JPH0225105Y2 - - Google Patents

Info

Publication number
JPH0225105Y2
JPH0225105Y2 JP17618983U JP17618983U JPH0225105Y2 JP H0225105 Y2 JPH0225105 Y2 JP H0225105Y2 JP 17618983 U JP17618983 U JP 17618983U JP 17618983 U JP17618983 U JP 17618983U JP H0225105 Y2 JPH0225105 Y2 JP H0225105Y2
Authority
JP
Japan
Prior art keywords
heat exchanger
switching valve
compressor
water
way switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17618983U
Other languages
Japanese (ja)
Other versions
JPS6083863U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17618983U priority Critical patent/JPS6083863U/en
Publication of JPS6083863U publication Critical patent/JPS6083863U/en
Application granted granted Critical
Publication of JPH0225105Y2 publication Critical patent/JPH0225105Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【考案の詳細な説明】 本考案は空気調和装置に係り、特に業務用ヒー
トポンプ給湯機や空冷ヒートポンプチラー等に適
用し得る空気調和装置に関する。
[Detailed Description of the Invention] The present invention relates to an air conditioner, and particularly to an air conditioner applicable to commercial heat pump water heaters, air-cooled heat pump chillers, and the like.

従来の空気調和装置について第1図〜第3図に
基いて説明する。
A conventional air conditioner will be explained based on FIGS. 1 to 3.

第1図は従来の空気調和装置の構成を示す図
で、1は圧縮機、2は四方切換弁、3は水熱交換
器、4は膨張装置、5は空気熱交換器、6は送風
機を示す。7はデアイサであり、その感温部は膨
張装置4と空気熱交換器5との間で空気熱交換器
5側の付近の配管に配設する。8は送風用電動機
であり、送風機6を駆動するものである。10は
リレーである。12は過電流継電器であり、圧縮
機1の保護装置である。デアイサ7は、四方切換
弁2、リレー10および送風用電動機8と連動し
ている。その連動を行なう電気回路の一実施例を
第2図に示した。第2図において10bはリレー
10の接点であり、10aはリレー10のコイル
である。7a,7bはデアイサ7の接点である。
その他の記号は第1図と同一である。
Figure 1 is a diagram showing the configuration of a conventional air conditioner, in which 1 is a compressor, 2 is a four-way switching valve, 3 is a water heat exchanger, 4 is an expansion device, 5 is an air heat exchanger, and 6 is a blower. show. Reference numeral 7 denotes a de-Icer, and its temperature-sensing part is disposed between the expansion device 4 and the air heat exchanger 5 in a pipe near the air heat exchanger 5 side. Reference numeral 8 denotes an electric motor for blowing air, which drives the blower 6. 10 is a relay. 12 is an overcurrent relay, which is a protection device for the compressor 1. The de-icer 7 is interlocked with the four-way switching valve 2, the relay 10, and the blower electric motor 8. An example of an electric circuit that performs this interlocking operation is shown in FIG. In FIG. 2, 10b is a contact of the relay 10, and 10a is a coil of the relay 10. 7a and 7b are contacts of the de-icer 7.
Other symbols are the same as in FIG.

第1図において、圧縮機1により圧縮された冷
媒は、四方切換弁2を通り水熱交換器3にて水と
熱交換して熱を放熱し、水を加熱して凝縮する。
さらに膨張装置4にて膨張して低圧となり、送風
機6によつて送風されている空気熱交換器5にて
空気より吸熱して冷媒は蒸発して再び圧縮機1に
もどる。
In FIG. 1, refrigerant compressed by a compressor 1 passes through a four-way switching valve 2, exchanges heat with water in a water heat exchanger 3, radiates heat, and heats and condenses the water.
The refrigerant is further expanded to a low pressure in the expansion device 4, absorbs heat from the air in the air heat exchanger 5 blown by the blower 6, evaporates, and returns to the compressor 1 again.

