JPS6317970Y2 - - Google Patents

Info

Publication number
JPS6317970Y2
JPS6317970Y2 JP1981050635U JP5063581U JPS6317970Y2 JP S6317970 Y2 JPS6317970 Y2 JP S6317970Y2 JP 1981050635 U JP1981050635 U JP 1981050635U JP 5063581 U JP5063581 U JP 5063581U JP S6317970 Y2 JPS6317970 Y2 JP S6317970Y2
Authority
JP
Japan
Prior art keywords
heat
compressor
heat exchanger
refrigerant
solenoid valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981050635U
Other languages
Japanese (ja)
Other versions
JPS57163561U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981050635U priority Critical patent/JPS6317970Y2/ja
Publication of JPS57163561U publication Critical patent/JPS57163561U/ja
Application granted granted Critical
Publication of JPS6317970Y2 publication Critical patent/JPS6317970Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Description

【考案の詳細な説明】 本考案は圧縮機の運転効率の向上を図り、省エ
ネルギーを運転を可能にした空気調和機に関す
る。
[Detailed description of the invention] This invention relates to an air conditioner that improves the operating efficiency of the compressor and enables energy-saving operation.

一般に空気調和機は、圧縮機、室外側熱交換
器、減圧機構(絞り機構とも称す)および室内側
熱交換器などによつて冷媒の循環経路が構成され
ていることは周知である。そして冷房運転と暖房
運転とを選択的に切換えて運転使用できる、いわ
ゆるヒートポンプ式空気調和機にあつては、圧縮
機から送り出された冷媒を4方切換弁によつて流
れ系統を切り換え、その冷房運転時には冷媒を室
外側熱交換器によつて凝縮し、減圧機構で減圧し
たのち、室内側熱交換器で蒸発させ、この蒸発時
に屋内の熱を奪うことから室内の冷房を行うよう
になつている。また暖房運転時には圧縮機から送
り出された冷媒を室内側熱交換器によつて凝縮さ
せ、このとき室内に熱を放出して室内を暖めるよ
うになつており、しかるのち減圧機構で減圧し、
かつ室外側熱交換器で蒸発させるようになつてい
る。
It is well known that an air conditioner generally includes a refrigerant circulation path including a compressor, an outdoor heat exchanger, a pressure reduction mechanism (also referred to as a throttle mechanism), an indoor heat exchanger, and the like. In the case of so-called heat pump air conditioners that can be operated by selectively switching between cooling operation and heating operation, the flow system of the refrigerant sent out from the compressor is switched using a four-way switching valve, and the cooling During operation, the refrigerant is condensed in an outdoor heat exchanger, reduced in pressure by a decompression mechanism, and then evaporated in an indoor heat exchanger, and during this evaporation, indoor heat is taken away, thereby cooling the room. There is. Also, during heating operation, the refrigerant sent out from the compressor is condensed by the indoor heat exchanger, and at this time, heat is released into the room to warm the room, and then the pressure is reduced by the pressure reduction mechanism.
It is also designed to evaporate in an outdoor heat exchanger.

また、冷房専用機においては上記ヒートポンプ
式空気調和機の冷房運転時と同様の運転系統で室
内冷房を行うものである。
In addition, the cooling-only unit performs indoor cooling using the same operating system as the cooling operation of the heat pump type air conditioner.

ところで、ヒートポンプ式および冷房専用のい
づれの空気調和機においても、その運転中には圧
縮機自身が発熱を伴うものである。すなわち圧縮
機はこの運転中に軸受部分やピストンもしくはロ
ータなどの摩擦により発熱を生じ、また冷媒の圧
縮にもとづく発熱があり、よつてこれらの熱は圧
縮機本体を加熱する。
Incidentally, in both heat pump type and cooling-only air conditioners, the compressor itself generates heat during operation. That is, during operation, the compressor generates heat due to friction between bearings, pistons, rotors, etc., and also generates heat due to compression of the refrigerant, and these heats heat the compressor body.

このような圧縮機本体の発熱は圧縮機本体の表
面から一部分自然放熱されるが、残りは圧縮機本
体の温度上昇を招く。そしてヒートポンプ式空気
調和機の冷房運転時や冷房専用機の場合、圧縮機
本体の温度上昇は圧縮機から送り出されようとす
る冷媒の温度上昇を招き、室外側熱交換器での凝
縮温度が高くなる等の原因により圧縮比が増すた
め圧縮機の運転効率が低下し、圧縮機の消費電力
の増大を招く不具合がある。
A portion of the heat generated in the compressor body is naturally radiated from the surface of the compressor body, but the rest causes an increase in the temperature of the compressor body. When a heat pump type air conditioner is in cooling operation or is a cooling-only unit, the temperature rise in the compressor itself causes a rise in the temperature of the refrigerant being sent out from the compressor, resulting in a high condensation temperature in the outdoor heat exchanger. As the compression ratio increases due to factors such as the above, the operating efficiency of the compressor decreases, resulting in an increase in the power consumption of the compressor.

