JPH07167516A - Heat pump type heating humidifier - Google Patents

Heat pump type heating humidifier

Info

Publication number
JPH07167516A
JPH07167516A JP31468693A JP31468693A JPH07167516A JP H07167516 A JPH07167516 A JP H07167516A JP 31468693 A JP31468693 A JP 31468693A JP 31468693 A JP31468693 A JP 31468693A JP H07167516 A JPH07167516 A JP H07167516A
Authority
JP
Japan
Prior art keywords
heat
temperature side
condenser
refrigerant
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31468693A
Other languages
Japanese (ja)
Inventor
Akira Morikawa
朗 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP31468693A priority Critical patent/JPH07167516A/en
Publication of JPH07167516A publication Critical patent/JPH07167516A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To drive with refrigerants adapted for humidifying and air heating means by composing air heating means for heating of a heat dissipating condenser out of a circuit and water heating means of the humidifying means of a high-temperature side condenser, and providing relay heat transfer means for heat exchanging the condenser for heat transferring between circuits with a high-temperature side evaporator. CONSTITUTION:The heat pump type heating humidifier comprises a low- temperature side heat pump circuit Kc for circulating low boiling point refrigerant and a high-temperature side heat pump circuit Ka for circulating high boiling point refrigerant, wherein a low-temperature side condenser Cd3 is divided to a condenser Cds for heat transferring between circuits and a condenser Cdm for heat dissipating out of the circuit. Air heating means for heating is formed of the condenser Cdm, and water heating means for humidifying is formed of a high-temperature side condenser Cdl. Further, the condenser Cds is heat exchanged with a high-temperature side evaporator Evl via relay heat transfer means Kb. Thus, the humidifying means and the air heating means can be driven with various boiling point refrigerants adapted for utilities.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷媒凝縮熱により空気
を加熱する暖房用の空気加熱手段と、加湿用水を加熱し
て発生させた水蒸気により前記空気加熱手段による加熱
空気を加湿する加湿手段とを設けたヒートポンプ式の暖
房加湿装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air heating means for heating air which is heated by the heat of condensation of a refrigerant, and a humidifying means for humidifying the heated air by the air heating means with steam generated by heating water for humidification. The present invention relates to a heat pump type heating and humidifying device provided with and.

【0002】[0002]

【従来の技術】従来、この種のヒートポンプ式の暖房加
湿装置において、暖房用の空気加熱手段を構成する凝縮
器と、加湿手段における水加熱手段を構成する凝縮器と
は、一種類の冷媒が循環する同一のヒートポンプ回路に
おいて並列に設けられ、夫々の凝縮器に通流される冷媒
の流量調整によって、空気加熱手段及び水加熱手段の能
力調整が行われるように構成されていた。
2. Description of the Related Art Conventionally, in this type of heat pump type heating / humidifying device, one type of refrigerant is used for the condenser constituting the air heating means for heating and the condenser constituting the water heating means in the humidifying means. In the same circulating heat pump circuit, the capacities of the air heating means and the water heating means are adjusted by adjusting the flow rates of the refrigerants that are provided in parallel and flow through the respective condensers.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来技術によれば、水加熱手段を構成する凝縮器では、水
蒸気を発生させるのに充分な高い温度(すなわち、10
0℃以上の高い温度)が必要であるので、上記のヒート
ポンプ回路の冷媒には、比較的高沸点種の冷媒(すなわ
ち、凝縮温度を100℃以上とする冷媒)が使用される
ことになる。
However, according to the above-mentioned prior art, the condenser constituting the water heating means has a sufficiently high temperature (that is, 10 ° C) to generate steam.
Since a high temperature of 0 ° C. or higher is required, a refrigerant of a relatively high boiling point type (that is, a refrigerant having a condensation temperature of 100 ° C. or higher) is used as the refrigerant of the heat pump circuit.

【0004】従って、空気加熱手段を構成する凝縮器に
おいては、暖房用空気の温調目標温度が一般には30〜
40℃程度の比較的低い温度であるにもかかわらず、水
加熱手段側の凝縮器と同様の100℃以上の高い温度に
よって暖房用の空気を加熱温調することになるので、冷
媒通流量は、常に相当しぼられた状態となって、高温か
つ少流量の冷媒によって、空気加熱が行われることにな
るから、空気加熱手段における熱効率が低下し、暖房用
空気の空気加熱状態の均一性が向上できず、また、必要
以上に高い温度の熱源によって加熱対象を加熱すること
による有効エネルギー損失の増加などを来す不都合があ
った。
Therefore, in the condenser constituting the air heating means, the temperature control target temperature of the heating air is generally 30 to.
Despite the relatively low temperature of about 40 ° C., the temperature of the heating air is controlled by the high temperature of 100 ° C. or higher similar to that of the condenser on the water heating means side. , Since the air is constantly squeezed and the air is heated by the high temperature and small flow rate of the refrigerant, the thermal efficiency in the air heating means is reduced and the uniformity of the air heating state of the heating air is improved. In addition, there is an inconvenience in that the effective energy loss is increased by heating the object to be heated with a heat source having a temperature higher than necessary.

【0005】また、高沸点種の冷媒を使用すると、蒸発
器における蒸発温度も比較的高い温度とせざるを得ない
から、蒸発器における吸熱源が、例えば冬季における大
気などの場合には、吸熱源の温度が、蒸発器の蒸発温度
に近づくか、又は、蒸発温度よりも高くなる場合が生じ
て、蒸発器において有効に吸熱が行われなくなる不都合
があった。
Further, when a high boiling point refrigerant is used, the evaporation temperature in the evaporator must be relatively high. Therefore, when the heat absorbing source in the evaporator is, for example, the atmosphere in winter, the heat absorbing source is used. There is a problem that the temperature of 1 approaches the evaporation temperature of the evaporator or becomes higher than the evaporation temperature, and the heat absorption is not effectively performed in the evaporator.

【0006】ちなみに、加湿手段における水加熱手段
を、別の専用の加熱源、例えば電気ヒーターなどで構成
すれば、空気加熱手段を構成するヒートポンプ回路にお
いては、適当な低沸点種の冷媒を使用することができ、
上記の不都合は解消するものの、一つの装置において複
数種の熱源を使用することにより、装置の構成や制御が
複雑化する不都合があった。
By the way, if the water heating means in the humidifying means is constituted by another dedicated heating source such as an electric heater, an appropriate low boiling point refrigerant is used in the heat pump circuit constituting the air heating means. It is possible,
Although the above inconvenience is solved, there is an inconvenience that the configuration and control of the device are complicated by using a plurality of types of heat sources in one device.

【0007】また、加湿手段における水加熱手段を、別
の独立のヒートポンプ回路にて構成し、空気加熱手段の
ヒートポンプ回路においては低沸点種、水加熱手段のヒ
ートポンプ回路においては高沸点種の冷媒を使用するこ
とも考えられるが、大気を吸熱源とする場合において屋
外設置や外気取入ダクトの施設が必要となる等、吸熱源
によって設置に種々の制約を受ける吸熱用の蒸発器が夫
々設けられた、独立の2つのヒートポンプ回路を設ける
ことによる装置の複雑化や、高沸点種の冷媒の蒸発温度
が比較的高い温度になることによる、前記の吸熱が有効
に行われなくなる不都合などは、解消し得ないものであ
った。
Further, the water heating means in the humidifying means is constituted by another independent heat pump circuit, and a low boiling point refrigerant is used in the heat pump circuit of the air heating means and a high boiling point refrigerant is used in the heat pump circuit of the water heating means. It is possible to use it, but when the atmosphere is used as a heat absorption source, it is necessary to install an outdoor facility or an outside air intake duct facility, etc. In addition, it is possible to solve the problems that the device is complicated by providing two independent heat pump circuits and that the heat absorption is not performed effectively due to the evaporation temperature of the high boiling point refrigerant becoming relatively high. It was impossible.

【0008】本発明の目的は、上記の如き従来技術にお
ける種々の不都合を、解消する点にある。
An object of the present invention is to eliminate various inconveniences in the prior art as described above.

【0009】[0009]

【課題を解決するための手段】本発明によるヒートポン
プ式の暖房加湿装置の第一の特徴構成は、低沸点冷媒を
低温側凝縮器と吸熱用の低温側蒸発器とにわたって循環
させる低温側ヒートポンプ回路、及び、高沸点冷媒を高
温側凝縮器と高温側蒸発器とにわたって循環させる高温
側ヒートポンプ回路を設け、前記低温側凝縮器を回路間
熱授受用の凝縮器と回路外放熱用の凝縮器とに分割形成
し、前記暖房用の空気加熱手段は前記回路外放熱用の凝
縮器で構成し、前記加湿手段における水加熱手段は前記
高温側凝縮器で構成し、前記回路間熱授受用の凝縮器と
前記高温側蒸発器とを相互に熱交換させる中継熱授受手
段を設けた点にある。
A first characteristic configuration of a heat pump type heating / humidifying device according to the present invention is a low temperature side heat pump circuit for circulating a low boiling point refrigerant between a low temperature side condenser and a low temperature side evaporator for absorbing heat. , And a high temperature side heat pump circuit that circulates the high boiling point refrigerant over the high temperature side condenser and the high temperature side evaporator, and the low temperature side condenser is a condenser for exchanging heat between circuits and a condenser for radiating outside the circuit. The heating air heating means is composed of the condenser for heat dissipation outside the circuit, the water heating means in the humidifying means is composed of the high temperature side condenser, and the condenser for heat exchange between the circuits is formed. A relay heat transfer means for exchanging heat between the container and the high temperature side evaporator is provided.

