JPH07167518A - Heat pump type air conditioning humidifier - Google Patents

Heat pump type air conditioning humidifier

Info

Publication number
JPH07167518A
JPH07167518A JP31468893A JP31468893A JPH07167518A JP H07167518 A JPH07167518 A JP H07167518A JP 31468893 A JP31468893 A JP 31468893A JP 31468893 A JP31468893 A JP 31468893A JP H07167518 A JPH07167518 A JP H07167518A
Authority
JP
Japan
Prior art keywords
heat
temperature side
air
evaporator
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31468893A
Other languages
Japanese (ja)
Inventor
Akira Morikawa
朗 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP31468893A priority Critical patent/JPH07167518A/en
Publication of JPH07167518A publication Critical patent/JPH07167518A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To drive with refrigerants adapted for air cooling means by composing air cooling means for cooling of a heat absorbing evaporator out of a circuit, and composing air cooling means for dehumidifying of a low-temperature side evaporator, and providing relay heat transfer means for heat exchanging the evaporator for heat transferring between circuits with a low-temperature side condenser. CONSTITUTION:A high-temperature side evaporator Ev1 is divided to an evaporator Evs for heat transferring between circuits formed of a low-pressure vapor- phase refrigerant flowing unit 8 of a relay heat exchanger 8, and an evaporator Evm for absorbing heat out of the circuit formed of a second indoor heat exchanger. Accordingly, air cooling means F for cooling is formed of an evaporator Evm, and an air cooling means D for humidifying is formed of a low- temperature side evaporator Ev2. A relay heat exchanger 8 for heat exchanging the evaporator Evs with a low-temperature side condenser Cd2 is formed as relay heat transferring means. Thus, various boiling point refrigerants are adapted for utilities of humidifying, cooling air cooling means.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷媒蒸発に伴う吸熱に
より温調対象空気を冷却温調する冷房用の空気冷却手段
と、冷媒蒸発に伴う吸熱により除湿対象空気を冷却して
水分除去する除湿用の空気冷却手段とを設けたヒートポ
ンプ式の空調除湿装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-cooling unit for cooling, which cools and regulates the temperature-controlled air by absorbing heat due to refrigerant evaporation, and cools the dehumidifying air by absorbing heat due to refrigerant evaporation to remove water. The present invention relates to a heat pump type air conditioner / dehumidifier provided with an air cooling unit for dehumidification.

【0002】[0002]

【従来の技術】従来、この種のヒートポンプ式の空調除
湿装置において、冷媒蒸発に伴う吸熱により温調対象空
気を冷却温調する冷房用の空気冷却手段を構成する蒸発
器と、冷媒蒸発に伴う吸熱により除湿対象空気を冷却し
て水分除去する除湿用の空気冷却手段を構成する蒸発器
とは、一種類の冷媒が循環する同一のヒートポンプ回路
において並列に設けられ、夫々の蒸発器に通流される冷
媒の流量調整によって、冷房用空気冷却手段及び除湿用
空気冷却手段の能力調整が行われるように構成されてい
た。
2. Description of the Related Art Conventionally, in this type of heat pump type air-conditioning dehumidifier, an evaporator which constitutes an air cooling means for cooling for adjusting the temperature of the air to be temperature-controlled by the heat absorption due to the evaporation of the refrigerant, and the evaporation of the refrigerant The evaporator that constitutes the air cooling means for dehumidification that cools the air to be dehumidified by absorbing heat and removes the moisture is installed in parallel in the same heat pump circuit in which one type of refrigerant circulates, and is passed to each evaporator. The capacities of the cooling air cooling means and the dehumidifying air cooling means are adjusted by adjusting the flow rate of the refrigerant.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来技術によれば、除湿用の空気冷却手段を構成する蒸発
器においては、効果的に除湿を行うために、冷房用の空
気冷却手段を構成する蒸発器に比較してかなり低い蒸発
温度が必要であるので、ヒートポンプ回路の冷媒には、
比較的低沸点種の冷媒を使用することが必要不可欠とな
る。
However, according to the above-mentioned prior art, in the evaporator which constitutes the air cooling means for dehumidification, the air cooling means for cooling is constituted in order to effectively dehumidify. Since a considerably lower evaporation temperature is required compared to the evaporator, the refrigerant in the heat pump circuit is
The use of relatively low boiling point refrigerants is essential.

【0004】従って、上記従来の構成のヒートポンプ回
路では、冷房用の空気冷却手段を構成する蒸発器におい
ても、上記の様なかなり低い蒸発温度(すなわち、冷房
用空気の冷却温調という目的からすれば不必要に低い温
度)によって、冷房用空気を冷却温調することになるの
で、冷房用の空気冷却手段を構成する蒸発器の冷媒通流
量は常に相当しぼられた状態となって、極低温かつ少流
量の冷媒によって、冷房用空気の冷却が行われることに
なるから、結果として、冷房用の空気冷却手段の熱効率
が低下し、冷房用の空気の空気冷却状態の均一性が向上
できず、また、必要以上に低い温度の冷熱源によって冷
却対象を冷却することによる有効エネルギー損失の増加
などを来す不都合があった。
Therefore, in the heat pump circuit of the above-mentioned conventional structure, even in the evaporator constituting the air cooling means for cooling, the considerably low evaporation temperature as described above (that is, the cooling temperature of the cooling air is adjusted). (For example, if the temperature is unnecessarily low), the cooling temperature of the cooling air is adjusted, so the refrigerant flow rate of the evaporator that constitutes the cooling air cooling means is always squeezed to a very low temperature. And, since the cooling air is cooled by the refrigerant having a small flow rate, the thermal efficiency of the cooling air cooling means is lowered, and the uniformity of the air cooling state of the cooling air cannot be improved. In addition, there is a disadvantage that an effective energy loss is increased by cooling an object to be cooled by a cold heat source having an unnecessarily low temperature.

【0005】また、比較的低沸点種の冷媒を使用する
と、凝縮器における凝縮温度も比較的低い温度とせざる
を得ないから、凝縮器における放熱源が、例えば夏季に
おける大気などの場合のように、比較的高い温度の放熱
源である場合には、放熱源の温度が、凝縮器の凝縮温度
に近づくか、又は、凝縮温度よりも高くなる場合が生じ
て、凝縮器において有効に放熱が行われなくなる不都合
があった。
Further, when a refrigerant having a relatively low boiling point is used, the condensation temperature in the condenser must be kept at a relatively low temperature, so that the heat radiation source in the condenser is, for example, the atmosphere in summer. , When the heat source has a relatively high temperature, the temperature of the heat source may be close to or higher than the condensation temperature of the condenser, and heat may be released effectively in the condenser. There was an inconvenience that I could not forget.

【0006】ちなみに、除湿用の空気冷却手段を、冷房
用の空気冷却手段のヒートポンプ回路とは別の独立のヒ
ートポンプ回路にて構成して、冷房用の空気冷却手段の
ヒートポンプ回路においては高沸点種の冷媒、除湿用の
空気冷却手段のヒートポンプ回路においては低沸点種の
冷媒を各々使用する構成も考えられるが、大気を放熱源
とする場合において屋外設置や外気取入ダクトの施設が
必要となる等、放熱源によって設置に種々の制約を受け
る放熱用の凝縮器が夫々設けられた、独立の2つのヒー
トポンプ回路を設けることによる装置の複雑化や、低沸
点種の冷媒の凝縮温度が比較的低い温度になることによ
る、前記の放熱が有効に行われなくなる不都合などは、
解消し得ないものであった。
Incidentally, the air cooling means for dehumidification is constituted by an independent heat pump circuit different from the heat pump circuit of the air cooling means for cooling, and a high boiling point type is used in the heat pump circuit of the air cooling means for cooling. It is possible to use low-boiling point refrigerants in the heat pump circuit of the air cooling means for dehumidification, but if the atmosphere is used as a heat source, outdoor installation or an outside air intake duct facility is required. For example, the heat dissipation condensers are provided with various restrictions for installation, and the heat dissipation circuit is provided with two independent heat pump circuits. The inconvenience that the heat dissipation is not performed effectively due to the low temperature,
It was something that could not be resolved.

【0007】本発明の目的は、上記の如き従来技術にお
ける種々の不都合を、解消する点にある。
An object of the present invention is to eliminate various inconveniences in the prior art as described above.