またヒートポンプ式空気調和機において、暖房
運転時に圧縮機本体の温度上昇は放熱による熱損
失となるから、この放熱量が暖房能力の損失とな
つている。
Furthermore, in a heat pump type air conditioner, a temperature rise in the compressor body during heating operation results in heat loss due to heat radiation, and this amount of heat radiation results in a loss of heating capacity.

本考案はこのような事情にもとづきなされたも
ので、その目的とするところは、圧縮機本体の発
熱をその運転条件に応じて外部に放熱させたり、
もしくは冷媒の加熱に利用するなどの熱伝達を行
えるようにし、圧縮機の運転効率を向上させ、消
費電力の節約を図り、省エネルギー運転を可能に
した空気調和機を提供しようとするものである。
The present invention was developed based on these circumstances, and its purpose is to radiate heat from the compressor body to the outside according to the operating conditions.
Alternatively, the present invention attempts to provide an air conditioner that enables energy-saving operation by making it possible to perform heat transfer such as using it to heat the refrigerant, improving the operating efficiency of the compressor, and saving power consumption.

すなわち本考案は圧縮機本体の発熱をヒートパ
イプによつて伝熱させるようにし、このヒートパ
イプの放熱部をたとえば室外の放熱箇所に設ける
ことによつて圧縮機本体の発熱を積極的に外部へ
放出せしめて圧縮機本体の温度上昇を防止した
り、または上記ヒートパイプの放熱部によつて圧
縮機本体の発熱を暖房エネルギーに有効に利用す
る等の使用態様が可能となつて、前述の目的が達
成できる空気調和機を特徴とする。
In other words, the present invention transfers the heat generated by the compressor body through a heat pipe, and by providing the heat dissipation part of this heat pipe at a heat dissipation point outdoors, for example, the heat generated by the compressor body is actively transferred to the outside. This makes it possible to use the heat generated in the compressor body to prevent a temperature rise in the compressor body, or to effectively use the heat generated in the compressor body as heating energy by using the heat radiating section of the heat pipe, thereby achieving the above-mentioned purpose. It is characterized by an air conditioner that can achieve this.

以下本考案の詳細をヒートポンプ式空気調和機
に適用した実施例について図面にもとづき説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a heat pump type air conditioner will be described below with reference to the drawings.

図中1は圧縮機であり、この圧縮機1の吐出側
および吸込側は4方切換弁2に接続されている。
4方切換弁2は圧縮機1から圧送された冷媒の流
れ方向を切り換えることにより冷房運転または暖
房運転のいづれかに選択することができるように
なつており、電磁式に切換操作される。4方切換
弁2は室外側熱交換器3に接続されている。室外
側熱交換器3はモータM1によつて駆動されるフ
アン4を備えている。室外側熱交換器3は減圧機
構としての第1、第2および第3のキヤピラリチ
ユーブ5,6および7に連通されている。なおこ
れら第1ないし第3のキヤピラリチユーブ5,
6,7は直列に接続されている。上記第3のキヤ
ピラリチユーブ7は室内側熱交換器8に接続され
ている。この室内側熱交換器8はモータM2によ
つて駆動されるフアン9を有している。そしてこ
の室内側熱交換器8は前記4方切換弁2に接続さ
れているものである。
In the figure, 1 is a compressor, and the discharge side and suction side of this compressor 1 are connected to a four-way switching valve 2.
The four-way switching valve 2 can select either cooling operation or heating operation by switching the flow direction of the refrigerant fed under pressure from the compressor 1, and is electromagnetically operated. The four-way switching valve 2 is connected to an outdoor heat exchanger 3. The outdoor heat exchanger 3 includes a fan 4 driven by a motor M1 . The outdoor heat exchanger 3 is communicated with first, second, and third capillary tubes 5, 6, and 7 as pressure reduction mechanisms. Note that these first to third capillary tubes 5,
6 and 7 are connected in series. The third capillary tube 7 is connected to an indoor heat exchanger 8. This indoor heat exchanger 8 has a fan 9 driven by a motor M2 . This indoor heat exchanger 8 is connected to the four-way switching valve 2.

