JPH037841A - Multi-room heating device - Google Patents

Multi-room heating device

Info

Publication number
JPH037841A
JPH037841A JP1141744A JP14174489A JPH037841A JP H037841 A JPH037841 A JP H037841A JP 1141744 A JP1141744 A JP 1141744A JP 14174489 A JP14174489 A JP 14174489A JP H037841 A JPH037841 A JP H037841A
Authority
JP
Japan
Prior art keywords
refrigerant cycle
heat source
heat
time
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1141744A
Other languages
Japanese (ja)
Inventor
Masao Kurachi
蔵地 正夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP1141744A priority Critical patent/JPH037841A/en
Publication of JPH037841A publication Critical patent/JPH037841A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To enable a defrosting operation time to be shortened by a method wherein a controller device is provided to start a defrosting operation of a heat source refrigerant cycle while continuing an operation of a refrigerant transporting device after capabilities of the heat source refrigerant cycle, a utilization refrigerant cycle and the heat source refrigerant cycle for a predetermined period of time in case of operation of a frosting sensing device are made maximum. CONSTITUTION:When a heating operation is carried out, a control device 14 is operated in case that a frosting sensing device 13 is operated and the number of revolution of a compressor 1 is increased to increase a capability of a heat source refrigerant cycle. After this operation, as a predetermined time elapses, a four-way valve 2 is changed over to start a defrosting operation of the heat source refrigerant cycle. At this time, a refrigerant pump continues a heating operation. With such an arrangement, when the frosting sensing device 13 is operated, a capability of the heat source refrigerant cycle is made maximum for a predetermined period of time, a temperature of the utilization refrigerant cycle is increased and the heat is accumulated. The accumulated heat is applied as a heat source to perform a defrosting operation, so that the defrosting operation can be completed within a short period of time. Thus, it is possible to reduce a variation of an interior temperature and improve a comfortable feeling.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は多室冷暖房装置の詳しくは冷媒サイクルの除霜
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a multi-room heating and cooling system, and more particularly to defrosting a refrigerant cycle.

従来の技術 従来熱源側冷媒サイクルと利用側冷媒サイクルに分離し
、両者を補助熱交換器で熱交換する多室冷暖房装置の冷
媒サイクルは、特開昭62−272040号公報に示さ
れておち、第3図のようになっている。
2. Description of the Related Art A conventional refrigerant cycle for a multi-room air conditioning system that separates a heat source side refrigerant cycle and a user side refrigerant cycle and exchanges heat between the two using an auxiliary heat exchanger is disclosed in Japanese Patent Application Laid-Open No. 62-272040. It looks like Figure 3.

図において、1は圧縮機、2は四方弁、3は熱源側熱交
換器、4は冷房用減圧装置、6は暖房用減圧装置、6は
暖房時に冷房用減圧装置4を閉成する逆止弁、7は冷房
時に暖房用減圧装置5を閉成する逆止弁、8は第1補助
熱交換器でこれらを環状に連接し、熱源側冷媒サイクル
を形成している。9は第2補助熱交換器で第1補助熱交
換器8と熱交換するように一体に形成されている。10
は冷媒量調整タンクで冷房時と暖房時の冷媒量を調整し
ている。11は冷媒搬送装置で冷房時と暖房時で冷媒の
流出方向が反対となる可逆特性をもっており、これらは
室外ユニツ)aに収納されている。
In the figure, 1 is a compressor, 2 is a four-way valve, 3 is a heat exchanger on the heat source side, 4 is a cooling pressure reducing device, 6 is a heating pressure reducing device, and 6 is a check that closes the cooling pressure reducing device 4 during heating. A valve 7 is a check valve that closes the heating pressure reducing device 5 during cooling, and a first auxiliary heat exchanger 8 is connected in an annular manner to form a heat source side refrigerant cycle. A second auxiliary heat exchanger 9 is integrally formed to exchange heat with the first auxiliary heat exchanger 8. 10
The refrigerant amount adjustment tank adjusts the amount of refrigerant during cooling and heating. Reference numeral 11 denotes a refrigerant conveying device which has a reversible characteristic such that the outflow direction of the refrigerant is opposite during cooling and heating, and is housed in the outdoor unit a).