【0008】[0008]

【課題を解決するための手段】本発明によるヒートポン
プ式の空調除湿装置の第一の特徴構成は、高沸点冷媒を
放熱用の高温側凝縮器と高温側蒸発器とにわたって循環
させる高温側ヒートポンプ回路、及び、低沸点冷媒を低
温側凝縮器と低温側蒸発器とにわたって循環させる低温
側ヒートポンプ回路を設け、前記高温側蒸発器を回路間
熱授受用の蒸発器と回路外吸熱用の蒸発器とに分割形成
し、前記冷房用の空気冷却手段は前記回路外吸熱用の蒸
発器で構成し、前記除湿用の空気冷却手段は前記低温側
蒸発器で構成し、前記回路間熱授受用の蒸発器と前記低
温側凝縮器とを相互に熱交換させる中継熱授受手段を設
けた点にある。
A first characteristic configuration of a heat pump type air conditioning dehumidifier according to the present invention is a high temperature side heat pump circuit for circulating a high boiling point refrigerant between a high temperature side condenser for heat radiation and a high temperature side evaporator. , And a low temperature side heat pump circuit for circulating the low boiling point refrigerant over the low temperature side condenser and the low temperature side evaporator, and the high temperature side evaporator is an evaporator for heat transfer between circuits and an evaporator for heat absorption outside the circuit. The air cooling means for cooling is constituted by the evaporator for absorbing heat outside the circuit, and the air cooling means for dehumidification is constituted by the evaporator on the low temperature side. A relay heat transfer means for exchanging heat between the condenser and the low temperature side condenser is provided.

【0009】本発明によるヒートポンプ式の空調除湿装
置の第二及び第三の特徴構成は、第一の特徴構成を実施
する際の好適な具体構成を特定するもので、
The second and third characteristic constitutions of the heat pump type air conditioning / dehumidifying device according to the present invention specify a preferable concrete constitution for carrying out the first characteristic constitution,

【0010】第二の特徴構成は、前記除湿用の空気冷却
手段にて冷却除湿された空気を加熱する再熱用の空気加
熱手段を設け、その再熱用の空気加熱手段は、前記高温
側凝縮器の一部にて構成されている点にある。
A second characteristic configuration is to provide reheating air heating means for heating the air dehumidified by the dehumidifying air cooling means, and the reheating air heating means is the high temperature side. It is composed of a part of the condenser.

【0011】第三の特徴構成は、前記高温側ヒートポン
プ回路、及び、低温側ヒートポンプ回路は、高沸点冷媒
と低沸点冷媒とを混合状態で吸入吐出する共通圧縮機に
より冷媒循環させる構成としてある点にある。
A third characteristic configuration is that the high temperature side heat pump circuit and the low temperature side heat pump circuit are configured to circulate a high boiling point refrigerant and a low boiling point refrigerant in a mixed state by a common compressor for sucking and discharging. It is in.

【0012】[0012]

【作用】本発明の第一の特徴構成によれば、高沸点冷媒
を放熱用の高温側凝縮器と高温側蒸発器とにわたって循
環させる高温側ヒートポンプ回路、及び、低沸点冷媒を
低温側凝縮器と低温側蒸発器とにわたって循環させる低
温側ヒートポンプ回路を設け、高温側蒸発器を回路間熱
授受用の蒸発器と回路外吸熱用の蒸発器とに分割形成
し、冷房用の空気冷却手段は回路外吸熱用の蒸発器で構
成し、除湿用の空気冷却手段は低温側蒸発器で構成して
あるから、除湿用の空気冷却手段、及び、冷房用の空気
冷却手段の夫々を、各々の空気冷却手段の用途(必要温
度)に適合した沸点種の冷媒にて運転することができ、
且つ、回路間熱授受用の蒸発器と低温側凝縮器とを相互
に熱交換させる中継熱授受手段を設けてあるから、低温
側凝縮器の放熱源を高温側蒸発器における回路間熱授受
用の蒸発器とする形態で、高低両ヒートポンプ回路の各
々を運転でき、これにより、高低両ヒートポンプ回路を
備えるものでありながらも、回路外の放熱源に対する放
熱用の凝縮器、すなわち、装置全体としての放熱用凝縮
器は、高温側凝縮器の1つのみにすることができ、か
つ、回路外の放熱源に対する放熱用凝縮器の放熱温度と
除湿用空気冷却手段とする低温側蒸発器の吸熱温度との
温度差を、大きく採ることができる。
According to the first characteristic configuration of the present invention, a high temperature side heat pump circuit for circulating a high boiling point refrigerant over a high temperature side condenser for heat dissipation and a high temperature side evaporator, and a low boiling point refrigerant for a low temperature side condenser. And a low temperature side heat pump circuit that circulates between the low temperature side evaporator and the low temperature side evaporator, and the high temperature side evaporator is divided into an evaporator for heat transfer between circuits and an evaporator for heat absorption outside the circuit, and the air cooling means for cooling is Since it is composed of an evaporator for heat absorption outside the circuit, and the air cooling means for dehumidification is composed of a low temperature side evaporator, each of the air cooling means for dehumidification and the air cooling means for cooling is respectively provided. It is possible to operate with a refrigerant of a boiling point type suitable for the use (required temperature) of the air cooling means,
Moreover, since the relay heat transfer means for exchanging heat between the evaporator for heat transfer between circuits and the low temperature side condenser is provided, the heat radiation source of the low temperature side condenser is used for heat transfer between circuits in the high temperature side evaporator. In the form of an evaporator of, both the high and low heat pump circuits can be operated, and thus, although the high and low heat pump circuits are provided, a condenser for heat dissipation to a heat source outside the circuit, that is, as a whole device The heat radiating condenser can be only one of the high temperature side condensers, and the heat radiating temperature of the heat radiating condenser to the heat radiating source outside the circuit and the heat absorption of the low temperature side evaporator as the dehumidifying air cooling means. A large temperature difference from the temperature can be taken.

【0013】第二の特徴構成によれば、除湿用の空気冷
却手段にて冷却除湿された空気を加熱する再熱用の空気
加熱手段を設け、その再熱用の空気加熱手段が、高温側
凝縮器の一部にて構成されているから、別の加熱源(例
えば、電気ヒータなど)を設けることなく、回路外の放
熱源に排熱すべき高温の熱の一部を利用する形態で、冷
却除湿された後の空気を効率良く再熱して乾燥空気とす
ることができる。
According to the second characteristic constitution, the reheating air heating means for heating the air dehumidified by the dehumidifying air cooling means is provided, and the reheating air heating means is provided on the high temperature side. Since it is composed of a part of the condenser, it is possible to use a part of high temperature heat to be exhausted to a heat radiation source outside the circuit without providing another heating source (for example, an electric heater). The air after being cooled and dehumidified can be efficiently reheated to be dried air.

【0014】第三の特徴構成によれば、高温側ヒートポ
ンプ回路、及び、低温側ヒートポンプ回路は、高沸点冷
媒と低沸点冷媒とを混合状態で吸入吐出する共通圧縮機
により冷媒循環させる構成としてあるから、高温側及び
低温側ヒートポンプ回路の両方に、夫々の専用の圧縮機
を設ける必要がない。
According to the third characteristic configuration, the high temperature side heat pump circuit and the low temperature side heat pump circuit are configured to circulate the high boiling point refrigerant and the low boiling point refrigerant by a common compressor that sucks and discharges the high boiling point refrigerant in a mixed state. Therefore, it is not necessary to provide a dedicated compressor for each of the high temperature side and low temperature side heat pump circuits.

【0015】[0015]

【発明の効果】本発明の第一の特徴構成によれば、除湿
用の空気冷却手段及び冷房用の空気冷却手段の夫々を、
各々の空気冷却手段の用途(必要温度)に適合した沸点
種の冷媒にて運転することができ、また、回路外の放熱
源に対する放熱用の凝縮器を、高温側凝縮器の1つのみ
にすることができ、そして、回路外の放熱源に対する放
熱温度と、除湿用空気冷却手段とする低温側蒸発器の吸
熱温度との温度差を大きく採ることができるから、前述
の従来技術における種々の不都合、すなわち、必要以上
に低い温度によって冷房用空気の冷却を行わなければな
らないことに伴う、冷房用の空気冷却手段の熱効率が低
下する不都合、冷房用の空気の空気冷却状態の均一性が
向上できない不都合、有効エネルギー損失が増加する不
都合、及び、凝縮器において有効に放熱が行われなくな
る不都合が解消され、なお且つ、大気等の回路外放熱源
に対する放熱構成面や熱源構成面で構造が簡単なヒート
ポンプ式の空調除湿装置を提供することができる。
According to the first characteristic configuration of the present invention, each of the dehumidifying air cooling means and the cooling air cooling means is provided.
It is possible to operate with a refrigerant of a boiling point type suitable for the use (required temperature) of each air cooling means, and only one of the high temperature side condensers has a condenser for heat radiation to a heat source outside the circuit. The temperature difference between the heat radiation temperature with respect to the heat radiation source outside the circuit and the heat absorption temperature of the low temperature side evaporator serving as the dehumidifying air cooling means can be made large. Inconvenience, that is, because the cooling air has to be cooled at an unnecessarily low temperature, the thermal efficiency of the cooling air cooling means decreases, and the uniformity of the air cooling state of the cooling air improves. The inconvenience, the increase in effective energy loss, and the inability to radiate heat effectively in the condenser are solved, and the heat radiation structure for the heat radiation source outside the circuit such as the atmosphere is eliminated. Structure and heat source configured surface may be provided an air conditioning dehumidifier simple heat pump.