【0010】本発明によるヒートポンプ式の暖房加湿装
置の第二及び第三の特徴構成は、第一の特徴構成を実施
する際の好適な具体構成を特定するもので、
The second and third characteristic configurations of the heat pump type heating and humidifying device according to the present invention specify a preferable specific configuration for implementing the first characteristic configuration.

【0011】第二の特徴構成は、前記低温側ヒートポン
プ回路、及び、高温側ヒートポンプ回路は、高沸点冷媒
と低沸点冷媒とを混合状態で吸入吐出する共通圧縮機に
より冷媒循環させる構成としてある点にある。
A second characteristic configuration is that the low-temperature side heat pump circuit and the high-temperature side heat pump circuit are configured to circulate a high-boiling-point refrigerant and a low-boiling-point refrigerant in a mixed state by a common compressor for sucking and discharging the refrigerant. It is in.

【0012】第三の特徴構成は、前記中継熱授受手段
は、前記回路間熱授受用の凝縮器を吸熱源とし、かつ、
前記高温側蒸発器を放熱源として作用する中沸点冷媒の
ヒートポンプ回路で構成してある点にある。
A third characteristic configuration is that the relay heat transfer means uses the condenser for heat transfer between circuits as a heat absorption source, and
The high temperature side evaporator is constituted by a heat pump circuit for a medium boiling point refrigerant which acts as a heat radiation source.

【0013】[0013]

【作用】本発明の第一の特徴構成によれば、低沸点冷媒
を低温側凝縮器と吸熱用の低温側蒸発器とにわたって循
環させる低温側ヒートポンプ回路、及び、高沸点冷媒を
高温側凝縮器と高温側蒸発器とにわたって循環させる高
温側ヒートポンプ回路を設け、低温側凝縮器を回路間熱
授受用の凝縮器と回路外放熱用の凝縮器とに分割形成
し、暖房用の空気加熱手段は回路外放熱用の凝縮器で構
成し、加湿手段における水加熱手段は高温側凝縮器で構
成してあるから、加湿手段及び空気加熱手段を、夫々の
用途(温度)に適した沸点種の冷媒にて運転することが
でき、且つ、回路間熱授受用の凝縮器と高温側蒸発器と
を相互に熱交換させる中継熱授受手段を設けてあるか
ら、高温側蒸発器の吸熱源を低温側凝縮器における回路
間熱授受用の凝縮器とする形態で、高低両ヒートポンプ
回路を運転でき、これにより、高低両ヒートポンプ回路
を備えるものでありながらも、回路外の吸熱源に対する
吸熱用の蒸発器、すなわち、装置全体としての吸熱用蒸
発器は、低温側蒸発器の1つのみにすることができ、か
つ、回路外の吸熱源に対する吸熱用蒸発器の吸熱温度
と、加湿手段における水加熱手段とする高温側凝縮器の
放熱温度との温度差、すなわち、昇温幅を、大きく採る
ことができる。
According to the first characteristic configuration of the present invention, a low temperature side heat pump circuit for circulating a low boiling point refrigerant through a low temperature side condenser and a low temperature side evaporator for heat absorption, and a high boiling point refrigerant for a high temperature side condenser. And a high temperature side heat pump circuit to circulate between the high temperature side evaporator and the high temperature side evaporator, the low temperature side condenser is divided into a condenser for heat exchange between circuits and a condenser for heat radiation outside the circuit, and the air heating means for heating is Since it is composed of a condenser for radiating heat outside the circuit, and the water heating means in the humidifying means is composed of a high temperature side condenser, the humidifying means and the air heating means are used as a refrigerant of a boiling point species suitable for each application (temperature). Since the relay heat transfer means for exchanging heat between the condenser for heat transfer between circuits and the high temperature side evaporator is provided, the heat absorption source of the high temperature side evaporator is set to the low temperature side. A condenser for exchanging heat between circuits in the condenser In this mode, both the high and low heat pump circuits can be operated, and as a result, the evaporator for absorbing heat to the heat absorption source outside the circuit, that is, the evaporator for heat absorption as a whole, is equipped with the high and low heat pump circuits. , The temperature of the heat absorption temperature of the heat absorbing evaporator with respect to the heat absorbing source outside the circuit and the heat radiation temperature of the high temperature side condenser serving as the water heating means in the humidifying means. The difference, that is, the temperature rise range can be made large.

【0014】第二の特徴構成によれば、低温側ヒートポ
ンプ回路及び高温側ヒートポンプ回路に対する共通圧縮
機が設けられているから、高温側及び低温側ヒートポン
プ回路の両方に、夫々の専用の圧縮機を設ける必要がな
い。
According to the second characteristic configuration, since the common compressor for the low temperature side heat pump circuit and the high temperature side heat pump circuit is provided, each dedicated compressor is provided for both the high temperature side and low temperature side heat pump circuits. No need to provide.

【0015】第三の特徴構成によれば、中継熱授受手段
は、回路間熱授受用の凝縮器を吸熱源とし、かつ、高温
側蒸発器を放熱源として作用する中沸点冷媒のヒートポ
ンプ回路で構成してあるから、回路外の吸熱源に対する
吸熱用の蒸発器から高温側凝縮器までの昇温幅を、更に
大きく採ることができ、また、中継熱授受手段における
中沸点冷媒のヒートポンプ回路を多段に構成することに
よって、更に大きな昇温幅に採ることができる。
According to the third characteristic configuration, the relay heat transfer means is a heat pump circuit for medium boiling point refrigerant, in which the condenser for heat transfer between circuits is used as a heat absorption source and the high temperature side evaporator is used as a heat radiation source. Since it is configured, the temperature rise range from the evaporator for heat absorption to the heat absorption source outside the circuit to the high temperature side condenser can be further increased, and the heat pump circuit for the medium boiling point refrigerant in the relay heat transfer means can be used. With a multi-stage structure, it is possible to obtain a wider temperature rise range.

【0016】[0016]

【発明の効果】本発明の第一の特徴構成によれば、加湿
手段及び空気加熱手段を夫々の用途に適した沸点種の冷
媒にて運転することができ、回路外の吸熱源に対する吸
熱用の蒸発器を、低温側蒸発器の1つのみにすることが
でき、且つ、回路外の吸熱源に対する吸熱温度と、加湿
手段における水加熱手段とする高温側凝縮器の放熱温度
との温度差を大きく採ることができるから、前述の従来
技術における種々の不都合、すなわち、100℃以上の
不必要に高い温度によって暖房用の空気を加熱温調する
ことによる、空気加熱手段における熱効率が低下する不
都合、暖房空調における空気加熱状態の均一性が向上で
きない不都合、有効エネルギー損失が増加する不都合、
及び、吸熱源の温度が蒸発器の蒸発温度に近づくか、又
は、蒸発温度よりも高くなる場合が生じて、蒸発器にお
いて有効に吸熱が行われなくなる前記の不都合などが解
消され、なお且つ、大気等の回路外吸熱源に対する吸熱
構成面や熱源構成面で構造が簡単なヒートポンプ式の暖
房加湿装置を提供することができる。
According to the first characteristic configuration of the present invention, the humidifying means and the air heating means can be operated by the refrigerant of the boiling point species suitable for each use, and the heat absorbing means for the heat absorbing source outside the circuit can be used. Can be only one of the low temperature side evaporator, and the temperature difference between the heat absorption temperature for the heat absorption source outside the circuit and the heat radiation temperature of the high temperature side condenser used as the water heating means in the humidifying means. Therefore, various inconveniences in the above-mentioned conventional technique, that is, the inconvenience that the heat efficiency of the air heating means is lowered by controlling the heating temperature of the heating air by an unnecessarily high temperature of 100 ° C. or higher. , Inconvenience that the uniformity of air heating state in heating and air conditioning cannot be improved, inconvenience that effective energy loss increases,
And, the temperature of the heat absorption source approaches the evaporation temperature of the evaporator, or, in some cases occurs higher than the evaporation temperature, the above inconvenience in which the heat absorption is not effectively performed in the evaporator is eliminated, and, It is possible to provide a heat pump-type heating / humidifying device having a simple structure in terms of the heat absorption configuration surface and the heat source configuration surface with respect to the heat absorption source outside the circuit such as the atmosphere.

【0017】第二の特徴構成によれば、高温側及び低温
側ヒートポンプ回路の両方に夫々の専用の圧縮機を設け
る必要がないから、より一層、装置の構造を簡単にする
ことができる。
According to the second characteristic configuration, since it is not necessary to provide a dedicated compressor for each of the high temperature side and low temperature side heat pump circuits, the structure of the device can be further simplified.

【0018】第三の特徴構成によれば、回路外の吸熱源
から高温側凝縮器までの昇温幅を更に大幅に採ることが
できるから、例えば冬季における大気など、比較的低い
温度の対象を吸熱源としつつも、加湿手段の水加熱手段
において、水蒸気を発生させるに充分な高い温度を発生
させることができる。
According to the third characteristic configuration, since the temperature rise range from the heat absorption source outside the circuit to the high temperature side condenser can be further drastically increased, it is possible to target an object having a relatively low temperature such as the atmosphere in winter. It is possible to generate a sufficiently high temperature for generating water vapor in the water heating means of the humidifying means while using it as a heat absorption source.