12 、12’は利用側熱交換器で室内ユニットb。12 and 12' are user-side heat exchangers of indoor unit b.

b′に収納され接続配管で室外ユニッ)aと接続されて
いる。前記第2補助熱交換器9と冷媒量調整タンク1o
冷媒搬送装置11利用側熱交換器12゜12および接続
配管a、c’、d、d’を環状連接し利用側冷媒サイク
ルを形成している。
It is housed in b' and connected to outdoor unit a by connecting piping. The second auxiliary heat exchanger 9 and the refrigerant amount adjustment tank 1o
The refrigerant conveying device 11, the use-side heat exchanger 12, and the connecting pipes a, c', d, and d' are connected in a ring to form a use-side refrigerant cycle.

以上のように構成された多室冷暖房装置について、その
動作を説明する。
The operation of the multi-room heating and cooling system configured as described above will be explained.

冷房運転時は図中実線の冷媒サイクルとなシ、熱源側冷
媒サイクルでは、圧縮機1からの高温高圧ガスは四方弁
2を通り熱源側熱交換器3で放熱して凝縮液化し、逆止
弁6を通って冷房用減圧装置4で減圧され第1補助熱交
換器8で蒸発して四方弁2を通シ圧縮機1へ循環する。
During cooling operation, the refrigerant cycle shown by the solid line in the figure is used.In the refrigerant cycle on the heat source side, high-temperature, high-pressure gas from the compressor 1 passes through the four-way valve 2, radiates heat in the heat exchanger 3 on the heat source side, condenses and liquefies, and prevents non-returning. It passes through the valve 6, is depressurized in the cooling pressure reducing device 4, is evaporated in the first auxiliary heat exchanger 8, and is circulated through the four-way valve 2 to the compressor 1.

この時利用側冷媒サイクルの第2補助熱交換器9と前記
第1補助熱交換器8が熱交換し、利用側冷媒サイクル内
のガス冷媒が冷却されて液化し、冷媒量調整タンク1o
を通って冷媒搬送装置11に送られ、この冷媒搬送装置
11によって接続配管a、dを通って利用側熱交換器1
2 、12’へ送られて吸熱蒸発し、ガス化して接続配
管c/ 、 d/を通って第2補助熱交換器9に循環す
ることになる。
At this time, the second auxiliary heat exchanger 9 of the user-side refrigerant cycle and the first auxiliary heat exchanger 8 exchange heat, and the gas refrigerant in the user-side refrigerant cycle is cooled and liquefied, and the refrigerant amount adjustment tank 1o
The refrigerant is sent to the refrigerant conveying device 11 through the refrigerant conveying device 11, and is sent to the user-side heat exchanger 1 through the connecting pipes a and d.
2 and 12', where it is endothermically evaporated, gasified, and circulated through the connecting pipes c/ and d/ to the second auxiliary heat exchanger 9.

一方、暖房運転時においては、図中破線の冷媒サイクル
となυ、熱源側冷媒サイクルでは、圧縮機1からの高温
高圧冷媒は四方弁2から第1補助熱交換器8に送られ、
放熱して凝縮液化し、逆止弁7から暖房用減圧装置6で
減圧し、熱源側熱交換器3で吸熱蒸発し、四方弁2を通
って圧縮機1へ循環する。この時利用側冷媒サイクルの
第2補助熱交換器9と前記第1補助熱交換器8が熱交換
し、利用側冷媒サイクル内の液冷媒が加熱されてガス化
し、接続配管C′、d′を通って利用側熱交換器12 
、12’へ送られ、暖房して放熱液化し接続配管c、d
を通って冷媒搬送装置11へ送られ、冷媒量調整タンク
1oから第2補助熱交換器9へ循環する。
On the other hand, during heating operation, the refrigerant cycle shown by the broken line in the figure is υ, and in the heat source side refrigerant cycle, the high temperature and high pressure refrigerant from the compressor 1 is sent from the four-way valve 2 to the first auxiliary heat exchanger 8,
It radiates heat, condenses and liquefies, reduces the pressure through the check valve 7 with the heating pressure reducing device 6, absorbs heat and evaporates in the heat source side heat exchanger 3, and circulates through the four-way valve 2 to the compressor 1. At this time, the second auxiliary heat exchanger 9 of the user-side refrigerant cycle and the first auxiliary heat exchanger 8 exchange heat, and the liquid refrigerant in the user-side refrigerant cycle is heated and gasified, and the connecting pipes C', d' through the user side heat exchanger 12
, 12', heated, heat radiated, and liquefied to connecting pipes c and d.
The refrigerant is sent to the refrigerant transport device 11 through the refrigerant amount adjustment tank 1o and circulated to the second auxiliary heat exchanger 9.