【0016】第二の特徴構成によれば、別の加熱源を設
けることなく、回路外の放熱源に排熱すべき高温の熱の
一部を利用する形態で、冷却除湿された後の空気を効率
良く再熱して乾燥空気とすることができるから、排熱利
用による運転効率の向上が可能となる。
According to the second characteristic configuration, the air after being cooled and dehumidified in a form of utilizing a part of the high temperature heat to be exhausted to the heat radiation source outside the circuit without providing another heat source. Since the air can be efficiently reheated to produce dry air, the operating efficiency can be improved by utilizing the exhaust heat.

【0017】第三の特徴構成によれば、高温側及び低温
側ヒートポンプ回路の両方に、夫々の専用の圧縮機を設
ける必要がないから、より一層、装置の構造を簡単にす
ることができる。
According to the third characteristic configuration, since it is not necessary to provide a dedicated compressor for each of the high temperature side and low temperature side heat pump circuits, the structure of the apparatus can be further simplified.

【0018】[0018]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1、図3及び図5には、冷房用の空気冷却手段
Fと、除湿用の空気冷却手段Dとを設けたヒートポンプ
式の空調除湿装置の一例としての、空調装置が示されて
いる。
Embodiments of the present invention will be described below with reference to the drawings. 1, 3 and 5 show an air conditioner as an example of a heat pump type air conditioner / dehumidifier having an air cooling means F for cooling and an air cooling means D for dehumidification.

【0019】空調装置には、第一の空調対象域への空気
を加熱又は冷却温調する第一室内熱交換器1と、除湿用
の空気冷却手段Dにて冷却除湿された空気を加熱する再
熱用の空気加熱手段Hとしての再熱用熱交換器2と、第
一室内熱交換器1及び再熱用熱交換器2での温調空気を
給気SA1として第一の空調対象域に送給する第一給気
ファン3と、第二の空調対象域への空気を加熱又は冷却
温調する第二室内熱交換器4と、第二室内熱交換器1の
通風空気を給気SA2として第二の空調対象域に送給す
る第二給気ファン5と、大気OAに対して吸放熱を行う
室外熱交換器6と、室外熱交換器6に大気OAを通風す
る外気ファン7とが設けられ、第一室内熱交換器1(及
び再熱用熱交換器2)、第二室内熱交換器4、及び、室
外熱交換器6に冷媒を循環させることによって、大気O
Aを吸放熱源として、給気SA1及びSA2を加熱又は
冷却温調するヒートポンプ回路が構成されている。
The air conditioner heats the first indoor heat exchanger 1 for heating or cooling the air to the first air conditioning target area, and the dehumidified air cooled by the air cooling means D for dehumidification. The heat exchanger 2 for reheating as the air heating means H for reheating, and the temperature control air in the first indoor heat exchanger 1 and the heat exchanger 2 for reheating as the supply air SA1 in the first air conditioning target area. To the second indoor heat exchanger 4, which heats or cools the air to the second air conditioning target area, and the ventilation air of the second indoor heat exchanger 1. The second air supply fan 5 that supplies the second air conditioning target area as SA2, the outdoor heat exchanger 6 that absorbs and releases heat to and from the atmosphere OA, and the outside air fan 7 that ventilates the atmosphere OA to the outdoor heat exchanger 6. Are provided to cool the first indoor heat exchanger 1 (and the reheating heat exchanger 2), the second indoor heat exchanger 4, and the outdoor heat exchanger 6. By circulating the atmospheric O
A heat pump circuit that controls the heating or cooling temperature of the supply air SA1 and SA2 is configured by using A as the heat absorbing and radiating source.

【0020】本実施例の空調装置のヒートポンプ回路
は、高沸点冷媒A、及び、低沸点冷媒Bの二種冷媒が混
合状態で冷媒循環路に充填され循環される、混合冷媒ヒ
ートポンプ回路にて構成されている。低沸点冷媒Bは、
蒸発温度が、冷却除湿を行う空気を冷却するに適した比
較的低い温度に設定され、且つ、凝縮温度が、高沸点冷
媒Aの蒸発温度とオーバーラップするものが使用されて
いる。高沸点冷媒Aは、凝縮温度が大気OAの温度より
も高くなり、且つ、蒸発温度が、第一又は第二空調対象
域の冷房を行うに適した温度、すなわち、冷却除湿に適
した温度と比較して、比較的高い温度に設定されるもの
が使用されている。
The heat pump circuit of the air conditioner of the present embodiment is composed of a mixed refrigerant heat pump circuit in which two kinds of refrigerants, a high boiling point refrigerant A and a low boiling point refrigerant B, are mixed and circulated in a refrigerant circulating path. Has been done. The low boiling point refrigerant B is
The evaporation temperature is set to a relatively low temperature suitable for cooling the air to be cooled and dehumidified, and the condensation temperature overlaps the evaporation temperature of the high boiling point refrigerant A. The high-boiling-point refrigerant A has a condensing temperature higher than the temperature of the atmosphere OA, and an evaporation temperature that is suitable for cooling the first or second air-conditioning target area, that is, a temperature suitable for cooling and dehumidifying. In comparison, the one set to a relatively high temperature is used.

【0021】冷媒循環路には、ヒートポンプの基本構成
として、上記二種冷媒A,Bを混合状態で吸入吐出する
共通圧縮機Cmpと、液相状態の高沸点冷媒Awと高圧
気相状態の低沸点冷媒Bhgとを分離する気液分離器S
pと、高沸点冷媒Aと低沸点冷媒Bとで熱交換を行う中
継熱交換器8と、前記の第一室内熱交換器1、再熱用熱
交換器2、第二室内熱交換器4、及び、室外熱交換器4
と、気液分離器Spからの液相状態の高沸点冷媒Awを
減圧膨張させて、中継熱交換器8に対して低圧の気液二
相状態の高沸点冷媒Awgを供給する膨張弁exp1
と、第二室内熱交換器4に対して低圧の気液二相状態の
高沸点冷媒Awgを供給する膨張弁exp2と、前記第
一室内熱交換器1が除湿用の空気冷却手段Dとして運転
される場合に、中継熱交換器8からの液相状態の低沸点
冷媒Bwを減圧膨張させて前記第一室内熱交換器1に対
して低圧の気液二相状態の低沸点冷媒Bwgを供給する
膨張弁exp3と、前記第一室内熱交換器1が冷房用の
空気冷却手段Fとして運転される場合に、液相状態の高
沸点冷媒Awを減圧膨張させて低圧の気液二相状態の高
沸点冷媒Awgを第一室内熱交換器1に供給する膨張弁
exp4と、前記室外熱交換器4が蒸発器として使用さ
れる場合に液相状態の高沸点冷媒Awを減圧膨張させる
膨張弁exp5とが装備されている。
In the refrigerant circulation path, as a basic structure of a heat pump, a common compressor Cmp which sucks and discharges the above-mentioned two kinds of refrigerants A and B in a mixed state, a high boiling point refrigerant Aw in a liquid state and a low boiling point in a high pressure gas phase state. Gas-liquid separator S for separating the boiling point refrigerant Bhg
p, the relay heat exchanger 8 that performs heat exchange between the high-boiling-point refrigerant A and the low-boiling-point refrigerant B, the first indoor heat exchanger 1, the reheat heat exchanger 2, and the second indoor heat exchanger 4 described above. And the outdoor heat exchanger 4
And an expansion valve exp1 that expands the high-boiling-point refrigerant Aw in the liquid phase state from the gas-liquid separator Sp under reduced pressure and supplies the low-boiling-point high-boiling-point refrigerant Awg to the relay heat exchanger 8.
An expansion valve exp2 that supplies a low-boiling-point high-boiling-point refrigerant Awg to the second indoor heat exchanger 4 and the first indoor heat exchanger 1 operate as an air cooling means D for dehumidification. In this case, the low-boiling-point refrigerant Bw in the liquid phase state from the relay heat exchanger 8 is decompressed and expanded to supply the low-boiling-point low-boiling point refrigerant Bwg in the gas-liquid two-phase state to the first indoor heat exchanger 1. When the expansion valve exp3 to be operated and the first indoor heat exchanger 1 are operated as the air cooling means F for cooling, the high boiling point refrigerant Aw in the liquid phase state is decompressed and expanded to form the low pressure gas-liquid two phase state. An expansion valve exp4 for supplying the high-boiling-point refrigerant Awg to the first indoor heat exchanger 1, and an expansion valve exp5 for decompressing and expanding the liquid-phase high-boiling-point refrigerant Aw when the outdoor heat exchanger 4 is used as an evaporator. And are equipped with.

