JPS61114042A - Defrosting control device of air conditioner - Google Patents

Defrosting control device of air conditioner

Info

Publication number
JPS61114042A
JPS61114042A JP59234681A JP23468184A JPS61114042A JP S61114042 A JPS61114042 A JP S61114042A JP 59234681 A JP59234681 A JP 59234681A JP 23468184 A JP23468184 A JP 23468184A JP S61114042 A JPS61114042 A JP S61114042A
Authority
JP
Japan
Prior art keywords
defrosting
heat
cycle
heat storage
side coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59234681A
Other languages
Japanese (ja)
Other versions
JPH0263137B2 (en
Inventor
Tomoyuki Tokuda
徳田 知行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP59234681A priority Critical patent/JPS61114042A/en
Publication of JPS61114042A publication Critical patent/JPS61114042A/en
Publication of JPH0263137B2 publication Critical patent/JPH0263137B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To shorten the defrosting time by a method wherein a heat accumulating operation utilizing the heat of refrigerant in refrigerating cycle is performed with a heat accumulating operation by which a heating cycle is operated, while the accumulated heat is utilized as a part of defrosting heat at a defrosting operation. CONSTITUTION:Just after the starting of defrosting operation or at the initial phase of defrosting thereof, a heat accumulation is performed at an utilizing side coil 6 of which heat exchanging capability is decreased due to the stopping of a fan 11 at the requirement of defrosting. The heat accumulation is performed by supplying a high pressure refrigerant to the utilizing side coil 6 by a heat accumulating means 1. At the detecting of the designated high area pressure by a pressure detecting means 2, the heat accumulating operation is changed- over from the heating cycle to the defrosting operation due to the cooling cycle. Thereby, the heat exchanging capability of the utilizing side coil 6 is increased, changed to the heat source for defrosting, a heat source side coil fan 12 is stopped, then the defrosting is performed.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野〕 本発明は除霜運転の際に融霜に必要な熱源を冷凍サイク
ル中に蓄熱して除霜時間を短縮可能とした空気調和機の
除霜制御装置に関する。 (従来の技術) 空気調和機における対空丸形熱源側コイルがヒートポン
プ暖房サイクルによって蒸発器として作用する際にフィ
ル表面に霜付きが生じるので、この霜を融かして熱交換
能力の低下を解消する除霜運転が行われることは周知の
技術であるが、この除霜運転な暖房サイクルから冷房へ
の切り換えによって行ない、同時に室内ファンを停止し
てコールドドラフトの防止をはからせる除霜手段は従来
からひろく採用されている。 この場合、利用側コイルでの熱交換能力が小さいことに
よって除霜に有効な熱源が十分に得られ、難いところか
ら冷媒ヒータを利用側コイルに付設Tるなど冷凍サイク
ル中の冷媒との熱交換可能に設置したり、また、冷媒企
加熱し得る蓄熱タンクを冷凍回路に関連して設けるなど
の手段が従来から採られており、例えば蓄熱タンク方式
のものが実開昭58−78460号公報によって公知で
あるO (発明が解決しようとする問題点) ところが、このように冷媒ヒータや蓄熱タンクを併設す
る方式のものは、装置コストが高くつくと共に機械本体
が大きくなって小形化の推進を阻害する問題があった。 かかる従来の問題点に着目して本発明は成されたもので
あって、冷凍サイクル自体に除霜に際して融霜用の熱源
を効果的に保有せしめる新規な技術を開発するに至り、
もって除霜に要する時間を短縮しながら装置の簡易化な
果させようとするものである。 (問題点を解決するための手段)。 しかして本発明はその構成を明示する第1図に1   
よって明らかなように、熱源側コイル(51の着霜状態
を検出する着霜検出器(9)からの除霜開始指令信号に
よって冷凍サイクル2m房サイクルから冷房サイクルに
切換え、かつ、利用側コイル(6]の7アン011を停
止して除霜を行わせる如くした空気調和機において、蓄
熱運転手段il+と、圧力検出手段(21゜と、蓄熱運
転停止手段+31との3要素によって除霜制御装置を構
成したものであって、前記蓄熱運転手段(1)は、前記
除霜開始指令信号が発信された直後あるいは若干の時間
経過した除霜運転中のときに作動して冷凍サイクルを暖
房サイクルに強制保持せし・める構造を有する。 一方、圧力検出手段(2)は、前記冷凍サイクルの吐出
圧力を検出し圧縮機に対して過負荷をきたさない範囲で
の設定高域圧力によって出力を発する構造を有する。 また、蓄熱運転停止手段131は、上記圧力検出手段(
21が発する前記出力によって前記蓄熱運転手段[11
を非作動となし、暖房サイクルの強制保持を解除せしめ
て冷房サイクルに戻す構造を有する。 〔作用〕                    i
本発明は除霜開始直後あるいは除霜運転中の初期で除霜
な依然として必要とTるときにファン(10が停止し熱
交換能力が低下している利用側フィル(6)に対して、
前記蓄熱運転手段[11により高圧冷媒を供給し冷媒に
よる蓄熱を行ない、この蓄熱を圧力検出手段(2)が作
動するまで最大許容量にて行わせた後に冷房サイクルに
よる除霜運転に切り換えることにより、この除霜運転中
における利用側フィル(6)の熱交換性能を高めて有効
な除霜用熱源を確保し得る。 かくして冷房サイクルを連続して行なう場合に比し除霜
時間を可成り短縮し得て補助熱源を備えたものと同等の
機能を発揮し得る。 (実施例) 以下本発明の実施例を添付図面にもとづいて説明する。 第2図は本発明の1実施例に係る空気調和機の装置回路
図であって、圧縮機(41,四路切換弁(7)。 熱源側コイル(5)、逆止弁(IOA)を並列に接続し
て有する暖房用膨張弁(8)、逆止弁(IOB)を並列
に接続して有する冷房、除霜用膨張弁(9I、利用側コ
イル(6)とにより可逆冷凍サイクルを形成しており、
冷媒を実線矢示方向に流通せしめる暖房サイクルによっ
て暖房運転を行ない、破線矢示方向に流通せしめる冷房
サイクルによって冷房運転を行ない得る。 また、冷房サイクルによって冬期暖房運転の際の除霜運
転を行ない得るようになっている。 上記構成を有する空箋調和機において、圧縮機(41の
吐出側に接続する高圧側配管には圧力開閉器(21が取
り付けられていて、圧縮機(4)に対して過負荷をきた
さない範囲での設定高域圧力例えば24゜5¥Aになる
と出力2発するものであって、この圧力開閉器(2)が
前記圧力検出手段(2)を構成する。 そして上記圧力開閉器(21は吐出圧力が24.55m
に上昇すると常開接点を閉止させるように出力を発する
。 一方、第2図において(91は一般にデアイサと称され
る着霜検出器であって、熱源側コイル(51の伝熱面例
