shown in FIG. 3) communicating with the first flow path end C1b1, and a first refrigerant flow path second flow path that is the other flow path end of the first refrigerant flow path C1a. The fourth switching state (connection state shown in FIG. 4) for connecting and connecting the end C1a2 to the second coolant passage second passage end C1b2 which is the other passage end of the second coolant passage C1b is switched. A one-way valve 37 (an example of a valve mechanism) is provided in the refrigerant circuit C1 as a flow state switching mechanism.

〔別実施形態〕
(1)上記第2実施形態では、弁機構として第1四方弁37を備える構成例を示した。しかしながら、弁機構は、図4に示すように、四方弁に限らず、一対の三方弁37a、37bから構成しても構わない。
図示は省略するが、上記第1実施形態に係る弁機構である第1四方弁51についても、一対の三方弁から構成しても構わない。
[Another embodiment]
(1) In the said 2nd Embodiment, the structural example provided with the 1st four-way valve 37 as a valve mechanism was shown. However, as shown in FIG. 4, the valve mechanism is not limited to a four-way valve, and may be composed of a pair of three-way valves 37 a and 37 b.
Although illustration is omitted, the first four-way valve 51 that is the valve mechanism according to the first embodiment may also be constituted by a pair of three-way valves.

尚、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。   The configuration disclosed in the above embodiment (including another embodiment, the same shall apply hereinafter) can be applied in combination with the configuration disclosed in the other embodiment, as long as no contradiction occurs. The embodiment disclosed in this specification is an exemplification, and the embodiment of the present invention is not limited to this. The embodiment can be appropriately modified without departing from the object of the present invention.

本発明のGHPチラーは、加熱運転と冷却運転との双方において高い熱交換効率を維持できるGHPチラーとして、有効に利用可能である。   The GHP chiller of the present invention can be effectively used as a GHP chiller that can maintain high heat exchange efficiency in both the heating operation and the cooling operation.

32 :膨張弁
33 :第1熱媒体熱交換器
33a :第1熱媒体第1接続口
33b :第1熱媒体第2接続口
34 :第2四方弁
35 :エンジン駆動式圧縮機
36 :第2熱媒体熱交換器
37 :第1四方弁
50 :熱需要部
50a :第1熱媒体第3接続口
50b :第1熱媒体第4接続口
51 :第1四方弁
100 :GHPチラー
C1 :冷媒循環路
C1a :第1冷媒通流路
C1a1 :第1冷媒通流路第1流路端
C1a2 :第1冷媒通流路第2流路端
C1b :第2冷媒通流路
C1b1 :第2冷媒通流路第1流路端
C1b2 :第2冷媒通流路第2流路端
C2 :第1熱媒体循環路
32: expansion valve 33: first heat medium heat exchanger 33a: first heat medium first connection port 33b: first heat medium second connection port 34: second four-way valve 35: engine-driven compressor 36: second Heat medium heat exchanger 37: first four-way valve 50: heat demand section 50a: first heat medium third connection port 50b: first heat medium fourth connection port 51: first four-way valve 100: GHP chiller C1: refrigerant circulation Path C1a: First refrigerant flow path C1a1: First refrigerant flow path First flow path end C1a2: First refrigerant flow path Second flow path end C1b: Second refrigerant flow path C1b1: Second refrigerant flow Path first flow path end C1b2: second refrigerant flow path second flow path end C2: first heat medium circulation path

Claims (5)

