JPH07301473A - Heat pump apparatus - Google Patents

Heat pump apparatus

Info

Publication number
JPH07301473A
JPH07301473A JP9278794A JP9278794A JPH07301473A JP H07301473 A JPH07301473 A JP H07301473A JP 9278794 A JP9278794 A JP 9278794A JP 9278794 A JP9278794 A JP 9278794A JP H07301473 A JPH07301473 A JP H07301473A
Authority
JP
Japan
Prior art keywords
heat
absorber
condenser
heat pump
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9278794A
Other languages
Japanese (ja)
Inventor
Akira Morikawa
朗 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP9278794A priority Critical patent/JPH07301473A/en
Publication of JPH07301473A publication Critical patent/JPH07301473A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To avoid the instabilization of an operation and a decrease in efficiency in a heat pump apparatus in which the ice melting operation of a heat absorber is executed by operating the absorber as the function of a condenser. CONSTITUTION:The heat pump apparatus comprises a heat absorber R for absorbing heat from an external heat absorption source OA, a heater for heating an object to be heated, detecting means for detecting the iced state of the absorber R, and a series circuit group provided as a heat pump structure having a plurality of heat pump circuits Sa, Sb interposed thermally in series between a heat absorbing evaporator E and a radiating condenser, wherein the absorber R is operated as the function of the evaporator E based on detection information of the detecting means. The apparatus further comprises switching control means for switching a normal heat absorbing operation for operating the heater as the function of the condenser to an ice melting operation for heating the absorber R as the function of the condenser, wherein the control means operates the absorber R in the ice melting operation as the function of the condenser of a predetermined heat pump circuit disposed at an intermediate or low temperature end of the group.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、外部吸熱源から吸熱す
る吸熱器と、加熱対象を加熱する加熱器と、前記吸熱器
の結氷状態を検出する検出手段とを設け、ヒートポンプ
構成として、吸熱用蒸発器と放熱用凝縮器との間に複数
のヒートポンプ回路を熱的に直列に介在させた直列回路
群を設け、前記検出手段の検出情報に基づいて、前記吸
熱器を前記吸熱用蒸発器として機能させ、かつ、前記加
熱器を前記放熱用凝縮器として機能させる通常吸熱運転
から、前記吸熱器を凝縮器機能させて加熱する解氷運転
へ運転状態を切り換える切換制御手段を設けたヒートポ
ンプ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is provided with a heat absorber that absorbs heat from an external heat source, a heater that heats an object to be heated, and a detection means that detects a frozen state of the heat absorber. A series circuit group in which a plurality of heat pump circuits are thermally interposed in series is provided between the evaporator for heat dissipation and the condenser for heat dissipation, and the heat absorber is connected to the heat absorber based on the detection information of the detection means. And a heat pump device provided with switching control means for switching the operating state from a normal endothermic operation in which the heater functions as the heat-dissipating condenser to an thawing operation in which the heat absorber functions as a condenser to heat the ice. Regarding

【0002】[0002]

【従来の技術】一般的にヒートポンプ回路では、暖房運
転時の吸熱用蒸発器において吸熱対象の外気や水等の温
度よりも低温で蒸発させることから吸熱器の周囲に霜や
氷が付着することがあり、正常運転に支障を来すそのよ
うな霜や氷を取り除くべく、圧縮機からの冷媒の供給先
を加熱器から吸熱器に変更することでその吸熱器を凝縮
器機能させて発熱させ、ホットガス方式で解氷運転させ
ることが行われている。
2. Description of the Related Art Generally, in a heat pump circuit, frost or ice adheres to the periphery of the heat absorber because the vaporizer for heat absorption during heating operation evaporates at a temperature lower than the temperature of outside air or water to be absorbed. In order to remove such frost and ice that interferes with normal operation, the refrigerant supply destination from the compressor is changed from a heater to a heat absorber, causing the heat absorber to function as a condenser and generate heat. The hot-gas method is used to perform the ice-melting operation.