【0019】[0019]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1及び図3には、空気加熱手段Hと加湿手段M
とを設けたヒートポンプ式の暖房加湿装置の一例として
の、空調装置が示されている。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 3, the air heating means H and the humidifying means M are shown.
An air conditioner is shown as an example of a heat pump type heating and humidifying device provided with and.

【0020】空調装置には、空調対象域への給気SAを
加熱又は冷却温調する室内熱交換器1と、加湿用水を加
熱して水蒸気を発生させる水加熱手段としての水蒸気発
生用熱交換器2と、室内熱交換器1での温調を給気SA
として空調対象に送給する給気ファン3と、大気OAに
対して吸放熱を行う室外熱交換器4と、室外熱交換器4
に大気OAを通風する外気ファン5とが設けられ、室内
熱交換器1、水蒸気発生用熱交換器2、及び、室外熱交
換器4に冷媒を循環させることによって、大気OAを吸
放熱源として、給気SAを加熱又は冷却温調するヒート
ポンプ回路が構成されている。
The air conditioner has an indoor heat exchanger 1 for heating or cooling the supply air SA to the area to be air-conditioned and a heat exchanger for steam generation as water heating means for heating the humidifying water to generate steam. Supplying the temperature control in the device 2 and the indoor heat exchanger 1
Air supply fan 3 that supplies air to the air-conditioning target, outdoor heat exchanger 4 that absorbs and radiates heat from the air OA, and outdoor heat exchanger 4
Is provided with an outside air fan 5 for ventilating the atmosphere OA, and by circulating the refrigerant through the indoor heat exchanger 1, the steam generating heat exchanger 2, and the outdoor heat exchanger 4, the atmosphere OA is used as an absorption and heat radiation source. A heat pump circuit for heating or cooling the supply air SA is configured.

【0021】本実施例の空調装置のヒートポンプ回路
は、高沸点冷媒A、中沸点冷媒B、及び、低沸点冷媒C
の三種冷媒が混合状態で冷媒循環路に充填され循環され
る、混合冷媒ヒートポンプ回路にて構成されている。高
沸点冷媒Aは、凝縮温度が100℃以上に設定されるも
のが使用されている。低沸点冷媒Cには、蒸発温度が大
気OAの温度よりも低くなるものが使用されている。そ
して、中沸点冷媒Bには、凝縮温度が高沸点冷媒Aの蒸
発温度とオーバーラップし、且つ、蒸発温度が低沸点冷
媒Cの凝縮温度とオーバーラップするものが使用されて
いる。
The heat pump circuit of the air conditioner of this embodiment has a high boiling point refrigerant A, a medium boiling point refrigerant B, and a low boiling point refrigerant C.
The mixed refrigerant heat pump circuit in which the three kinds of refrigerants are mixed and circulated in the refrigerant circulation path. As the high boiling point refrigerant A, one having a condensation temperature set to 100 ° C. or higher is used. As the low boiling point refrigerant C, one whose evaporation temperature is lower than the temperature of the atmospheric air OA is used. As the medium boiling point refrigerant B, a refrigerant whose condensation temperature overlaps with the evaporation temperature of the high boiling point refrigerant A and whose evaporation temperature overlaps with the condensation temperature of the low boiling point refrigerant C is used.

【0022】冷媒循環路には、ヒートポンプの基本構成
として、上記三種冷媒A,B,Cを混合状態で吸入吐出
する共通圧縮機Cmpと、液相状態の高沸点冷媒Awと
高圧気相状態の中及び低沸点冷媒Bhg,Chgとを分
離する気液分離器Sp1と、液相状態の中沸点冷媒Bw
と高圧気相状態の低沸点冷媒Chgとを分離する気液分
離器Sp2と、高沸点冷媒Aと中沸点冷媒Bとで熱交換
を行う中継熱交換器6と、中沸点冷媒Bと低沸点冷媒C
とで熱交換を行う中継熱交換器7と、前記の室内熱交換
器1、水蒸気発生用熱交換器2及び室外熱交換器4と、
気液分離器Sp1からの液相状態の高沸点冷媒Awを減
圧膨張させる膨張弁exp1と、気液分離器Sp2から
の液相状態の中沸点冷媒Bwを減圧膨張させる膨張弁e
xp2と、前記室外熱交換器4が蒸発器として使用され
る場合に液相状態の低沸点冷媒Cwを減圧膨張させる膨
張弁exp3と、前記室内熱交換器1が蒸発器として使
用される場合に液相状態の低沸点冷媒Cwを減圧膨張さ
せる膨張弁exp4とが装備されている。
In the refrigerant circulation path, as a basic structure of a heat pump, a common compressor Cmp for sucking and discharging the above three kinds of refrigerants A, B and C in a mixed state, a high boiling point refrigerant Aw in a liquid state and a high pressure gas phase state. A gas-liquid separator Sp1 for separating the medium and low boiling point refrigerants Bhg and Chg, and a medium boiling point refrigerant Bw in a liquid phase state.
A liquid-liquid separator Sp2 for separating high-pressure gas phase low-boiling-point refrigerant Chg, a relay heat exchanger 6 for exchanging heat between high-boiling-point refrigerant A and medium-boiling-point refrigerant B, medium-boiling-point refrigerant B and low-boiling point Refrigerant C
A relay heat exchanger 7 for exchanging heat with, an indoor heat exchanger 1, a steam generating heat exchanger 2 and an outdoor heat exchanger 4,
Expansion valve exp1 for decompressing and expanding the high-boiling-point refrigerant Aw in the liquid phase state from the gas-liquid separator Sp1, and expansion valve e for decompressing and expanding the medium-boiling-point refrigerant Bw in the liquid phase state from the gas-liquid separator Sp2.
xp2, an expansion valve exp3 for decompressing and expanding the low boiling point refrigerant Cw in a liquid phase when the outdoor heat exchanger 4 is used as an evaporator, and the indoor heat exchanger 1 is used as an evaporator. It is equipped with an expansion valve exp4 for decompressing and expanding the low boiling point refrigerant Cw in the liquid phase.

【0023】気液分離器Sp1,Sp2は、液溜めによ
って、上部から気相冷媒を、下部から液相冷媒を各々抽
出できるように構成されているとともに、液溜め部に
は、後述する冷房運転状態において、使用されない高沸
点冷媒A及び中沸点冷媒Bの全部を、回収し貯留できる
容量が備えられ、受液器としても機能するように構成さ
れている。なお、液溜め部分に、圧縮機Cmpへの帰還
途中の低圧気相冷媒Acg,Bcg及びCcgが通流す
る冷媒路8が貫通されているのは、液相冷媒と低圧気相
冷媒とを熱交換させることによって、ヒートポンプ・サ
イクルの過熱度と過冷却度とを確保して、圧縮機Cmp
へのいわゆる液バック事故などを防止するためのもので
ある。
The gas-liquid separators Sp1 and Sp2 are constructed so that the gas-phase refrigerant can be extracted from the upper part and the liquid-phase refrigerant from the lower part by the liquid reservoir, and the liquid reservoir part has a cooling operation described later. In such a state, the high boiling point refrigerant A and the medium boiling point refrigerant B which are not used are all provided with a capacity capable of being collected and stored, and configured to function also as a liquid receiver. The refrigerant passage 8 through which the low-pressure gas-phase refrigerants Acg, Bcg, and Ccg flow back to the compressor Cmp is penetrated through the liquid storage portion because the liquid-phase refrigerant and the low-pressure gas-phase refrigerant are heated. By exchanging, the superheat degree and the supercooling degree of the heat pump cycle are secured, and the compressor Cmp
This is to prevent a so-called liquid back accident.

【0024】中継熱交換器6は、高圧気相冷媒通流部6
aと、低圧気相冷媒通流部6bとから構成されている。
同様に、中継熱交換器7は、高圧気相冷媒通流部7a
と、低圧気相冷媒通流部7bとから構成されている。
The relay heat exchanger 6 has a high-pressure gas-phase refrigerant flow section 6
a and a low-pressure vapor-phase refrigerant flow section 6b.
Similarly, the relay heat exchanger 7 includes the high-pressure gas-phase refrigerant flow section 7a.
And a low-pressure gas-phase refrigerant flow section 7b.

【0025】9は、低沸点冷媒Cの受液器である。受液
器9にも、気液分離器Sp1,Sp2と同様の、低圧気
相状態の低沸点冷媒Ccgが通流する冷媒路8が設けら
れている。
Reference numeral 9 is a liquid receiver for the low boiling point refrigerant C. The liquid receiver 9 is also provided with the refrigerant passage 8 through which the low-boiling-point refrigerant Ccg in the low-pressure vapor phase state flows, similar to the gas-liquid separators Sp1 and Sp2.

【0026】膨張弁exp3は、冷媒が室外熱交換器4
に向かって通流する場合には、本来の冷媒膨張手段とし
ての膨張弁として機能し、冷媒が室外熱交換器4から遠
ざかる側に向かって通流する場合には、単に流量調整弁
として機能するように構成されている。膨張弁exp4
は、冷媒が室内熱交換器1に向かって通流する場合に
は、本来の冷媒膨張手段としての膨張弁として機能し、
冷媒が室外熱交換器1から遠ざかる側に向かって通流す
る場合には、単に流量調整弁として機能するように構成
されている。
In the expansion valve exp3, the refrigerant is the outdoor heat exchanger 4
When the refrigerant flows toward the side, it functions as an expansion valve as the original refrigerant expansion means, and when the refrigerant flows toward the side away from the outdoor heat exchanger 4, it functions simply as a flow rate adjusting valve. Is configured. Expansion valve exp4
When the refrigerant flows toward the indoor heat exchanger 1, it functions as an expansion valve as the original refrigerant expansion means,
When the refrigerant flows toward the side away from the outdoor heat exchanger 1, the refrigerant simply functions as a flow rate adjusting valve.