外気温度が低くなり空気熱交換器5に着霜を生
ずると、圧縮機1の吸入圧力が下がり空気熱交換
器5の入口配管の温度が下がるために、その温度
をデアイサ7が検知し、デアイサ7が作動する。
すなわち第2図においてデアイサ接点7aから接
点7bへと接点が動き、リレーコイル10aに通
電されリレー接点10bが開となり送風用電動機
8が運転を停止する。
When the outside air temperature becomes low and frost forms on the air heat exchanger 5, the suction pressure of the compressor 1 decreases and the temperature of the inlet pipe of the air heat exchanger 5 decreases. 7 is activated.
That is, in FIG. 2, the contact moves from de-iser contact 7a to contact 7b, relay coil 10a is energized, relay contact 10b is opened, and blower motor 8 stops operating.

一方、四方切換弁2への通電が停止されるの
で、冷媒の流れが逆転し、第1図にて破線矢印で
示した如く、圧縮機1から出た冷媒は四方切換弁
2を通り、空気熱交換器5を通り、霜を加熱し融
かして冷媒は放熱し凝縮する。さらに膨張装置4
にて低圧となり、水熱交換器3にて水より吸熱し
て、再び四方切換弁2を通り、圧縮機1にもど
る。即ちデフロスト運転が行なわれる。空気熱交
換器5の霜が融けると高圧もあがり、空気熱交換
器5の出口の温度も上昇し、デアイサ7は復帰し
て接点7aに移動し第1図の実線矢印で示したよ
うに再び加熱運転が行なわれるものである。
On the other hand, since the power supply to the four-way switching valve 2 is stopped, the flow of the refrigerant is reversed, and as shown by the broken line arrow in FIG. The refrigerant passes through the heat exchanger 5, heats and melts the frost, radiates heat, and condenses. Furthermore, the expansion device 4
The pressure becomes low at , absorbs heat from water at the water heat exchanger 3 , passes through the four-way switching valve 2 again, and returns to the compressor 1 . That is, a defrost operation is performed. When the frost in the air heat exchanger 5 melts, the high pressure rises, and the temperature at the outlet of the air heat exchanger 5 also rises, and the de-icer 7 returns to its original position and moves to the contact point 7a, again as shown by the solid line arrow in FIG. A heating operation is performed.

しかしながら上記従来の空気調和装置において
はデフロスト運転時、空気熱交換器5に着霜した
霜が融けるとともに圧縮機1の運転電流は第3図
で示すように時間とともに次第に上昇する。これ
により冷媒流方向からみて空気熱交換器5の出口
温度も上昇し、デアイサ7が復帰し、すなわち接
点7bから接点7aに移動し、四方切換弁2が切
換わるが、水熱交換器3の水温が高いと高圧を低
圧も高いために、圧縮機1は過負荷運転となり保
護装置である過電流継電器12が作動してしま
い、圧縮機1は停止してしまうという欠点があつ
た。
However, in the conventional air conditioner described above, during the defrost operation, as the frost formed on the air heat exchanger 5 melts, the operating current of the compressor 1 gradually increases over time as shown in FIG. As a result, the outlet temperature of the air heat exchanger 5 also rises when viewed from the refrigerant flow direction, and the de-icer 7 returns to its normal state, that is, moves from the contact point 7b to the contact point 7a, and the four-way switching valve 2 switches. When the water temperature is high, both the high pressure and the low pressure are high, which causes the compressor 1 to operate under an overload, causing the overcurrent relay 12 as a protection device to operate, causing the compressor 1 to stop.

尚、水熱交換器3の水温が低い場合には、デフ
ロスト終了時期の圧縮機の吐出圧力、および吸入
圧力は低いために、過電流継電器12は作動しな
い。
Note that when the water temperature of the water heat exchanger 3 is low, the overcurrent relay 12 does not operate because the discharge pressure and suction pressure of the compressor at the end of defrost are low.

本考案は上記の事情に鑑みて提案されたもの
で、その目的とするところは、デフロスト運転を
終了し、加熱運転に切換わるときに圧縮機の過電
流継電器の作動を防止し得る空気調和装置を提供
するにある。
The present invention was proposed in view of the above circumstances, and its purpose is to prevent the overcurrent relay of the compressor from operating when the defrost operation ends and the heating operation is switched to. is to provide.