このような暖房運転において、熱源側熱交換器3が着霜
した場合、着霜検出装置13によって着霜を検出し、第
4図のような制御で除霜運転を行なっている。
In such a heating operation, when the heat source side heat exchanger 3 is frosted, the frosting is detected by the frosting detection device 13, and the defrosting operation is performed under the control shown in FIG.

発明が解決しようとする課題 しかしながら上記のような制御では、除霜運転時、冷媒
の流れが冷房サイクルとなるため利用側冷媒サイクルの
冷媒の温度が低下し、それによって室内温度も低下する
という欠点を有していた。
Problems to be Solved by the Invention However, with the above-mentioned control, during defrosting operation, the flow of refrigerant becomes the cooling cycle, so the temperature of the refrigerant in the user-side refrigerant cycle decreases, which also causes the indoor temperature to decrease. It had

本発明は、上記課題に鑑み室内温度の低下が小さい快適
空調が行なえる多室冷暖房装置を提供するものである。
In view of the above-mentioned problems, the present invention provides a multi-room air conditioning system that can perform comfortable air conditioning with a small decrease in indoor temperature.

課題を解決するための手段 上記課題を解決するために本発明の多室冷暖房装置は、
熱源側冷媒サイクルと、利用側冷媒サイクルと、着霜検
出装置の作動時、所定時間熱源側冷媒サイクルの能力を
最大とした後、冷媒搬送装置の運転を継続しながら熱源
側冷媒サイクルの除霜運転を開始する制御装置とを備え
たものである。
Means for Solving the Problems In order to solve the above problems, the multi-room air conditioning system of the present invention has the following features:
When the heat source side refrigerant cycle, user side refrigerant cycle, and frost detection device are activated, the capacity of the heat source side refrigerant cycle is maximized for a predetermined period of time, and then the heat source side refrigerant cycle is defrosted while the refrigerant conveyance device continues to operate. It is equipped with a control device for starting operation.

作  用 本発明は上記した構成によって、利用側冷媒サイクルの
冷媒に蓄熱し、除霜運転時この利用側冷媒サイクルの冷
媒を熱源とするため、除霜運転の時間を短縮することが
できる。
Effects According to the present invention, with the above-described configuration, heat is stored in the refrigerant of the user-side refrigerant cycle and the refrigerant of the user-side refrigerant cycle is used as a heat source during defrosting operation, so that the time for defrosting operation can be shortened.

実施例 以下本発明の一実施例の冷暖房装置について、図面を参
照しながら説明する。第1図は本発明の実施例における
多室冷暖房装置の冷媒サイクルを示すものであり、第2
図はこの実施例における多室冷暖房装置の動作を示すも
のである。
EXAMPLE Hereinafter, a heating and cooling system according to an example of the present invention will be described with reference to the drawings. FIG. 1 shows a refrigerant cycle of a multi-room air conditioning system in an embodiment of the present invention.
The figure shows the operation of the multi-room air conditioning system in this embodiment.

基本構成は第3図の従来例と同一であシ、ここでは変わ
っている所だけを説明する。図において、14は着霜検
出装置13の作動時、所定時間熱源側冷媒サイクルの能
力を最大(例えば、圧縮機の回転数を上げる)とした後
、除霜運転を開始する制御装置である。
The basic configuration is the same as the conventional example shown in FIG. 3, and only the differences will be explained here. In the figure, 14 is a control device that starts defrosting operation after maximizing the capacity of the heat source side refrigerant cycle for a predetermined time (for example, by increasing the rotation speed of the compressor) when the frost detection device 13 is activated.

以上のように構成された多室冷暖房装置についてその動
作を説明する。
The operation of the multi-room heating and cooling system configured as described above will be explained.

動作については従来例と同一であシ、ここではその違っ
ている所、つまシ除霜運転について説明する。
The operation is the same as the conventional example, and here we will explain the difference, the defrosting operation.