【0003】そして、前述した直列ヒートポンプ回路群
を有する多段式のヒートポンプ装置においても同様に解
氷運転の必要が生じるが、上述したホットガス方式での
解氷運転を行うにあたって、切換制御手段を、高温側の
冷媒を吸熱器に供給してその吸熱器を凝縮器機能させる
構成にすることが考えられている。その構成を図面を用
いて説明すると、図9及び図10に示すように、加熱対
象の一対の室への給気SA1’,SA2’に対して暖房
運転時に放熱用凝縮器として機能させる一対の加熱器H
1’,H2’を備えた高温側ヒートポンプ回路Sa’
と、同じく暖房運転時に吸熱用蒸発器として機能させて
外気から吸熱する吸熱器R’を備えた低温側ヒートポン
プ回路Sb’とを設け、暖房運転時にそれぞれ放熱用凝
縮器として機能させる低温側加熱器Xc’及び吸熱用蒸
発器として機能させる高温側吸熱器Xe’とを一体構成
とした熱交換手段X’によって、2つのヒートポンプ回
路Sa’,Sb’間での熱授受を行うように構成してあ
る。なお、黒塗りの太線は、その部分の冷媒状態が高圧
気相であることを示し、細いハッチングを施した太線
は、その部分の冷媒状態が液相であることを示し、点ハ
ッチングを施した太線は、その部分の冷媒状態が低圧の
気液二相であることを示し、更に、白抜きの太線は、そ
の部分の冷媒状態が低圧気相であることを示す。また、
exp1’〜exp4’は膨張弁である。
In the multistage heat pump device having the series heat pump circuit group described above, it is necessary to similarly perform the deicing operation. When performing the defrosting operation by the hot gas method, the switching control means is It has been considered to supply the high temperature side refrigerant to the heat absorber so that the heat absorber functions as a condenser. Explaining the configuration with reference to the drawings, as shown in FIG. 9 and FIG. 10, a pair of air supply SA1 ′, SA2 ′ to a pair of chambers to be heated is caused to function as a heat radiation condenser during heating operation. Heater H
High temperature side heat pump circuit Sa 'equipped with 1'and H2'
And a low-temperature side heat pump circuit Sb ′ having a heat absorber R ′ that also functions as a heat-absorption evaporator during heat-up operation and absorbs heat from the outside air, and a low-temperature-side heater that functions as a heat-radiating condenser during heat-up operation, respectively. Xc 'and a high temperature side heat absorber Xe' which functions as an endothermic evaporator are integrally configured to exchange heat between the two heat pump circuits Sa 'and Sb'. is there. The thick black line indicates that the refrigerant state of the part is a high-pressure vapor phase, the thick line with a thin hatching indicates that the refrigerant state of the part is a liquid phase, the point is hatched. The thick line indicates that the refrigerant state of the part is low-pressure gas-liquid two-phase, and the white thick line indicates that the refrigerant state of the part is low-pressure gas phase. Also,
exp1 'to exp4' are expansion valves.

【0004】図9は暖房運転時を示し、高温側ヒートポ
ンプ回路Sa’において、高温側圧縮機Cpa’からの
高圧気相冷媒Ahg’を一対の加熱器H1’,H2’に
供給し、放熱用凝縮器として機能させて発熱させ、それ
ら加熱器H1’,H2’からの凝縮後の液相冷媒Aw’
を減圧膨張させて低圧気液二相状態にして熱交換手段
X’の高温側吸熱器Xe’に供給する一方、低温側ヒー
トポンプ回路Sb’において、低温側圧縮機Cpb’か
らの高圧気相冷媒Bhg’を熱交換手段X’の低温側加
熱器Xc’に供給して発熱させ、その低温側加熱器X
c’からの液相冷媒Bw’を減圧膨張させて低圧気液二
相状態にして吸熱器R’に供給し、吸熱用蒸発器として
機能させて吸熱させ、その後低圧気相冷媒B’を低温側
圧縮器Cpb’に戻す。また、図10は解氷運転時を示
し、冷媒循環路の構成を切り換えて、前記高温側圧縮器
Cpa’からの高圧気相冷媒Ahg’を、前記吸熱器
R’に供給してその吸熱器R’を放熱用凝縮器として機
能させる。そうすると、この吸熱器R’より発熱され、
その吸熱器R’に付いた霜や氷を取り除くことができる
のである。
FIG. 9 shows the heating operation. In the high temperature side heat pump circuit Sa ', the high pressure gas phase refrigerant Ahg' from the high temperature side compressor Cpa 'is supplied to the pair of heaters H1' and H2 'for heat radiation. The liquid-phase refrigerant Aw ′ after being condensed from the heaters H1 ′ and H2 ′ is caused to function as a condenser to generate heat.
Is decompressed and expanded into a low-pressure gas-liquid two-phase state and supplied to the high temperature side heat absorber Xe 'of the heat exchange means X', while in the low temperature side heat pump circuit Sb ', the high pressure gas phase refrigerant from the low temperature side compressor Cpb' is supplied. Bhg ′ is supplied to the low temperature side heater Xc ′ of the heat exchange means X ′ to generate heat, and the low temperature side heater X
The liquid-phase refrigerant Bw ′ from c ′ is decompressed and expanded into a low-pressure gas-liquid two-phase state and supplied to the heat absorber R ′ to function as an endothermic evaporator to absorb heat, and then the low-pressure gas-phase refrigerant B ′ is cooled to a low temperature. Return to the side compressor Cpb '. Further, FIG. 10 shows the operation of thawing, switching the configuration of the refrigerant circulation path to supply the high-pressure gas-phase refrigerant Ahg ′ from the high temperature side compressor Cpa ′ to the heat absorber R ′ and the heat absorber. R'functions as a heat dissipation condenser. Then, heat is generated from this heat absorber R ',
The frost and ice attached to the heat absorber R'can be removed.

【0005】[0005]

【発明が解決しようとする課題】しかし、上述のように
高温側の冷媒を用いて解氷運転を行う場合、次のような
問題の生じる虞がある。つまり、吸熱器を凝縮器機能さ
せるに際し、高温側の冷媒を用いるため、結氷状態にあ
る吸熱器の温度に比べ、冷媒凝縮温度が必要以上に高い
ものとなり、その結果、高温側の圧縮機が適正な運転条
件から逸脱した条件で運転されることとなり、運転が不
安定になったり効率が低下することとなるのである。
However, when the deicing operation is performed using the high temperature side refrigerant as described above, the following problems may occur. In other words, when the heat absorber functions as a condenser, the high temperature side refrigerant is used, so the refrigerant condensation temperature becomes higher than necessary compared to the temperature of the heat sink in the frozen state, and as a result, the high temperature side compressor is This means that the vehicle will be operated under conditions that deviate from the proper operating conditions, resulting in unstable operation and reduced efficiency.