えばフィンの表面に霜が所定厚さまで成長するとこれを
検出するセンサa3に接続していると共に、内部には除
霜後の霜が付着していない状態から連続して暖房運転を
行なった場合に限度量の霜が前記フィン表面に成長する
までに相当する時間(例えば50分)を周期として一定
時間(例えば10分)信号を発するタイマ機構を備えて
いて、このタイマ機構による信号と前記センサQ31の
着霜を知らせる信号との双方が発信することによって除
霜開始指令信号を例えば常開接点の閉成切換えとして発
するようになっており、図示しないがこの除霜開始指令
信号の発信は熱源側コイル(5)における−冷媒圧力の
上昇等によって検出する除霜完了検出器の指令と所定の
除霜運転時間例えば10分経過したときの信号とのいず
れか早い方の信号により解除される。 それら圧力開閉器(21とデアイサ(9)の出力接点に
関連する除霜制御装置が蓄熱運転手段H1と蓄熱運5 
 転停止手段131とを備えていることは前述した通り
であって1これらは入力部、出力部、記憶部及び中央処
理部を有するマイクロコンピュータによって簡単に構成
することができるが、以下に述べる如き簡単な有接点回
路によっても構成し得るものである。 第3図において(4M)は圧縮機用モータ、  (II
M)は利用側コイル(6)のファン(11)を駆動する
モータ。 (12M) ハ熱源側コイル(51のファンα2を駆動
するモータ、  (7S)は四路切換弁(7)のソレノ
イド、I201はそのソレノイド(203)の励磁によ
って閉成し圧縮機用モータ・(4M〕を付勢する電磁開
閉器、にDは室温調節器、+221は冷暖切換スイッチ
、(231はソレノイド(23A)、常開接点(23B
)、 (230) 、常閉接点(23D)、 (23E
)を有する補助リレー、 [241はソレノイド(24
A)。 常開接点(24B)、常閉接点(240)を有する補助
リレーを夫々示している。 利用側コイル用7アンモータCIIM)は補助リレー(
241が消勢している間に通電される。 圧縮機モータ(4M)は、暖房時室温が低いとき、冷房
時室温が高いときに室温調節器(211の出力接点  
 晶の開閉作動により通電される。 熱源側コイル用7アンモータ(12M)は補助リレー九
が消勢している間に通電される。 四路切換弁(7)のソレノイド(7S)は冷暖切換スイ
ッチ□□□、が冷房ノツチにセットされ、また、暖房ノ
ツチにセットされ、かつ、補助リレー囚が付勢している
間通電されて、冷凍サイクルを冷房サイクルにセットす
るよう作動する。 補助リレー九は暖房時期に冷暖切換スイッチ固が暖房に
セットされていて、補助リレー(2)が付勢し、かつ圧
力開閉器(21が閉成することによって付勢され、この
付勢を自己保持すると共に、補助リレー(至)の消勢に
より消勢する。 一方、補助リレー例は同じく冷暖切換スイッチ固が暖房
にセットされていて、デアイサ(91の出力接点が閉成
している(除霜指令信号を発している)間、付勢を続け
るようになっている。 以上説明した回路において補助リレー内の常開接点(2
3B)が蓄熱運転手段+11に相当し、一方、補助リレ
ー(23)のソレノイド(23A)と、該自己保持接点
(23o)と補助リレー(241の常開接点(24B)
との直列回路が蓄熱運転停止手段+31に相当するもの
であって、これは以下に述べる作動説明により明らかで
ある。 第3図及び第4図において、暖房運転時にデアイサ(9
)が除霜開始指令信号を発する(出力接点を閉成する)
(イ)と、補助リレー九が付勢(ロ)して該接点(24
0)の開放により利用側フィル用ファン(111が停止
する(li。 このとき、補助リレー日は消勢しているので、四路切換
弁(7)は該ソレノイド(7S)が消磁のままであり、
従って、冷凍サイクルは暖房サイクルが続けられている
。 、かくして、前記ファン(111の停止のままで高圧冷
媒ガスが利用側コイル(6)に流れるので該コイル(6
)での冷媒温度は漸次上昇してきて蓄熱運転が行なわれ
る。 ところで、除霜指令信号が発信された直後の高圧は13
5u程度でフィン表面温度は圧力相当飽和、温度として
35てであるが、実際はフィン+Il+による熱交換が
成されていたので室温5℃として26℃位である。 この状態から圧力、温度が上昇してきて圧力24.5勉
となると、圧力開閉器(2)がこれを検出して(4出力
接点を閉成させる
(Industrial Application Field) The present invention relates to a defrosting control device for an air conditioner that can shorten the defrosting time by storing the heat source necessary for defrosting in the refrigeration cycle during defrosting operation. When the air-to-air round heat source side coil in an air conditioner acts as an evaporator in the heat pump heating cycle, frost forms on the fill surface. It is a well-known technology that frost operation is performed, but there is no conventional defrosting method that performs this operation by switching from the heating cycle to cooling, and at the same time stopping the indoor fan to prevent cold drafts. In this case, due to the small heat exchange capacity of the coil on the user side, a sufficient heat source for defrosting can be obtained. Conventionally, measures have been taken such as installing a heat storage tank that can exchange heat with a refrigerant, or installing a heat storage tank that can heat the refrigerant in conjunction with the refrigeration circuit. 58-78460 (Problems to be Solved by the Invention) However, in this type of system that includes a refrigerant heater and a heat storage tank, the equipment cost is high and the machine body is large. There has been a problem that hinders the promotion of miniaturization.The present invention has been made by focusing on such conventional problems, and it is an object of the present invention to effectively provide a heat source for defrosting in the refrigeration cycle itself. We have developed a new technology,
This aims to simplify the device while shortening the time required for defrosting. (Means for solving problems). However, the present invention is shown in FIG.