熱需要部にて温熱又は冷熱を供給する第1熱媒体を循環する第1熱媒体循環路と、
冷媒を循環する冷媒循環路と、
当該冷媒循環路を循環する冷媒を圧縮するエンジン駆動式圧縮機と、
前記冷媒循環路を循環する冷媒を膨張する膨張弁と、
前記エンジン駆動式圧縮機にて圧縮された冷媒の凝縮熱にて第1熱媒体を加熱する加熱器又は前記膨張弁にて膨張された冷媒の蒸発熱にて第1熱媒体を冷却する冷却器として働く第1熱媒体熱交換器と、
第2熱媒体を放熱源として冷媒を凝縮する凝縮器又は第2熱媒体を吸熱源として冷媒を蒸発する蒸発器として働く第2熱媒体熱交換器と、
前記第1熱媒体熱交換器を前記加熱器として働かせると共に前記第2熱媒体熱交換器を前記蒸発器として働かせる加熱運転と、前記第1熱媒体熱交換器を前記冷却器として働かせると共に前記第2熱媒体熱交換器を前記凝縮器として働かせる冷却運転とを切り換える運転切換機構とを備えるGHPチラーであって、
前記運転切換機構による前記加熱運転と前記冷却運転との切り換えに伴って、前記第1熱媒体熱交換器を通流する冷媒の通流方向である冷媒通流方向と、前記第1熱媒体熱交換器を通流する第1熱媒体の通流方向である第1熱媒体通流方向との何れか一方を切り換えて、前記冷媒通流方向と前記第1熱媒体通流方向とが対向する対向流状態を維持する通流状態切換機構を備えるGHPチラー。
A first heat medium circuit that circulates a first heat medium that supplies hot or cold heat in the heat demand section;
A refrigerant circulation path for circulating the refrigerant;
An engine-driven compressor that compresses the refrigerant circulating in the refrigerant circuit;
An expansion valve for expanding the refrigerant circulating in the refrigerant circuit;
A heater that heats the first heat medium with the heat of condensation of the refrigerant compressed by the engine-driven compressor, or a cooler that cools the first heat medium with the heat of evaporation of the refrigerant expanded by the expansion valve A first heat medium heat exchanger that acts as
A second heat medium heat exchanger that acts as a condenser that condenses the refrigerant using the second heat medium as a heat dissipation source or an evaporator that evaporates the refrigerant using the second heat medium as a heat absorption source;
A heating operation in which the first heat medium heat exchanger functions as the heater and the second heat medium heat exchanger as the evaporator; and the first heat medium heat exchanger as the cooler and the first A GHP chiller comprising an operation switching mechanism that switches between a cooling operation that causes a two heat medium heat exchanger to act as the condenser,
Along with switching between the heating operation and the cooling operation by the operation switching mechanism, a refrigerant flow direction that is a flow direction of the refrigerant flowing through the first heat medium heat exchanger, and the first heat medium heat The refrigerant flow direction and the first heat medium flow direction are opposed to each other by switching either one of the first heat medium flow direction that is the flow direction of the first heat medium flowing through the exchanger. A GHP chiller including a flow state switching mechanism that maintains a counterflow state.
前記第1熱媒体熱交換器は、第1熱媒体第1接続口と第1熱媒体第2接続口とを介して前記第1熱媒体循環路に連通接続され、
前記熱需要部は、第1熱媒体第3接続口と第1熱媒体第4接続口とを介して前記第1熱媒体循環路に連通接続され、
前記通流状態切換機構は、前記第1熱媒体第3接続口を前記第1熱媒体第1接続口に連通接続すると共に、前記第1熱媒体第4接続口を前記第1熱媒体第2接続口に連通接続する第1接続状態と、
前記第1熱媒体第3接続口を前記第1熱媒体第2接続口に連通接続すると共に、前記第1熱媒体第4接続口を前記第1熱媒体第1接続口に連通接続する第2接続状態とを切り換える弁機構から構成されている請求項1に記載のGHPチラー。
The first heat medium heat exchanger is connected in communication with the first heat medium circuit via a first heat medium first connection port and a first heat medium second connection port,
The heat demand section is connected in communication with the first heat medium circulation path through a first heat medium third connection port and a first heat medium fourth connection port.
The flow state switching mechanism communicates and connects the first heat medium third connection port to the first heat medium first connection port, and connects the first heat medium fourth connection port to the first heat medium second connection port. A first connection state communicating with the connection port;
The first heat medium third connection port is connected in communication with the first heat medium second connection port, and the first heat medium fourth connection port is connected in communication with the first heat medium first connection port. The GHP chiller according to claim 1, wherein the GHP chiller is configured by a valve mechanism that switches between connection states.
前記冷媒循環路は、前記加熱運転と前記冷却運転との双方で、冷媒を少なくとも前記エンジン駆動式圧縮機と前記第2熱媒体熱交換器と前記運転切換機構とに冷媒を通流する第1冷媒通流路と、前記第1熱媒体熱交換器と前記膨張弁とに冷媒を通流する第2冷媒通流路を備え、
前記通流状態切換機構は、前記第1冷媒通流路の一方の流路端である第1冷媒通流路第1流路端を、前記第2冷媒通流路の一方の流路端である第2冷媒通流路第1流路端に連通接続する第3接続状態と、
前記第1冷媒通流路の他方の流路端である第1冷媒通流路第2流路端を、前記第2冷媒通流路の他方の流路端である第2冷媒通流路第2流路端に連通接続する第4接続状態とを切り換える弁機構から構成されている請求項1に記載のGHPチラー。
The refrigerant circulation path causes the refrigerant to flow through at least the engine-driven compressor, the second heat medium heat exchanger, and the operation switching mechanism in both the heating operation and the cooling operation. A refrigerant flow path, a second refrigerant flow path for flowing the refrigerant to the first heat medium heat exchanger and the expansion valve,
The flow state switching mechanism has a first refrigerant flow channel first flow channel end that is one flow channel end of the first refrigerant flow channel at one flow channel end of the second refrigerant flow channel. A third connection state in which the second refrigerant flow path is connected to the first flow path end;
The second refrigerant flow path that is the other flow path end of the second refrigerant flow path is the second refrigerant flow path that is the other flow path end of the first refrigerant flow path. The GHP chiller according to claim 1, wherein the GHP chiller is configured by a valve mechanism that switches between a fourth connection state that communicates with two flow path ends.
前記弁機構は、第1四方弁から構成されている請求項2又は3に記載のGHPチラー。   The GHP chiller according to claim 2 or 3, wherein the valve mechanism includes a first four-way valve. 前記運転切換機構は、前記冷媒循環路において、前記エンジン駆動式圧縮機と、前記第1熱媒体熱交換器と、前記膨張弁と、前記第2熱媒体熱交換器とに記載の順に冷媒を通流させる前記加熱運転と、前記エンジン駆動式圧縮機と、前記第2熱媒体熱交換器と、前記膨張弁と、前記第1熱媒体熱交換器とに記載の順に冷媒を通流させる前記冷却運転とを切り換える第2四方弁から構成されている請求項1〜4の何れか一項に記載のGHPチラー。   The operation switching mechanism supplies the refrigerant in the refrigerant circulation path in the order described in the engine-driven compressor, the first heat medium heat exchanger, the expansion valve, and the second heat medium heat exchanger. The refrigerant is passed in the order described in the heating operation to flow, the engine-driven compressor, the second heat medium heat exchanger, the expansion valve, and the first heat medium heat exchanger. The GHP chiller according to any one of claims 1 to 4, comprising a second four-way valve that switches between cooling operation.
JP2017056707A 2017-03-22 2017-03-22 GHP Chiller Pending JP2018159507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017056707A JP2018159507A (en) 2017-03-22 2017-03-22 GHP Chiller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017056707A JP2018159507A (en) 2017-03-22 2017-03-22 GHP Chiller

