JPH07301471A - Reheating type dehumidifying air conditioner - Google Patents

Reheating type dehumidifying air conditioner

Info

Publication number
JPH07301471A
JPH07301471A JP9278894A JP9278894A JPH07301471A JP H07301471 A JPH07301471 A JP H07301471A JP 9278894 A JP9278894 A JP 9278894A JP 9278894 A JP9278894 A JP 9278894A JP H07301471 A JPH07301471 A JP H07301471A
Authority
JP
Japan
Prior art keywords
heat
condenser
air
refrigerant
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9278894A
Other languages
Japanese (ja)
Inventor
Akira Morikawa
朗 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP9278894A priority Critical patent/JPH07301471A/en
Publication of JPH07301471A publication Critical patent/JPH07301471A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To avoid the instabilization of an operation and a decrease in efficiency in a reheating type dehumidifying air conditioner in which the air after cooling and dehumidifying is reheated by using air conditioning refrigerant. CONSTITUTION:The reheating type dehumidifying air conditioner comprises a dehumidifier D for cooling to dehumidify the air, a reheater H for reheating the dehumidified air by the dehumidifier D, and a plurality of heat pump circuits interposed thermally in series between heat absorbing evaporators 1, 4 which are operated as the function of the dehumidifier D and a radiating condenser for radiating heat. The condenser of a predetermined heat pump circuit disposed at an intermediate or a low-temperature end of a series group of the circuit is split to a relay condenser for heat relay in the group and a condenser Cm for intermediate radiation to radiate heat externally of the group, and the condenser Cm for the intermediate radiation is operated as the function of the reheater H by its radiating operation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空気の冷却除湿を行う
除湿器と、この除湿器による除湿空気を再熱する再熱器
とを設け、前記除湿器として機能させる吸熱用蒸発器と
放熱を行う放熱用凝縮器との間に、複数のヒートポンプ
回路を熱的に直列に介在させ、冷媒の劣化の少ない状態
で吸熱側と放熱側との間での温度差を大きく取れるよう
にした再熱式除湿空調装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is provided with a dehumidifier for cooling and dehumidifying air, and a reheater for reheating dehumidified air by the dehumidifier, and an endothermic evaporator and a heat dissipation functioning as the dehumidifier. A plurality of heat pump circuits are thermally interposed in series between the heat-radiating condenser and the heat-radiating condenser so that a large temperature difference between the heat-absorbing side and the heat-dissipating side can be achieved with little deterioration of the refrigerant. The present invention relates to a thermal dehumidifying air conditioner.

【0002】[0002]

【従来の技術】上述した再熱式除湿空調装置において、
本出願人は、先に、放熱用凝縮器からの放熱を有効利用
すべく、複数のヒートポンプ回路の直列群中で高温端に
位置するヒートポンプ回路の凝縮器を2分割構成とし、
一方をその放熱作用により前記再熱器として機能させる
構成としたものを提案した。この構成を図5を用いてさ
らに説明する。図5は、2組のヒートポンプ回路を熱的
に直列に接続した空調装置で、一対の空調対象域SA
1’,SA2’に対する導入空気を冷却除湿する各別の
低温側蒸発手段Eb1’,Eb2’を備えた低温側ヒー
トポンプ回路Sb’と、外気へ放熱する外気放熱用凝縮
手段Cao’を備えた高温側ヒートポンプ回路Sa’と
を設け、低温側ヒートポンプ回路Sb’の低温側凝縮手
段Cb’と高温側蒸発手段Ea’とを一体構成とした中
継熱交換器X’によって、2つのヒートポンプ回路S
a’,Sb’間での熱授受を行なうように構成してあ
る。そして、前記一対の低温側蒸発手段Eb1’,Eb
2’と対応する各別の給気ファンF1’,F2’との間
に、除湿後の供給空気を加熱するための各別の再熱器C
ai1 ’,Cai2 ’を設け、それら一対の再熱器Ca
1 ’,Cai2 ’を前記外気放熱用凝縮手段Cao’
とで分割形成される形態で高温側凝縮手段Ca’を構成
することで、高温側ヒートポンプ回路Sa’からの熱を
再熱用に利用するものである。なお、黒塗りの太線は、
その部分の冷媒状態が高圧気相であることを示し、細い
ハッチングを施した太線は、その部分の冷媒状態が液相
であることを示し、点ハッチングを施した太線は、その
部分の冷媒状態が低圧の気液二相であることを示し、更
に、白抜きの太線は、その部分の冷媒状態が低圧気相で
あることを示す。また、exp1’〜exp3’は膨張
弁、exp4’〜exp6’は流量調整機能を持たせた
膨張弁である。
2. Description of the Related Art In the above-mentioned reheat type dehumidifying air conditioner,
The present applicant has previously made the condenser of the heat pump circuit located at the high temperature end in the series group of a plurality of heat pump circuits into two divided structures in order to effectively utilize the heat radiation from the heat dissipation condenser,
A structure was proposed in which one of them functions as the reheater due to its heat radiation effect. This configuration will be further described with reference to FIG. FIG. 5 shows an air conditioner in which two sets of heat pump circuits are thermally connected in series.
1 ′, SA2 ′, a low temperature side heat pump circuit Sb ′ having separate low temperature side evaporating means Eb1 ′, Eb2 ′ for cooling and dehumidifying the introduced air, and a high temperature equipped with an outside air heat radiating condensing means Cao ′ for releasing heat to the outside air. Side heat pump circuit Sa ′ is provided, and the two heat pump circuits S are formed by the relay heat exchanger X ′ in which the low temperature side condensing means Cb ′ and the high temperature side evaporating means Ea ′ of the low temperature side heat pump circuit Sb ′ are integrally configured.
It is configured to transfer heat between a'and Sb '. Then, the pair of low temperature side evaporation means Eb1 ′, Eb
2'and each separate air supply fan F1 ', F2' between each separate reheater C for heating the supply air after dehumidification
ai 1 ′, Cai 2 ′ are provided, and the pair of reheaters Ca
i 1 'and Cai 2 ' are the condensing means Cao 'for radiating the outside air
The heat from the high temperature side heat pump circuit Sa ′ is used for reheating by configuring the high temperature side condensing means Ca ′ in a form of being divided by and. The thick black line is
Indicates that the refrigerant state of the part is a high pressure gas phase, the thick line with thin hatching indicates that the refrigerant state of the part is a liquid phase, the thick line with point hatching indicates the refrigerant state of the part Indicates that it is a low pressure gas-liquid two-phase, and the thick white line indicates that the refrigerant state in that portion is a low pressure gas phase. Further, exp1 'to exp3' are expansion valves, and exp4 'to exp6' are expansion valves having a flow rate adjusting function.