上記第2のキヤピラリチユーブ6にはこれと並
列をなして逆止弁10が設けられている。また上
記第2のキヤピラリチユーブ6と第3のキヤピラ
リチユーブ7との間には分岐管が設けられてお
り、この分岐管には第4のキヤピラリチユーブ1
1が設けられている。この第4のキヤピラリチユ
ーブ11は二重管形熱交換器12の一方の管路1
3を介して圧縮機1の吸入側に接続されている。
A check valve 10 is provided in parallel with the second capillary tube 6. Further, a branch pipe is provided between the second capillary tube 6 and the third capillary tube 7, and this branch pipe has a fourth capillary tube 1.
1 is provided. This fourth capillary tube 11 is one of the pipe lines 1 of the double pipe heat exchanger 12.
3 to the suction side of the compressor 1.

しかして上記圧縮機1の外周部位にはヒートパ
イプの集熱部14が巻回されており、圧縮機1は
このヒートパイプ集熱部14によつて包囲されて
いる。ヒートパイプはすでに知られている通り、
詳図しないが、密封パイプの内表面にウイツクを
張設し、この密封パイプ内を高度に減圧するとと
もにこの密封パイプ内に熱伝動作動液を注入した
ものである。そしてこのヒートパイプは一端の集
熱部を温度に高い部位に位置させると、パイプ内
の作動液が蒸発されて、この作動液はヒートパイ
プ他端の放熱部において凝縮され、この凝縮によ
り放熱部を加熱して温度の低い外囲雰囲気に熱を
与えるものである。なお凝縮された作動液はウイ
ツクの毛細管作用によつて集熱部に流れ込む。
A heat collecting section 14 of a heat pipe is wound around the outer periphery of the compressor 1, and the compressor 1 is surrounded by the heat collecting section 14 of the heat pipe. As heat pipes are already known,
Although not shown in detail, a wick is installed on the inner surface of the sealed pipe, the pressure inside the sealed pipe is highly reduced, and a heat transfer working fluid is injected into the sealed pipe. When the heat collecting part at one end of this heat pipe is located in a high temperature area, the working fluid inside the pipe is evaporated, and this working fluid is condensed at the heat radiating part at the other end of the heat pipe. It is used to heat the surrounding atmosphere at a low temperature. Note that the condensed working fluid flows into the heat collecting section by capillary action.

上記ヒートパイプの放熱部は、本実施例の場合
2箇所に形成されており、その一方の放熱部15
は前記室外側熱交換器3とフアン4との間に設け
られている。また他方の放熱部16は、前述した
2重管形熱交換器12の他方の管路に設けられて
いる。上記ヒートパイプにおける集熱部14と各
放熱部15,16とを結ぶ断熱部17には3方切
換電磁弁18が設けられ上記放熱部15,16は
この3方切換電磁弁18の切換作動によつて集熱
部14に選択的に連通されるようになつている。
In this embodiment, the heat radiating portions of the heat pipe are formed at two locations, one of which is the heat radiating portion 15.
is provided between the outdoor heat exchanger 3 and the fan 4. The other heat radiating section 16 is provided in the other pipe of the double tube heat exchanger 12 described above. A three-way switching solenoid valve 18 is provided in the heat insulating section 17 connecting the heat collecting section 14 and each heat radiating section 15, 16 in the heat pipe. Therefore, it is configured to selectively communicate with the heat collecting section 14.

そして上記圧縮機1、モータM1およびM2、4
方切換弁2、3方切換電磁弁18は電源19に対
して第2図のごとく接続されている。20は運転
用メインスイツチ、21は冷暖房切換スイツチ、
22は室外の温度を検知する外温サーモスイツチ
を示す。冷暖房切換スイツチ21はたとえば常開
スイツチであり、オフ状態では4方切換弁2によ
り冷媒を冷房運転の方向に流し、このスイツチ2
1をオンさせると、4方切換弁2を作動させて冷
媒を暖房運転方向に流す。また外温サーモスイツ
チ22はたとえば外気温度が所定値以上のときに
オフされていて、3方切換電磁弁18を介してヒ
ートパイプ集熱部14を一方の放熱部15に連通
せしめ、かつ外気温度が所定値未満の場合にはオ
ンされることにより3方切換電磁弁18を作動せ
しめ、集熱部14を他方の放熱部16と連通させ
るようになつている。
and the compressor 1, motors M 1 and M 2 , 4
The one-way switching valve 2 and the three-way switching solenoid valve 18 are connected to a power source 19 as shown in FIG. 20 is the main switch for operation, 21 is the air conditioning/heating selector switch,
Reference numeral 22 indicates an external temperature thermoswitch that detects the outdoor temperature. The air conditioning/heating selector switch 21 is, for example, a normally open switch.
When the switch 1 is turned on, the four-way switching valve 2 is operated to flow the refrigerant in the heating operation direction. The outside temperature thermoswitch 22 is turned off when the outside air temperature is higher than a predetermined value, for example, and connects the heat pipe heat collecting section 14 to one of the heat radiating sections 15 via the three-way switching solenoid valve 18. is less than a predetermined value, the three-way switching solenoid valve 18 is operated by being turned on, and the heat collecting part 14 is made to communicate with the other heat radiating part 16.