Therefore, as is clear, the refrigeration cycle is switched from the 2m room cycle to the cooling cycle by the defrosting start command signal from the frosting detector (9) that detects the frosting state of the heat source side coil (51), and the user side coil (51) is switched from the refrigeration cycle to the cooling cycle. In an air conditioner in which defrosting is performed by stopping the 7 AN 011 described in [6], the defrosting control device is operated by three elements: the heat storage operation means il+, the pressure detection means (21°, and the heat storage operation stop means +31). The heat storage operation means (1) operates immediately after the defrosting start command signal is transmitted or during the defrosting operation after a certain period of time has elapsed, and changes the refrigeration cycle to the heating cycle. On the other hand, the pressure detection means (2) detects the discharge pressure of the refrigeration cycle and outputs the output at a set high range pressure within a range that does not overload the compressor. In addition, the heat storage operation stop means 131 has a structure in which the pressure detection means (
The heat storage operation means [11
It has a structure that deactivates the heating cycle, releases the forced holding of the heating cycle, and returns to the cooling cycle. [Effect] i
The present invention provides for the user-side filter (6) where the fan (10 is stopped and the heat exchange capacity is reduced) immediately after the start of defrosting or at the beginning of the defrosting operation when defrosting is still necessary.
By supplying high-pressure refrigerant by the heat storage operation means [11 and storing heat with the refrigerant, and storing this heat at the maximum allowable amount until the pressure detection means (2) is activated, switching to defrosting operation using the cooling cycle. During this defrosting operation, the heat exchange performance of the utilization side fill (6) can be enhanced to ensure an effective defrosting heat source. In this way, the defrosting time can be considerably shortened compared to the case where the cooling cycle is performed continuously, and the function equivalent to that provided with an auxiliary heat source can be exhibited. (Example) Examples of the present invention will be described below based on the accompanying drawings. FIG. 2 is a device circuit diagram of an air conditioner according to an embodiment of the present invention, in which the compressor (41, four-way switching valve (7), heat source side coil (5), check valve (IOA) A reversible refrigeration cycle is formed by a heating expansion valve (8) connected in parallel, a cooling and defrosting expansion valve (9I) with a check valve (IOB) connected in parallel, and a user-side coil (6). and
Heating operation can be performed by a heating cycle in which the refrigerant flows in the direction indicated by the solid line arrow, and cooling operation can be performed by a cooling cycle in which the refrigerant is caused to flow in the direction indicated by the broken line arrow. Furthermore, the cooling cycle allows defrosting operation during winter heating operation. In the blank note conditioner having the above configuration, a pressure switch (21) is attached to the high pressure side piping connected to the discharge side of the compressor (41), and the pressure switch (21) is installed within a range that does not overload the compressor (4). When the set high range pressure reaches, for example, 24°5 ¥A, two outputs are issued, and this pressure switch (2) constitutes the pressure detection means (2).The pressure switch (21 is the discharge Pressure is 24.55m
When the voltage rises to , an output is generated to close the normally open contact. On the other hand, in FIG. 2 (91 is a frost detector generally called a de-icer), a sensor a3 detects when frost grows to a predetermined thickness on the heat transfer surface of the heat source side coil (51, for example, the surface of the fins). The fins are connected to the fins, and the time corresponding to the time required for a limited amount of frost to grow on the surface of the fins (for example It is equipped with a timer mechanism that emits a signal for a certain period of time (for example, 10 minutes) with a cycle of 50 minutes), and when both the signal from the timer mechanism and the signal notifying frost formation on the sensor Q31 are transmitted, a defrosting start command is issued. For example, the signal is emitted as a switching of a normally open contact to close, and although not shown, this defrosting start command signal is generated by defrosting completion detection detected by an increase in refrigerant pressure in the heat source side coil (5), etc. The defrosting signal associated with the output contacts of these pressure switches (21 and deicer (9) The control device operates the heat storage operation means H1 and the heat storage operation means 5.