【0027】vR1及びvR2は、気液分離器Sp2か
らの室内熱交換器1及び中継熱交換器7に対する冷媒通
流量の分配比を調整する流量調整弁である。vR3も流
量調整弁である。v1〜v9は、運転モードなどに従っ
て、冷媒循環路の構成を切り換える切換弁である。
VR1 and vR2 are flow rate adjusting valves for adjusting the distribution ratio of the refrigerant flow rate from the gas-liquid separator Sp2 to the indoor heat exchanger 1 and the relay heat exchanger 7. vR3 is also a flow rate adjusting valve. v1 to v9 are switching valves that switch the configuration of the refrigerant circulation path according to the operation mode and the like.

【0028】図1には、前記空気加熱手段H及び前記加
湿手段Mが作動する、暖房加湿運転状態の空調装置の回
路構成が示されている。図3には、冷房運転状態の空調
装置の回路構成が示されている。
FIG. 1 shows a circuit configuration of an air conditioner in a heating and humidifying operation state in which the air heating means H and the humidifying means M are operated. FIG. 3 shows the circuit configuration of the air conditioner in the cooling operation state.

【0029】図1及び図3において、黒塗りの太線は、
その部分の冷媒状態が高圧気相であることを示し、太い
ハッチングを施した太線は、その部分の冷媒状態が高圧
の気液二相であることを示し、細いハッチングを施した
太線は、その部分の冷媒状態が液相であることを示し、
点ハッチングを施した太線は、その部分の冷媒状態が低
圧の気液二相であることを示し、更に、白抜きの太線
は、その部分の冷媒状態が低圧気相であることを示す
が、これら太線は、その部分の通流冷媒が複数種の混合
冷媒である場合には、それら混合冷媒全体としての状態
を示し、また、通流冷媒が単一種の冷媒である場合に
は、その単一冷媒の状態を示すものである。
In FIGS. 1 and 3, the thick black line indicates
The refrigerant state of the part indicates that it is a high-pressure gas phase, the thick line with thick hatching indicates that the refrigerant state of the part is a high-pressure gas-liquid two-phase, the thick line with thin hatching, It shows that the refrigerant state of the part is liquid phase,
The thick line with dot hatching indicates that the refrigerant state of the part is low-pressure gas-liquid two-phase, and further, the white thick line indicates that the refrigerant state of the part is low-pressure gas phase, These thick lines show the state of the mixed refrigerant as a whole when the flowing refrigerant of that portion is a mixed refrigerant of a plurality of types, and when the flowing refrigerant is a single type of refrigerant, the single line It shows the state of one refrigerant.

【0030】また、膨張弁exp1〜exp4、流量調
整弁vR1〜vR3、及び、切換弁v1〜v9におい
て、白抜きのものは、冷媒の通流状態を示し、黒塗りの
ものは、非通流状態又は閉塞状態を示すものである。
Further, in the expansion valves exp1 to exp4, the flow rate adjusting valves vR1 to vR3, and the switching valves v1 to v9, the white ones show the flowing state of the refrigerant, and the black ones do not flow. It shows a state or a closed state.

【0031】先ず、図1に示す、暖房加湿運転状態を説
明する。暖房加湿運転状態においては、水蒸気発生用熱
交換器2と、中継熱交換器6の高圧気相冷媒通流部6a
と、室内熱交換器1及び中継熱交換器7の高圧気相冷媒
通流部7a(この2つは、互いに並列接続)とが、圧縮
機Cmpの冷媒吐出路rhに対して直列に接続され、圧
縮機Cmpから混合状態で吐出される高圧気相状態の三
種冷媒Ahg,Bhg,Chgを、沸点の高いものから
順に、各別に凝縮させる形態としてある。
First, the heating / humidifying operation state shown in FIG. 1 will be described. In the heating and humidifying operation state, the steam-generating heat exchanger 2 and the high-pressure gas-phase refrigerant flow section 6a of the relay heat exchanger 6 are provided.
And the high-pressure gas-phase refrigerant flow section 7a of the indoor heat exchanger 1 and the relay heat exchanger 7 (the two are connected in parallel to each other) are connected in series to the refrigerant discharge passage rh of the compressor Cmp. The three types of high-pressure gas phase refrigerants Ahg, Bhg, and Chg that are discharged from the compressor Cmp in a mixed state are condensed separately in descending order of boiling point.

【0032】すなわち、圧縮機Cmpは、前記三種冷媒
A,B,Cを、混合状態で吸入し、圧縮し、吐出する。
圧縮機Cmpからの高圧気相冷媒Ahg,Bhg,Ch
gは、水蒸気発生用熱交換器2に通流され、水蒸気発生
用の加湿用水を放熱源として、高沸点冷媒Aのみが凝縮
され、液相冷媒Awと高圧気相冷媒Bhg,Chgと
が、気液分離器Sp1に送られる。従って、水蒸気発生
用熱交換器2は、高沸点冷媒Aを凝縮させる高温側凝縮
器Cd1として機能している。
That is, the compressor Cmp sucks, compresses and discharges the three kinds of refrigerants A, B and C in a mixed state.
High-pressure gas phase refrigerant Ahg, Bhg, Ch from the compressor Cmp
g is passed through the water vapor generation heat exchanger 2, only the high-boiling-point refrigerant A is condensed using the humidifying water for steam generation as a heat radiation source, and the liquid-phase refrigerant Aw and the high-pressure gas-phase refrigerants Bhg, Chg are: It is sent to the gas-liquid separator Sp1. Therefore, the water vapor generation heat exchanger 2 functions as a high temperature side condenser Cd1 for condensing the high boiling point refrigerant A.

【0033】水蒸気発生用熱交換器2からの高圧気相冷
媒Bhg,Chgと液相冷媒Awとは、気液分離器Sp
1にて分離され、高圧気相冷媒Bhg,Chgは、中継
熱交換器6の高圧気相冷媒通流部6aに通流され、液相
冷媒Awは、膨張弁exp1にて減圧膨張され低圧の気
液二相冷媒Awgとなった後、中継熱交換器6の低圧気
相冷媒通流部6bに通流される。
The high-pressure vapor-phase refrigerants Bhg, Chg and the liquid-phase refrigerant Aw from the steam-generating heat exchanger 2 are vapor-liquid separator Sp.
1, the high-pressure gas-phase refrigerants Bhg and Chg are passed through the high-pressure gas-phase refrigerant flow portion 6a of the relay heat exchanger 6, and the liquid-phase refrigerant Aw is decompressed and expanded by the expansion valve exp1 to have a low pressure. After becoming the gas-liquid two-phase refrigerant Awg, it is passed through the low-pressure gas-phase refrigerant flow section 6b of the relay heat exchanger 6.

【0034】中継熱交換器6の高圧気相冷媒通流部6a
においては、気液二相冷媒Awgを放熱源として、高圧
気相冷媒Bhgの凝縮が行われ、液相冷媒Bwと高圧気
相冷媒Chgとが気液分離器Sp2に送られる。一方、
低圧気相冷媒通流部6bにおいては、気液二相冷媒Aw
gが高圧気相冷媒Bhg,Chgを吸熱源として蒸発さ
れ、低圧気相冷媒Acgとなって、前記気液分離器Sp
1の冷媒路8を経て、圧縮機Cmpに帰還される。従っ
て、中継熱交換器6の高圧気相冷媒通流部6aは、高沸
点冷媒Aを蒸発させる高温側蒸発器Ev1として機能
し、低圧気相冷媒通流部6bは、中沸点冷媒Bを凝縮さ
せる中温凝縮器Cd2として機能している。
High-pressure gas-phase refrigerant flow section 6a of relay heat exchanger 6.
In, the high-pressure gas-phase refrigerant Bhg is condensed using the gas-liquid two-phase refrigerant Awg as a heat source, and the liquid-phase refrigerant Bw and the high-pressure gas-phase refrigerant Chg are sent to the gas-liquid separator Sp2. on the other hand,
In the low-pressure gas-phase refrigerant flow section 6b, the gas-liquid two-phase refrigerant Aw
g is evaporated by using the high-pressure gas-phase refrigerants Bhg and Chg as heat absorption sources to become a low-pressure gas-phase refrigerant Acg, and the gas-liquid separator Sp.
It is returned to the compressor Cmp via the first refrigerant passage 8. Therefore, the high-pressure gas-phase refrigerant flow section 6a of the relay heat exchanger 6 functions as a high-temperature side evaporator Ev1 that evaporates the high-boiling-point refrigerant A, and the low-pressure gas-phase refrigerant flow section 6b condenses the medium-boiling-point refrigerant B. It functions as a medium temperature condenser Cd2.