本考案による空気調和装置は圧縮機、四方切換
弁、水熱交換器、膨張装置、空気熱交換器を備
え、除霜運転の開始、終了を制御するデアイサに
より前記四方切換弁を切換えて除霜運転を行なう
空気調和装置において、前記水熱交換器内の水温
を検知する検知手段を設けると共に、除霜運転終
了時前記検知手段により検知した水温が設定値以
上のとき前記四方切換弁の切換えを遅延させる遅
延手段を設けたことを特徴とし、水熱交換器の中
の水温を検知するサーモスタツトを水熱交換器に
配設し、水温が高いときは、デアイサが復帰した
後、一定時間だけ遅延して四方切換弁が切換わ
り、水温が低いときには、デアイサが復帰ととも
に、四方切換弁が直ちに切換わるようにして前記
従来の欠点を解消し得るようにしたものである。
The air conditioner according to the present invention is equipped with a compressor, a four-way switching valve, a water heat exchanger, an expansion device, and an air heat exchanger. In the air conditioner being operated, a detection means for detecting the water temperature in the water heat exchanger is provided, and the four-way switching valve is switched when the water temperature detected by the detection means is equal to or higher than a set value at the end of the defrosting operation. The water heat exchanger is equipped with a thermostat that detects the water temperature in the water heat exchanger, and when the water temperature is high, the thermostat is installed for a certain period of time after the de-iser returns. When the four-way switching valve is switched over with a delay and the water temperature is low, the four-way switching valve is switched immediately when the de-Iser returns, thereby solving the above-mentioned drawbacks of the conventional system.

第4図は本考案の一実施例の構成を示す概略
図、第5図は第4図に示す一実施例の電気回路を
示す図、第6図は第4図に示す一実施例の時間に
対する圧縮機運転電流の変化を示す図である。
Fig. 4 is a schematic diagram showing the configuration of an embodiment of the present invention, Fig. 5 is a diagram showing an electric circuit of the embodiment shown in Fig. 4, and Fig. 6 is a time diagram of the embodiment shown in Fig. 4. FIG. 3 is a diagram showing changes in compressor operating current with respect to

第4図において1は圧縮機、2は四方切換弁、
3は水熱交換器、4は膨張装置、5は空気熱交換
器、6は送風機を示す。7はデアイサであり、そ
の感温部は膨張装置4と空気熱交換器5との間で
空気熱交換器5側の配管に配設されている。8は
送風用電動機であり、送風機6を駆動する。9は
タイマであり、10はリレーを示す、11は水温
サーモスタツトであり、水熱交換器3の中の水温
を検知できるように、水熱交換器3に配設されて
いる。12は圧縮機1の保護装置である過電流継
電器である。デアイサ7、タイマ9、四方切換弁
2、送風用電動機8、リレー10、水温サーモス
タツト11はそれぞれ連動されており、その電気
回路の一実施例が第5図に示されている。
In Fig. 4, 1 is a compressor, 2 is a four-way switching valve,
3 is a water heat exchanger, 4 is an expansion device, 5 is an air heat exchanger, and 6 is a blower. Reference numeral 7 denotes a de-Icer, the temperature-sensing part of which is disposed between the expansion device 4 and the air heat exchanger 5 in the piping on the air heat exchanger 5 side. 8 is an electric motor for blowing air, and drives the blower 6. 9 is a timer, 10 is a relay, and 11 is a water temperature thermostat, which is disposed in the water heat exchanger 3 so that the water temperature in the water heat exchanger 3 can be detected. 12 is an overcurrent relay which is a protection device for the compressor 1. The de-icer 7, the timer 9, the four-way switching valve 2, the blower motor 8, the relay 10, and the water temperature thermostat 11 are interlocked with each other, and one embodiment of their electric circuit is shown in FIG.

第5図において、デアイサ7の接点7aにはタ
イマ用コイル9aとタイマ接点9b、四方切換弁
2、水温サーモスタツト11が、第5図のように
配設されている。
In FIG. 5, a timer coil 9a, a timer contact 9b, a four-way switching valve 2, and a water temperature thermostat 11 are arranged at the contact 7a of the de-icer 7 as shown in FIG.