【0006】本発明の目的は、上記実情に鑑み、解氷運
転のための構成を、不安定な運転や運転効率の低下を来
すことの少ない状態で実現できるヒートポンプ装置を提
供することにある。
In view of the above situation, it is an object of the present invention to provide a heat pump device which can realize a structure for ice-melting operation in a state where unstable operation and reduction in operation efficiency are less likely to occur. .

【0007】[0007]

【課題を解決するための手段】本発明によるヒートポン
プ装置の第1の特徴構成は、外部吸熱源から吸熱する吸
熱器と、加熱対象を加熱する加熱器と、前記吸熱器の結
氷状態を検出する検出手段とを設け、ヒートポンプ構成
として、吸熱用蒸発器と放熱用凝縮器との間に複数のヒ
ートポンプ回路を熱的に直列に介在させた直列回路群を
設け、前記検出手段の検出情報に基づいて、前記吸熱器
を前記吸熱用蒸発器として機能させ、かつ、前記加熱器
を前記放熱用凝縮器として機能させる通常吸熱運転か
ら、前記吸熱器を凝縮器機能させて加熱する解氷運転へ
運転状態を切り換える切換制御手段を設け、その切換制
御手段を、解氷運転において前記吸熱器を前記直列回路
群で中間又は低温端に位置する所定ヒートポンプ回路の
凝縮器として機能させる構成としたことにある。
A first characteristic configuration of a heat pump device according to the present invention is a heat absorber that absorbs heat from an external heat source, a heater that heats an object to be heated, and a frozen state of the heat absorber. A detection means is provided, and as a heat pump configuration, a series circuit group in which a plurality of heat pump circuits are thermally interposed in series between the heat absorption evaporator and the heat dissipation condenser is provided, and based on the detection information of the detection means. Then, from the normal endothermic operation in which the heat absorber functions as the heat-absorbing evaporator and the heater functions as the heat-dissipating condenser, the operation proceeds to the deicing operation in which the heat-absorber functions as a condenser and is heated. A switching control means for switching the state is provided, and the switching control means functions as a condenser of a predetermined heat pump circuit located at an intermediate or low temperature end of the series circuit group in the defrosting operation. Lies in the fact that a configuration that.

【0008】また、本発明によるヒートポンプ装置の第
2の特徴構成は、上記第1の特徴構成において前記吸熱
器を複数設け、前記切換制御手段は、前記吸熱器のうち
の一部について前記の解氷運転を行う際、他の吸熱器を
前記吸熱用蒸発器として機能させ、かつ、前記加熱器を
前記放熱用凝縮器として機能させて前記の通常吸熱運転
を継続する構成としたことにある。
A second characteristic configuration of the heat pump device according to the present invention is the same as the first characteristic configuration, in which a plurality of the heat absorbers are provided, and the switching control means has the above-mentioned solution for a part of the heat absorbers. In performing the ice operation, another heat absorber functions as the heat absorbing evaporator, and the heater functions as the heat radiating condenser to continue the normal heat absorbing operation.

【0009】[0009]

【作用】つまり、先に述べた高温端のヒートポンプ回路
の冷媒を用いて解氷運転させる構成は、単一のヒートポ
ンプ回路で構成される場合の解氷運転において、冷媒の
供給先を加熱器から吸熱器へと切り換える構成としてい
たことを単に踏襲したものであって、複数のヒートポン
プ回路を熱的に直列に接続することで、吸熱源の温度に
比してかなり高温で加熱することを可能にした複数段構
成のヒートポンプ回路群においては、末端の高温端のヒ
ートポンプ回路の冷媒ほどの高い熱源でなくとも、解氷
のために充分利用できることが分かったので、その新知
見に基づいて、本発明の第1の特徴構成においては、解
氷運転において吸熱器をヒートポンプ回路の直列群中で
の中間又は低温端に位置する所定ヒートポンプ回路の凝
縮器として機能させる構成とすることにより、解氷運転
時に、解氷のために必要な発熱機能は充分達成しながら
も、冷媒凝縮温度が結氷状態にある吸熱器の温度に比べ
必要以上の高温となることを回避する。
In other words, the above-described configuration for performing the deicing operation using the refrigerant of the heat pump circuit at the high temperature end is such that, in the case of the defrosting operation of a single heat pump circuit, the supply destination of the refrigerant is from the heater. This is simply a follow-up to switching to a heat absorber, and by connecting multiple heat pump circuits thermally in series, it is possible to heat at a temperature that is considerably higher than the temperature of the heat sink. In the heat pump circuit group having a multi-stage configuration described above, it was found that the heat pump circuit of the present invention can be sufficiently utilized for defrosting even if it is not as high a heat source as the refrigerant of the heat pump circuit at the high temperature end. In the first characteristic configuration of No. 1, the heat absorber functions as a condenser of a predetermined heat pump circuit located at an intermediate or low temperature end in the series group of heat pump circuits in the thawing operation. With this configuration, it is possible to ensure that the refrigerant condensation temperature is higher than necessary when compared with the temperature of the heat sink in the ice-free state, while sufficiently achieving the heat generation function required for the ice-breaking during the ice-breaking operation. To avoid.