【0003】[0003]

【発明が解決しようとする課題】しかし、上述した従来
の再熱式除湿空調装置においては、再熱器で除湿空気を
加熱するに際して再熱器内における冷媒凝縮温度と、冷
却除湿した空気(再熱対象空気)の温度との差が必要以
上に大きいものとなり、その結果、圧縮機が適正な運転
条件から逸脱した条件で運転されることとなり、運転が
不安定になったり運転効率が低下する問題があった。
However, in the above-mentioned conventional reheat type dehumidifying air conditioner, when the dehumidified air is heated by the reheater, the refrigerant condensing temperature in the reheater and the air dehumidified by cooling (recooling) The difference between the temperature of the target air) and the temperature of the target air) becomes larger than necessary, and as a result, the compressor operates under conditions that deviate from the proper operating conditions, resulting in unstable operation and reduced operating efficiency. There was a problem.

【0004】本発明の目的は、上記実情に鑑み、再熱の
ための構成を、不安定な運転や運転効率の低下を来すこ
との少ない状態で実現できる再熱式除湿空調装置を提供
することにある。
In view of the above situation, an object of the present invention is to provide a reheat type dehumidifying air conditioner capable of realizing a structure for reheating in a state in which unstable operation and reduction in operation efficiency are less likely to occur. Especially.

【0005】[0005]

【課題を解決するための手段】本発明による再熱式除湿
空調装置の第1の特徴構成は、空気の冷却除湿を行う除
湿器と、この除湿器による除湿空気を再熱する再熱器と
を設け、前記除湿器として機能させる吸熱用蒸発器と放
熱を行う放熱用凝縮器との間に、複数のヒートポンプ回
路を熱的に直列に介在させた、それらヒートポンプ回路
の直列群中で中間、又は、低温端に位置する所定ヒート
ポンプ回路の凝縮器を、前記直列群中での熱中継を行う
中継用凝縮器と前記直列群の外部へ放熱する中間放熱用
凝縮器とに分割し、この中間放熱用凝縮器を、その放熱
作用により前記再熱器として機能させる構成としたこと
にある。
A first characteristic constitution of a reheat type dehumidifying air conditioner according to the present invention is a dehumidifier for cooling and dehumidifying air, and a reheater for reheating dehumidified air by this dehumidifier. Provided between the heat-absorbing evaporator that functions as the dehumidifier and the heat-radiating condenser that radiates heat, a plurality of heat-pump circuits are thermally interposed in series, in the series group of the heat-pump circuits, Alternatively, the condenser of the predetermined heat pump circuit located at the low temperature end is divided into a relay condenser that performs heat relay in the series group and an intermediate heat radiation condenser that radiates heat to the outside of the series group, and the intermediate The heat dissipation condenser is configured to function as the reheater by its heat dissipation effect.

【0006】また、本発明による再熱式除湿空調装置の
第2の特徴構成は、上記第1の特徴構成に加えて、ヒー
トポンプ回路の直列群を、それを構成するヒートポンプ
回路の夫々が個別の冷媒圧縮機を備える複数段圧縮形式
としたことにある。
A second characteristic configuration of the reheat type dehumidifying air conditioner according to the present invention is, in addition to the first characteristic configuration, a series group of heat pump circuits, and each of the heat pump circuits forming the series group has an individual unit. It is a multi-stage compression type equipped with a refrigerant compressor.

【0007】[0007]

【作用】つまり、従来の再熱式除湿空調装置においては
単に廃熱の有効利用のみを考えて回路外に無益に放出さ
れる高温側のヒートポンプ回路の廃熱を用いて再熱して
いたが、実際には再熱のためにさほど高い熱源を必要と
しないことが明らかになったので、その新知見に基づい
て、本発明の第1の特徴構成においては、ヒートポンプ
回路の直列群中での中間又は低温端に位置するヒートポ
ンプ回路の凝縮器を分割構成として一方を再熱器として
機能させることにより、必要な再熱機能は充分達成しな
がらも、再熱器部分における冷媒凝縮温度が再熱対象空
気の温度に比して必要以上に高温となることを回避す
る。
In other words, in the conventional reheat type dehumidifying air conditioner, the waste heat of the high temperature side heat pump circuit, which is wastefully discharged to the outside of the circuit, is used to reheat, considering only effective use of waste heat. In fact, it became clear that a very high heat source is not required for reheating, and based on this new finding, in the first characteristic configuration of the present invention, the intermediate in the series group of the heat pump circuits is formed. Alternatively, by allowing the condenser of the heat pump circuit located at the low temperature end to have a split structure and allowing one to function as a reheater, the refrigerant condensing temperature in the reheater part can be reheated while achieving the necessary reheat function. Avoid unnecessarily high temperature compared to the temperature of air.