このような構成に係る実施例の作用につき説明
する。
The operation of the embodiment having such a configuration will be explained.

まず冷房運転する場合には運転用メインスイツ
チ20をオン作動させる。この際、冷暖房切換ス
イツチ21はオフの状態に保たれ、よつて冷媒は
第1図の実線矢印のごとく流れる。またこの場合
には上記冷暖房切換スイツチ21がオフされてい
るから、外温サーモスイツチ22のオン、オフに
拘らず3方切換電磁弁18はヒートパイプ集熱部
14を第1の放熱部15に連通せしめている。
First, when performing cooling operation, the main operation switch 20 is turned on. At this time, the air conditioning/heating changeover switch 21 is kept in the OFF state, so that the refrigerant flows as indicated by the solid line arrow in FIG. Also, in this case, since the air conditioning/heating changeover switch 21 is turned off, the three-way solenoid valve 18 switches the heat pipe heat collecting section 14 to the first heat radiating section 15 regardless of whether the outside temperature thermoswitch 22 is on or off. It communicates.

そして圧縮機1から送り出された冷媒は4方切
換弁2を経て室外側熱交換器3に送られ、この室
外側熱交換器3によつて凝縮される。この凝縮冷
媒は第1、第2および第3のキヤピラリチユーブ
5,6および7を通る間に減圧されて室内側熱交
換器8に送られる。室内側熱交換器8においては
室内空気の熱を奪つて冷媒が蒸発され、よつて室
内空気を冷やす。この蒸発冷媒は4方切換弁2を
経て圧縮機1に戻される。
The refrigerant sent out from the compressor 1 is sent to the outdoor heat exchanger 3 via the four-way switching valve 2, and is condensed by the outdoor heat exchanger 3. This condensed refrigerant is decompressed while passing through the first, second and third capillary tubes 5, 6 and 7 and is sent to the indoor heat exchanger 8. In the indoor heat exchanger 8, the refrigerant is evaporated by removing heat from the indoor air, thereby cooling the indoor air. This evaporated refrigerant is returned to the compressor 1 via a four-way switching valve 2.

そしてこのような冷媒の循環途中において、第
2のキヤピラリチユーブ6を通過して冷媒の一部
は第4のキヤピラリチユーブ11を経て2重管形
熱交換器12の一方の管路13を通つて圧縮機1
へ流れ込む。
During the circulation of the refrigerant, a part of the refrigerant passes through the second capillary tube 6, passes through the fourth capillary tube 11, and enters one of the pipes 13 of the double-tube heat exchanger 12. Compressor 1
flows into.

しかしてこのような冷房運転中に、圧縮機1の
発熱はヒートパイプ集熱部14によつて集められ
る。そしてヒートパイプ14の放熱部15は室外
側熱交換器3とフアン4との間に介装されている
から、フアン4の回転にもとづき冷却される。つ
まりヒートパイプ14の放熱部15から放出され
る熱は室外に放出される。
However, during such cooling operation, the heat generated by the compressor 1 is collected by the heat pipe heat collecting section 14. Since the heat radiation part 15 of the heat pipe 14 is interposed between the outdoor heat exchanger 3 and the fan 4, it is cooled based on the rotation of the fan 4. In other words, the heat released from the heat radiating portion 15 of the heat pipe 14 is released outside.

したがつて圧縮機1の発熱は積極的にヒートパ
イプ集熱部14によつて奪い取られ、このヒート
パイプに集めた熱は強制的に室外へ放出されるた
め、圧縮機本体は積極的に冷やされることになる
ので温度上昇が防止される。この結果、圧縮機1
の運転効率が向上し、消費電力も少なくなるので
省エネルギー運転が可能になる。
Therefore, the heat generated by the compressor 1 is actively taken away by the heat pipe heat collecting section 14, and the heat collected in this heat pipe is forcibly released outside, so that the compressor body is actively cooled. This prevents the temperature from rising. As a result, compressor 1
This improves operating efficiency and reduces power consumption, enabling energy-saving operation.