【0010】また、本発明の第2の特徴構成によれば、
そのことに加えて、吸熱器を複数設け、そのうちの一部
で解氷運転を行う際に他の吸熱器を吸熱用蒸発器として
機能させるとともに加熱器を放熱用凝縮器として機能さ
せて通常吸熱運転を継続する構成としてあるから、解氷
運転中であっても外部吸熱源から引き続いて吸熱しての
加熱対象の加熱を続けることができる。
According to the second characteristic configuration of the present invention,
In addition to that, when multiple heat absorbers are provided, some of them function as heat-evaporating evaporators and the heater functions as heat-dissipating condensers when performing ice-melting operation. Since the configuration is such that the operation is continued, it is possible to continue heating the object to be heated by continuously absorbing heat from the external heat absorbing source even during the thawing operation.

【0011】[0011]

【発明の効果】従って、本発明の第1の特徴構成によれ
ば、解氷機能を必要充分に維持しつつも、解氷運転を安
定的に、かつ、効率低下の少ない状態で行え、最終的に
効率的な暖房運転を実現できる優れたヒートポンプ装置
を提供できるようになった。
According to the first feature of the present invention, therefore, the deicing operation can be performed stably and in a state where the efficiency is less reduced, while maintaining the necessary and sufficient deicing function. It has become possible to provide an excellent heat pump device that can realize efficient and efficient heating operation.

【0012】また、本発明の第2の特徴構成によれば、
上述の安定して効率的な解氷運転の実現に加えて、複数
の吸熱器の一部で解氷運転を行いながら残りで通常吸熱
運転を継続して行えるから、解氷が必要な状況であって
も暖房を途切れさせることなく行いながら同時に解氷を
行うことができ、結果的により効率的な暖房運転が可能
なヒートポンプ装置を提供できるようになった。
According to the second characteristic configuration of the present invention,
In addition to the above-mentioned stable and efficient deicing operation, it is possible to perform de-icing operation on a part of the multiple heat absorbers and continue normal endothermic operation on the rest, so in situations where de-icing is required Even if there is, heating can be performed without interruption, and at the same time, it is possible to provide a heat pump device capable of more efficient heating operation.

【0013】[0013]

【実施例】以下、図面に基づいて、本発明の実施例を説
明する。図1〜図6に外部吸熱源から吸熱する吸熱器R
と加熱対象を加熱する加熱器Hとを設けたヒートポンプ
装置の一例である空調装置を示してある。図1及び図4
には圧縮機ユニットU内の構成を、図2及び図5には一
対の室内機ユニットI1,I2内の構成を、そして図3
及び図6には一対の室外機ユニットO1,O2内の構成
をそれぞれ示してある。圧縮機ユニットUと、両室内機
ユニットI1,I2及び両室外機ユニットO1,O2と
の間は、6本のわたり配管p1〜p6で配管接続してあ
る。図1〜図3は一対の室内機ユニットI1,I2を用
いて暖房を行う通常吸熱運転状態を示し、図4〜図6は
一対の室外機ユニットO1,O2内の吸熱器Rの結氷状
態の検出に基づいて行われる解氷運転状態を示してい
る。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 6 show a heat absorber R that absorbs heat from an external heat source.
The air-conditioner which is an example of the heat pump device which provided with the heater H which heats a heating target is shown. 1 and 4
2 shows the structure of the compressor unit U, FIG. 2 and FIG. 5 show the structure of the pair of indoor unit units I1 and I2, and FIG.
6 and 6 show the configuration inside the pair of outdoor unit units O1 and O2, respectively. The compressor unit U and the both indoor unit units I1 and I2 and the both outdoor unit units O1 and O2 are connected by six spanning pipes p1 to p6. 1 to 3 show a normal heat absorption operation state in which heating is performed using a pair of indoor unit units I1 and I2, and FIGS. 4 to 6 show a frozen state of the heat absorber R in the pair of outdoor unit units O1 and O2. It shows an ice-breaking operation state performed based on the detection.

【0014】図2及び図5に示すように、第一室内機ユ
ニットI1には、加熱対象である第一の空調対象域への
空気を加熱する放熱用凝縮器Cとして作用する加熱器H
である第一加熱器1と、その第一加熱器1による温調空
気を給気SA1として第一の空調対象域に送給する第一
給気ファン3とを設けてある。なお、2は、第一加熱器
1を冷房運転時に蒸発器機能させて冷却除湿した空気を
加熱するための再熱器である。また、第二室内機ユニッ
トI2には、同じく加熱対象である第二の空調対象域へ
の空気を加熱する放熱用凝縮器Cとして作用する加熱器
Hである第二加熱器4と、その第二加熱器4による温調
空気を給気SA2として第二の空調対象域に送給する第
二給気ファン6とを設けてある。なお、5は、第二加熱
器4を冷房運転時に蒸発器機能させて冷却除湿した空気
を加熱するための再熱器である。一方、図3及び図6に
示すように、第一室外機ユニットO1及び第二室外機ユ
ニットO2には、外部吸熱源である大気OAから吸熱す
る吸熱用蒸発器Eとして作用する吸熱器Rである第一及
び第二吸熱器7,8と、対応する吸熱器7,8に大気O
Aを通風する各別の外気ファン9,10とを設けてあ
る。さらに、図1及び図4に示すように、圧縮機ユニッ
トUには、相互熱交換可能に構成した、冷媒凝縮器とし
て機能する凝縮器経路Xc及び冷媒蒸発器として機能す
る蒸発器経路Xeを備えた中継熱交換器Xと、一対の圧
縮機Cpa,Cpbとを設けてある。
As shown in FIGS. 2 and 5, the first indoor unit I1 has a heater H acting as a heat-radiating condenser C for heating the air to the first air-conditioning target area which is a heating target.
The first heater 1 and the first air supply fan 3 for supplying the temperature-controlled air from the first heater 1 as the air supply SA1 to the first air conditioning target area are provided. Reference numeral 2 is a reheater for causing the first heater 1 to function as an evaporator during cooling operation to heat the air that has been cooled and dehumidified. In addition, the second indoor unit I2 includes a second heater 4 that is a heater H that acts as a heat dissipation condenser C that heats air to a second air conditioning target area that is also a heating target, and a second heater 4 thereof. A second air supply fan 6 is provided for supplying the temperature-controlled air from the second heater 4 to the second air conditioning target area as the air supply SA2. Reference numeral 5 is a reheater for causing the second heater 4 to function as an evaporator during cooling operation to heat the air dehumidified by cooling. On the other hand, as shown in FIGS. 3 and 6, in the first outdoor unit O1 and the second outdoor unit O2, a heat absorber R that acts as an endothermic evaporator E that absorbs heat from the atmosphere OA that is an external heat absorption source is provided. A certain first and second heat absorbers 7, 8 and the corresponding heat absorbers 7, 8 are exposed to the atmosphere O
Separate air fans 9 and 10 for ventilating A are provided. Further, as shown in FIGS. 1 and 4, the compressor unit U is provided with a condenser path Xc functioning as a refrigerant condenser and an evaporator path Xe functioning as a refrigerant evaporator, which are configured to be capable of mutual heat exchange. The relay heat exchanger X and a pair of compressors Cpa and Cpb are provided.