【0008】また、本発明の第2の特徴構成によれば、
そのことに加えて、各ヒートポンプ回路が個別の冷媒圧
縮機を備えているから、再熱量の変更調節を、ヒートポ
ンプ回路の直列群中の中間放熱用凝縮器を設けたヒート
ポンプ回路において中間放熱用凝縮器と中継用凝縮器と
への冷媒の流量比を変更するとともに、そのことで高温
側のヒートポンプ回路への中継熱量が変わることに対処
すべく高温側のヒートポンプ回路において冷媒圧縮機の
運転量を変更することで行なえる。
According to the second characteristic configuration of the present invention,
In addition to that, since each heat pump circuit is equipped with an individual refrigerant compressor, it is possible to adjust the reheat amount by adjusting the reheat amount in the heat pump circuit with the intermediate heat dissipation condenser in the series group of heat pump circuits. The flow rate ratio of the refrigerant to the condenser and the relay condenser is changed, and the operating amount of the refrigerant compressor in the heat pump circuit on the high temperature side is adjusted to cope with the change in the amount of relay heat to the heat pump circuit on the high temperature side. You can change it.

【0009】[0009]

【発明の効果】従って、本発明の第1の特徴構成によれ
ば、再熱機能を必要充分に維持しつつも、冷却除湿に伴
う再熱運転を安定的にかつ、効率の低下を来すことをな
く行える再熱式除湿空調装置を提供できるようになっ
た。
Therefore, according to the first feature of the present invention, the reheat operation accompanying cooling and dehumidifying is stably performed and the efficiency is lowered while maintaining the reheat function sufficiently and sufficiently. It is now possible to provide a reheat type dehumidifying air conditioner that can do so.

【0010】また、本発明の第2の特徴構成によれば、
上述の効率運転の可能な再熱式除湿空調装置を構成する
に、ヒートポンプ回路に個別の冷媒圧縮機を備えさせる
ことにより、再熱量の変更調節を、冷媒流量比の変更の
他には回転数の変更等操作の簡単な高温側の冷媒圧縮器
の調節だけで済ませられるから、混合冷媒を用いて複数
のヒートポンプ回路に共通の冷媒圧縮器を設ける構成と
する場合に再熱量の変更調節のためには冷媒流量比の変
更に加えて高温側の冷媒の有効量そのものを変える必要
があって操作が煩雑になることに比して、取扱い易い構
成にできる。
According to the second characteristic configuration of the present invention,
In the reheat type dehumidifying air conditioner capable of efficient operation described above, the heat pump circuit is provided with an individual refrigerant compressor so that the reheat amount can be changed and adjusted in addition to the change in the refrigerant flow rate ratio. Since it is only necessary to adjust the refrigerant compressor on the high temperature side, which is easy to operate, it is necessary to adjust the reheat amount when using a mixed refrigerant to provide a common refrigerant compressor for multiple heat pump circuits. In addition to changing the refrigerant flow rate ratio, it is necessary to change the effective amount of the refrigerant on the high temperature side, which complicates the operation.

【0011】[0011]

【実施例】以下、図面に基づいて、本発明の実施例を説
明する。図1〜図3に、空気の冷却除湿を行なう除湿器
Dと、この除湿器Dによる除湿空気を再熱する再熱器H
とを設けた、ヒートポンプ式の再熱式除湿空調装置の一
例である空調装置を示してある。図1には圧縮機ユニッ
トU内の構成を、図2には一対の室内機ユニットI1,
I2内の構成を、そして図3には一対の室外機ユニット
O1,O2内の構成をそれぞれ示してある。圧縮機ユニ
ットUと、両室内機ユニットI1,I2及び両室外機ユ
ニットO1,O2との間は、6本のわたり配管p1〜p
6で配管接続してある。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 3, a dehumidifier D that cools and dehumidifies air, and a reheater H that reheats dehumidified air by the dehumidifier D.
It shows an air conditioner which is an example of a heat pump type reheat type dehumidifying air conditioner provided with and. FIG. 1 shows the configuration inside the compressor unit U, and FIG. 2 shows a pair of indoor unit units I1,
The internal structure of I2 and the internal structure of the pair of outdoor unit units O1 and O2 are shown in FIG. Between the compressor unit U and both the indoor unit units I1 and I2 and both the outdoor unit units O1 and O2, six spanning pipes p1 to p
It is connected by piping at 6.