さらに、デアイサ7の接点7bにはリレー10
のコイル10aが接続されている。また送風用電
動機8とリレー接点10bとが直列に配設されて
いる。
Furthermore, a relay 10 is connected to the contact 7b of the de-icer 7.
A coil 10a is connected thereto. Further, the blowing motor 8 and the relay contact 10b are arranged in series.

上記本考案の一実施例の作用について説明す
る。
The operation of the embodiment of the present invention described above will be explained.

第4図および第5図において、圧縮機1により
圧縮された冷媒は、四方切換弁2を通り、水熱交
換器3にて水と熱交換して熱を奪われて凝縮す
る。さらに、膨張装置4にて膨張して低圧とな
り、送風機6によつて送風されている空気熱交換
器5にて空気より吸熱して蒸発して再び圧縮機1
にもどる。
4 and 5, the refrigerant compressed by the compressor 1 passes through the four-way switching valve 2, exchanges heat with water in the water heat exchanger 3, removes heat, and condenses. Furthermore, it expands in the expansion device 4 to become low pressure, absorbs heat from the air in the air heat exchanger 5 blown by the blower 6, evaporates, and returns to the compressor 1.
Return to

外気温度が低下し空気熱交換器5に着霜する
と、低圧が下がり空気熱交換器5の入口配管の温
度が下がるため、その温度をデアイサ7で検知し
デアイサ7が作動すると、接点7aから接点7b
へ移動し、リレーコイル10aに通電されるた
め、接点10bが開となり送風用電動機8が停止
する。一方、四方切換弁2は通電されないために
切換わり、第4図の破線矢印で示したごとく圧縮
機1から四方切換弁2を通り空気熱交換器5に流
れ霜を融かし、膨張装置4にて低圧となり、水熱
交換器3にて吸熱して四方切換弁2を通り再び圧
縮機1にもどる(デフロスト運転)。
When the outside air temperature decreases and frost forms on the air heat exchanger 5, the low pressure decreases and the temperature of the inlet pipe of the air heat exchanger 5 decreases, so when the temperature is detected by the de-icer 7 and the de-icer 7 is activated, the contact 7a 7b
Since the relay coil 10a is energized, the contact 10b is opened and the blower electric motor 8 is stopped. On the other hand, the four-way switching valve 2 is switched because it is not energized, and as shown by the broken line arrow in FIG. It becomes low pressure at the water heat exchanger 3, absorbs heat at the water heat exchanger 3, passes through the four-way switching valve 2, and returns to the compressor 1 (defrost operation).

空気熱交換器5の霜が融け終わると高圧、低圧
は上がり、冷媒流の方向からみて空気熱交換器5
の出口配管の温度が上昇するために、その温度を
デアイサ7が検知しデアイサ7は復帰し接点7b
から接点7aに動く。水熱交換器3内の水温が低
い場合には、水温サーモスタツト11が閉となる
ために、デアイサ7の復帰と同時に四方切換弁2
に通電され四方切換弁2が切換わり、また、リレ
ーコイル10aが無通電となりリレー接点10b
が閉となり送風用電動機8が運転し、第4図の実
線矢印で示したように再び加熱運転を行なう。
When the frost in the air heat exchanger 5 is completely melted, the high and low pressures rise, and the air heat exchanger 5 increases when viewed from the direction of the refrigerant flow.
As the temperature of the outlet pipe increases, the de-icer 7 detects the temperature, and the de-icer 7 returns to the contact point 7b.
It moves from to contact point 7a. When the water temperature in the water heat exchanger 3 is low, the water temperature thermostat 11 closes, so the four-way switching valve 2
is energized and the four-way switching valve 2 is switched, and the relay coil 10a is de-energized and the relay contact 10b is switched.
is closed, the blower electric motor 8 is operated, and heating operation is performed again as shown by the solid line arrow in FIG.