【0015】そして、室内機ユニットI1,I2の両加
熱器1,4及び中継熱交換器Xの蒸発器経路Xeに高沸
点冷媒Aを高温側圧縮機Cpaにより循環させるととも
に、一方の室外機ユニットO2の第二吸熱器8、及び、
中継熱交換器Xの凝縮器経路Xcに低沸点冷媒Bを低温
側圧縮機Cpbにより循環させ、もって、吸熱用蒸発器
Eと放熱を行う放熱用凝縮器Cとの間に、2つのヒート
ポンプ回路Sa,Sbを熱的に直列に介在させ、大気O
Aを外部吸熱源として給気SA1,SA2を加熱温調す
るヒートポンプ装置を構成してある。なお、他方の室外
機ユニットO1の第一吸熱器7には、室内機ユニットI
1,I2の両加熱器1,4からの戻り高沸点冷媒Aを分
岐して通流させ、蒸発させて吸熱した後に、中継熱交換
器Xの蒸発経路Xeを通った後の高沸点冷媒Aに合流さ
せるようにしてある。
Then, the high boiling point refrigerant A is circulated in the both heaters 1 and 4 of the indoor unit units I1 and I2 and the evaporator path Xe of the relay heat exchanger X by the high temperature side compressor Cpa, and one outdoor unit unit A second heat absorber 8 of O2, and
The low boiling point refrigerant B is circulated in the condenser path Xc of the relay heat exchanger X by the low temperature side compressor Cpb, and thus two heat pump circuits are provided between the heat absorbing evaporator E and the heat radiating condenser C for radiating heat. Sa and Sb are thermally intervened in series, and the atmosphere O
A heat pump device for heating and controlling the supply air SA1, SA2 with A as an external heat absorbing source is configured. The first heat absorber 7 of the other outdoor unit O1 includes the indoor unit I
The high boiling point refrigerant A returned from both the heaters 1 and 4 of I and I2 is branched and made to flow, and after evaporating and absorbing heat, the high boiling point refrigerant A after passing through the evaporation path Xe of the relay heat exchanger X. It is designed to join.

【0016】これは、一対の室外機ユニットO1,O2
のそれぞれの吸熱器7,8が同時に結氷状態になると吸
熱能力が大幅に低下することから、そのような事態を避
けるべく、通常吸熱運転時に通流させる冷媒の沸点を互
いに異ならせておくことで、両吸熱器7,8での単位伝
熱面積あたりの定負荷運転能力を異ならせ、そのことに
よって互いに結氷時期が重ならないようにしたものであ
る。つまり、上記能力を大きくした、即ち、この実施例
では外気温との差の大きい低沸点冷媒Bを通流させた第
二吸熱器8が確実に先に結氷することとなるわけであ
り、上記能力の違いを実現するべく、一方の第一吸熱器
7には高沸点冷媒Aを、他方の第二吸熱器8には低沸点
冷媒Bを通流させるように構成してある。
This is a pair of outdoor unit units O1 and O2.
Since the endothermic capacity of each of the heat absorbers 7 and 8 will be significantly reduced if they become icy at the same time, in order to avoid such a situation, it is possible to make the boiling points of the refrigerants flowing during the normal endothermic operation different from each other. The constant load operating capacities per unit heat transfer area of both heat absorbers 7 and 8 are made different so that the icing times do not overlap with each other. That is, the second heat absorber 8 having the increased capacity, that is, the low boiling point refrigerant B having a large difference from the outside air temperature in this embodiment, is sure to be frozen first. In order to realize the difference in capacity, the high boiling point refrigerant A is made to flow through the one first heat absorber 7, and the low boiling point refrigerant B is made to flow through the other second heat absorber 8.