【0012】図2に示すように、第一の室内機ユニット
I1には、第一の空調対象域への空気を冷却除湿する除
湿器Dとして作用する第一吸熱用蒸発器1と、その第一
吸熱用蒸発器1にて冷却除湿された空気を加熱する再熱
器Hとして作用する第一再熱用凝縮器2と、第一吸熱用
蒸発器1及び第一再熱用凝縮器2での温調空気を給気S
A1として第一の空調対象域に送給する第一給気ファン
3とを設けてある。また、第二の室内機ユニットI2に
は、第二の空調対象域への空気を冷却除湿する除湿器D
として作用する第二吸熱用蒸発器4と、その第二吸熱用
蒸発器4にて冷却除湿された空気を加熱する再熱器Hと
して作用する第二再熱用凝縮器5と、第二吸熱用蒸発器
4及び第二再熱用凝縮器5での温調空気を給気SA2と
して第二の空調対象域に送給する第二給気ファン6とを
設けてある。一方、図3に示すように、第一の室外機ユ
ニットO1及び第二の室外機ユニットO2には、それぞ
れ大気OAに対して放熱を行なう各別の放熱用凝縮器
7、8と、対応する放熱用凝縮器7、8に大気OAを通
風する各別の外気ファン9、10とを設けてある。さら
に、図1に示すように、圧縮機ユニットUには、相互熱
交換可能に構成した、冷媒凝縮器として機能する凝縮器
経路Xc及び冷媒蒸発器として機能する蒸発経路Xeを
備えた中継熱交換器Xと、一対の圧縮機Cpa,Cpb
とを設けてある。そして、室内機ユニットI1,I2の
両吸熱用蒸発器1,4及び、中継熱交換器Xの凝縮器経
路Xcに、低沸点冷媒Bを低温側圧縮機Cpbにより循
環させるとともに、室外機ユニットO1,O2の両放熱
用凝縮器7、8及び、中継熱交換器Xの蒸発器経路Xe
に、高沸点冷媒Aを高温側圧縮機Cpaにより循環さ
せ、もって、除湿器Dとして機能させる吸熱用蒸発器
1,4と放熱を行なう放熱用凝縮器7,8との間に、2
つのヒートポンプ回路Sa,Sbを熱的に直列に介在さ
せ、大気OAを放熱先として給気SA1,SA2を冷却
除湿温調する再熱式除湿空調装置を構成してある。
As shown in FIG. 2, the first indoor unit I1 has a first heat-absorbing evaporator 1 which acts as a dehumidifier D for cooling and dehumidifying air to the first air-conditioning target area, and its first The first reheat condenser 2 that acts as a reheater H that heats the air that has been cooled and dehumidified by the first heat absorption evaporator 1, and the first heat absorption evaporator 1 and the first reheat condenser 2 Supply the temperature controlled air of S
A first air supply fan 3 that supplies air to the first target area for air conditioning is provided as A1. Further, the second indoor unit I2 includes a dehumidifier D for cooling and dehumidifying the air to the second air conditioning target area.
Second endothermic evaporator 4 acting as a heat exchanger, a second reheat condenser 5 acting as a reheater H for heating the air cooled and dehumidified by the second endothermic evaporator 4, and a second heat absorber A second air supply fan 6 is provided for sending the temperature-controlled air in the second evaporator 4 and the second reheat condenser 5 to the second target area for air conditioning as the supply air SA2. On the other hand, as shown in FIG. 3, the first outdoor unit O1 and the second outdoor unit O2 respectively correspond to separate heat-radiating condensers 7 and 8 that radiate heat to the atmosphere OA. The heat-dissipating condensers 7 and 8 are provided with separate outside air fans 9 and 10 that ventilate the air OA. Further, as shown in FIG. 1, in the compressor unit U, a relay heat exchange provided with a condenser path Xc functioning as a refrigerant condenser and an evaporation path Xe functioning as a refrigerant evaporator, which are configured to be capable of mutual heat exchange. Device X and a pair of compressors Cpa and Cpb
And are provided. Then, the low-boiling-point refrigerant B is circulated through the low-temperature side compressor Cpb in both the heat-absorbing evaporators 1 and 4 of the indoor unit I1 and I2 and the condenser path Xc of the relay heat exchanger X, and the outdoor unit O1. , O2 both heat radiating condensers 7 and 8 and the evaporator path Xe of the relay heat exchanger X.
In addition, the high-boiling-point refrigerant A is circulated by the high-temperature side compressor Cpa, so that between the heat-absorbing evaporators 1 and 4 functioning as the dehumidifier D and the heat-dissipating condensers 7 and 8 that perform heat dissipation, 2
One heat pump circuit Sa, Sb is thermally interposed in series, and a reheat type dehumidifying air conditioner for cooling and dehumidifying the supply air SA1, SA2 with the air OA as a heat radiation destination is constructed.

【0013】上述したヒートポンプ回路の直列群のうち
低温側ヒートポンプ回路Sbにおいて、ヒートポンプサ
イクル中の凝縮器を、前記直列群中での熱中継を行なう
べく中継熱交換器Xに設けた中継用凝縮器Crである凝
縮器経路Xcと、前記直列群の外部へ放熱する中間放熱
用凝縮器Cmとしての一対の室内機ユニットI1,I2
に設けた各別の再熱用凝縮器2,5に分割し、それら再
熱用凝縮器2,5を、その放熱作用によって前記再熱器
Hとして機能させるべく、わたり配管p2によって低温
側圧縮機Cpbに接続してある。
In the low temperature side heat pump circuit Sb of the series group of heat pump circuits described above, the condenser in the heat pump cycle is provided in the relay heat exchanger X to perform the heat relay in the series group. The condenser path Xc, which is Cr, and the pair of indoor unit units I1 and I2, which serve as an intermediate heat dissipation condenser Cm that radiates heat to the outside of the series group.
It is divided into separate reheat condensers 2 and 5 provided in the above, and in order to make these reheat condensers 2 and 5 function as the reheater H by its heat radiation action, compression is performed on the low temperature side by the cross pipe p2. It is connected to the machine Cpb.

【0014】さらに、低温側ヒートポンプ回路Sbに
は、一対の再熱用凝縮器2,5及び中継熱交換器Xの凝
縮器経路Xcからの液相状態の低沸点冷媒Bwに対する
流量調節機能をも持たせた膨張弁exp1,exp2,
exp3と、それら膨張弁exp1,exp2,exp
3を経た後に合流分岐した液相状態の低沸点冷媒Bwを
減圧膨張させて、一対の吸熱用蒸発器1,4に低圧の気
液二相状態の低沸点冷媒Bwgを供給する膨張弁exp
4,exp5とを介装してある。また、高温側ヒートポ
ンプ回路Saには、一対の放熱用凝縮器7,8からの液
相状態の高沸点冷媒Awに対する流量調節機能をも持た
せた膨張弁exp6,exp7と、それら膨張弁exp
6,exp7を経た後に集めた液相状態の高沸点冷媒A
wを減圧膨張させて、中継熱交換器Xの蒸発器経路Xe
に低圧の気液二相状態の高沸点冷媒Awgを供給する膨
張弁exp8とを介装してある。なお、v1〜v27
は、運転モードなどに従って、冷媒循環路の構成を切り
換える切換弁である。図1〜図3において、黒塗りの太
線は、その部分の冷媒状態が高圧気相であることを示
し、細いハッチングを施した太線は、その部分の冷媒状
態が液相であることを示し、点ハッチングを施した太線
はその部分の冷媒状態が低圧の気液二相であることを示
し、更に、白抜きの太線は、その部分の冷媒状態が低圧
気相であることを示す。また、膨張弁exp1〜exp
8、及び、切換弁v1〜v27において、白抜きのもの
は、冷媒の通流状態を示し、黒塗りのものは、非通流状
態又は閉塞状態を示すものである。
Further, the low temperature side heat pump circuit Sb also has a flow rate adjusting function for the low boiling point refrigerant Bw in the liquid phase state from the condenser path Xc of the pair of reheat condensers 2 and 5 and the relay heat exchanger X. Expansion valves exp1, exp2
exp3 and their expansion valves exp1, exp2, exp
The expansion valve exp for decompressing and expanding the low boiling point refrigerant Bw in the liquid phase state, which has merged and branched after 3 and supplies the low boiling point refrigerant Bwg in the gas-liquid two-phase state of low pressure to the pair of heat absorbing evaporators 1 and 4.
4 and exp5. Further, the high temperature side heat pump circuit Sa has expansion valves exp6 and exp7 having a flow rate adjusting function for the high boiling point refrigerant Aw in the liquid phase from the pair of heat radiating condensers 7 and 8, and the expansion valves exp.
Liquid phase high boiling point refrigerant A collected after 6 and exp 7
w is decompressed and expanded, and the evaporator path Xe of the relay heat exchanger X is expanded.
And an expansion valve exp8 for supplying a low-boiling-point high-boiling-point refrigerant Awg in a gas-liquid two-phase state. In addition, v1 to v27
Is a switching valve that switches the configuration of the refrigerant circulation path according to the operation mode and the like. 1 to 3, a thick black line indicates that the refrigerant state of the portion is a high-pressure gas phase, and a thick hatched thick line indicates that the refrigerant state of the portion is a liquid phase, The thick line with dot hatching indicates that the refrigerant state of that portion is low-pressure gas-liquid two-phase, and the thick white line indicates that the refrigerant state of that portion is low-pressure vapor phase. In addition, the expansion valves exp1 to exp
In 8 and the switching valves v1 to v27, the white ones show the flowing state of the refrigerant, and the black ones show the non-flowing state or the closed state.