【0022】気液分離器Spは、液溜めによって、上部
から気相冷媒を、下部から液相冷媒を各々抽出できるよ
うに構成されているとともに、液溜め部には、後述する
冷房運転状態及び暖房運転状態において、使用されない
低沸点冷媒Bの全部を回収し貯留できる容量が備えら
れ、受液器としても機能するように構成されている。な
お、液溜め部分に、圧縮機Cmpへの帰還途中の低圧気
相冷媒Acg及びBcgが通流する冷媒路9が貫通され
ているのは、液相冷媒と低圧気相冷媒とを熱交換させる
ことによって、ヒートポンプ・サイクルの過熱度と過冷
却度とを確保して、圧縮機Cmpへのいわゆる液バック
事故などを防止するためのものである。
The gas-liquid separator Sp is constructed so as to be able to extract the gas-phase refrigerant from the upper part and the liquid-phase refrigerant from the lower part by means of a liquid reservoir, and the liquid reservoir part has a cooling operation state and In the heating operation state, a capacity capable of recovering and storing all of the low-boiling-point refrigerant B that is not used is provided, and is configured to also function as a liquid receiver. The refrigerant passage 9 through which the low-pressure gas-phase refrigerants Acg and Bcg are in the process of returning to the compressor Cmp is pierced in the liquid reservoir portion so that the liquid-phase refrigerant and the low-pressure gas-phase refrigerant are heat-exchanged. This ensures the degree of superheat and the degree of subcooling of the heat pump cycle to prevent so-called liquid back accident to the compressor Cmp.

【0023】中継熱交換器8は、高圧気相冷媒通流部8
aと、低圧気相冷媒通流部8bとから構成されている。
高圧気相冷媒通流部8aと低圧気相冷媒通流部8bと
は、相互に熱交換できるように構成されており、高圧気
相冷媒通流部8aは、冷媒凝縮器として、低圧気相冷媒
通流部8bは、冷媒蒸発器として機能するように構成さ
れている。
The relay heat exchanger 8 is a high-pressure gas-phase refrigerant flow section 8
a and a low-pressure vapor-phase refrigerant flow section 8b.
The high-pressure vapor-phase refrigerant flow section 8a and the low-pressure vapor-phase refrigerant flow section 8b are configured to be capable of exchanging heat with each other. The refrigerant flow section 8b is configured to function as a refrigerant evaporator.

【0024】10は、低沸点冷媒Bの受液器である。受
液器10にも、気液分離器Spと同様の、低圧気相状態
の高沸点冷媒Acg及び低沸点冷媒Bcgが通流する冷
媒路9が設けられている。
Reference numeral 10 is a liquid receiver for the low boiling point refrigerant B. The liquid receiver 10 is also provided with the refrigerant passage 9 through which the high-boiling-point refrigerant Acg and the low-boiling-point refrigerant Bcg in the low-pressure gas phase flow, similar to the gas-liquid separator Sp.

【0025】vR1〜vR4は、流量調整弁である。v
1〜v7は、運転モードなどに従って、冷媒循環路の構
成を切り換える切換弁である。
VR1 to vR4 are flow rate adjusting valves. v
1 to v7 are switching valves that switch the configuration of the refrigerant circulation path according to the operation mode and the like.

【0026】図1には、前記冷房用の空気冷却手段F
と、前記除湿用の空気冷却手段D及び前記再熱用の空気
加熱手段Hとが作動する、除湿冷房運転状態の空調装置
の回路構成が示されている。図3には、第一及び第二空
調対象域の両方に対して冷媒運転が行われている冷房運
転状態の空調装置の回路構成が示されている。図5に
は、第一及び第二空調対象域の両方に対して暖房運転が
行われている暖房運転状態の空調装置の回路構成が示さ
れている。
FIG. 1 shows an air cooling means F for the cooling.
And a circuit configuration of an air conditioner in a dehumidifying and cooling operation state in which the dehumidifying air cooling means D and the reheating air heating means H are operated. FIG. 3 shows the circuit configuration of the air conditioner in the cooling operation state in which the refrigerant operation is performed for both the first and second air conditioning target areas. FIG. 5 shows the circuit configuration of the air conditioner in the heating operation state in which the heating operation is performed for both the first and second air conditioning target areas.

【0027】図1、図3及び図5には、黒塗りの太線
は、その部分の冷媒状態が高圧気相であることを示し、
太いハッチングを施した太線は、その部分の冷媒状態が
高圧の気液二相であることを示し、細いハッチングを施
した太線は、その部分の冷媒状態が液相であることを示
し、点ハッチングを施した太線は、その部分の冷媒状態
が低圧の気液二相であることを示し、更に、白抜きの太
線は、その部分の冷媒状態が低圧気相であることを示す
が、これら太線は、その部分の通流冷媒が複数種の混合
冷媒である場合には、それら混合冷媒全体としての状態
を示し、また、通流冷媒が単一種の冷媒である場合に
は、その単一冷媒の状態を示すものである。
In FIGS. 1, 3 and 5, the thick black line indicates that the refrigerant state in that portion is the high pressure gas phase,
The thick hatched thick line indicates that the refrigerant state of that part is high-pressure gas-liquid two-phase, the thin hatched thick line indicates that the refrigerant state of that part is liquid phase, and dot hatching. The thick line marked with indicates that the refrigerant state of the part is low-pressure gas-liquid two-phase, and the thick white line indicates that the refrigerant state of the part is low-pressure gas phase. Shows the state of the mixed refrigerant as a whole when the flowing refrigerant of that portion is a mixed refrigerant of a plurality of types, and when the flowing refrigerant is a single type of refrigerant, the single refrigerant Shows the state of.

【0028】また、膨張弁exp1〜exp5、流量調
整弁vR1〜vR4、及び、切換弁v1〜v7におい
て、白抜きのものは、冷媒の通流状態を示し、黒塗りの
ものは、非通流状態又は閉塞状態を示すものである。
Further, in the expansion valves exp1 to exp5, the flow rate adjusting valves vR1 to vR4, and the switching valves v1 to v7, the white ones show the flowing state of the refrigerant, and the black ones do not flow. It shows a state or a closed state.

【0029】先ず、図1に示す、第一空調対象域に対し
て除湿運転が行われ、第二空調対象域に対して冷房運転
が行われる除湿冷房運転状態を説明する。除湿冷房運転
状態の冷媒循環路においては、室外熱交換器6及び再熱
用熱交換器2(この2つは、互いに並列接続)と、中継
熱交換器8の高圧気相冷媒通流部8aとが、圧縮機Cm
pの冷媒吐出路rhに対して直列に接続され、圧縮機C
mpから混合状態で吐出される高圧気相状態の二種冷媒
Ahg,Bhgを、沸点の高い冷媒Aから順に、各別に
凝縮させる形態としてある。
First, the dehumidifying and cooling operation state in which the dehumidifying operation is performed on the first air conditioning target area and the cooling operation is performed on the second air conditioning target area shown in FIG. 1 will be described. In the refrigerant circulation path in the dehumidifying and cooling operation state, the outdoor heat exchanger 6 and the reheat heat exchanger 2 (the two are connected in parallel to each other), and the high-pressure gas-phase refrigerant flow section 8 a of the relay heat exchanger 8. And the compressor Cm
p is connected in series to the refrigerant discharge path rh, and the compressor C
The two-type refrigerants Ahg and Bhg in a high-pressure gas phase discharged in a mixed state from mp are condensed in order from the refrigerant A having a higher boiling point.