As mentioned above, the rotation stop means 131 can be easily constructed by a microcomputer having an input section, an output section, a storage section, and a central processing section. It can also be configured with a simple contact circuit. In Figure 3, (4M) is the compressor motor, (II
M) is a motor that drives the fan (11) of the usage side coil (6). (12M) C The motor that drives the fan α2 of the heat source side coil (51), (7S) is the solenoid of the four-way switching valve (7), I201 is closed by the excitation of the solenoid (203), and the compressor motor ( 4M], D is the room temperature controller, +221 is the cooling/heating switch, (231 is the solenoid (23A), normally open contact (23B)
), (230), normally closed contact (23D), (23E
), [241 is a solenoid (24
A). Auxiliary relays are shown each having a normally open contact (24B) and a normally closed contact (240). The 7 unmotor CIIM for the coil on the user side is connected to the auxiliary relay (
While 241 is de-energized, it is energized. The compressor motor (4M) is connected to the output contact of the room temperature controller (211) when the room temperature is low during heating and when the room temperature is high during cooling.
Electricity is applied when the crystal opens and closes. The heat source side coil 7 motor (12M) is energized while the auxiliary relay 9 is de-energized. The solenoid (7S) of the four-way selector valve (7) is energized while the cooling/heating selector switch □□□ is set to the cooling notch, is also set to the heating notch, and the auxiliary relay is energized. , operates to set the refrigeration cycle to the cooling cycle. Auxiliary relay 9 is energized when the cooling/heating selector switch is set to heating during the heating season, the auxiliary relay (2) is energized, and the pressure switch (21) is closed. On the other hand, in the example of the auxiliary relay, the cooling/heating selector switch is also set to heating, and the output contact of the de-iser (91) is closed (except for the auxiliary relay). In the circuit described above, the normally open contact (2) in the auxiliary relay
3B) corresponds to the heat storage operation means +11, while the solenoid (23A) of the auxiliary relay (23), the self-holding contact (23o) and the normally open contact (24B) of the auxiliary relay (241)
The series circuit with this corresponds to the heat storage operation stop means +31, and this will be clear from the operation description given below. In Figures 3 and 4, the de-Icer (9) is shown during heating operation.
) issues a defrost start command signal (closes the output contact)
(a) and auxiliary relay 9 is energized (b) and the contact (24
When the solenoid (7S) is opened, the fill fan (111) on the user side stops (li. At this time, the auxiliary relay is deenergized, so the four-way selector valve (7) is operated with the solenoid (7S) remaining demagnetized. can be,
Therefore, the refrigeration cycle continues with the heating cycle. , Thus, while the fan (111) remains stopped, high-pressure refrigerant gas flows to the user-side coil (6).
) the refrigerant temperature gradually rises and heat storage operation is performed. By the way, the high pressure immediately after the defrosting command signal is sent is 13
At about 5 u, the fin surface temperature is saturated corresponding to the pressure, and the temperature is 35 degrees, but in reality, heat exchange was performed by the fins + Il+, so the temperature was about 26 degrees Celsius, assuming the room temperature was 5 degrees Celsius. When the pressure and temperature rise from this state and reach a pressure of 24.5 mm, the pressure switch (2) detects this and closes the 4 output contacts.