【0015】次に、上述した空調装置の除湿冷房運転状
態を説明する。高温側ヒートポンプ回路Saにおいて
は、高温側圧縮機Cpaは、低圧気相状態の高沸点冷媒
Aを吸入し、圧縮して吐出する。高温側圧縮機Cpaか
らの高圧気相状態の高沸点冷媒Ahgは、わたり配管p
1を介して室外機ユニットO1,O2の放熱用凝縮器
7,8に通流され、大気OAを放熱対象として凝縮され
る。凝縮後に液相状態になった高沸点冷媒Awは、わた
り配管p5を介して膨張弁exp8に達し、減圧膨張さ
れた気液二相状態の高沸点冷媒Awgが中継熱交換器X
の蒸発器経路Xeに通流され、凝縮器経路Xcに通流さ
れる高圧気相状態の低沸点冷媒Bhgを吸熱源として蒸
発される。その後、低圧気相状態となった高沸点冷媒A
は、再び高温側圧縮機Cpaに還流され、上述したサイ
クルが繰り返される。一方、低温側ヒートポンプ回路S
bにおいては、低温側圧縮機Cpbは、低圧気相状態の
低沸点冷媒Bを吸入し、圧縮して吐出する。この低温側
圧縮機Cpbからの高圧気相状態の低沸点冷媒Bhg
は、分岐され、一部が中継熱交換器Xの凝縮器経路Xc
に通流され、蒸発器経路Xcに通流される気液二相状態
の高沸点冷媒Awgを放熱対象として凝縮されるととも
に、残りがわたり配管p2を介して室内機ユニットI
1,I2の放熱用凝縮器2,5に通流され、吸熱用蒸発
器1、4にて冷却除湿された空気を放熱対象として凝縮
される。中継熱交換器Xの凝縮器経路Xc、及び、室内
機ユニットI1,I2の放熱用凝縮器2,5からの、凝
縮後に液相状態になった低沸点冷媒Bwは、合流分岐さ
れて膨張弁exp4,exp5に達し、減圧膨張された
気液二相状態の低沸点冷媒Bwgが室内機ユニットI
1,I2の吸熱用蒸発器1,4に通流され、空調対象域
への給気SA1,SA2を吸熱源として蒸発される。そ
の後、低圧気相状態となった低沸点冷媒Bは、わたり配
管p4を介して再び低温側圧縮機Cpbに還流され、上
述したサイクルが繰り返される。
Next, the dehumidifying and cooling operation state of the above-mentioned air conditioner will be described. In the high temperature side heat pump circuit Sa, the high temperature side compressor Cpa sucks in, compresses and discharges the high boiling point refrigerant A in a low pressure gas phase state. The high-boiling-point high-boiling-point refrigerant Ahg from the high temperature side compressor Cpa is passed through the piping p
1 is passed through 1 to the heat radiation condensers 7 and 8 of the outdoor unit units O1 and O2, and is condensed with the atmosphere OA as a heat radiation target. The high-boiling-point refrigerant Aw in the liquid phase state after condensation reaches the expansion valve exp8 through the crossover pipe p5, and the high-boiling-point refrigerant Awg in the gas-liquid two-phase state that has been decompressed and expanded is transferred to the relay heat exchanger X.
Of the low boiling point refrigerant Bhg in the high-pressure gas phase, which is passed through the evaporator path Xe of FIG. After that, the high-boiling-point refrigerant A in the low-pressure vapor phase state
Is returned to the high temperature side compressor Cpa again, and the above cycle is repeated. On the other hand, the low temperature side heat pump circuit S
In b, the low temperature side compressor Cpb sucks in, compresses and discharges the low boiling point refrigerant B in a low pressure gas state. The low boiling point refrigerant Bhg in the high pressure gas phase from the low temperature side compressor Cpb
Is branched and a part of the condenser path Xc of the relay heat exchanger X is
The high-boiling-point refrigerant Awg in the gas-liquid two-phase state, which is passed through to the evaporator path Xc, is condensed for heat dissipation, and the rest is passed through the piping p2 to the indoor unit I.
The air that has passed through the heat-dissipating condensers 2 and 5 of 1 and I2 and is cooled and dehumidified by the heat-absorbing evaporators 1 and 4 is condensed as a heat-dissipation target. The low-boiling-point refrigerant Bw in the liquid phase state after condensation from the condenser path Xc of the relay heat exchanger X and the heat-dissipating condensers 2 and 5 of the indoor unit units I1 and I2 is merged and branched to form an expansion valve. The low-boiling-point refrigerant Bwg in a gas-liquid two-phase state that has reached exp4 and exp5 and has been expanded under reduced pressure is the indoor unit I.
1 and I2 are passed through the heat absorbing evaporators 1 and 4 and are evaporated by using the supply air SA1 and SA2 to the air conditioning target area as heat absorbing sources. After that, the low-boiling-point refrigerant B in the low-pressure gas phase is recirculated to the low-temperature side compressor Cpb again through the crossing pipe p4, and the above cycle is repeated.