【0030】すなわち、圧縮機Cmpは、前記二種冷媒
A,Bを、混合状態で吸入し、圧縮し、吐出する。圧縮
機Cmpからの高圧気相冷媒Ahg,Bhgは、室外熱
交換器6及び再熱用熱交換器2に通流され、大気OA及
び第一室内熱交換器1にて冷却除湿された後の空気を放
熱対象として高沸点冷媒Aのみが凝縮され、再び合流し
て、液相冷媒Awと高圧気相冷媒Bhgとが気液分離器
Spに送られる。従って、室外熱交換器6及び再熱用熱
交換器2は、高沸点冷媒Aを凝縮させる高温側凝縮器C
d1として機能している。
That is, the compressor Cmp sucks, compresses and discharges the two kinds of refrigerants A and B in a mixed state. The high-pressure gas-phase refrigerants Ahg and Bhg from the compressor Cmp are passed through the outdoor heat exchanger 6 and the reheat heat exchanger 2, and after being dehumidified by the atmosphere OA and the first indoor heat exchanger 1. Only the high-boiling-point refrigerant A is condensed with air as a heat-dissipation target, and is rejoined, and the liquid-phase refrigerant Aw and the high-pressure gas-phase refrigerant Bhg are sent to the gas-liquid separator Sp. Therefore, the outdoor heat exchanger 6 and the reheat heat exchanger 2 are arranged on the high temperature side condenser C for condensing the high boiling point refrigerant A.
It functions as d1.

【0031】室外熱交換器6及び再熱用熱交換器2から
の液相冷媒Awと高圧気相冷媒Bhgとは、気液分離器
Spにて分離され、高圧気相冷媒Bhgは、中継熱交換
器8の高圧気相冷媒通流部8aに通流される。一方、液
相冷媒Awは、膨張弁exp1及び膨張弁exp2にて
適宜分配され、且つ、減圧膨張されて低圧の気液二相冷
媒Awgとなった後、夫々、中継熱交換器8の低圧気相
冷媒通流部8b、及び、第二室内熱交換器4に通流され
る。
The liquid-phase refrigerant Aw and the high-pressure gas-phase refrigerant Bhg from the outdoor heat exchanger 6 and the reheat heat exchanger 2 are separated by the gas-liquid separator Sp, and the high-pressure gas-phase refrigerant Bhg is the relay heat. The high-pressure gas-phase refrigerant flow section 8a of the exchanger 8 is caused to flow. On the other hand, the liquid-phase refrigerant Aw is appropriately distributed by the expansion valve exp1 and the expansion valve exp2, and after being decompressed and expanded into the low-pressure gas-liquid two-phase refrigerant Awg, the low-pressure gas of the relay heat exchanger 8 is respectively supplied. It flows through the phase refrigerant flow section 8b and the second indoor heat exchanger 4.

【0032】中継熱交換器8の高圧気相冷媒通流部8a
においては、低圧気相冷媒通流部8bに通流される気液
二相冷媒Awgを放熱源として、高圧気相冷媒Bhgの
凝縮が行われ、液相冷媒Bwが受液器10に送られる。
一方、低圧気相冷媒通流部8bにおいては、高圧気相冷
媒通流部8aに通流される高圧気相冷媒Bhgを吸熱源
として、気液二相冷媒Awgが蒸発され、低圧気相冷媒
Acgとなって、気液分離器Spの前記冷媒路9を経
て、圧縮機Cmpに帰還される。従って、中継熱交換器
8の高圧気相冷媒通流部8aは、低沸点冷媒Bを凝縮さ
せる低温側凝縮器Cd2として機能し、一方、低圧気相
冷媒通流部8bは、高沸点冷媒Aを蒸発させる高温側蒸
発器Ev1として機能している。
High-pressure gas-phase refrigerant flow section 8a of relay heat exchanger 8.
In the above, the high-pressure gas-phase refrigerant Bhg is condensed using the gas-liquid two-phase refrigerant Awg flowing through the low-pressure gas-phase refrigerant flowing portion 8 b as a heat source, and the liquid-phase refrigerant Bw is sent to the liquid receiver 10.
On the other hand, in the low-pressure vapor-phase refrigerant flow section 8b, the vapor-liquid two-phase refrigerant Awg is evaporated by using the high-pressure vapor-phase refrigerant Bhg flowing in the high-pressure vapor-phase refrigerant flow section 8a as an endothermic source, and the low-pressure vapor-phase refrigerant Acg. Then, it is returned to the compressor Cmp through the refrigerant passage 9 of the gas-liquid separator Sp. Therefore, the high-pressure gas-phase refrigerant flow section 8a of the relay heat exchanger 8 functions as a low-temperature side condenser Cd2 for condensing the low-boiling-point refrigerant B, while the low-pressure gas-phase refrigerant flow section 8b is high-boiling-point refrigerant A. It functions as a high temperature side evaporator Ev1 for evaporating the.

【0033】また、第二室内熱交換器4に通流される低
圧の気液二相冷媒Awgは、第二空調対象域への給気S
A2を吸熱対象として蒸発され、低圧気相冷媒Acgと
なって、(後述する)第一室内熱交換器1からの低圧気
相状態の低沸点冷媒Bcgに合流して、圧縮機Cmpに
帰還される。従って、第二室内熱交換器4も、高沸点冷
媒Aを蒸発させる高温側蒸発器Ev1として機能してい
る。
Further, the low-pressure gas-liquid two-phase refrigerant Awg flowing through the second indoor heat exchanger 4 supplies the air S to the second air conditioning target area.
A2 is evaporated as an endothermic target to become a low-pressure gas-phase refrigerant Acg, joins the low-boiling-point refrigerant Bcg in the low-pressure gas phase from the first indoor heat exchanger 1 (described later), and is returned to the compressor Cmp. It Therefore, the second indoor heat exchanger 4 also functions as the high temperature side evaporator Ev1 that evaporates the high boiling point refrigerant A.

【0034】受液器10に送られた液相冷媒Bwは、膨
張弁exp3にて減圧膨張され低圧の気液二相冷媒Bw
gになった後、第一室内熱交換器1に通流され、第一空
調対象域への給気SA1を吸熱対象として蒸発され、前
述の低圧気相冷媒Bcgとなって、受液器10の前記冷
媒路9、中継熱交換器8、及び、気液分離器Spの前記
冷媒路9を経て、圧縮機Cmpに帰還される。従って、
第一室内熱交換器1は、低沸点冷媒Bを蒸発させる低温
側蒸発器Ev2として機能している。
The liquid-phase refrigerant Bw sent to the liquid receiver 10 is decompressed and expanded by the expansion valve exp3, and the low-pressure gas-liquid two-phase refrigerant Bw.
After reaching g, it is passed through the first indoor heat exchanger 1 and evaporated with the supply air SA1 to the first air conditioning target area as the heat absorption target, becoming the aforementioned low-pressure gas-phase refrigerant Bcg, and the liquid receiver 10 Is returned to the compressor Cmp through the refrigerant passage 9, the relay heat exchanger 8, and the refrigerant passage 9 of the gas-liquid separator Sp. Therefore,
The first indoor heat exchanger 1 functions as a low temperature side evaporator Ev2 that evaporates the low boiling point refrigerant B.

【0035】上記の冷房除湿運転状態の空調装置におい
ては、第一室内熱交換器1にて、冷媒蒸発に伴う吸熱に
より除湿対象空気を冷却して水分除去する除湿用の空気
冷却手段Dが構成され、第二室内熱交換器4にて、冷媒
蒸発に伴う吸熱により温調対象空気を冷却温調する冷房
用の空気冷却手段Fが構成されている。
In the air conditioner in the cooling / dehumidifying operation state, in the first indoor heat exchanger 1, the dehumidifying air cooling means D for cooling the dehumidifying target air by absorbing heat accompanying the evaporation of the refrigerant to remove the moisture is formed. In the second indoor heat exchanger 4, an air cooling means F for cooling that controls the cooling temperature of the temperature-controlled air by the heat absorption due to the evaporation of the refrigerant is configured.

【0036】除湿冷房運転状態の冷媒循環形態を、図2
に示す。同図中、一点鎖線は、高沸点冷媒Aの循環経路
を、破線は、低沸点冷媒Bの循環経路を示している。同
図中の符号は、図1と共通である。
FIG. 2 shows the refrigerant circulation form in the dehumidifying and cooling operation state.
Shown in. In the figure, the alternate long and short dash line indicates the circulation path of the high boiling point refrigerant A, and the broken line indicates the circulation path of the low boiling point refrigerant B. The reference numerals in the figure are the same as those in FIG.