ついで暖房運転する場合について説明する。 Next, the case of heating operation will be explained.

暖房運転しようとするときには、運転用メイン
スイツチ20をオンするとともに冷暖房切換スイ
ツチ21もオンする。この冷暖房切換スイツチ2
1のオン作動にもとづき4方切換弁2が作動され
て冷媒の流れを第1図破線矢印方向へ切り換え
る。
When the heating operation is to be performed, the main operation switch 20 is turned on, and the air conditioning/heating changeover switch 21 is also turned on. This heating/cooling switch 2
1, the four-way switching valve 2 is operated to switch the flow of refrigerant in the direction of the broken line arrow in FIG.

したがつて圧縮機1から吐出された冷媒は4方
切換弁2を経て室内側熱交換器8へ送られる。こ
の室内側熱交換器8においては冷媒の熱を室内空
気に伝えて室内空気を暖め、冷媒自身は凝縮され
る。そして凝縮冷媒は第3、第2および第1のキ
ヤピラリチユーブ7,6および5を介して室外側
熱交換器3に送られる。室外側熱交換器3は冷媒
を蒸発させ、この蒸発冷媒は4方切換弁2を経て
圧縮機1へ戻される。
Therefore, the refrigerant discharged from the compressor 1 is sent to the indoor heat exchanger 8 via the four-way switching valve 2. In the indoor heat exchanger 8, the heat of the refrigerant is transferred to the indoor air to warm the indoor air, and the refrigerant itself is condensed. The condensed refrigerant is then sent to the outdoor heat exchanger 3 via the third, second and first capillary tubes 7, 6 and 5. The outdoor heat exchanger 3 evaporates the refrigerant, and this evaporated refrigerant is returned to the compressor 1 via the four-way switching valve 2.

また、第3のキヤピラリチユーブ7を通過した
冷媒はその一部が第4のキヤピラリチユーブ11
を経て二重管形熱交換器12の一方の管路13を
通過して圧縮機1へ戻される。
Further, a part of the refrigerant that has passed through the third capillary tube 7 is transferred to the fourth capillary tube 11.
It passes through one pipe line 13 of the double-tube heat exchanger 12 and is returned to the compressor 1.

ところで外気温度が所定値以上の場合、つまり
外気温度が室内の暖房設定温度と大差ない場合に
は、外温サーモスイツチ22はオフ作動されてい
るので3方切換電磁弁18は、前述した冷房運転
と同じ状態である。すなわちヒートパイプ集熱部
14は第1の放熱部15に連通されている。この
ため圧縮機1の発熱は第1の放熱部15を介して
外気に放熱されるから、圧縮機1は積極的に冷や
され、運転効率が向上される。
By the way, when the outside air temperature is above a predetermined value, that is, when the outside air temperature is not much different from the indoor heating setting temperature, the outside temperature thermoswitch 22 is turned off, and the three-way switching solenoid valve 18 is turned off to perform the above-mentioned cooling operation. is in the same state. That is, the heat pipe heat collecting section 14 is communicated with the first heat radiating section 15 . Therefore, the heat generated by the compressor 1 is radiated to the outside air via the first heat radiating section 15, so the compressor 1 is actively cooled and the operating efficiency is improved.

一方、外気温度が所定値未満のとき、つまり外
気温度が低いので室内温度を外気温度に比べて上
昇させたい場合には外温サーモスイツチ22が自
動的にオンされる。このため3方切換電磁弁18
が切換作動されてヒートパイプ集熱部14を第2
の放熱部16、すなわち二重管形熱交換器12の
他方の管路に連通させる。このため、圧縮機2の
放熱はヒートパイプを通じて二重管形熱交換器1
2に伝達される。したがつてこの二重管形熱交換
器12の一方の管路13を通過している冷媒は上
記熱によつて暖められる。
On the other hand, when the outside air temperature is less than a predetermined value, that is, when the outside air temperature is low and it is desired to raise the indoor temperature compared to the outside air temperature, the outside temperature thermoswitch 22 is automatically turned on. For this reason, the three-way solenoid valve 18
is operated to switch the heat pipe heat collecting section 14 to the second
The heat radiating section 16 of the double-tube heat exchanger 12 is connected to the other pipe line of the double-tube heat exchanger 12. Therefore, the heat from the compressor 2 is radiated through the heat pipe to the double-tube heat exchanger 1.
2. Therefore, the refrigerant passing through one of the pipes 13 of the double-tube heat exchanger 12 is warmed by the heat.