【0016】そして、上述のように、再熱器Hとして機
能させる再熱用凝縮器2,5を、低温側ヒートポンプ回
路Sbの凝縮器を分割した中間放熱用凝縮器Cmとして
構成してあるから、吸熱用蒸発器1,4にて冷却除湿さ
れた空気を再熱するに際し、その空気温度と冷媒凝縮温
度との差が必要以上に大きくなることを回避でき、これ
により運転の不安定化や効率低下を防止できるのであ
る。
As described above, the reheat condensers 2 and 5 functioning as the reheater H are configured as the intermediate heat radiating condenser Cm obtained by dividing the condenser of the low temperature side heat pump circuit Sb. When reheating the air that has been cooled and dehumidified by the heat-absorption evaporators 1 and 4, it is possible to prevent the difference between the air temperature and the refrigerant condensing temperature from becoming larger than necessary, thereby making the operation unstable and It is possible to prevent a decrease in efficiency.

【0017】また、この実施例で説明した構成において
は、低温側ヒートポンプ回路Sbに低温側圧縮機Cpb
を設け、高温側ヒートポンプ回路Saに高温側圧縮機C
paを設けた複数段圧縮形式としてあるから、再熱温度
を調節するに際して、低温側ヒートポンプ回路Saで低
沸点冷媒Bの流量比を膨張弁exp1〜5を用いて変更
するとともに、それに伴って変化した中継熱交換器Xに
おける中継熱を補償すべく高温側ヒートポンプ回路Sb
で高温側圧縮機Cpaの運転量を変えればよく、後述す
る混合冷媒を用いる形式に比して、操作が簡単である。
Further, in the configuration described in this embodiment, the low temperature side heat pump circuit Sb is connected to the low temperature side compressor Cpb.
Is provided, and the high temperature side compressor C is provided in the high temperature side heat pump circuit Sa.
Since the multistage compression type is provided with pa, when adjusting the reheat temperature, the flow rate ratio of the low boiling point refrigerant B is changed by using the expansion valves exp1 to exp5 in the low temperature side heat pump circuit Sa, and changes accordingly. In order to compensate the relay heat in the relay heat exchanger X, the high temperature side heat pump circuit Sb
Therefore, the operation amount of the high temperature side compressor Cpa may be changed, and the operation is simple as compared with the type using a mixed refrigerant described later.

【0018】次に、本発明を、混合冷媒を用いた構成に
適用した実施例を示す。図4において、先の実施例と同
一機能・状態であるものには、同じ符号を付してある。
なお、太いハッチングを施した太線はその部分の冷媒状
態が高圧の気液二相であることを示す。
Next, an embodiment in which the present invention is applied to a structure using a mixed refrigerant will be shown. In FIG. 4, the same functions and states as those in the previous embodiment are designated by the same reference numerals.
The thick line with thick hatching indicates that the state of the refrigerant in that portion is high-pressure gas-liquid two-phase.

【0019】この構成においては、低温側ヒートポンプ
回路Sbと高温側ヒートポンプ回路Saとに共通の圧縮
器Cmpを設けてあり、その圧縮機Cmpから混合状態
で吐出される高圧気相状態の二種冷媒Ahg,Bhg
を、沸点の高い冷媒Aから順に、各別に凝縮させる形態
としてある。すなわち、圧縮機Cmpは、前記二種冷媒
A,Bを混合状態で吸入し、圧縮して吐出する。圧縮機
Cmpからの高圧気相冷媒Ahg,Bhgは、放熱用凝
縮器7に通流され、大気OAを放熱対象として高沸点冷
媒Aのみが凝縮され、液相冷媒Awと高圧気相冷媒Bh
gとが気液分離器Spに送られる。放熱用凝縮器7から
の液相冷媒Awと高圧気相冷媒Bhgとは、気液分離器
Spにて分離され、高圧気相冷媒Bhgは、中継熱交換
器Xの凝縮器経路Xc及び再熱用凝縮器2に通流され
る。一方、液相冷媒Awは、膨張弁exp11及び膨張
弁exp12にて適宜分配され、且つ、減圧膨張されて
低圧の気液二相冷媒Awgとなった後、夫々、中継熱交
換器Xの蒸発器経路Xe、及び、第二室内機ユニットI
2の吸熱用蒸発器4に通流される。中継熱交換器Xの凝
縮器経路Xcにおいては、蒸発器経路Xeに通流される
気液二相冷媒Awgを放熱源として、高圧気相冷媒Bh
gの凝縮が行われ、液相冷媒Bwが受液器Rに送られ
る。また、再熱用凝縮器2において、吸熱用蒸発器1に
て冷却除湿された後の空気を放熱対象として凝縮されて
液相となった冷媒Bwも、受液器Rに送られる。一方、
蒸発器経路Xeにおいては、凝縮器経路Xcに通流され
る高圧気相冷媒Bhgを吸熱源として、気液二相冷媒A
wgが蒸発され、低圧気相冷媒Acgとなって、気液分
離器Spの冷媒路11を経て、圧縮機Cmpに帰還され
る。
In this structure, the low-temperature side heat pump circuit Sb and the high-temperature side heat pump circuit Sa are provided with a common compressor Cmp, and the high-pressure vapor phase two-type refrigerant discharged from the compressor Cmp in a mixed state. Ahg, Bhg
Are sequentially condensed from the refrigerant A having the highest boiling point. That is, the compressor Cmp sucks the two kinds of refrigerants A and B in a mixed state, compresses them, and discharges them. The high-pressure gas-phase refrigerants Ahg and Bhg from the compressor Cmp are passed through the heat-dissipating condenser 7, and only the high-boiling-point refrigerant A is condensed with the air OA as a heat-dissipation target, and the liquid-phase refrigerant Aw and the high-pressure gas-phase refrigerant Bh.
and g are sent to the gas-liquid separator Sp. The liquid-phase refrigerant Aw and the high-pressure gas-phase refrigerant Bhg from the heat-dissipating condenser 7 are separated by the gas-liquid separator Sp, and the high-pressure gas-phase refrigerant Bhg is reheated by the condenser path Xc of the relay heat exchanger X. Flow to the condenser 2 for use. On the other hand, the liquid-phase refrigerant Aw is appropriately distributed by the expansion valve exp11 and the expansion valve exp12, and after being decompressed and expanded to the low-pressure gas-liquid two-phase refrigerant Awg, the evaporators of the relay heat exchanger X are respectively. Path Xe and second indoor unit I
The heat is passed through the heat absorbing evaporator 2. In the condenser path Xc of the relay heat exchanger X, the high-pressure gas-phase refrigerant Bh is used with the gas-liquid two-phase refrigerant Awg flowing in the evaporator path Xe as a heat source.
g is condensed, and the liquid-phase refrigerant Bw is sent to the liquid receiver R. Further, in the reheat condenser 2, the refrigerant Bw that has been condensed into a liquid phase by condensing the air that has been cooled and dehumidified in the heat absorption evaporator 1 as a heat radiation target is also sent to the liquid receiver R. on the other hand,
In the evaporator path Xe, the gas-liquid two-phase refrigerant A is used with the high-pressure gas-phase refrigerant Bhg flowing in the condenser path Xc as a heat absorption source.
The wg is evaporated to become a low-pressure gas-phase refrigerant Acg, which is returned to the compressor Cmp via the refrigerant passage 11 of the gas-liquid separator Sp.