【羽ので、補助リレームを付勢させる
(へ)。 従って、接点(23B)の閉成により四路切換弁(71
はツレ/イド(7S)が励磁して暖房サイクルを冷房サ
イクルに切り換えると同時に接点(23D)、 (23
1)の開放で熱源側コイル用ファンα2が停止する【ト
】ので、除霜運転が開始する。 なお%24.55Uの圧力相当飽和温度は6)℃である
が実際は70℃程度になっているので、7゜−26m4
4℃の温度差に相当する蓄熱が利用側コイル(6)で行
われたこととなる。 かくして除霜運転に入るのであるが、デアイサF91が
除霜に入って所定時間例えば1o分間経過しているか(
イ)あるいはコイル(51温度が10℃以上となって除
霜が終了したことを感温筒で検出するか1   (す]
のいずれか早い方の信号が出るのをチェックすると、出
力接点が開放する結果、補助リレー侃4が消勢して図、
これにより補助リレー器も消勢して四、四路切換弁+7
1はソレノイド(7S)の励磁が解かれる結果、除霜の
ための冷房サイクルは暖房サイクルに戻されると共に、
熱源側コイル用ファンQ21゜利用側フィル用ファン(
IIIは送風を開始し暖房運転が開始される(5)。 以上述べた作動態様を経時的に示したものが第5図のタ
イムチャートであり、また、除霜運転時の圧力、温度の
各要素を蓄熱運転手段H1が講じられるごとなく単に冷
房サイクルによる除霜を行なった場合と比較したものが
第6図のグラフである。 それらを参考すれば明らかなように、蓄熱運転を行なっ
た実施例の方が約8分30秒となって比較装置の10分
45秒に比し約2分、除霜時間の短縮がはかれた。 上記実施例はデアイサ(9)からの除霜開始指令信号発
信と同時に、冷凍サイクルを暖房サイクルに強制保持さ
せる蓄熱運転手段[Hを行なわせるものであるが、次に
第7@に示す他案雄側は第3図々  1)示回路にタイ
マーを追加した構成で、その要旨とするところは蓄熱運
転手段[0を除霜開始指令信号が発信されてから若干の
時間例えば2分乃至3分経過してから開始させるように
した例であって、補助リレーツの常開接点(23B)が
蓄熱運転手段il+に相当し、一方、タイマ四の駆動部
(25S) 、限時作動常開接点(25A)%限時作動
常閉接点(25B)、補助コイル(241のソレノイド
(24A)及び常開接点(24B)の組合わせになる図
示回路が蓄熱運転停止手段(3)に相当している。 すなわちタイマ四はデアイサ(9)が出力接点を閉成し
たときから計時開始し、所定時限例えば2分経過するま
では前記常閉接点(25B)の閉成保持によって補助リ
レーのを付勢し除霜運転を行なわせ、2分経過して前記
接点(25B)の開放、接点(25A)の閉成によって
蓄熱運転に切り換え、さらに圧力開閉器(21の作動に
よって蓄熱運転を停止し再び除霜運転に入らせるよう回
路構成したものである0この実施例の作動態様を第8図
によって説明すると、デアイサ(9)が除霜指令信号を
発する(イ)と、補助リレー@が付勢(口]′シて熱源
側ファンα2及び利用側7アン(IIIが停止すると共
に、四路切換弁(71がソレノイド(7s)の励磁によ
って冷凍サイクルを冷房サイクルに切換える側に作動す
る(切。 か、<シて暖房運転が除霜運転に切り換えられる0タイ
マーが作動して設定時限の2分を経過することを判断す
る肉と、補助リレームが消勢して囚、四路切換弁[71
を暖房サイクル側に切換えると同時に熱源側コイル用7
アン121を駆動し所謂蓄熱運転が開始される(司。 この運転状態から圧力、温度が上昇してきて圧力24.
5512となると、圧力開閉器121がこれ°′を検出
して(勾、出力接点を閉成させる(ホ)ので、補助リレ
ー(241を付勢させる(口)。 従って、接点(240)の開放によりタイマ(至)はリ
セットされ、該接点(25B)の閉成復帰により補助リ
レームが付勢し、その結果、熱源側コイル用ファン(1
21が停止し、かつ、四路切換弁(7]はソレノイド(
7S〕の励磁によって冷房サイクルに切り換り(トJ再
び除霜運転が行なわれる。 かくして除霜運転に入るが、デアイサ(9]から除霜完
了の信号因又は(すJが出ると、出力接点が開放する結
果、補助リレー(241が消勢し、かつ補助リレ−2が
消勢して四、四路切換弁(7)はソレノイド(7S)の
励磁が解かれるので、除霜のための冷房サイクルは暖房
サイクルに戻されると共に、前記両ファン[+11 、
α2は送風を開始し、暖房運転が開始される(yJo 以上述べた作動態様2第9図のグラフによって示してい
るが、該グラフから明らかなように、蓄熱運転を行なっ
た本例は約1分程度の除霜時間短縮をはかることができ
た。 (発明の効果) 本発明は以上詳述した如く、除霜運転に入る直前又は除
霜運転中に利用側コイル用ファンを停止した状態で暖房
サイクルな行なわせる蓄熱運転によって冷凍サイクル自
体の冷媒の熱を利用した蓄熱運転を行なわせて除霜運転
の際の融霜熱の一部、を確保するようにしたから、除霜
に要する時間を!  大巾に短縮することが可能である
。 しかも、実施例に示す如く冷凍サイクルを四路切換弁の
切換作動などによって切換える操作だけで良いので取扱
いは至って簡単であると共に、装置コストは低廉におさ
まり、−石二鳥の効果を奏する0
[Because of the wing, energize the auxiliary relay (to). Therefore, by closing the contact point (23B), the four-way switching valve (71
The contact (23D), (23
When 1) is opened, the heat source side coil fan α2 stops [G], so the defrosting operation starts. The pressure-equivalent saturation temperature of %24.55U is 6)℃, but it is actually around 70℃, so 7゜-26m4
This means that heat storage corresponding to a temperature difference of 4° C. was performed in the utilization side coil (6). In this way, the defrosting operation starts, but it is important to check whether a predetermined period of time, for example, 10 minutes has passed since the DeIsa F91 started the defrosting operation (
b) Or coil (51) Is the thermosensor cylinder used to detect when the temperature reaches 10°C or higher and defrosting is complete?
If you check that the earlier signal is output, the output contact will open, and the auxiliary relay 4 will be deenergized, as shown in the figure.
As a result, the auxiliary relay device is also deenergized and the four-way switching valve +7
1, as a result of the excitation of the solenoid (7S) being released, the cooling cycle for defrosting is returned to the heating cycle, and
Heat source side coil fan Q21゜ User side fill fan (
III starts blowing air and heating operation starts (5). The time chart in Fig. 5 shows the operation mode described above over time, and it also shows that each element of pressure and temperature during defrosting operation is simply removed by the cooling cycle without any heat storage operation means H1 being taken. The graph in FIG. 6 compares the case with frosting. As is clear from these results, the defrosting time of the example using heat storage operation is approximately 8 minutes and 30 seconds, which is approximately 2 minutes shorter than the 10 minutes and 45 seconds of the comparison device. Ta. In the above embodiment, the heat storage operation means [H] for forcibly holding the refrigeration cycle in the heating cycle is performed at the same time as the defrosting start command signal is issued from the de-icer (9). The male side is shown in Figure 3. 