この結果、圧縮機1に戻される冷媒の一部が温
度上昇されることになり、運転性能の向上を可能
にする。このことについて第3図のモリエル線図
にもとづき説明する。
As a result, the temperature of a portion of the refrigerant returned to the compressor 1 is increased, making it possible to improve the operating performance. This will be explained based on the Mollier diagram shown in FIG.

上記のごとき暖房運転時においては、室内側熱
交換器9によつて凝縮された高圧P5の液冷媒の
一部は、第3および第4のキヤピラリチユーブ7
および11を通過する過程で中間圧P6の液冷媒
となつて(d→e)、二重管形熱交換器12によ
り加熱されることにより蒸発されてガス状冷媒に
かわり(e→b)、このガス状冷媒が室外側熱交
換器3を経て圧縮機1に戻されたガス(d→f→
a2)とともに圧縮機1で加圧されることになる。
しかしながら、本実施例のようなヒートパイプお
よび二重管形熱交換器を使用しない場合には、圧
縮機1の加圧状態は破線のごとくなり、圧縮機1
の吸込劣媒はa1に示されるように飽和領域内に存
在し、蒸発しきれない液冷媒と蒸発したガス冷媒
が混在されるため、液冷媒成分が圧縮機1内に吸
込まれることによつて減圧縮運転となつたり、過
度に冷却されるなどにより運転性能が良くない。
During the heating operation as described above, a part of the high pressure P5 liquid refrigerant condensed by the indoor heat exchanger 9 is transferred to the third and fourth capillary tubes 7.
and 11, it becomes a liquid refrigerant at an intermediate pressure of P 6 (d→e), and is heated by the double-tube heat exchanger 12 to evaporate and change to a gaseous refrigerant (e→b). , this gaseous refrigerant is returned to the compressor 1 through the outdoor heat exchanger 3 (d→f→
a 2 ) and will be pressurized by the compressor 1.
However, if the heat pipe and double tube heat exchanger as in this embodiment are not used, the pressurized state of the compressor 1 will be as shown by the broken line, and the compressor 1 will be in a pressurized state as shown by the broken line.
As shown in a1 , the sucked inferior refrigerant exists in the saturated region, and the liquid refrigerant that has not completely evaporated and the evaporated gas refrigerant are mixed, so the liquid refrigerant component is sucked into the compressor 1. As a result, operating performance is poor due to reduced compression operation, excessive cooling, etc.

これに対して本実施例を採用すると、圧縮機本
体1の放熱によつて吸込冷媒の一部を加熱するの
で、この加熱された冷媒が蒸発されて圧縮機1に
吸込まれ、このガス冷媒は圧縮機本体1の過度の
冷却を防止して延いては室外側熱交換器3から吸
い込まれる冷媒を飽和領域外a2にして蒸発させる
ことになる。このため圧縮機1からの吐出ガス温
度をT2分だけ上昇させることになり、よつて圧
縮機1の運転効率を向上させる。このため暖房能
力が増大することになる。
On the other hand, if this embodiment is adopted, a part of the suction refrigerant is heated by the heat radiation of the compressor main body 1, so this heated refrigerant is evaporated and sucked into the compressor 1, and this gas refrigerant is Excessive cooling of the compressor main body 1 is prevented, and the refrigerant sucked from the outdoor heat exchanger 3 is evaporated outside the saturation region a2 . Therefore, the temperature of the gas discharged from the compressor 1 is increased by T2 , thereby improving the operating efficiency of the compressor 1. This results in an increase in heating capacity.

したがつて上記実施例によると、冷房運転およ
び暖房運転中の外気温度の高い場合には、圧縮機
の発熱をヒートパイプを介して積極的に外気へ放
出させて圧縮機の過度の温度上昇を防止するので
圧縮機の運転効率が向上し、また暖房運転におけ
る外気温度の低い場合には圧縮機の放熱を冷媒の
一部に伝えて冷媒を加熱し、やはり運転効率の向
上が可能になる。よつて省エネルギー運転を実現
することができる。
Therefore, according to the above embodiment, when the outside air temperature is high during cooling and heating operations, the heat generated by the compressor is actively released to the outside air via the heat pipe to prevent an excessive temperature rise in the compressor. Since this is prevented, the operating efficiency of the compressor is improved, and when the outside air temperature is low during heating operation, the heat radiated from the compressor is transferred to a part of the refrigerant to heat the refrigerant, which also makes it possible to improve the operating efficiency. Therefore, energy-saving operation can be realized.