暖房運転時、着霜検出装置13が作動した場合、制御装
置14が作動して、圧縮機1の回転数を上げる等して熱
源側冷媒サイクルの能力を上げるようになる。その後所
定の時間が経過すると四方弁2を切換え熱源側冷媒サイ
クルの除霜運転を開始する。この時、冷媒ポンプは暖房
運転を継続している。
During heating operation, when the frost detection device 13 is activated, the control device 14 is activated to increase the rotation speed of the compressor 1, etc., thereby increasing the capacity of the heat source side refrigerant cycle. Thereafter, when a predetermined period of time has elapsed, the four-way valve 2 is switched to start defrosting operation of the heat source side refrigerant cycle. At this time, the refrigerant pump continues heating operation.

以上のように本実施例によれば、着霜検出装置13の作
動時、所定時間熱源側冷媒サイクルの能力を最大として
、利用側冷媒サイクルの温度を上昇させ蓄熱しておき、
これを熱源として除霜運転を行なうため、短時間で除霜
運転を終了することができるので室内温度の変動が少な
く快適性が向上するものである。なお、本実施例では利
用側熱交換器を複数としたが、1台の場合でも同一効果
が得られることはいうまでもない。また本実施例では圧
縮機を1台としたが複数台の圧縮機を有するシステムで
圧縮機の運転台数による能力制御を行なってもよい。
As described above, according to this embodiment, when the frost detection device 13 is activated, the capacity of the heat source side refrigerant cycle is maximized for a predetermined period of time, and the temperature of the user side refrigerant cycle is increased to store heat.
Since the defrosting operation is performed using this as a heat source, the defrosting operation can be completed in a short period of time, so that fluctuations in indoor temperature are reduced and comfort is improved. In this embodiment, a plurality of user-side heat exchangers are used, but it goes without saying that the same effect can be obtained even with one heat exchanger. Further, in this embodiment, only one compressor is used, but the capacity may be controlled by the number of operating compressors in a system having a plurality of compressors.

発明の効果 以上のように本発明は、着霜検出装置の作動時、所定時
間熱源側冷媒サイクルの能力を最大とし冷媒搬送装置の
運転を継続しながら熱源側冷媒サイクルの除霜運転を開
始する制御装置を備えたもので、除霜運転時間を短縮し
室内温度の変動を少なくし快適性を向上させる効果があ
る。
Effects of the Invention As described above, the present invention maximizes the capacity of the heat source side refrigerant cycle for a predetermined period of time when the frost detection device is activated, and starts the defrosting operation of the heat source side refrigerant cycle while continuing the operation of the refrigerant conveying device. Equipped with a control device, it has the effect of shortening defrosting operation time, reducing fluctuations in indoor temperature, and improving comfort.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における多室冷暖房装置の冷媒
サイクル図、第2図は本発明の多室冷暖房装置の実施例
における除霜運転のフロチャート、第3図は従来の多室
冷暖房装置の冷媒サイクル図、第4図は従来の多室冷暖
房装置の除霜運転のフロチャートである。 1・・・・・・圧縮機、3・・・・・・熱源側熱交換器
、8・・・・・・第1補助熱交換器、9・・・・・・第
2補助熱交換器、11冷媒搬送装置、12 、12’・
・・・・・利用側熱交換器、13・・・・・・着霜検出
装置、14・・・・・・制御装置。
Fig. 1 is a refrigerant cycle diagram of a multi-room air conditioning system according to an embodiment of the present invention, Fig. 2 is a flow chart of defrosting operation in an embodiment of a multi-room air conditioning system of the present invention, and Fig. 3 is a conventional multi-room air conditioning system. The refrigerant cycle diagram of the apparatus, FIG. 4, is a flowchart of defrosting operation of a conventional multi-room air-conditioning apparatus. 1... Compressor, 3... Heat source side heat exchanger, 8... First auxiliary heat exchanger, 9... Second auxiliary heat exchanger , 11 refrigerant conveyance device, 12 , 12'・
... User-side heat exchanger, 13 ... Frost detection device, 14 ... Control device.