1) It has a configuration in which a timer is added to the display circuit. In this example, the normally open contact (23B) of the auxiliary relay corresponds to the heat storage operation means il+, while the drive unit (25S) of timer 4 and the normally open contact (25A) of the timer )% time-limited normally closed contact (25B), the solenoid (24A) of the auxiliary coil (241), and the normally open contact (24B) correspond to the heat storage operation stop means (3). That is, the timer 4. Timing starts when the de-icer (9) closes the output contact, and the defrosting operation is performed by energizing the auxiliary relay by keeping the normally closed contact (25B) closed until a predetermined time period elapses, for example, 2 minutes. After 2 minutes, the contact (25B) is opened and the contact (25A) is closed to switch to the heat storage operation, and the pressure switch (21) is activated to stop the heat storage operation and restart the defrosting operation. The operating mode of this embodiment will be explained with reference to FIG. When the heat source side fan α2 and the user side fan 7 (III) stop, the four-way switching valve (71) switches the refrigeration cycle to the cooling cycle by excitation of the solenoid (7s). The heating operation is switched to the defrosting operation.The 0 timer is activated to determine that the set time limit of 2 minutes has elapsed.The auxiliary relay is deenergized and the four-way selector valve is activated.
7 for the heat source side coil at the same time as switching to the heating cycle side.
The so-called heat storage operation is started by driving the antenna 121. From this operating state, the pressure and temperature rise until the pressure reaches 24.
5512, the pressure switch 121 detects this angle and closes the output contact (e), energizing the auxiliary relay (241). Therefore, the contact (240) opens. The timer (to) is reset, and the auxiliary relay is energized by the return of the contact (25B) to close, and as a result, the heat source side coil fan (1
21 is stopped, and the four-way switching valve (7) is closed to the solenoid (
7S] switches to the cooling cycle (7S), and defrosting operation is performed again. In this way, defrosting operation is started, but when the defrosting completion signal or (7S) is output from the de-icer (9), the output is As a result of the contact opening, the auxiliary relay (241) is deenergized, the auxiliary relay 2 is deenergized, and the solenoid (7S) of the four-way switching valve (7) is deenergized, so it can be used for defrosting. The cooling cycle of is returned to the heating cycle, and both of the fans [+11,
α2 starts blowing air and heating operation starts (yJo) As shown in the graph in Figure 9 of operation mode 2 described above, as is clear from the graph, this example in which heat storage operation was performed is approximately 1 It was possible to shorten the defrosting time by about 1 minute. (Effects of the Invention) As described in detail above, the present invention can be used when the user-side coil fan is stopped immediately before starting the defrosting operation or during the defrosting operation. The heat storage operation that uses the heat of the refrigerant in the refrigeration cycle itself is performed by the heat storage operation that is performed during the heating cycle, and a part of the heat of melting the frost during the defrosting operation is secured, so the time required for defrosting is reduced. Moreover, as shown in the embodiment, all that is required is to switch the refrigeration cycle by switching the four-way switching valve, so handling is extremely simple, and the equipment cost is low. It subsides, - stone 0 has the effect of killing two birds.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成な明示するブロック図、jgz図
は本発明の実施例に係る空気調和機の装置回路図、第3
図は本発明の1実施例に係る電気回路展開図、第4図は
同じく制御装置の作動態様を示すフローS図、第5図は
同じくタイムチャート。 第6図は特性比較線図、第7図は本発明の信実雄側に係
る電気回路展開図、第8図は同じく制御装置の作動態様
を示すフローls図、第9図は同じく特性比較111図
である。 +11・・・蓄熱運転手段、[2I・・・圧力検出手段
。 ]31・・、蓄熱運転停止手段、(51・・・熱源側コ
イル。 (6)・・・利用側コイル、(91・・・着霜検出器。 [111・・・ファン。 第9B 鴫間
Figure 1 is a block diagram clearly showing the configuration of the present invention, the JGZ diagram is a device circuit diagram of an air conditioner according to an embodiment of the present invention, and Figure 3 is a block diagram clearly showing the configuration of the present invention.
The figure is a developed diagram of an electric circuit according to an embodiment of the present invention, FIG. 4 is a flow S diagram showing the operating mode of the control device, and FIG. 5 is a time chart. Fig. 6 is a characteristic comparison diagram, Fig. 7 is a developed electric circuit diagram related to the Shinjitsu side of the present invention, Fig. 8 is a flow diagram showing the operation mode of the control device, and Fig. 9 is a characteristic comparison diagram 111. It is a diagram. +11... Heat storage operation means, [2I... Pressure detection means. ] 31... Heat storage operation stop means, (51... Heat source side coil. (6)... Utilization side coil, (91... Frost formation detector. [111... Fan. 9th B Shizuma