【0017】低温側ヒートポンプ回路Sbには、中継熱
交換器Xの凝縮器経路Xcからの液相状態の低沸点冷媒
Bwに対する流量調節機能をも持たせた膨張弁exp1
と、その膨張弁exp1を経た後の液相状態の低沸点冷
媒Bwを減圧膨張させて、第二吸熱器8に低圧の気液二
相状態の低沸点冷媒Bwgを供給する膨張弁exp2と
を介装してある。また、高温側ヒートポンプ回路Saに
は、一対の加熱器1,4からの液相状態の高沸点冷媒A
wに対する流量調節機能をも持たせた膨張弁exp3,
exp4と、それら膨張弁exp3,exp4を経た後
に合流した液相状態の高沸点冷媒Awを減圧膨張させ
て、中継熱交換器Xの蒸発器経路Xe及び第一吸熱器7
に低圧の気液二相状態の高沸点冷媒Awgを供給する各
別の膨張弁exp5,exp6とを介装してある。な
お、v1〜v27は、運転モードなどに従って、冷媒循
環路の構成を切り換える切換弁、exp7,exp8
は、冷房運転時に用いる膨張弁を切り換える切換弁であ
る。図1〜図6において、黒塗りの太線は、その部分の
冷媒状態が高圧気相であることを示し、細いハッチング
を施した太線は、その部分の冷媒状態が液相であること
を示し、点ハッチングを施した太線は、その部分の冷媒
状態が低圧の気液二相であることを示し、更に、白抜き
の太線は、その部分の冷媒状態が低圧気相であることを
示す。また、膨張弁exp1〜exp8、及び、切換弁
v1〜v27において、白抜きのものは、冷媒の通流状
態を示し、黒塗りのものは、非通流状態又は閉塞状態を
示すものである。
The low temperature side heat pump circuit Sb also has an expansion valve exp1 having a flow rate adjusting function for the low boiling point refrigerant Bw in the liquid phase from the condenser path Xc of the relay heat exchanger X.
And an expansion valve exp2 for decompressing and expanding the low-boiling-point refrigerant Bw in the liquid phase after passing through the expansion valve exp1 and supplying the low-boiling-point refrigerant Bwg in the low-pressure gas-liquid two-phase state to the second heat absorber 8. It is installed. In the high temperature side heat pump circuit Sa, the high boiling point refrigerant A in the liquid phase from the pair of heaters 1 and 4 is supplied.
Expansion valve exp3 that also has a flow rate control function for w
Exp4 and the high-boiling-point refrigerant Aw in the liquid phase, which has merged after passing through the expansion valves exp3 and exp4, are decompressed and expanded, and the evaporator path Xe and the first heat absorber 7 of the relay heat exchanger X are expanded.
In addition, expansion valves exp5 and exp6 are separately provided for supplying a low-boiling-point high-boiling-point refrigerant Awg in a gas-liquid two-phase state. Note that v1 to v27 are switching valves, exp7 and exp8, which switch the configuration of the refrigerant circulation path according to the operation mode and the like.
Is a switching valve that switches the expansion valve used during the cooling operation. In FIGS. 1 to 6, the black thick line indicates that the refrigerant state of the portion is a high-pressure vapor phase, and the thick hatched thick line indicates that the refrigerant state of the portion is a liquid phase, The thick line with dot hatching indicates that the refrigerant state of that portion is low-pressure gas-liquid two-phase, and the thick white line indicates that the refrigerant state of that portion is low-pressure vapor phase. Further, in the expansion valves exp1 to exp8 and the switching valves v1 to v27, the white ones show the flowing state of the refrigerant, and the black ones show the non-flowing state or the closed state.