Publications (1)

Publication Number Publication Date
JP2018159507A true JP2018159507A (en) 2018-10-11

Family

ID=63796514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017056707A Pending JP2018159507A (en) 2017-03-22 2017-03-22 GHP Chiller

Country Status (1)

Country Link
JP (1) JP2018159507A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020153632A (en) * 2019-03-22 2020-09-24 三菱重工サーマルシステムズ株式会社 Chiller unit
JP2020159585A (en) * 2019-03-25 2020-10-01 三菱重工サーマルシステムズ株式会社 Chiller unit
JPWO2021220486A1 (en) * 2020-04-30 2021-11-04

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020153632A (en) * 2019-03-22 2020-09-24 三菱重工サーマルシステムズ株式会社 Chiller unit
JP7258616B2 (en) 2019-03-22 2023-04-17 三菱重工サーマルシステムズ株式会社 chiller unit
JP2020159585A (en) * 2019-03-25 2020-10-01 三菱重工サーマルシステムズ株式会社 Chiller unit
JP7258618B2 (en) 2019-03-25 2023-04-17 三菱重工サーマルシステムズ株式会社 chiller unit
JPWO2021220486A1 (en) * 2020-04-30 2021-11-04
WO2021220486A1 (en) * 2020-04-30 2021-11-04 三菱電機株式会社 Refrigeration cycle device
JP7317224B2 (en) 2020-04-30 2023-07-28 三菱電機株式会社 refrigeration cycle equipment

Similar Documents

Publication Publication Date Title
JP6042026B2 (en) Refrigeration cycle equipment
KR20140022919A (en) Combined binary refrigeration cycle apparatus
KR101645845B1 (en) Air conditioner
JP4298990B2 (en) Refrigeration equipment using carbon dioxide as refrigerant
JP2005299935A (en) Air conditioner
JP4556453B2 (en) Heat pump hot water supply air conditioner
JP2018132269A (en) Heat pump system
JP2018159507A (en) GHP Chiller
JP2005249319A (en) Heat pump hot water supply air-conditioner
US20180238593A1 (en) Reversible liquid suction gas heat exchanger
JP2010014351A (en) Refrigerating air conditioner
JP4815247B2 (en) Combined heat pump system
JP2007248022A (en) Air conditioning system
JP2001227840A (en) Hybrid type heat pump device
JP2014020735A (en) Air conditioner
KR101528160B1 (en) Duality for refrigerating/heating cycle type Heat pump system
KR20170000029U (en) cascade heat pump
KR100648300B1 (en) Heat pump type cooling and heating apparatus
JP2653438B2 (en) Stirling heat engine
JP2013124820A (en) Two-step heater and two-step cooler
JP2005233476A (en) Heat pump hot water supply air conditioner
WO2022202840A1 (en) Refrigerant circuit and vehicle heat pump device
WO2022003754A1 (en) Refrigeration cycle device
JP2003004330A (en) Exhaust heat recovery air conditioner
CN103335449A (en) Refrigeration system capable of expanding working temperature by using hot air and provided with shared dual heat exchange loops

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210323