【0020】〔別実施例〕次に、本発明のさらに別の実
施例を説明する。
[Other Embodiments] Next, still another embodiment of the present invention will be described.

【0021】〈1〉先の実施例では、除湿器Dとして機
能させる吸熱用蒸発器1,4と、放熱用凝縮器7,8と
の間に、低温側ヒートポンプ回路Sbと高温ヒートポン
プ回路Saとの2つのヒートポンプ回路を熱的に直列に
介在させていたが、それに替えて、3つ以上のヒートポ
ンプ回路を熱的に直列に介在させてもよい。そして、そ
の場合には、再熱器Hとして機能させる中間放熱用凝縮
器Cmは、中間又は低温端に位置するヒートポンプ回路
の凝縮器を、中継用凝縮器Crとで分割する構成とすれ
ばよい。また、使用する冷媒は、先の実施例における混
合冷媒であれば冷媒を沸点の異なる別種のものとする必
要があるが、複数段圧縮形式で複数のヒートポンプ回路
が独立している場合には、沸点の異なる別種のものを用
いてもよいし、或いは、単一の冷媒をヒートポンプ回路
毎の圧力条件の違いで沸点に差をつけて用いるようにし
てもよい。
<1> In the above embodiment, the low temperature side heat pump circuit Sb and the high temperature heat pump circuit Sa are provided between the heat absorbing evaporators 1 and 4 functioning as the dehumidifier D and the heat radiating condensers 7 and 8. The above two heat pump circuits are thermally interposed in series, but in place thereof, three or more heat pump circuits may be thermally interposed in series. Then, in that case, the intermediate heat dissipation condenser Cm functioning as the reheater H may be configured such that the condenser of the heat pump circuit located at the middle or low temperature end is divided by the relay condenser Cr. . Further, the refrigerant to be used, if it is a mixed refrigerant in the previous embodiment, it is necessary to use different types of refrigerants having different boiling points, but in the case where a plurality of heat pump circuits are independent in a multi-stage compression format, Different types having different boiling points may be used, or a single refrigerant may be used with different boiling points depending on the pressure condition of each heat pump circuit.

【0022】〈2〉冷却除湿を行なう除湿器Dは、給気
ファン3,6により給気SA1,SA2が通風されてダ
クト式により第一及び第二空調対象域に送給されるもの
に限らず、空調対象域内に設けられて空調対象空気を直
接温調するように構成してもよい。
<2> The dehumidifier D for cooling and dehumidifying is not limited to the one in which the supply air SA1, SA2 is ventilated by the supply air fans 3, 6 and is supplied to the first and second air-conditioning target areas by the duct type. Instead, it may be arranged in the air conditioning target area to directly control the temperature of the air conditioning target air.

【0023】〈3〉回路外の放熱対象は、大気OAに限
らず、水、その他の液体等適宜変更できる。温調対象空
気、及び、除湿対象空気は、第一空調対象域への給気S
A1及び第二空調対象域への給気SA2のように、第一
空調対象域と第二空調対象域とに分離されている必要は
なく、同一空気や同一対象でも良い。
<3> The object of heat radiation outside the circuit is not limited to the atmospheric air OA, but water, other liquids, etc. can be appropriately changed. The temperature control target air and the dehumidification target air are the air supply S to the first air conditioning target area.
Like the air supply SA2 to A1 and the second air conditioning target area, it is not necessary to be separated into the first air conditioning target area and the second air conditioning target area, and the same air or the same object may be used.

【0024】〈4〉尚、特許請求の範囲の項に図面との
対照を便利にするために符号を記すが、該記入により本
発明は添付図面の構成に限定されるものではない。
<4> In the claims, reference numerals are given for convenience of comparison with the drawings, but the present invention is not limited to the configuration of the accompanying drawings by the entry.