【0037】夫々の循環経路には、ヒートポンプ回路の
基本構成としての、共通圧縮機Cmpと、凝縮器Cd1
又はCd2と、膨張弁exp1又はexp2と、蒸発器
Ev1又はEv2とが介裝されている。従って、高沸点
冷媒Aの循環経路(一点鎖線)によって、高沸点冷媒A
を高温側凝縮器Cd1と高温側蒸発器Ev1とにわたっ
て循環させる高温側ヒートポンプ回路Kaが構成され、
低沸点冷媒Bの循環経路(破線)によって、低沸点冷媒
Bを低温側凝縮器Cd2と吸熱用の低温側蒸発器Ev2
とにわたって循環させる低温側ヒートポンプ回路Kbが
構成されている。
In each circulation path, a common compressor Cmp and a condenser Cd1 as a basic structure of a heat pump circuit are provided.
Alternatively, Cd2, the expansion valve exp1 or exp2, and the evaporator Ev1 or Ev2 are interposed. Therefore, the high boiling point refrigerant A is circulated by the circulation path (dashed line) of the high boiling point refrigerant A.
A high temperature side heat pump circuit Ka for circulating the high temperature side condenser Cd1 and the high temperature side evaporator Ev1 is configured,
Through the circulation path (broken line) of the low boiling point refrigerant B, the low boiling point refrigerant B is transferred to the low temperature side condenser Cd2 and the low temperature side evaporator Ev2 for absorbing heat.
A low-temperature side heat pump circuit Kb is configured to circulate over.

【0038】高温側蒸発器Ev1は、中継熱交換器8の
低圧気相冷媒通流部8bにて構成される回路間熱授受用
の蒸発器Evsと、第二室内熱交換器2にて構成される
回路外吸熱用の蒸発器Evmとに分割形成されている。
従って、冷房用の空気冷却手段Fは、回路外吸熱用の蒸
発器Evmで構成されている。除湿用の空気冷却手段D
は、低温側蒸発器Ev2で構成されている。
The high temperature side evaporator Ev1 is composed of an evaporator Evs for exchanging heat between circuits, which is constituted by the low-pressure gas-phase refrigerant flow portion 8b of the relay heat exchanger 8, and a second indoor heat exchanger 2. And an evaporator Evm for absorbing heat outside the circuit.
Therefore, the air cooling means F for cooling is composed of the evaporator Evm for absorbing heat from outside the circuit. Air cooling means D for dehumidification
Is composed of the low temperature side evaporator Ev2.

【0039】高温側凝縮器Cd1は、前記室外熱交換器
6にて構成される排熱用凝縮器Cdrと、再熱用の空気
加熱手段Hを構成する再熱用熱交換器2にて構成される
再熱用の凝縮器Cdsとに分割形成されている。従っ
て、再熱用の空気加熱手段Hは、高温側凝縮器Cd1の
一部にて構成されている。
The high temperature side condenser Cd1 is composed of an exhaust heat condenser Cdr composed of the outdoor heat exchanger 6 and a reheat heat exchanger 2 constituting an air heating means H for reheating. It is divided into a reheat condenser Cds and a reheat condenser Cds. Therefore, the air heating means H for reheating is constituted by a part of the high temperature side condenser Cd1.

【0040】低沸点冷媒Bは、高温側凝縮器Cd1や高
温側蒸発器Ev1も通過しているので、それらの凝縮器
Cd1及び蒸発器Ev1においても、多少の吸放熱が行
われる。また、冷媒循環路の途中において冷媒Aと分離
又は合流されることによっても、冷媒間における多少の
熱交換が行われることになる。しかし、それらの多少の
吸放熱及び熱交換を無視して、低温側凝縮器Cd2及び
低温側蒸発器Ev2における凝縮熱放出及び気化熱奪取
による吸放熱及び熱交換のみに着目すれば、低温側ヒー
トポンプ回路Kbは、熱収支面において、高温側ヒート
ポンプ回路Kaとは独立したヒートポンプ回路を構成し
ている。従って、本実施例の混合冷媒ヒートポンプ回路
には、高温側ヒートポンプ回路Kaと低温側ヒートポン
プ回路Kbとの、2つヒートポンプ回路が構成されてい
る。
Since the low boiling point refrigerant B also passes through the high temperature side condenser Cd1 and the high temperature side evaporator Ev1, the condenser Cd1 and the evaporator Ev1 also absorb and release a little heat. Further, some heat exchange between the refrigerants is performed by separating or joining the refrigerant A in the middle of the refrigerant circulation path. However, ignoring some of these heat absorption and heat dissipation and heat exchange, if only focusing on heat absorption and heat dissipation and heat exchange due to condensation heat release and vaporization heat removal in the low temperature side condenser Cd2 and the low temperature side evaporator Ev2, the low temperature side heat pump The circuit Kb constitutes a heat pump circuit independent of the high temperature side heat pump circuit Ka in terms of heat balance. Therefore, the mixed refrigerant heat pump circuit of this embodiment includes two heat pump circuits, a high temperature side heat pump circuit Ka and a low temperature side heat pump circuit Kb.

【0041】図2において、冷熱の流れについて説明す
ると、先ず、高温側ヒートポンプ回路Kaの高温側凝縮
器Cd1において、凝縮熱放出により、大気OAから冷
熱が獲得される。高温側ヒートポンプ回路Kaにおいて
獲得された冷熱の一部は、回路外吸熱用の蒸発器Evm
にて使用され、第二空調対象域に対する冷房の用に供さ
れるが、残りは、回路間熱授受用の蒸発器Evsにおい
て、気化熱奪取による低温側凝縮器Cd2からの温熱の
獲得に伴って、低温側ヒートポンプ回路Kbに伝達され
る。
Referring to FIG. 2, the flow of cold heat will be described. First, in the high temperature side condenser Cd1 of the high temperature side heat pump circuit Ka, cold heat is obtained from the atmosphere OA by releasing condensation heat. A part of the cold heat acquired in the high temperature side heat pump circuit Ka is an evaporator Evm for absorbing heat outside the circuit.
Is used for cooling the second air conditioning target area, and the rest is accompanied by the acquisition of warm heat from the low temperature side condenser Cd2 by the vaporization heat removal in the evaporator Evs for transferring heat between circuits. And is transmitted to the low temperature side heat pump circuit Kb.

【0042】低温側凝縮器Cd2において低温側ヒート
ポンプ回路Kbに伝達された冷熱は、低温側蒸発器Ev
2における気化熱奪取による温熱の吸熱にともなって、
回路外の吸熱対象、すなわち、第一空調対象域への給気
SA1に対して放出され、第一空調対象域の冷却除湿の
用に供される。
The cold heat transferred to the low temperature side heat pump circuit Kb in the low temperature side condenser Cd2 is the low temperature side evaporator Ev.
With the absorption of warm heat due to the heat of vaporization in 2
It is released to the heat absorption target outside the circuit, that is, to the air supply SA1 to the first air conditioning target region, and is used for cooling and dehumidifying the first air conditioning target region.

【0043】従って、中継熱交換器8は、回路間熱授受
用の蒸発器Evsと低温側凝縮器Cd2とを相互に熱交
換させる中継熱授受手段として構成されている。
Therefore, the relay heat exchanger 8 is constructed as a relay heat transfer means for mutually exchanging heat between the inter-circuit heat transfer evaporator Evs and the low temperature side condenser Cd2.

【0044】次に、図3に示す冷房運転状態を説明す
る。冷房運転状態においては、低沸点冷媒Bは、全て受
液器10の液溜め部に回収貯留され、高沸点冷媒Aのみ
を、圧縮機Cmpによって循環させ、第一室内熱交換器
1及び第二室内熱交換器4の両方を、冷房用の蒸発器と
して機能させる形態としてある。
Next, the cooling operation state shown in FIG. 3 will be described. In the cooling operation state, all the low boiling point refrigerant B is collected and stored in the liquid reservoir of the liquid receiver 10, and only the high boiling point refrigerant A is circulated by the compressor Cmp, and the first indoor heat exchanger 1 and the second Both of the indoor heat exchangers 4 are configured to function as an evaporator for cooling.

【0045】圧縮機Cmpから吐出される高圧気相冷媒
Ahgは、室外熱交換器6にて凝縮され、液相状態の高
沸点冷媒Awのみが気液分離器Spを通過し、膨張弁e
xp4及び膨張弁exp2によって、第一室内熱交換器
1及び第二室内熱交換器4に対して適宜流量分配、且
つ、減圧膨張され、低圧の気液二相状態の高沸点冷媒A
wgが、第一室内熱交換器1及び第二室内熱交換器4に
おいて同じ蒸発温度で蒸発された後、受液器10、中継
熱交換器8、及び、気液分離器Spの前記冷媒路9を通
過して、圧縮機Cmpに帰還されるように構成されてい
る。
The high-pressure gas-phase refrigerant Ahg discharged from the compressor Cmp is condensed in the outdoor heat exchanger 6, and only the high-boiling-point refrigerant Aw in the liquid phase passes through the gas-liquid separator Sp and the expansion valve e
The high-boiling-point refrigerant A in a gas-liquid two-phase state at a low pressure, which is appropriately distributed by the xp4 and the expansion valve exp2 to the first indoor heat exchanger 1 and the second indoor heat exchanger 4 and is decompressed and expanded.
After the wg is evaporated at the same evaporation temperature in the first indoor heat exchanger 1 and the second indoor heat exchanger 4, the liquid receiver 10, the relay heat exchanger 8, and the refrigerant passage of the gas-liquid separator Sp. It is configured to pass through 9 and be returned to the compressor Cmp.