しかもヒートパイプは内部の作動液の熱伝達作
用によつて高温部分から低温部分に熱伝達するも
のであるため、格別な熱伝達駆動源を必要としな
い。このため、何ら格別なエネルギーを使用しな
いから省エネルギー効果が良好となる。
Moreover, since the heat pipe transfers heat from a high temperature part to a low temperature part by the heat transfer action of the internal working fluid, a special heat transfer driving source is not required. Therefore, since no special energy is used, the energy saving effect is good.

なお、ヒートパイプ集熱部14によつて圧縮機
本体を包囲すれば、圧縮機から発せられる騒音の
外部への伝達も防止できる利点もある。
Furthermore, if the compressor main body is surrounded by the heat pipe heat collecting section 14, there is an advantage that the noise emitted from the compressor can be prevented from being transmitted to the outside.

なお、上記実施例においては、第2の放熱部1
6を二重管形熱交換器12の他方の管路に連通さ
せて圧縮機1に戻される冷媒を加熱させるように
したが、たとえば第2の放熱部は室内側熱交換器
8の近傍に付設して暖房時における圧縮機の放熱
を室内暖房用熱の一部として使用するなどの実施
態様も可能である。
Note that in the above embodiment, the second heat dissipation section 1
6 is connected to the other pipe line of the double-tube heat exchanger 12 to heat the refrigerant returned to the compressor 1. It is also possible to implement an embodiment in which the heat radiated from the compressor is attached and used during heating as part of the heat for indoor heating.

また上記実施例はヒートポンプ式空気調和機に
ついて説明したが、本発明はこれに限らず、冷房
専用機にも実施することができ、この場合は上記
ヒートポンプ式空気調和機における冷房運転時と
同様な効果を奏するものである。
Furthermore, although the above embodiments have been described with respect to a heat pump type air conditioner, the present invention is not limited to this, and can also be implemented in a cooling-only machine. It is effective.

以上詳述した通り本考案によれば、圧縮機本体
をヒートパイプの集熱部で囲むことにより圧縮機
本体の発熱をヒートパイプに伝え、この熱をヒー
トパイプの放熱部を介して放熱させるようにした
から、このヒートパイプ放熱部をたとえば外気に
放熱させるように設置すれば、圧縮機を良好に冷
却することができて圧縮機の運転効率の向上が可
能となる。また、たとえば暖房運転などのときに
は圧縮機からの放熱をヒートパイプ放熱部を介し
て暖房用のエネルギーとして利用できるので、圧
縮機の発熱を有効に活用することができる。しか
もヒートパイプは外部に格別な駆動手段を必要と
しなく、エネルギーの消費がない。このようなこ
とから空気調和機の省エネルギー運転が可能にな
るなどの利用を奏する。
As detailed above, according to the present invention, by surrounding the compressor body with the heat collection part of the heat pipe, the heat generated by the compressor body is transmitted to the heat pipe, and this heat is radiated through the heat radiation part of the heat pipe. Therefore, if this heat pipe heat radiation section is installed to radiate heat to the outside air, the compressor can be cooled well and the operating efficiency of the compressor can be improved. Further, during heating operation, for example, the heat radiated from the compressor can be used as energy for heating via the heat pipe heat radiating section, so that the heat generated by the compressor can be effectively utilized. Furthermore, heat pipes do not require any special external driving means and do not consume energy. This makes it possible to use energy-saving operation of air conditioners.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本考案の一実施例を示し、第1図はヒー
トポンプ式空気調和機の冷媒循環経路を示す図、
第2図はその電気回路図、第3図はモリエル線図
である。 1……圧縮機、3……室外側熱交換器、5〜
7,11……キヤピラリチユーブ(減圧機構)、
8……室内側熱交換器、14……ヒートパイプ集
熱部、15,16……ヒートパイプ放熱部。
The drawings show an embodiment of the present invention, and FIG. 1 is a diagram showing a refrigerant circulation path of a heat pump air conditioner.
FIG. 2 is its electric circuit diagram, and FIG. 3 is its Mollier diagram. 1...Compressor, 3...Outdoor heat exchanger, 5~
7, 11... Capillary tube (decompression mechanism),
8... Indoor heat exchanger, 14... Heat pipe heat collection section, 15, 16... Heat pipe heat radiation section.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 圧縮機、室外側熱交換器、減圧機構及び室内側
熱交換器により冷媒の循環経路を形成し、かつ液
冷媒の一部を前記圧縮機に導入して該圧縮機を冷
却する冷却回路を形成した空気調和機において、
前記圧縮機の本体をヒートパイプの集熱部で囲
み、かつ該ヒートパイプを3方切換電磁弁を介し
て前記室外側熱交換器及び前記冷却回路に介装さ
れた熱交換器に夫々接続し、更に冷暖房切換スイ
ツチに直列に接続され、冷房運転時、前記3方切
換電磁弁を前記室外側熱交換器側に切換えると共
に暖房運転の外気温度が所定値以上の時に前記3
方切換電磁弁を前記室外側熱交換器側に切換え、
暖房運転での外気温度が所定値未満の時に前記3
方切換電磁弁を前記冷却回路の熱交換器側に切換
える外温サーモスイツチを設けたことを特徴とす
る空気調和機。
A refrigerant circulation path is formed by a compressor, an outdoor heat exchanger, a pressure reduction mechanism, and an indoor heat exchanger, and a cooling circuit is formed that cools the compressor by introducing a part of the liquid refrigerant into the compressor. In the air conditioner,
The main body of the compressor is surrounded by a heat collection part of a heat pipe, and the heat pipe is connected to the outdoor heat exchanger and the heat exchanger installed in the cooling circuit via a three-way switching solenoid valve, respectively. , further connected in series to an air conditioning/heating changeover switch, which switches the three-way switching solenoid valve to the outdoor heat exchanger side during cooling operation, and switches the three-way switching solenoid valve to the outdoor heat exchanger side during heating operation, and when the outside air temperature is above a predetermined value during heating operation.
Switch the direction switching solenoid valve to the outdoor heat exchanger side,
3 above when the outside air temperature is less than the predetermined value during heating operation.
1. An air conditioner comprising an external temperature thermoswitch for switching a direction switching solenoid valve to a heat exchanger side of the cooling circuit.
JP1981050635U 1981-04-08 1981-04-08 Expired JPS6317970Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981050635U JPS6317970Y2 (en) 1981-04-08 1981-04-08