Claims (1)

【特許請求の範囲】[Claims] 1、熱源側コイル(5)の着霜状態を検出する着霜検出
器(9)からの除霜開始指令信号によつて冷凍サイクル
を暖房サイクルから冷房サイクルに切り換え、かつ、利
用側コイル(6)のフアン(11)を停止して除霜を行
わせる如くした空気調和機において、前記除霜開始指令
信号が発信された直後あるいは若干の時間経過した除霜
運転中のときに作動して冷凍サイクルを暖房サイクルに
強制保持せしめる蓄熱運転手段(1)と、前記冷凍サイ
クルの吐出圧力を検出し圧縮機に対し過負荷をきたさな
い範囲での設定高域圧力によつて出力を発する圧力検出
手段(2)と、この圧力検出手段(2)が発する前記出
力によつて、前記蓄熱運転手段(1)を非作動となし、
暖房サイクルの強制保持を解除せしめる蓄熱運転停止手
段(3)とからなることを特徴とする空気調和機の除霜
制御装置。
1. Switch the refrigeration cycle from the heating cycle to the cooling cycle in response to the defrosting start command signal from the frost detector (9) that detects the frosting state of the heat source side coil (5), and switch the refrigeration cycle from the heating cycle to the cooling cycle. ) In an air conditioner configured to defrost by stopping the fan (11), the fan (11) is activated immediately after the defrosting start command signal is transmitted or during defrosting operation after a certain period of time has elapsed. A heat storage operation means (1) for forcibly holding the cycle in the heating cycle; and a pressure detection means for detecting the discharge pressure of the refrigeration cycle and outputting an output according to a set high-range pressure within a range that does not overload the compressor. (2) and the output generated by the pressure detection means (2) causes the heat storage operation means (1) to be deactivated;
A defrosting control device for an air conditioner, comprising a heat storage operation stop means (3) for releasing forced holding of a heating cycle.
JP59234681A 1984-11-07 1984-11-07 Defrosting control device of air conditioner Granted JPS61114042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59234681A JPS61114042A (en) 1984-11-07 1984-11-07 Defrosting control device of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59234681A JPS61114042A (en) 1984-11-07 1984-11-07 Defrosting control device of air conditioner