【0035】中継熱交換器6の高圧気相冷媒通流部6a
からの高圧気相冷媒Chgと液相冷媒Bwとは、気液分
離器Sp2にて分離され、高圧気相冷媒Chgは、中継
熱交換器7の高圧気相冷媒通流部7aと室内熱交換器1
とに分流されてに通流され、液相冷媒Bwは、膨張弁e
xp2にて減圧膨張され低圧の気液二相冷媒Bwgにな
った後、中継熱交換器7の低圧気相冷媒通流部7bに通
流される。
High-pressure gas-phase refrigerant flow section 6a of relay heat exchanger 6
The high-pressure gas-phase refrigerant Chg and the liquid-phase refrigerant Bw are separated by the gas-liquid separator Sp2, and the high-pressure gas-phase refrigerant Chg is exchanged with the high-pressure gas-phase refrigerant passage portion 7a of the relay heat exchanger 7 and the indoor heat exchange. Bowl 1
The liquid-phase refrigerant Bw is divided into
After decompressed and expanded at xp2 to become a low-pressure gas-liquid two-phase refrigerant Bwg, it is passed through the low-pressure gas-phase refrigerant flow section 7b of the relay heat exchanger 7.

【0036】中継熱交換器7の高圧気相冷媒通流部7a
においては、気液二相冷媒Bwgを放熱源として、高圧
気相冷媒Chgの凝縮が行われ、液相冷媒Cwが受液器
9に送られる。一方、低圧気相冷媒通流部7bにおいて
は、気液二相冷媒Bwgが高圧気相冷媒Chgを吸熱源
として蒸発され、低圧気相冷媒Bcgとなって、前記気
液分離器Sp2の冷媒路8を経て、高沸点冷媒Aの低圧
気相冷媒Acgと合流して、圧縮機Cmpに帰還され
る。従って、中継熱交換器7の高圧気相冷媒通流部7a
は、中沸点冷媒Bを蒸発させる中温蒸発器Ev2として
機能し、低圧気相冷媒通流部7bは、低沸点冷媒Cを凝
縮させる低温側凝縮器Cd3として機能している。
High-pressure gas-phase refrigerant flow section 7a of relay heat exchanger 7.
In, the high-pressure gas-phase refrigerant Chg is condensed using the gas-liquid two-phase refrigerant Bwg as a heat radiation source, and the liquid-phase refrigerant Cw is sent to the liquid receiver 9. On the other hand, in the low-pressure gas-phase refrigerant flow section 7b, the gas-liquid two-phase refrigerant Bwg is evaporated by using the high-pressure gas-phase refrigerant Chg as an endothermic source to become the low-pressure gas-phase refrigerant Bcg, and the refrigerant path of the gas-liquid separator Sp2. After passing through 8, the high-boiling-point refrigerant A merges with the low-pressure vapor-phase refrigerant Acg and is returned to the compressor Cmp. Therefore, the high-pressure gas-phase refrigerant flow section 7a of the relay heat exchanger 7
Functions as a medium-temperature evaporator Ev2 that evaporates the medium-boiling-point refrigerant B, and the low-pressure vapor-phase refrigerant flow section 7b functions as a low-temperature side condenser Cd3 that condenses the low-boiling-point refrigerant C.

【0037】室内熱交換器1においては、給気SAを放
熱源として高圧気相冷媒Chgの凝縮が行われ、液相冷
媒Cwが、やはり受液器9に送られる。従って、室内熱
交換器1も、低沸点冷媒Cを凝縮させる低温側凝縮器C
d3として機能している。
In the indoor heat exchanger 1, the high-pressure gas-phase refrigerant Chg is condensed using the supply air SA as a heat radiation source, and the liquid-phase refrigerant Cw is also sent to the liquid receiver 9. Therefore, the indoor heat exchanger 1 is also the low temperature side condenser C for condensing the low boiling point refrigerant C.
It functions as d3.

【0038】受液器9からの液相冷媒Cwは、膨張弁e
xp3にて減圧膨張され低圧の気液二相冷媒Cwgとな
った後、室外熱交換器4に通流される。室外熱交換器4
においては、大気OAを吸熱源として低圧の気液二相冷
媒Cwgが蒸発され、低圧気相冷媒Ccgとなる。室外
熱交換器4からの低圧気相冷媒Ccgは、前記受液器S
p2の冷媒路8を経て、中沸点冷媒Bの低圧気相冷媒B
cgと合流して、圧縮機Cmpに帰還される。従って、
室外熱交換器4は、低沸点冷媒Cを蒸発させる低温側蒸
発器Ev3として機能している。
The liquid-phase refrigerant Cw from the liquid receiver 9 is supplied to the expansion valve e.
After being decompressed and expanded at xp3 to become a low pressure gas-liquid two-phase refrigerant Cwg, it is passed through the outdoor heat exchanger 4. Outdoor heat exchanger 4
In the above, the low pressure gas-liquid two-phase refrigerant Cwg is evaporated by using the atmospheric air OA as a heat absorption source to become the low pressure gas phase refrigerant Ccg. The low-pressure gas-phase refrigerant Ccg from the outdoor heat exchanger 4 is supplied to the liquid receiver S.
Low-pressure vapor-phase refrigerant B of medium-boiling-point refrigerant B via the refrigerant passage 8 of p2
It merges with cg and is returned to the compressor Cmp. Therefore,
The outdoor heat exchanger 4 functions as a low temperature side evaporator Ev3 that evaporates the low boiling point refrigerant C.

【0039】上記の暖房加湿運転状態の空調装置におい
ては、室内熱交換器1にて、冷媒凝縮熱により空気を加
熱する暖房用の空気加熱手段Hが構成され、水蒸気発生
用熱交換器2にて、加湿用水を加熱して発生させた水蒸
気により前記空気加熱手段Hによる加熱空気を加湿する
加湿手段Mが構成されている。
In the air conditioner in the heating / humidifying operation state, the indoor heat exchanger 1 is provided with the air heating means H for heating the air by the heat of condensation of the refrigerant, and the heat exchanger 2 for generating steam is provided with the air heating means H. A humidifying means M for humidifying the heated air by the air heating means H by the steam generated by heating the humidifying water is constructed.

【0040】暖房加湿運転状態の冷媒循環形態を、図2
に示す。同図中、二点鎖線は、高沸点冷媒Aの循環経路
を、一点鎖線は、中沸点冷媒Bの循環経路を、破線は、
低沸点冷媒Cの循環経路を示している。同図中の符号
は、図1と共通である。
FIG. 2 shows the refrigerant circulation form in the heating and humidifying operation state.
Shown in. In the figure, the two-dot chain line indicates the circulation path of the high-boiling-point refrigerant A, the one-dot chain line indicates the circulation path of the medium-boiling-point refrigerant B, and the broken line indicates
The circulation path of the low boiling point refrigerant C is shown. The reference numerals in the figure are the same as those in FIG.

【0041】夫々の循環経路には、ヒートポンプ回路の
基本構成としての、圧縮機Cmpと、凝縮器Cd1,C
d2又はCd3と、膨張弁exp1,exp2又はex
p3と、蒸発器Ev1,Ev2又はEv3とが介裝され
ている。従って、高沸点冷媒Aの循環経路(二点鎖線)
によって、高沸点冷媒Aを高温側凝縮器Cd1と高温側
蒸発器Ev1とにわたって循環させる高温側ヒートポン
プ回路Kaが構成され、低沸点冷媒Cの循環経路(破
線)によって、低沸点冷媒Cを低温側凝縮器Cd3と吸
熱用の低温側蒸発器Ev3とにわたって循環させる低温
側ヒートポンプ回路Kcが構成されている。また、中沸
点冷媒Bの循環経路(一点鎖線)によって、回路間熱授
受用の凝縮器Cdsを吸熱源とし、かつ、高温側蒸発器
Ev1を放熱源として作用する中沸点冷媒Bのヒートポ
ンプ回路Kbが構成されている。
In each circulation path, the compressor Cmp and the condensers Cd1 and Cd, which are the basic components of the heat pump circuit, are provided.
d2 or Cd3 and expansion valves exp1, exp2 or ex
The p3 and the evaporators Ev1, Ev2 or Ev3 are interposed. Therefore, the circulation path of the high boiling point refrigerant A (two-dot chain line)
The high-temperature side heat pump circuit Ka that circulates the high-boiling-point refrigerant A through the high-temperature side condenser Cd1 and the high-temperature side evaporator Ev1 is configured, and the low-boiling-point refrigerant C is circulated by the circulation path (broken line) of the low-boiling-point refrigerant C. A low temperature side heat pump circuit Kc is configured to circulate over the condenser Cd3 and the heat absorbing low temperature side evaporator Ev3. Further, the heat pump circuit Kb of the medium boiling point refrigerant B, which functions as the heat absorption source of the condenser Cds for heat exchange between circuits and the heat source of the high temperature side evaporator Ev1 by the circulation path (dashed line) of the medium boiling point refrigerant B. Is configured.

【0042】低温側凝縮器Cd3は、中継熱交換器7の
高圧気相冷媒通流部7aにて構成される回路間熱授受用
の凝縮器Cdsと、室内熱交換器1にて構成される回路
外放熱用の凝縮器Cdmとに分割形成されている。従っ
て、前記暖房用の空気加熱手段Hは、回路外放熱用の凝
縮器Cdmで構成されている。加湿手段Mにおける水加
熱手段は、高温側凝縮器Cd1で構成されている。
The low temperature side condenser Cd3 is constituted by the indoor heat exchanger 1 and a condenser Cds for transferring heat between circuits which is constituted by the high pressure vapor phase refrigerant flow portion 7a of the relay heat exchanger 7. It is divided into a condenser Cdm for heat radiation outside the circuit. Therefore, the air heating means H for heating is composed of the condenser Cdm for radiating heat outside the circuit. The water heating means in the humidifying means M is composed of the high temperature side condenser Cd1.