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981050635U JPS6317970Y2 (en) 1981-04-08 1981-04-08

Publications (2)

Publication Number Publication Date
JPS57163561U JPS57163561U (en) 1982-10-15
JPS6317970Y2 true JPS6317970Y2 (en) 1988-05-20

Family

ID=29847351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981050635U Expired JPS6317970Y2 (en) 1981-04-08 1981-04-08

Country Status (1)

Country Link
JP (1) JPS6317970Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966662A (en) * 1982-10-06 1984-04-16 ダイキン工業株式会社 Heat pump type heating apparatus
WO2010134153A1 (en) * 2009-05-18 2010-11-25 三菱電機株式会社 Heat pump device and method of controlling regulation valve

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4711948U (en) * 1971-03-06 1972-10-12

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4889041U (en) * 1972-01-28 1973-10-26

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4711948U (en) * 1971-03-06 1972-10-12

Also Published As

Publication number Publication date
JPS57163561U (en) 1982-10-15

Similar Documents

Publication Publication Date Title
US4071080A (en) Air conditioning system
JP2003075009A (en) Heat pump system
JP2006258343A (en) Air conditioning system
WO2003021166A1 (en) Exhaust heat utilizing refrigeration system
KR100622604B1 (en) Gas engine heat pump with an enhanced accumulator
JPS6317970Y2 (en)
JP3330100B2 (en) Heat pump air conditioner for cold regions
JPS5844299Y2 (en) Air conditioner refrigeration cycle
JP2003185290A (en) Hot-water supply and air conditioning device
JP2004098974A (en) Air conditioner for vehicle
JP3502155B2 (en) Thermal storage type air conditioner
JP3608400B2 (en) Heating and cooling equipment
JPS581345B2 (en) Air conditioning/heating/hot water equipment
KR100261810B1 (en) Heat pump air-conditioner
KR100419479B1 (en) Auxiliary refrigerator mounted heat pump system
KR200213996Y1 (en) Regeneration-compound cycle cooling and heating system
JPS6229871A (en) Defroster for heat-engine driving air conditioner
JP3030826U (en) Air conditioner hot water supply device
JPS6226428A (en) Heat pump type air conditioner
JPS6030651Y2 (en) Air source heat pump equipment
JP2000130879A (en) Air conditioning equipment
JPS6110134Y2 (en)
JPS5872853A (en) Absorption air conditioner
KR0123457B1 (en) Airconditioner
JP3740757B2 (en) Air conditioner