【0046】図4に示すように、冷媒循環形態は、室外
熱交換器6を、大気OAを放熱対象として、凝縮熱放出
による放熱に伴って冷熱を獲得する高温側凝縮器Cd1
として機能させ、第一室内熱交換器1及び第二室内熱交
換器4の両方を、給気SA1及びSA2を吸熱対象とし
て、気化熱奪取による吸熱に伴って冷熱を放出する高温
側蒸発器Ev1として機能させる構成としてある。
As shown in FIG. 4, in the refrigerant circulation mode, the high temperature side condenser Cd1 which obtains cold heat from the outdoor heat exchanger 6 by radiating the heat from the atmosphere OA and radiating heat by condensing heat release.
And the first indoor heat exchanger 1 and the second indoor heat exchanger 4 both target the supply air SA1 and SA2 as endothermic objects, and emit high-temperature side evaporator Ev1 that emits cold heat along with the heat absorption by vaporization heat removal. It is configured to function as.

【0047】高温側蒸発器Ev1にて放出される冷熱
は、第一及び第二空調対象域の冷房の用に供される。従
って、高温側蒸発器Ev1、すなわち、第一室内熱交換
器1及び第二室内熱交換器4は、冷媒蒸発に伴う吸熱に
より温調対象空気を冷却温調する冷房用の空気冷却手段
Fとして機能している。
The cold heat released by the high temperature side evaporator Ev1 is used for cooling the first and second air conditioning target areas. Therefore, the high temperature side evaporator Ev1, that is, the first indoor heat exchanger 1 and the second indoor heat exchanger 4 serve as an air cooling means F for cooling that controls the cooling temperature of the temperature-controlled air by the heat absorption accompanying the evaporation of the refrigerant. It is functioning.

【0048】次に、図5に示す暖房運転状態を説明す
る。暖房運転状態においても、低沸点冷媒Bは、全て受
液器10の液溜め部に回収貯留され、高沸点冷媒Aのみ
を圧縮機Cmpによって循環させ、第一室内熱交換器1
及び第二室内熱交換器4の両方を、暖房用の蒸発器とし
て機能させる形態としてある。
Next, the heating operation state shown in FIG. 5 will be described. Even in the heating operation state, all the low boiling point refrigerant B is collected and stored in the liquid reservoir of the liquid receiver 10, and only the high boiling point refrigerant A is circulated by the compressor Cmp, and the first indoor heat exchanger 1
Both the second indoor heat exchanger 4 and the second indoor heat exchanger 4 function as an evaporator for heating.

【0049】圧縮機Cmpから吐出される高圧気相冷媒
Ahgは、第一室内熱交換器1及び第二室内熱交換器4
に分配され凝縮される。分配比は、第一室内熱交換器1
及び第二室内熱交換器4の下流側に設けられている流量
調整弁vR3及びvR4にて調整されている。第一室内
熱交換器1及び第二室内熱交換器4にて凝縮された液相
状態の高沸点冷媒Awは、再び合流して気液分離器Sp
を通過し、膨張弁exp5によって減圧膨張され、低圧
の気液二相状態の高沸点冷媒Awgが室外熱交換器6に
て蒸発された後、低圧気相冷媒Acgが、受液器10、
中継熱交換器8、及び、気液分離器Spの前記冷媒路9
を通過して、圧縮機Cmpに帰還されるように構成され
ている。
The high-pressure gas-phase refrigerant Ahg discharged from the compressor Cmp is used as the first indoor heat exchanger 1 and the second indoor heat exchanger 4.
It is distributed to and condensed. Distribution ratio is 1st indoor heat exchanger 1
And flow rate adjusting valves vR3 and vR4 provided on the downstream side of the second indoor heat exchanger 4. The high-boiling-point refrigerant Aw in the liquid phase condensed in the first indoor heat exchanger 1 and the second indoor heat exchanger 4 merges again to form a gas-liquid separator Sp.
Through the expansion valve exp5, the low-pressure gas-liquid two-phase high-boiling-point refrigerant Awg is evaporated in the outdoor heat exchanger 6, and then the low-pressure gas-phase refrigerant Acg is transferred to the liquid receiver 10.
The relay heat exchanger 8 and the refrigerant passage 9 of the gas-liquid separator Sp
And is returned to the compressor Cmp.

【0050】図6に示すように、冷媒循環形態は、室外
熱交換器6を、大気OAを吸熱対象として、気化熱奪取
により温熱を吸熱する高温側蒸発器Ev1として機能さ
せ、第一室内熱交換器1及び第二室内熱交換器4の両方
を、給気SA1及びSA2を放熱対象として、凝縮熱放
出により温熱を放出する高温側凝縮器Cd1として機能
させる構成としてある。
As shown in FIG. 6, in the refrigerant circulation mode, the outdoor heat exchanger 6 is made to function as a high temperature side evaporator Ev1 which absorbs the heat by vaporization heat absorption with the air OA as the heat absorption target. Both the exchanger 1 and the second indoor heat exchanger 4 are configured to function as the high temperature side condenser Cd1 that releases warm heat by condensing heat release, with the supply air SA1 and SA2 as heat dissipation targets.

【0051】〔別実施例〕ヒートポンプ回路の構成は、
混合冷媒ヒートポンプ回路に限らず、いわゆる、複数種
の冷媒が、混合されることなく独立に循環される複元ヒ
ートポンプ回路により構成されても良い。
[Other Embodiment] The configuration of the heat pump circuit is as follows.
Not only the mixed-refrigerant heat pump circuit, but also a so-called multiple heat pump circuit in which plural kinds of refrigerants are independently circulated without being mixed may be configured.

【0052】また、中継熱授受手段は、中継熱交換器8
にて構成される場合に限らず、適宜変更できる。例え
ば、高沸点冷媒A及び低沸点冷媒Bの間に沸点温度が位
置する、第三の中沸点冷媒を含む三種以上の複数の冷媒
が冷媒が循環され、中沸点冷媒のヒートポンプ回路にて
構成されても良い。また、複数の中沸点冷媒のヒートポ
ンプ回路にて、多段に構成されても良い。
The relay heat transfer means is the relay heat exchanger 8
The configuration is not limited to the above, and can be changed as appropriate. For example, a plurality of three or more refrigerants including a third medium-boiling-point refrigerant having a boiling point temperature between the high-boiling-point refrigerant A and the low-boiling-point refrigerant B are circulated, and are configured by a heat pump circuit for the medium-boiling-point refrigerant. May be. Also, a plurality of heat pump circuits for medium boiling point refrigerant may be configured in multiple stages.

【0053】冷房用の空気冷却手段Fは、給気ファン5
により給気SA2が通風され、ダクト式により第二空調
対象域に送給されるものに限らず、第二室内熱交換器4
が空調対象域内に設けられて、空調対象空気を直接加熱
するように構成されても良い。
The air cooling means F for cooling is the air supply fan 5
The air supply SA2 is ventilated by the air supply SA2 and is not limited to the duct type air supply to the second air conditioning target area.
May be provided in the air conditioning target area to directly heat the air conditioning target air.

【0054】回路外の放熱源は、大気OAに限らず、適
宜変更できる。温調対象空気、及び、除湿対象空気は、
第一空調対象域への給気SA1及び第二空調対象域への
給気SA2に限らず、他の気体、液体、熱伝達媒体(装
置)、又は、対象物など、適宜変更可能である。また、
温調対象及び除湿対象は、上述の実施例のように、第一
空調対象域と第二空調対象域とに分離されている必要は
なく、同一空気や同一の対象でも良い。
The heat radiation source outside the circuit is not limited to the atmosphere OA, but can be changed appropriately. Air for temperature control and air for dehumidification are
Not only the air supply SA1 to the first air conditioning target area and the air supply SA2 to the second air conditioning target area, other gas, liquid, heat transfer medium (apparatus), object, or the like can be appropriately changed. Also,
The temperature control target and the dehumidification target do not have to be separated into the first air conditioning target region and the second air conditioning target region as in the above-described embodiment, and may be the same air or the same target.

【0055】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
It should be noted that reference numerals are given in the claims for convenience of comparison with the drawings, but the present invention is not limited to the structures of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】空調装置の除湿冷房運転状態の回路構成を示す
構成図
FIG. 1 is a configuration diagram showing a circuit configuration of a dehumidifying and cooling operation state of an air conditioner.