【0018】次に、図1〜図3を用いて上述した空調装
置の暖房時の通常吸運転状態を説明する。高温側ヒート
ポンプ回路Saにおいては、高温側圧縮機Cpaは、低
圧気相状態の高沸点冷媒Aを吸入し、圧縮して吐出す
る。この高温側圧縮機Cpaからの高圧気相状態の高沸
点冷媒Ahgは、わたり配管p1を介して室内機ユニッ
トI1,I2の加熱器1,4に通流され、空調対象域へ
の給気SA1,SA2を放熱対象として凝縮される。凝
縮後に液相状態になった高沸点冷媒Awは、わたり配管
p5を介し分流されて膨張弁exp5,exp6に達
し、減圧膨張された気液二相状態の高沸点冷媒Awgが
中継熱交換機Xの蒸発器経路Xe及び第一室外機ユニッ
トO1の第一吸熱器7に通流され、凝縮器経路Xcに通
流される高圧気相状態の低沸点冷媒Bhg及び大気OA
をそれぞれ吸熱源として蒸発される。その後、中継交換
器Xの蒸発器経路Xeからの及び第一吸熱器7からわた
り配管p3を介しての低圧気相状態となった高沸点冷媒
Aは、合流された後、再び高温側圧縮機Cpaに還流さ
れ、上述したサイクルが繰り返される。一方低温側ヒー
トポンプ回路Sbにおいては、低温側圧縮機Cpbは、
低圧気相状態の低沸点冷媒Bを吸入し、圧縮して吐出す
る。この低温側圧縮機Cpbからの高圧気相状態の低沸
点冷媒Bhgは中継熱交換器xの凝縮器経路Xcに通流
され、蒸発器経路Xeに通流される気液二相状態の高沸
点冷媒Awgを放熱対象として凝縮される。中継熱交換
器Xの凝縮器経路Xcからの凝縮後に液相状態になった
低沸点冷媒Bwは、わたり配管p6を介して膨張弁ex
p2に達し、減圧膨張された気液二相状態の低沸点冷媒
Bwgが第二室外機ユニットO2の第二吸熱器8に通流
され、大気OAを吸熱源として蒸発される。その後、低
圧気相状態となった低沸点冷媒Bは、わたり配管p4を
介して再び低温側圧縮機Cpbに還流され、上述したサ
イクルが繰り返される。
Next, the normal suction operation state during heating of the above-mentioned air conditioner will be described with reference to FIGS. In the high temperature side heat pump circuit Sa, the high temperature side compressor Cpa sucks in, compresses and discharges the high boiling point refrigerant A in a low pressure gas phase state. The high-boiling-point high-boiling-point refrigerant Ahg from the high-temperature side compressor Cpa is passed through the pipes p1 to the heaters 1 and 4 of the indoor unit I1 and I2 to supply air to the air conditioning target area SA1. , SA2 are heat-dissipated and condensed. The high-boiling-point refrigerant Aw in the liquid phase state after condensation reaches the expansion valves exp5 and exp6 by being shunted through the pipe p5, and the high-boiling-point refrigerant Awg in the gas-liquid two-phase state that has been decompressed and expanded is transferred to the relay heat exchanger X. The low-boiling-point refrigerant Bhg in a high-pressure vapor state and the atmospheric air OA, which flow through the evaporator path Xe and the first heat absorber 7 of the first outdoor unit O1, and flow through the condenser path Xc.
Are vaporized using the respective heat absorption sources. After that, the high-boiling-point refrigerant A in the low-pressure gas phase from the evaporator path Xe of the relay exchanger X and from the first heat absorber 7 via the pipe p3 is merged, and then the high-temperature side compressor again. Reflux to Cpa and the above cycle is repeated. On the other hand, in the low temperature side heat pump circuit Sb, the low temperature side compressor Cpb is
The low-boiling-point refrigerant B in the low-pressure gas phase is sucked, compressed, and discharged. The high-boiling-point low-boiling-point refrigerant Bhg from the low-temperature side compressor Cpb is passed through the condenser path Xc of the relay heat exchanger x and the vapor-liquid two-phase high-boiling point refrigerant passed through the evaporator path Xe. Awg is condensed as a heat dissipation target. The low-boiling-point refrigerant Bw that has become in the liquid phase state after being condensed from the condenser path Xc of the relay heat exchanger X passes through the expansion pipe ex6 via the expansion pipe ex6.
The low-boiling-point refrigerant Bwg in a gas-liquid two-phase state that has reached p2 and has been expanded under reduced pressure is passed through the second heat absorber 8 of the second outdoor unit O2, and evaporated using the atmosphere OA as a heat absorption source. After that, the low-boiling-point refrigerant B in the low-pressure gas phase is recirculated to the low-temperature side compressor Cpb again through the crossing pipe p4, and the above cycle is repeated.

【0019】さて、上述した暖房時の通常吸熱運転を続
ける内に何れかの吸熱器7又は8が結氷状態になったこ
とが吸熱器7,8に付設の検出手段Dによって検出され
ると、切換制御手段CCが、上述の定常吸熱運転から、
結氷状態となった吸熱器7又は8を凝縮器機能させて加
熱する解氷運転へ、運転状態を切り換えるように構成し
てある。先に述べたように、室外機ユニットO1,O2
の各別の吸熱器7,8間で単位伝熱面積あたりの定負荷
運転能力に差を持たせてあるから、それら両吸熱器7,
8の結氷時期が重なることはなく、何れか一方のみが結
氷状態になりそれに応じて解氷運転が始まることとな
る。次に、その解氷運転状態を、図4〜図6を用いて第
二吸熱器8についての解氷運転時を例にとって説明す
る。
Now, when it is detected by the detecting means D attached to the heat absorbers 7 and 8 that one of the heat absorbers 7 or 8 is in an icing state while continuing the normal heat absorption operation during heating as described above, Switching control means CC, from the above-mentioned steady endothermic operation,
The operation state is switched to the ice-breaking operation in which the heat absorber 7 or 8 in the frozen state is caused to function as a condenser and is heated. As described above, the outdoor unit units O1 and O2
Since there is a difference in the constant load operating capacity per unit heat transfer area between the different heat absorbers 7 and 8,
The icing times of 8 do not overlap, and only one of them will be in an icing state, and the thawing operation will start accordingly. Next, the thawing operation state will be described with reference to FIGS. 4 to 6 by taking the thawing operation for the second heat absorber 8 as an example.