【0043】中沸点冷媒Bは、高温側凝縮器Cd1及び
高温側蒸発器Ev1も通過しているので、それらの凝縮
器Cd1及び蒸発器Ev1においても、多少の吸放熱が
行われる。また、冷媒循環路の途中において他の冷媒A
又はCと分離又は合流されることによっても、冷媒間に
おける多少の熱交換が行われることになる。しかし、そ
れらの多少の吸放熱及び熱交換を無視して、中温凝縮器
Cd2及び中温蒸発器Ev2における、凝縮熱放出及び
気化熱奪取による吸放熱及び熱交換のみに着目すれば、
中沸点冷媒Bのヒートポンプ回路Kbは、熱収支面にお
いて、高温側ヒートポンプ回路Ka及び低温側ヒートポ
ンプ回路Kcとは独立したヒートポンプ回路を構成して
いる。低沸点冷媒Cの低温側ヒートポンプ回路Kcにつ
いても、同様のことが言える。従って、高温側ヒートポ
ンプ回路Ka、中沸点冷媒Bのヒートポンプ回路Kb、
及び、低温側ヒートポンプ回路Kcは、熱収支面におい
ては、3つの独立したヒートポンプ回路を構成してい
る。
Since the medium boiling point refrigerant B also passes through the high temperature side condenser Cd1 and the high temperature side evaporator Ev1, the condenser Cd1 and the evaporator Ev1 also absorb and release some heat. Further, in the middle of the refrigerant circulation path, another refrigerant A
Alternatively, some heat exchange between the refrigerants is performed by separating or joining with C. However, ignoring some of those heat absorption and heat dissipation and heat exchange, if only focusing on heat absorption and heat dissipation and heat exchange due to condensation heat release and vaporization heat removal in the middle temperature condenser Cd2 and the middle temperature evaporator Ev2,
The heat pump circuit Kb for the medium boiling point refrigerant B constitutes a heat pump circuit independent of the high temperature side heat pump circuit Ka and the low temperature side heat pump circuit Kc in terms of heat balance. The same applies to the low temperature side heat pump circuit Kc of the low boiling point refrigerant C. Therefore, the high temperature side heat pump circuit Ka, the medium boiling point refrigerant B heat pump circuit Kb,
The low temperature side heat pump circuit Kc constitutes three independent heat pump circuits in terms of heat balance.

【0044】図2において、温熱の流れに着目すれば、
まず、低温側ヒートポンプ回路Kcの低温側蒸発器Ev
3において、気化熱奪取により、大気OAから熱が吸熱
される。低温側ヒートポンプ回路Kcにおいて吸熱され
た熱の一部は、回路外放熱用の凝縮器Cdmから放熱さ
れ、空気加熱手段Hの用に供されるが、残りは、回路間
熱授受用の凝縮器Cdsにおいて、凝縮熱放出により放
熱され、同時に、中沸点冷媒Bのヒートポンプ回路Kb
の中温蒸発器Ev2において、気化熱奪取により吸熱さ
れ、中沸点冷媒Bのヒートポンプ回路Kbに汲み上げら
れる。
In FIG. 2, focusing on the flow of heat,
First, the low temperature side evaporator Ev of the low temperature side heat pump circuit Kc
In 3, the heat of vaporization is absorbed to absorb heat from the air OA. A part of the heat absorbed in the low temperature side heat pump circuit Kc is radiated from the condenser Cdm for outside heat radiation and is used for the air heating means H, while the rest is a condenser for heat exchange between circuits. In Cds, heat is radiated by condensing heat release, and at the same time, the heat pump circuit Kb for the medium boiling point refrigerant B
In the middle temperature evaporator Ev2, the heat is absorbed by the heat of vaporization and is pumped up to the heat pump circuit Kb for the medium boiling point refrigerant B.

【0045】中温蒸発器Ev2において気化熱奪取によ
り吸熱された熱は、中沸点冷媒Bのヒートポンプ回路K
bの中温凝縮器Cd2において、再び凝縮熱放出により
放熱され、同時に、高温側ヒートポンプ回路Kaの高温
側蒸発器Ev1において気化熱奪取により吸熱され、高
温側ヒートポンプ回路Kaに汲み上げられる。
The heat absorbed by the heat of vaporization in the medium temperature evaporator Ev2 is absorbed by the heat pump circuit K of the medium boiling point refrigerant B.
In the middle-temperature condenser Cd2 of b, heat is released again by condensation heat release, and at the same time, it is absorbed by vaporization heat removal in the high temperature side evaporator Ev1 of the high temperature side heat pump circuit Ka and is pumped up to the high temperature side heat pump circuit Ka.

【0046】高温側蒸発器Ev1において吸熱された熱
は、高温側ヒートポンプ回路Kaの高温側凝縮器Cd1
から放熱され、加湿手段Mの水加熱手段の用に供され
る。
The heat absorbed in the high temperature side evaporator Ev1 is used as the high temperature side condenser Cd1 of the high temperature side heat pump circuit Ka.
The heat is radiated from and is used for the water heating means of the humidifying means M.

【0047】従って、中沸点冷媒Bのヒートポンプ回路
Kbは、回路間熱授受用の凝縮器Cdsと高温側蒸発器
Ev1とを相互に熱交換させる中継熱授受手段として構
成されている。
Therefore, the heat pump circuit Kb for the medium boiling point refrigerant B is constructed as a relay heat transfer means for exchanging heat between the condenser Cds for heat transfer between the circuits and the high temperature side evaporator Ev1.

【0048】次に、図3に示す冷媒運転状態を説明す
る。冷媒運転状態においては、高沸点冷媒A及び中沸点
冷媒Bは、全て気液分離器Sp1及びSp2の液溜め部
に回収貯留され、低沸点冷媒Cのみを、圧縮機Cmpに
よって循環させ、図4に示すように、室外熱交換器4を
凝縮器Cd3として機能させ、室内熱交換器1を蒸発器
Ev3として機能させる形態としてある。膨張弁exp
4は、本来の膨張弁として機能し、膨張弁exp3は、
流量調整弁として機能している。中継熱交換器6及び7
は、単に冷媒の通過経路として介裝されている。
Next, the refrigerant operating state shown in FIG. 3 will be described. In the refrigerant operation state, the high boiling point refrigerant A and the medium boiling point refrigerant B are all collected and stored in the liquid reservoirs of the gas-liquid separators Sp1 and Sp2, and only the low boiling point refrigerant C is circulated by the compressor Cmp, and As shown in, the outdoor heat exchanger 4 is made to function as a condenser Cd3, and the indoor heat exchanger 1 is made to function as an evaporator Ev3. Expansion valve exp
4 functions as an original expansion valve, and the expansion valve exp3 is
It functions as a flow control valve. Relay heat exchangers 6 and 7
Are simply provided as passages for the refrigerant.

【0049】〔第一の別実施例〕ヒートポンプ回路の構
成は、混合冷媒ヒートポンプ回路に限らず、いわゆる、
複元ヒートポンプ回路により構成されても良い。また、
中継熱授受手段は、ヒートポンプ回路Kbにて構成され
る場合に限らず、適宜変更できる。
[First Alternative Embodiment] The structure of the heat pump circuit is not limited to the mixed-refrigerant heat pump circuit.
It may be configured by a dual heat pump circuit. Also,
The relay heat transfer means is not limited to the case of being configured by the heat pump circuit Kb, but can be changed as appropriate.

【0050】図5及び図7には、複元ヒートポンプ回路
による空調装置の回路構成が示されている。同図中にお
いても、図1及び図3と同様に、1は室内熱交換器、2
は水蒸気発生用熱交換器、3は給気ファン、4は室外熱
交換器、5は外気ファンであり、室内熱交換器1、水蒸
気発生用熱交換器2、及び、室外熱交換器4に冷媒を循
環させることによって、大気OAを吸放熱源として、給
気SAを加熱又は冷却温調するヒートポンプ回路が構成
されている。
FIGS. 5 and 7 show the circuit configuration of an air conditioner using a multiple heat pump circuit. Also in the figure, as in FIGS. 1 and 3, 1 is an indoor heat exchanger, 2
Is a steam generator heat exchanger, 3 is an air supply fan, 4 is an outdoor heat exchanger, 5 is an outdoor air fan, and the indoor heat exchanger 1, the steam generator heat exchanger 2 and the outdoor heat exchanger 4 are connected to each other. By circulating the refrigerant, a heat pump circuit that controls the heating or cooling temperature of the supply air SA using the air OA as a heat absorption and heat radiation source is configured.

【0051】本別実施例の複元ヒートポンプ回路は、高
沸点冷媒A及び低沸点冷媒Cの二種冷媒を、各々混合さ
せることなく独立に循環させる、二元ヒートポンプ回路
にて構成されている。高沸点冷媒Aは、凝縮温度が10
0℃以上に設定されるものが使用されている。低沸点冷
媒Cには、蒸発温度が大気OAの温度よりも低くなり、
且つ、凝縮温度が高沸点冷媒Aの蒸発温度とオーバーラ
ップするものが使用されている。
The dual heat pump circuit according to this embodiment is composed of a dual heat pump circuit in which two kinds of refrigerants, a high boiling point refrigerant A and a low boiling point refrigerant C, are independently circulated without being mixed. The high boiling point refrigerant A has a condensation temperature of 10
The one set to 0 ° C or higher is used. In the low boiling point refrigerant C, the evaporation temperature becomes lower than the temperature of the atmospheric OA,
In addition, a refrigerant whose condensation temperature overlaps with the evaporation temperature of the high boiling point refrigerant A is used.