【図2】除湿冷房運転状態の冷媒の循環形態を示す説明
FIG. 2 is an explanatory view showing a circulation mode of refrigerant in a dehumidifying and cooling operation state.

【図3】空調装置の冷房運転状態の回路構成を示す構成
FIG. 3 is a configuration diagram showing a circuit configuration of an air conditioner in a cooling operation state.

【図4】冷房運転状態の冷媒の循環形態を示す説明図FIG. 4 is an explanatory diagram showing a circulation mode of refrigerant in a cooling operation state.

【図5】空調装置の暖房運転状態の回路構成を示す構成
FIG. 5 is a configuration diagram showing a circuit configuration in a heating operation state of an air conditioner.

【図6】暖房運転状態の冷媒の循環形態を示す説明図FIG. 6 is an explanatory view showing a circulation mode of refrigerant in a heating operation state.

【符号の説明】[Explanation of symbols]

A 高沸点冷媒 B 低沸点冷媒 Cd1 高温側凝縮器 Cd2 低温側凝縮器 Cmp 共通圧縮機 D 除湿用の空気冷却手段 Evm 回路外吸熱用の蒸発器 Evs 回路間熱授受用の蒸発器 Ev1 高温側蒸発器 Ev2 低温側蒸発器 F 冷房用の空気冷却手段 Ka 高温側ヒートポンプ回路 Kb 低温側ヒートポンプ回路 8 中継熱授受手段 A High boiling point refrigerant B Low boiling point refrigerant Cd1 High temperature side condenser Cd2 Low temperature side condenser Cmp Common compressor D Air cooling means for dehumidification Evm Evaporator for heat absorption outside the circuit Evs Evaporator for heat transfer between circuits Ev1 High temperature side evaporation Device Ev2 low temperature side evaporator F air cooling means for cooling Ka high temperature side heat pump circuit Kb low temperature side heat pump circuit 8 relay heat transfer means

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F25B 7/00 A 29/00 391 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location F25B 7/00 A 29/00 391 A

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 冷媒蒸発に伴う吸熱により温調対象空気
を冷却温調する冷房用の空気冷却手段(F)と、冷媒蒸
発に伴う吸熱により除湿対象空気を冷却して水分除去す
る除湿用の空気冷却手段(D)とを設けたヒートポンプ
式の空調除湿装置であって、 高沸点冷媒(A)を放熱用の高温側凝縮器(Cd1)と
高温側蒸発器(Ev1)とにわたって循環させる高温側
ヒートポンプ回路(Ka)、及び、低沸点冷媒(B)を
低温側凝縮器(Cd2)と低温側蒸発器(Ev2)とに
わたって循環させる低温側ヒートポンプ回路(Kb)を
設け、 前記高温側蒸発器(Ev1)を回路間熱授受用の蒸発器
(Evs)と回路外吸熱用の蒸発器(Evm)とに分割
形成し、 前記冷房用の空気冷却手段(F)は前記回路外吸熱用の
蒸発器(Evm)で構成し、 前記除湿用の空気冷却手段(D)は前記低温側蒸発器
(Ev2)で構成し、 前記回路間熱授受用の蒸発器(Evs)と前記低温側凝
縮器(Cd2)とを相互に熱交換させる中継熱授受手段
(8)を設けたヒートポンプ式の空調除湿装置。
1. An air cooling means (F) for cooling, which cools and regulates the temperature-controlled air by heat absorption due to refrigerant evaporation, and a dehumidifier for cooling the dehumidified air by heat absorption due to refrigerant evaporation to remove moisture. A heat pump type air-conditioning dehumidifying device provided with an air cooling means (D), wherein a high boiling point refrigerant (A) is circulated between a high temperature side condenser (Cd1) for heat dissipation and a high temperature side evaporator (Ev1). And a low temperature side heat pump circuit (Kb) for circulating the low boiling point refrigerant (B) over the low temperature side condenser (Cd2) and the low temperature side evaporator (Ev2). (Ev1) is divided into an evaporator (Evs) for heat transfer between circuits and an evaporator (Evm) for heat absorption outside the circuit, and the air cooling means (F) for cooling is an evaporator for heat absorption outside the circuit. It consists of a container (Evm), The dehumidifying air cooling means (D) is composed of the low temperature side evaporator (Ev2), and the inter-circuit heat transfer evaporator (Evs) and the low temperature side condenser (Cd2) exchange heat with each other. A heat pump type air conditioner / dehumidifier provided with a relay heat transfer means (8).
【請求項2】 前記除湿用の空気冷却手段(D)にて冷
却除湿された空気を加熱する再熱用の空気加熱手段
(H)を設け、その再熱用の空気加熱手段(H)は、前
記高温側凝縮器(Cd1)の一部にて構成されている請
求項1記載のヒートポンプ式の空調除湿装置。
2. A reheating air heating means (H) for heating the air dehumidified by the dehumidification air cooling means (D) is provided, and the reheating air heating means (H) is provided. The heat pump type air conditioning / dehumidifying device according to claim 1, wherein the heat pump type air conditioning / dehumidifying device comprises a part of the high temperature side condenser (Cd1).
【請求項3】 前記高温側ヒートポンプ回路、及び、低
温側ヒートポンプ回路は、高沸点冷媒(A)と低沸点冷
媒(B)とを混合状態で吸入吐出する共通圧縮機(Cm
p)により冷媒循環させる構成としてある請求項1又は
2記載のヒートポンプ式の空調除湿装置。
3. The high temperature side heat pump circuit and the low temperature side heat pump circuit are a common compressor (Cm) for sucking and discharging a high boiling point refrigerant (A) and a low boiling point refrigerant (B) in a mixed state.
The heat pump type air-conditioning dehumidifier according to claim 1 or 2, wherein the refrigerant is circulated according to p).
JP31468893A 1993-12-15 1993-12-15 Heat pump type air conditioning humidifier Pending JPH07167518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31468893A JPH07167518A (en) 1993-12-15 1993-12-15 Heat pump type air conditioning humidifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31468893A JPH07167518A (en) 1993-12-15 1993-12-15 Heat pump type air conditioning humidifier

Publications (1)

Publication Number Publication Date
JPH07167518A true JPH07167518A (en) 1995-07-04

Family

ID=18056359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31468893A Pending JPH07167518A (en) 1993-12-15 1993-12-15 Heat pump type air conditioning humidifier

Country Status (1)

Country Link
JP (1) JPH07167518A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2169619A1 (en) * 1999-01-13 2002-07-01 Ibergore S L Improved cooling equipment
WO2015162790A1 (en) * 2014-04-25 2015-10-29 三菱電機株式会社 Refrigeration cycle device and air conditioner provided with same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2169619A1 (en) * 1999-01-13 2002-07-01 Ibergore S L Improved cooling equipment
WO2015162790A1 (en) * 2014-04-25 2015-10-29 三菱電機株式会社 Refrigeration cycle device and air conditioner provided with same

Similar Documents

Publication Publication Date Title
CN110402354B (en) Dehumidifier with auxiliary evaporator and condenser coil
EP1121565B1 (en) heat exchange refrigerant subcool and/or precool system and method
KR100697087B1 (en) Air-Condition
JP2017138069A (en) Integrated air conditioning device
KR100697088B1 (en) Air-Condition
KR102291442B1 (en) Split dehumidification system with secondary evaporator and condenser coils
KR102291446B1 (en) Dehumidifier with multi-circuited evaporator and secondary condenser coils
JP4505486B2 (en) Heat pump air conditioner
JPH07167518A (en) Heat pump type air conditioning humidifier
KR100493871B1 (en) Equipment for dehumidification and dryness
JPH07167516A (en) Heat pump type heating humidifier
JP2938762B2 (en) Heat pump equipment
JPH07167517A (en) Heat pump type heater
JPS6157985B2 (en)
JP2002340397A (en) Air conditioner
KR102291445B1 (en) Dehumidifier with secondary evaporator and condenser coils in a single coil pack
KR102152390B1 (en) Building cooling and dehumidifying system with desiccant cooling devices installed in each room
JP2685230B2 (en) Air conditioner
JPH07146017A (en) Mixed refrigerant heat pump
JPH07190521A (en) Cooling/heating switchover type heat pump equipment
JPH04263749A (en) Panel cooling and heating device
JPH07190532A (en) Heat pump type heat storage air conditioning equipment
CA3147458A1 (en) Water cooled dehumidification system
JPH04132370U (en) Heat pump air conditioning system
JPH07301471A (en) Reheating type dehumidifying air conditioner