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、熱源側熱交換器、減圧装置および第1補助熱交
換器を環状に連接してなる熱源側冷媒サイクルと、この
第1補助熱交換器と一体に形成し熱交換する第2補助熱
交換器と、冷媒搬送装置および複数の利用側熱交換器を
有する利用側冷媒サイクルと、前記熱源側熱交換器の着
霜を検出する着霜検出装置と、この着霜検出装置の作動
時、所定時間熱源側冷媒サイクルの能力を最大とした後
、冷媒搬送装置の運転を継続しながら熱源側冷媒サイク
ルの除霜運転を開始する制御装置とを備えた多室冷暖房
装置。
A heat source side refrigerant cycle formed by connecting a compressor, a heat source side heat exchanger, a pressure reducing device, and a first auxiliary heat exchanger in an annular manner, and a second auxiliary heat that is formed integrally with the first auxiliary heat exchanger and exchanges heat. an exchanger, a usage-side refrigerant cycle having a refrigerant transport device and a plurality of usage-side heat exchangers, a frosting detection device for detecting frost formation on the heat source-side heat exchanger, and when the frosting detection device is activated; A multi-room air conditioning/heating system comprising: a control device that, after maximizing the capacity of the heat source side refrigerant cycle for a predetermined period of time, starts defrosting operation of the heat source side refrigerant cycle while continuing operation of a refrigerant conveying device.
JP1141744A 1989-06-02 1989-06-02 Multi-room heating device Pending JPH037841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1141744A JPH037841A (en) 1989-06-02 1989-06-02 Multi-room heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1141744A JPH037841A (en) 1989-06-02 1989-06-02 Multi-room heating device

Publications (1)

Publication Number Publication Date
JPH037841A true JPH037841A (en) 1991-01-16

Family

ID=15299192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1141744A Pending JPH037841A (en) 1989-06-02 1989-06-02 Multi-room heating device

Country Status (1)

Country Link
JP (1) JPH037841A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003093196A1 (en) 2002-05-06 2003-11-13 Biomet Deutschland Gmbh Method of preparing porous calcium phosphate granules
JPWO2019198277A1 (en) * 2018-04-11 2021-04-15 シャープ株式会社 Air conditioning system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059042B2 (en) * 1981-04-10 1985-12-23 住友金属工業株式会社 Manufacturing method of seamless steel pipe
JPS61114042A (en) * 1984-11-07 1986-05-31 Daikin Ind Ltd Defrosting control device of air conditioner
JPS62272040A (en) * 1986-05-20 1987-11-26 Matsushita Refrig Co Multiroom heating and cooling device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059042B2 (en) * 1981-04-10 1985-12-23 住友金属工業株式会社 Manufacturing method of seamless steel pipe
JPS61114042A (en) * 1984-11-07 1986-05-31 Daikin Ind Ltd Defrosting control device of air conditioner
JPS62272040A (en) * 1986-05-20 1987-11-26 Matsushita Refrig Co Multiroom heating and cooling device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003093196A1 (en) 2002-05-06 2003-11-13 Biomet Deutschland Gmbh Method of preparing porous calcium phosphate granules
JPWO2019198277A1 (en) * 2018-04-11 2021-04-15 シャープ株式会社 Air conditioning system

Similar Documents

Publication Publication Date Title
JP2004340470A (en) Refrigeration unit
WO2012081052A1 (en) Combined air-conditioning and hot water supply system
JPH05264133A (en) Air conditioner
JP2006194526A (en) Air conditioner
JP2003021428A (en) Heat pump type water heater
JP5517891B2 (en) Air conditioner
JPH037841A (en) Multi-room heating device
WO2019171485A1 (en) Heat pump system
JP2000320914A (en) Refrigerating machine
JP2002286273A (en) Air conditioner
JPH0571833A (en) Multiroom cooling heating device
JPS63259342A (en) Multi-room type air conditioner
JP2020056513A (en) Cooling waste heat hot water storage device
JPS63187042A (en) Air conditioner
JP2002195609A (en) Deep freezer
JPH02275233A (en) Space cooling and heating device
JP4131163B2 (en) Refrigeration apparatus and defrosting method for refrigeration apparatus
JPH06337152A (en) Multiroom cooling/heating device
JP2653749B2 (en) Heat pump package
JPH06147702A (en) Multiple chamber type cooling/heating apparatus
JP2000213835A (en) Freezer
KR100309281B1 (en) Defrost control method in heat pump type air-conditioner
JPH074719A (en) Defrosting device for air conditioner
JPH03144236A (en) Cooling and heating device for multi rooms
JPH03164668A (en) Heat pump device