【0052】高沸点冷媒Aの冷媒循環路には、高沸点冷
媒Aのみを圧縮吐出する圧縮機Cmp1と、加湿手段M
の水加熱手段としての水蒸気発生用熱交換器2と、膨張
弁exp1と、中継熱交換器10とが装備されている。
低沸点冷媒Cの冷媒循環路には、低沸点冷媒Cのみを圧
縮吐出する圧縮機Cmp2と、中継熱交換器10及び暖
房用の空気加熱手段Hとしての室内熱交換器1と、前記
室外熱交換器4が蒸発器として使用される場合の膨張弁
exp3と、前記室内熱交換器1が蒸発器として使用さ
れる場合の膨張弁exp4とが装備されている。
A compressor Cmp1 for compressing and discharging only the high-boiling-point refrigerant A and a humidifying means M are provided in the refrigerant circulation path of the high-boiling-point refrigerant A.
The water vapor generating heat exchanger 2 as the water heating means, the expansion valve exp1, and the relay heat exchanger 10 are provided.
In the refrigerant circulation path of the low boiling point refrigerant C, a compressor Cmp2 that compresses and discharges only the low boiling point refrigerant C, the relay heat exchanger 10, the indoor heat exchanger 1 as the air heating means H for heating, and the outdoor heat. An expansion valve exp3 when the exchanger 4 is used as an evaporator and an expansion valve exp4 when the indoor heat exchanger 1 is used as an evaporator are provided.

【0053】中継熱交換器10は、高圧気相冷媒通流部
10aと、低圧気相冷媒通流部10bとから構成され、
相互に熱交換できるように構成されている。
The relay heat exchanger 10 is composed of a high-pressure vapor-phase refrigerant passage portion 10a and a low-pressure vapor-phase refrigerant passage portion 10b.
It is configured to be able to exchange heat with each other.

【0054】v1〜v4は、切換弁である。vR1は、
流量調整弁として機能している状態の膨張弁exp4と
ともに、室内熱交換器1及び中継熱交換器10に対する
低沸点冷媒Cの分配比を調節する流量調整弁である。
V1 to v4 are switching valves. vR1 is
It is a flow rate adjusting valve that adjusts the distribution ratio of the low boiling point refrigerant C to the indoor heat exchanger 1 and the relay heat exchanger 10 together with the expansion valve exp4 that is functioning as a flow rate adjusting valve.

【0055】図5には、前記空気加熱手段H及び前記加
湿手段Mが作動する、暖房加湿運転状態の空調装置の回
路構成が示されている。図7には、冷房運転状態の空調
装置の回路構成が示されている。
FIG. 5 shows a circuit configuration of an air conditioner in a heating and humidifying operation state in which the air heating means H and the humidifying means M are operated. FIG. 7 shows the circuit configuration of the air conditioner in the cooling operation state.

【0056】図5に示す、暖房加湿運転状態において
は、水蒸気発生用熱交換器2が、高沸点冷媒Aを凝縮さ
せる高温側凝縮器Cd1として機能し、中継熱交換器1
0の低圧気相冷媒通流部10bが、高沸点冷媒Aを蒸発
させる高温側蒸発器Ev1として機能し、室内熱交換器
1及び中継熱交換器10の高圧気相冷媒通流部10a
が、低沸点冷媒Cを凝縮させる低温側凝縮器Cd3とし
て機能し、室外熱交換器4が、低沸点冷媒Cを蒸発させ
る低温側蒸発器Ev3として機能している。
In the heating / humidifying operation state shown in FIG. 5, the steam generating heat exchanger 2 functions as a high temperature side condenser Cd1 for condensing the high boiling point refrigerant A, and the relay heat exchanger 1
The low-pressure vapor-phase refrigerant passage portion 10b of 0 functions as a high-temperature side evaporator Ev1 for evaporating the high-boiling-point refrigerant A, and the high-pressure vapor-phase refrigerant passage portion 10a of the indoor heat exchanger 1 and the relay heat exchanger 10
Functions as a low temperature side condenser Cd3 that condenses the low boiling point refrigerant C, and the outdoor heat exchanger 4 functions as a low temperature side evaporator Ev3 that evaporates the low boiling point refrigerant C.

【0057】従って、図6に示すように、冷房運転状態
の空調装置には、低沸点冷媒Cを低温側凝縮器Cd3と
吸熱用の低温側蒸発器Ev3とにわたって循環させる低
温側ヒートポンプ回路Kc、及び、高沸点冷媒Aを高温
側凝縮器Cd1と高温側蒸発器Ev1とにわたって循環
させる高温側ヒートポンプ回路Kaとが構成され、低温
側凝縮器Cd3が、中継熱交換器10の高圧気相冷媒通
流部10aを回路間熱授受用の凝縮器Cdsとして、室
内熱交換器1を回路外放熱用の凝縮器Cdmとして分割
形成され、暖房用の空気加熱手段Hは、回路外放熱用の
凝縮器Cdmで構成され、加湿手段Mにおける水加熱手
段は高温側凝縮器Cd1で構成されている。
Therefore, as shown in FIG. 6, in the air conditioner in the cooling operation state, the low temperature side heat pump circuit Kc for circulating the low boiling point refrigerant C through the low temperature side condenser Cd3 and the heat absorbing low temperature side evaporator Ev3, Also, a high temperature side heat pump circuit Ka for circulating the high boiling point refrigerant A over the high temperature side condenser Cd1 and the high temperature side evaporator Ev1 is configured, and the low temperature side condenser Cd3 is used for the high pressure gas phase refrigerant communication of the relay heat exchanger 10. The flow section 10a is formed as a condenser Cds for heat exchange between circuits, the indoor heat exchanger 1 is divided and formed as a condenser Cdm for heat radiation outside the circuit, and the air heating means H for heating is a condenser for heat radiation outside the circuit. The water heating means in the humidifying means M is a high temperature side condenser Cd1.

【0058】そして、中継熱交換器10によって、回路
間熱授受用の凝縮器Cdsと高温側蒸発器Ev1とを相
互に熱交換させる中継熱授受手段が構成されている。
The relay heat exchanger 10 constitutes a relay heat transfer means for mutually exchanging heat between the inter-circuit heat transfer condenser Cds and the high temperature side evaporator Ev1.

【0059】一方、図7に示す、冷房運転状態において
は、圧縮機Cmp1は停止され、室外熱交換器4を低沸
点冷媒Cの凝縮器Cd3として機能させ、室内熱交換器
1を低沸点冷媒Cの蒸発器Ev3として機能させる形態
としてある。膨張弁exp4が、本来の膨張弁として機
能し、膨張弁exp3が、流量調整弁として機能してい
る。従って、図8に示すように、低沸点冷媒Cの低温側
ヒートポンプ回路Kcのみで構成されている。
On the other hand, in the cooling operation state shown in FIG. 7, the compressor Cmp1 is stopped, the outdoor heat exchanger 4 functions as the condenser Cd3 of the low boiling point refrigerant C, and the indoor heat exchanger 1 becomes the low boiling point refrigerant. This is a mode of functioning as the evaporator Ev3 of C. The expansion valve exp4 functions as an original expansion valve, and the expansion valve exp3 functions as a flow rate adjusting valve. Therefore, as shown in FIG. 8, it is constituted only by the low temperature side heat pump circuit Kc of the low boiling point refrigerant C.

【0060】〔その他の別実施例〕中継熱授受手段は、
上述の混合冷媒ヒートポンプ回路における中沸点冷媒B
のヒートポンプ回路Kb、又は、複元ヒートポンプ回路
における中継熱交換器10に限らず、適宜変更できる。
例えば、複元ヒートポンプ回路においても、中継熱交換
器10に限らず、中沸点冷媒によるヒートポンプ回路に
て構成されても良い。また、混合冷媒ヒートポンプ回路
及び複元ヒートポンプ回路のいずれにおいても、複数冷
媒によって、複数段に構成されても良い。
[Other Embodiment] The relay heat transfer means is
Medium boiling point refrigerant B in the above mixed refrigerant heat pump circuit
It is not limited to the heat pump circuit Kb or the relay heat exchanger 10 in the multiple heat pump circuit, and can be appropriately changed.
For example, the dual heat pump circuit is not limited to the relay heat exchanger 10, and may be a heat pump circuit using a medium boiling point refrigerant. Further, in both the mixed refrigerant heat pump circuit and the dual heat pump circuit, a plurality of refrigerants may be formed in a plurality of stages.

【0061】暖房加湿運転状態における低温側蒸発器E
v3の吸熱源は、大気OAに限らず、適宜変更できる。
また、空気加熱手段H及び加湿手段Mは、給気ファン3
により給気SAが通風され、ダクト式により空調対象域
に送給されるものに限らず、室内熱交換器1及び水蒸気
発生用熱交換器2が空調対象域に設けられて、空調対象
空気を直接加熱及び加湿するように構成されても良い。
Low-temperature side evaporator E in the heating and humidifying operation state
The heat absorption source of v3 is not limited to the atmospheric air OA, but can be changed appropriately.
Further, the air heating means H and the humidification means M are provided in the air supply fan 3
The air supply SA is ventilated by the air supply system and is not limited to being ducted to the air conditioning target area, and the indoor heat exchanger 1 and the steam generating heat exchanger 2 are provided in the air conditioning target area to supply the air conditioning target air. It may be configured to directly heat and humidify.