また、水熱交換器3内の水温が高い場合には、
デアイサ7が復帰後直ちに送風用電動機8が運転
するが水温サーモスタツト11が開となるため
に、タイマ9の作用により、タイマコイル9aに
通電後一定時間だけ遅延してタイマ接点9bが閉
となり四方切換弁2に通電され、四方切換弁2が
切換わり、加熱運転となる。
In addition, if the water temperature in the water heat exchanger 3 is high,
Immediately after the de-icer 7 returns, the blower motor 8 starts operating, but since the water temperature thermostat 11 opens, the timer 9 closes the timer contacts 9b after a certain period of time delay after energizing the timer coil 9a due to the action of the timer 9. The switching valve 2 is energized, the four-way switching valve 2 is switched, and heating operation is started.

以上により本考案によれば、デフロスト運転時
に、水熱交換器3の中の水温が低い場合には、水
温サーモスタツト11にて水熱交換器3の水温を
検知し、デアイサ7の復帰とともに四方切換弁2
が切換わり、同時に送風機6も回転して加熱運転
となる。これは従来のデフロスト復帰運転と同様
であるが、圧縮機1の吐出圧力、吸入圧力も低く
過電流継電器12は作動しない。しかるに水熱交
換器3の中の水温が高い場合には、デアイサ7の
復帰とともに四方切換弁2が切換わり、送風機6
も回転すると圧縮機1の過電流継電器12が作動
するために、水温サーモスタツト11にて水熱交
換器3の水温を検知し、デアイサ7の復帰と同時
に送風機6だけを回転させることにより、第6図
に示したように圧縮機1の吐出圧力、吸入圧力が
低下するので圧縮機1の運転電流も下がる。その
ような状態で四方切換弁2を切換えても圧縮機1
の過電流継電器12は作動しない。したがつて、
支障なくデフロスト運転から加熱運転にもどすこ
とができる。この場合タイマ9にて遅延させた時
間だけデフロスト運転が長くなる。
As described above, according to the present invention, when the water temperature in the water heat exchanger 3 is low during defrost operation, the water temperature thermostat 11 detects the water temperature in the water heat exchanger 3, and when the de-icer 7 returns, the water temperature in the water heat exchanger 3 is detected. Switching valve 2
At the same time, the blower 6 also rotates and enters heating operation. This is similar to the conventional defrost recovery operation, but the discharge pressure and suction pressure of the compressor 1 are also low and the overcurrent relay 12 does not operate. However, when the water temperature in the water heat exchanger 3 is high, the four-way switching valve 2 switches as the de-icer 7 returns, and the blower 6
When the compressor 1 rotates, the overcurrent relay 12 of the compressor 1 is activated, so the water temperature thermostat 11 detects the water temperature of the water heat exchanger 3, and at the same time as the de-icer 7 returns, only the blower 6 is rotated. As shown in FIG. 6, since the discharge pressure and suction pressure of the compressor 1 decrease, the operating current of the compressor 1 also decreases. Even if the four-way switching valve 2 is switched in such a state, the compressor 1
The overcurrent relay 12 does not operate. Therefore,
It is possible to return from defrost operation to heating operation without any problem. In this case, the defrost operation will be prolonged by the time delayed by the timer 9.