【0025】[0025]

【図面の簡単な説明】[Brief description of drawings]

【図1】圧縮機ユニットまわりの冷媒流れを示す回路図FIG. 1 is a circuit diagram showing a refrigerant flow around a compressor unit.

【図2】室内機ユニットまわりの冷媒流れを示す回路図FIG. 2 is a circuit diagram showing a refrigerant flow around an indoor unit.

【図3】室外機ユニットまわりの冷媒流れを示す回路図FIG. 3 is a circuit diagram showing a refrigerant flow around an outdoor unit.

【図4】別の実施例の冷媒流れを示す回路図FIG. 4 is a circuit diagram showing a refrigerant flow of another embodiment.

【図5】従来例の冷媒流れを示す回路図FIG. 5 is a circuit diagram showing a refrigerant flow in a conventional example.

【符号の説明】[Explanation of symbols]

1 吸熱用蒸発器 2 吸熱用蒸発器 7 放熱用凝縮器 8 放熱用凝縮器 D 除湿器 H 再熱器 Sa ヒートポンプ回路 Sb ヒートポンプ回路 Cr 中継用凝縮器 Cm 中間放熱用凝縮器 1 Evaporator for heat absorption 2 Evaporator for heat absorption 7 Condenser for heat dissipation 8 Condenser for heat dissipation D Dehumidifier H Reheater Sa Heat pump circuit Sb Heat pump circuit Cr Relay condenser Cm Intermediate heat dissipation condenser

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 空気の冷却除湿を行う除湿器(D)と、
この除湿器(D)による除湿空気を再熱する再熱器
(H)とを設け、 前記除湿器(D)として機能させる吸熱用蒸発器
(1),(4)と放熱を行う放熱用凝縮器(7),
(8)との間に、複数のヒートポンプ回路(Sa),
(Sb)を熱的に直列に介在させた再熱式除湿空調装置
であって、 前記ヒートポンプ回路の直列群中で中間、又は、低温端
に位置する所定ヒートポンプ回路(Sb)の凝縮器を、
前記直列群中での熱中継を行う中継用凝縮器(Cr)と
前記直列群の外部へ放熱する中間放熱用凝縮器(Cm)
とに分割し、 この中間放熱用凝縮器(Cm)を、その放熱作用により
前記再熱器(H)として機能させる構成としてある再熱
式除湿空調装置。
1. A dehumidifier (D) for cooling and dehumidifying air,
A reheater (H) that reheats the dehumidified air by the dehumidifier (D) is provided, and the heat-absorbing evaporators (1) and (4) that function as the dehumidifier (D) and the heat-dissipating condensate that dissipates heat. Bowl (7),
Between (8) and a plurality of heat pump circuits (Sa),
(Sb) is a reheat type dehumidifying air-conditioner thermally interposed in series, wherein a condenser of a predetermined heat pump circuit (Sb) located at an intermediate or low temperature end in the series group of the heat pump circuits is
Relay condenser (Cr) for relaying heat in the series group and intermediate heat dissipation condenser (Cm) for radiating heat to the outside of the series group
A reheat-type dehumidifying air conditioner having a configuration in which the condenser for intermediate heat dissipation (Cm) is made to function as the reheater (H) by its heat dissipation effect.
【請求項2】 前記直列群は、それを構成する前記ヒー
トポンプ回路(Sa),(Sb)の夫々が個別の冷媒圧
縮機(Cpa),(Cpb)を備える複数段圧縮形式と
してある請求項1記載の再熱式除湿空調装置。
2. The series group is of a multi-stage compression type in which each of the heat pump circuits (Sa), (Sb) constituting the series group is provided with an individual refrigerant compressor (Cpa), (Cpb). The reheat type dehumidifying air conditioner described.
JP9278894A 1994-05-02 1994-05-02 Reheating type dehumidifying air conditioner Pending JPH07301471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9278894A JPH07301471A (en) 1994-05-02 1994-05-02 Reheating type dehumidifying air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9278894A JPH07301471A (en) 1994-05-02 1994-05-02 Reheating type dehumidifying air conditioner

Publications (1)

Publication Number Publication Date
JPH07301471A true JPH07301471A (en) 1995-11-14

Family

ID=14064165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9278894A Pending JPH07301471A (en) 1994-05-02 1994-05-02 Reheating type dehumidifying air conditioner

Country Status (1)

Country Link
JP (1) JPH07301471A (en)

Similar Documents

Publication Publication Date Title
US5448897A (en) Booster heat pipe for air-conditioning systems
WO2001038799A1 (en) Heat pump and dehumidifying device
WO2007052898A1 (en) Air conditioning system for communication equipment and controlling method thereof
KR102291442B1 (en) Split dehumidification system with secondary evaporator and condenser coils
KR101303270B1 (en) Recuperative climate conditioning system
US20040226686A1 (en) Heat pump and dehumidifying air-conditioning apparatus
JP4505486B2 (en) Heat pump air conditioner
JP2004163092A (en) Indoor unit for air conditioner and air conditioner using this
JPH07301471A (en) Reheating type dehumidifying air conditioner
JP3677887B2 (en) Air conditioner
JP2002340397A (en) Air conditioner
KR20100137050A (en) Refrigeration and air conditioning system
JP4020705B2 (en) Heat pump and dehumidifying air conditioner
KR100465722B1 (en) Heat pump system
JPH07301473A (en) Heat pump apparatus
JPH0719665A (en) Air conditioner for vehicle
JP3699623B2 (en) Heat pump and dehumidifier
JPH0960994A (en) Multi type heat pump system air conditioner
JP7450807B2 (en) air conditioner
JP7498589B2 (en) Air Conditioning System
JPH07167518A (en) Heat pump type air conditioning humidifier
US20230296292A1 (en) Modulating refrigeration system with secondary equipment
JP3924205B2 (en) Heat pump and dehumidifying air conditioner
JP3874624B2 (en) Heat pump and dehumidifying air conditioner
JPH0351644A (en) Multiroom cooling heating device