【0062】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
It should be noted that reference numerals are added to the claims for convenience of comparison with the drawings, but the present invention is not limited to the configurations of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】空調装置の暖房加湿運転状態の回路構成を示す
構成図
FIG. 1 is a configuration diagram illustrating a circuit configuration of a heating and humidifying operation state of an air conditioner.

【図2】暖房加湿運転状態の冷媒の循環形態を示す説明
FIG. 2 is an explanatory diagram showing a circulation mode of refrigerant in a heating and humidifying operation state.

【図3】空調装置の冷房運転状態の回路構成を示す構成
FIG. 3 is a configuration diagram showing a circuit configuration of an air conditioner in a cooling operation state.

【図4】冷房運転状態の冷媒の循環形態を示す説明図FIG. 4 is an explanatory diagram showing a circulation mode of refrigerant in a cooling operation state.

【図5】第一の別実施例の空調装置の暖房加湿運転状態
の回路構成を示す構成図
FIG. 5 is a configuration diagram showing a circuit configuration of a heating and humidifying operation state of an air conditioner of a first another embodiment.

【図6】第一の別実施例の暖房加湿運転状態の冷媒の循
環形態を示す説明図
FIG. 6 is an explanatory diagram showing a circulation mode of a refrigerant in a heating and humidifying operation state of a first alternative embodiment.

【図7】第一の別実施例の空調装置の冷房運転状態の回
路構成を示す構成図
FIG. 7 is a configuration diagram showing a circuit configuration of a cooling operation state of an air conditioner of a first another embodiment.

【図8】第一の別実施例の冷房運転状態の冷媒の循環形
態を示す説明図
FIG. 8 is an explanatory diagram showing a circulation mode of refrigerant in a cooling operation state of a first alternative embodiment.

【符号の説明】[Explanation of symbols]

A 高沸点冷媒 B 中沸点冷媒 C 低沸点冷媒 Cd1 高温側凝縮器 Cd3 低温側凝縮器 Cdm 回路外放熱用の凝縮器 Cmp 共通圧縮機 Cds 回路間熱授受用の凝縮器 Ev1 高温側蒸発器 Ev3 低温側蒸発器 H 空気加熱手段 Ka 高温側ヒートポンプ回路 Kb 中継熱授受手段(ヒートポンプ回路) Kc 低温側ヒートポンプ回路 M 加湿手段 10 中継熱授受手段 A High boiling point refrigerant B Medium boiling point refrigerant C Low boiling point refrigerant Cd1 High temperature side condenser Cd3 Low temperature side condenser Cdm Condenser for heat dissipation outside the circuit Cmp Common compressor Cds Condenser for heat exchange between circuits Ev1 High temperature side evaporator Ev3 Low temperature Side evaporator H Air heating means Ka High temperature side heat pump circuit Kb Relay heat transfer means (heat pump circuit) Kc Low temperature side heat pump circuit M Humidification means 10 Relay heat transfer means

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F25B 29/00 431 Z Continuation of front page (51) Int.Cl. 6 Identification code Office reference number FI technical display area F25B 29/00 431 Z

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 冷媒凝縮熱により空気を加熱する暖房用
の空気加熱手段(H)と、加湿用水を加熱して発生させ
た水蒸気により前記空気加熱手段(H)による加熱空気
を加湿する加湿手段(M)とを設けたヒートポンプ式の
暖房加湿装置であって、 低沸点冷媒(C)を低温側凝縮器(Cd3)と吸熱用の
低温側蒸発器(Ev3)とにわたって循環させる低温側
ヒートポンプ回路(Kc)、及び、高沸点冷媒(A)を
高温側凝縮器(Cd1)と高温側蒸発器(Ev1)とに
わたって循環させる高温側ヒートポンプ回路(Ka)を
設け、 前記低温側凝縮器(Cd3)を回路間熱授受用の凝縮器
(Cds)と回路外放熱用の凝縮器(Cdm)とに分割
形成し、 前記暖房用の空気加熱手段(H)は前記回路外放熱用の
凝縮器(Cdm)で構成し、 前記加湿手段(M)における水加熱手段は前記高温側凝
縮器(Cd1)で構成し、 前記回路間熱授受用の凝縮器(Cds)と前記高温側蒸
発器(Ev1)とを相互に熱交換させる中継熱授受手段
(Kb,10)を設けたヒートポンプ式の暖房加湿装
置。
1. An air heating means (H) for heating, which heats the air by the heat of condensation of the refrigerant, and a humidifying means, which humidifies the heated air by the air heating means (H) with steam generated by heating the humidifying water. (M) is a heat pump type heating and humidifying device, and a low temperature side heat pump circuit for circulating a low boiling point refrigerant (C) between a low temperature side condenser (Cd3) and a low temperature side evaporator (Ev3) for absorbing heat. (Kc) and a high temperature side heat pump circuit (Ka) for circulating the high boiling point refrigerant (A) over the high temperature side condenser (Cd1) and the high temperature side evaporator (Ev1), and the low temperature side condenser (Cd3) Is divided into a condenser (Cds) for heat exchange between circuits and a condenser (Cdm) for heat radiation outside the circuit, and the air heating means (H) for heating is a condenser (Cdm) for heat radiation outside the circuit. ) Consists of The water heating means in the humidifying means (M) is composed of the high temperature side condenser (Cd1), and the condenser (Cds) for heat exchange between circuits and the high temperature side evaporator (Ev1) are mutually heat-exchanged. A heat pump type heating and humidifying device provided with relay heat transfer means (Kb, 10).
【請求項2】 前記低温側ヒートポンプ回路、及び、高
温側ヒートポンプ回路は、高沸点冷媒(A)と低沸点冷
媒(C)とを混合状態で吸入吐出する共通圧縮機(Cm
p)により冷媒循環させる構成としてある請求項1記載
のヒートポンプ式の暖房加湿装置。
2. The common compressor (Cm) for sucking and discharging a high boiling point refrigerant (A) and a low boiling point refrigerant (C) in a mixed state in the low temperature side heat pump circuit and the high temperature side heat pump circuit.
The heat pump type heating and humidifying device according to claim 1, wherein the refrigerant is circulated by p).
【請求項3】 前記中継熱授受手段(Kb)は、前記回
路間熱授受用の凝縮器(Cds)を吸熱源とし、かつ、
前記高温側蒸発器(Ev1)を放熱源として作用する中
沸点冷媒(B)のヒートポンプ回路(Kb)で構成して
ある請求項1又は2記載のヒートポンプ式の暖房加湿装
置。
3. The relay heat transfer means (Kb) uses the inter-circuit heat transfer condenser (Cds) as a heat absorption source, and
3. The heating / humidifying device of a heat pump type according to claim 1, wherein the high temperature side evaporator (Ev1) is configured by a heat pump circuit (Kb) of a medium boiling point refrigerant (B) that acts as a heat radiation source.
JP31468693A 1993-12-15 1993-12-15 Heat pump type heating humidifier Pending JPH07167516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31468693A JPH07167516A (en) 1993-12-15 1993-12-15 Heat pump type heating humidifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31468693A JPH07167516A (en) 1993-12-15 1993-12-15 Heat pump type heating humidifier

Publications (1)

Publication Number Publication Date
JPH07167516A true JPH07167516A (en) 1995-07-04

Family

ID=18056334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31468693A Pending JPH07167516A (en) 1993-12-15 1993-12-15 Heat pump type heating humidifier

Country Status (1)

Country Link
JP (1) JPH07167516A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110410760A (en) * 2019-06-24 2019-11-05 浙江大学 A kind of cascade high-temperature heat pump steam generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110410760A (en) * 2019-06-24 2019-11-05 浙江大学 A kind of cascade high-temperature heat pump steam generator

Similar Documents

Publication Publication Date Title
EP1121565B1 (en) heat exchange refrigerant subcool and/or precool system and method
US4373347A (en) Hybrid double-absorption cooling system
US4984434A (en) Hybrid vapor-compression/liquid desiccant air conditioner
US6324860B1 (en) Dehumidifying air-conditioning system
JP2017138069A (en) Integrated air conditioning device
JP2008185245A (en) Compression type heat pump device, operation method of the same, and cogeneration system
JP2004085096A (en) Hybrid-type desiccant air-conditioning system
JP3140333B2 (en) Heat pump equipment
JP2002313383A (en) Fuel cell system
JPH0145548B2 (en)
GB2318180A (en) Air-conditioning apparatus
JP4184197B2 (en) Hybrid absorption heat pump system
JP6818198B2 (en) Energy efficient central air conditioning and heat pump system
JPH076707B2 (en) Heat pump device
JP3823439B2 (en) Fuel cell drive air conditioning system
JPH07167516A (en) Heat pump type heating humidifier
JP3373948B2 (en) Air conditioner
JPH07167517A (en) Heat pump type heater
JPH07167518A (en) Heat pump type air conditioning humidifier
CN112880147A (en) Control method and control device for double-refrigeration type air conditioner and double-refrigeration type air conditioner
KR100493871B1 (en) Equipment for dehumidification and dryness
JP3859568B2 (en) Hybrid air conditioner
JPS6317970Y2 (en)
JP4184196B2 (en) Hybrid absorption heat pump system
JPS6172945A (en) Air conditioner