以上のように本考案によれば水温サーモスタツ
ト11により、水熱交換器3の水温を検知し、圧
縮機1の過電流継電器12の作動する水温条件以
上で四方切換弁2を遅延させることにより、デフ
ロスト損失を最小限におさえて、かつ過電流継電
器12の作動を防止することができる等の優れた
効果が奏せられるものである。
As described above, according to the present invention, the water temperature of the water heat exchanger 3 is detected by the water temperature thermostat 11, and the four-way switching valve 2 is delayed when the water temperature is higher than the water temperature condition that activates the overcurrent relay 12 of the compressor 1. This provides excellent effects such as minimizing defrost loss and preventing the overcurrent relay 12 from operating.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の構成を示す概略図、第2図は
従来例の電気回路を示す図、第3図は従来例の時
間に対する圧縮機運転電流の変化を示す図、第4
図は本考案の一実施例の構成を示す概略図、第5
図は第4図に示す一実施例の電気回路を示す図、
第6図は第4図に示す一実施例の時間に対する圧
縮機運転電流の変化を示す図である。 1……圧縮機、2……四方切換弁、3……水熱
交換器、7……デアイサ、9……タイマ、10…
…リレー、11……水温サーモスタツト、12…
…過電流継電器。
Fig. 1 is a schematic diagram showing the configuration of the conventional example, Fig. 2 is a diagram showing the electric circuit of the conventional example, Fig. 3 is a diagram showing the change in compressor operating current with respect to time in the conventional example, and Fig. 4 is a diagram showing the change in compressor operating current with respect to time in the conventional example.
The figure is a schematic diagram showing the configuration of an embodiment of the present invention.
The figure shows an electric circuit of an embodiment shown in FIG.
FIG. 6 is a diagram showing changes in the compressor operating current with respect to time in the embodiment shown in FIG. 4. 1... Compressor, 2... Four-way switching valve, 3... Water heat exchanger, 7... De-Isa, 9... Timer, 10...
...Relay, 11...Water temperature thermostat, 12...
...Overcurrent relay.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 圧縮機、四方切換弁、水熱交換器、膨張装置、
空気熱交換器を備え、除霜運転の開始、終了を制
御するデアイサにより前記四方切換弁を切換えて
除霜運転を行なう空気調和装置において、前記水
熱交換器内の水温を検知する検知手段を設けると
共に、除霜運転終了時前記検知手段により検知し
た水温が設定値以上のとき前記四方切換弁の切換
えを遅延させる遅延手段を設けたことを特徴とす
る空気調和装置。
Compressor, four-way switching valve, water heat exchanger, expansion device,
In an air conditioner that includes an air heat exchanger and performs defrosting operation by switching the four-way switching valve using a de-icer that controls the start and end of defrosting operation, the air conditioner includes a detection means for detecting the water temperature in the water heat exchanger. An air conditioner further comprising a delay means for delaying switching of the four-way switching valve when the water temperature detected by the detection means at the end of defrosting operation is equal to or higher than a set value.
JP17618983U 1983-11-15 1983-11-15 air conditioner Granted JPS6083863U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17618983U JPS6083863U (en) 1983-11-15 1983-11-15 air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17618983U JPS6083863U (en) 1983-11-15 1983-11-15 air conditioner

Publications (2)

Publication Number Publication Date
JPS6083863U JPS6083863U (en) 1985-06-10
JPH0225105Y2 true JPH0225105Y2 (en) 1990-07-10

Family

ID=30383121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17618983U Granted JPS6083863U (en) 1983-11-15 1983-11-15 air conditioner

Country Status (1)

Country Link
JP (1) JPS6083863U (en)

Also Published As

Publication number Publication date
JPS6083863U (en) 1985-06-10

Similar Documents

Publication Publication Date Title
CA1090307A (en) Control for a combination furnace and heat pump system
USRE29966E (en) Heat pump with frost-free outdoor coil
JPS6325471A (en) Air conditioner
JPH0225105Y2 (en)
JPH04174B2 (en)
JPS61114042A (en) Defrosting control device of air conditioner
JPS5852416Y2 (en) Heat pump air conditioning system
JPS6330939Y2 (en)
JPS595812B2 (en) Refrigeration equipment
JPS6041481Y2 (en) air conditioner
JPH0429322Y2 (en)
JPS6141384B2 (en)
JPS6132302Y2 (en)
JPH0330777Y2 (en)
JPS5913547Y2 (en) Air conditioner control circuit
JPH0623880Y2 (en) Heat pump device
JPS5852458Y2 (en) Defrost device
JPS5832101Y2 (en) Air conditioning equipment
JPS5920581Y2 (en) Control circuit for heat pump air conditioner
JPS5829790Y2 (en) Air conditioner control circuit
JPS5848988Y2 (en) Defrosting device for heat pump air conditioner
JPH0248774Y2 (en)
JPS6340763Y2 (en)
JPS5810896Y2 (en) heating device
JPS5932674B2 (en) Electric compressor protection device