Publications (2)

Publication Number Publication Date
JPS61114042A true JPS61114042A (en) 1986-05-31
JPH0263137B2 JPH0263137B2 (en) 1990-12-27

Family

ID=16974783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59234681A Granted JPS61114042A (en) 1984-11-07 1984-11-07 Defrosting control device of air conditioner

Country Status (1)

Country Link
JP (1) JPS61114042A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358048A (en) * 1986-08-27 1988-03-12 Daikin Ind Ltd Defroster in air conditioner
JPH037841A (en) * 1989-06-02 1991-01-16 Matsushita Refrig Co Ltd Multi-room heating device
US5689964A (en) * 1993-10-29 1997-11-25 Daikin Industries, Ltd. Operation control device for air conditioner
CN102721240A (en) * 2012-06-13 2012-10-10 广东澳信热泵空调有限公司 Low-temperature heat pump air conditioner heat exchanging system with anti-icing function

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5217255A (en) * 1975-07-30 1977-02-09 Mitsubishi Rayon Co Ltd Oil-water separation method for oily water

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5217255A (en) * 1975-07-30 1977-02-09 Mitsubishi Rayon Co Ltd Oil-water separation method for oily water

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358048A (en) * 1986-08-27 1988-03-12 Daikin Ind Ltd Defroster in air conditioner
JPH037841A (en) * 1989-06-02 1991-01-16 Matsushita Refrig Co Ltd Multi-room heating device
US5689964A (en) * 1993-10-29 1997-11-25 Daikin Industries, Ltd. Operation control device for air conditioner
CN102721240A (en) * 2012-06-13 2012-10-10 广东澳信热泵空调有限公司 Low-temperature heat pump air conditioner heat exchanging system with anti-icing function

Also Published As

Publication number Publication date
JPH0263137B2 (en) 1990-12-27

Similar Documents

Publication Publication Date Title
USRE29966E (en) Heat pump with frost-free outdoor coil
US6141978A (en) Method and apparatus for eliminating unnecessary defrost cycles in heat pump systems
USRE26596E (en) Heat pump controls
JPS61114042A (en) Defrosting control device of air conditioner
JPS62186157A (en) Defrosting control unit of air conditioner
JPS6330939Y2 (en)
JPS6041481Y2 (en) air conditioner
JPS5913547Y2 (en) Air conditioner control circuit
JPS5852416Y2 (en) Heat pump air conditioning system
JPS5833501Y2 (en) heat pump
JPH027414Y2 (en)
JPS5810896Y2 (en) heating device
JPH0113978Y2 (en)
JPS595812B2 (en) Refrigeration equipment
JPS5829790Y2 (en) Air conditioner control circuit
JPS5837Y2 (en) Air-cooled heat pump type air conditioner
JPH0225105Y2 (en)
JPS5926202Y2 (en) air conditioner
JPS5835Y2 (en) Air-cooled heat pump refrigeration equipment
JPH035506B2 (en)
JPS6021716Y2 (en) Refrigerator defrost device
JPH0248774Y2 (en)
JPH01127873A (en) Defroster for air conditioner
JPS5920581Y2 (en) Control circuit for heat pump air conditioner
JPS5822044Y2 (en) Air-cooled heat pump refrigeration equipment