【0020】解氷運転では、低温側ヒートポンプ回路S
bにおいては、低温側圧縮機Cpbは、低圧気相状態の
低沸点冷媒Bを吸入し、圧縮して吐出する。この低温側
圧縮機Cpbからの高圧気相状態の低沸点冷媒Bhg
は、分岐され、一部が中継熱交換器Xの凝縮器経路Xc
に通流され、蒸発器経路Xeに通流される気液二相状態
の高沸点冷媒Awgを放熱対象として凝縮されるととも
に、残りが、わたり配管p2を介して第二室外機ユニッ
トO2の第二吸熱器8に通流され、その吸熱器8を凝縮
器機能させることにより、その第二吸熱器Bに付着した
霜や氷を放熱対象として凝縮される。これにより解氷が
行われる。中継熱交換器Xの凝縮器経路Xcからわたり
配管p6を介しての、及び、第二室外機ユニットO2の
吸熱器8からの凝縮後に液相状態になった低沸点冷媒B
wは、合流されて膨張弁exp6に達し、減圧膨張され
た気液二相状態の低沸点冷媒Bwgが第一室外機ユニッ
トO1の第一吸熱器7に通流され、外気OAを吸熱源と
して蒸発される。すなわち、上述のように第二室外機ユ
ニットO2について解氷運転している間も、第一室外機
ユニットO1において通常吸熱運転を継続して行えるよ
うにしてある。蒸発後、低圧気相状態となった低沸点冷
媒Bは、わたり配管p4を介して再び低温側圧縮機Cp
bに還流され、上述したサイクルが繰り返される。一方
高温側ヒートポンプ回路Saにおいては、高温側圧縮機
Cpaは、低圧気相状態の高沸点冷媒Aを吸入し、圧縮
して吐出する。この高温側圧縮機Cpaからの高圧気相
状態の高沸点冷媒Ahgは、わたり配管p1を介して室
内機ユニットI1,I2の加熱器1,4に通流され、空
調対象域への給気SA1,SA2を放熱対象として凝縮
される。凝縮後に液相状態になった高沸点冷媒Awは、
わたり配管p5を介して膨張弁exp5に達し、減圧膨
張された気液二相状態の高沸点冷媒Awgが中継熱交換
器Xの蒸発器経路Xeに通流され、凝縮器経路Xcに通
流される高圧気相状態の低沸点冷媒Bhgを吸熱源とし
て蒸発される。その後、低圧気相状態となった高沸点冷
媒Aは、再び高温側圧縮機Cpaに還流され、上述した
サイクルが繰り返される。このようにして、解氷運転を
おこなっている間も、空調対象域への暖房された給気S
A1,SA2の送給は引き続いて行うことができるよう
にしてある。
In the thawing operation, the low temperature side heat pump circuit S
In b, the low temperature side compressor Cpb sucks in, compresses and discharges the low boiling point refrigerant B in a low pressure gas state. The low boiling point refrigerant Bhg in the high pressure gas phase from the low temperature side compressor Cpb
Is branched and a part of the condenser path Xc of the relay heat exchanger X is
The high-boiling-point refrigerant Awg in the gas-liquid two-phase state, which is passed through the evaporator passage Xe and is condensed as a heat radiation target, and the rest is the second of the second outdoor unit O2 through the crossover pipe p2. By flowing the heat absorber 8 and causing the heat absorber 8 to function as a condenser, frost or ice attached to the second heat absorber B is condensed as a heat radiation target. As a result, deicing is performed. The low-boiling-point refrigerant B in a liquid state after condensation from the condenser path Xc of the relay heat exchanger X via the pipe p6 and from the heat absorber 8 of the second outdoor unit O2.
w is merged and reaches the expansion valve exp6, and the low-boiling-point refrigerant Bwg in a gas-liquid two-phase state that has been decompressed and expanded is passed through the first heat absorber 7 of the first outdoor unit O1, and the outside air OA is used as a heat absorption source. Is evaporated. That is, as described above, the normal endothermic operation can be continuously performed in the first outdoor unit O1 even while the second outdoor unit O2 is being defrosted. After the evaporation, the low-boiling-point refrigerant B in a low-pressure vapor phase state is again passed through the piping p4 to the low-temperature side compressor Cp.
Reflux to b and the above cycle is repeated. On the other hand, in the high temperature side heat pump circuit Sa, the high temperature side compressor Cpa draws in, compresses and discharges the high boiling point refrigerant A in the low pressure gas phase state. The high-boiling-point high-boiling-point refrigerant Ahg from the high-temperature side compressor Cpa is passed through the pipes p1 to the heaters 1 and 4 of the indoor unit I1 and I2 to supply air to the air conditioning target area SA1. , SA2 are heat-dissipated and condensed. The high-boiling-point refrigerant Aw that has become a liquid state after condensation is
The high-boiling-point refrigerant Awg in the gas-liquid two-phase state that has reached the expansion valve exp5 via the crossover pipe p5 and has been decompressed and expanded is passed through the evaporator path Xe of the relay heat exchanger X and through the condenser path Xc. The low-boiling-point refrigerant Bhg in the high-pressure gas phase is evaporated using the heat absorption source. Then, the high-boiling-point refrigerant A in the low-pressure gas state is recirculated to the high temperature side compressor Cpa again, and the above-described cycle is repeated. In this way, the heated air supply S to the air-conditioning target area is performed even during the deicing operation.
The feeding of A1 and SA2 can be continuously performed.

【0021】そして、上述したように、解氷運転を行う
にあたって、結氷状態となった吸熱器Rを凝縮器機能さ
せて加熱するために、その吸熱器Rを前記複数のヒート
ポンプ回路Sa,Sbの直列回路群のうちの低温側ヒー
トポンプ回路Sbの凝縮器として機能させる構成として
あるから、加熱により解氷するに際し、結氷状態にある
吸熱器の温度と冷媒凝縮温度との差がさほど大きくなら
なくて済み、運転の不安定化や効率低下を防止できるの
である。
Then, as described above, in performing the thawing operation, in order to heat the heat absorber R in the icing state by causing it to function as a condenser, the heat absorber R is connected to the heat pump circuits Sa and Sb. Since it is configured to function as the condenser of the low temperature side heat pump circuit Sb of the series circuit group, when the ice is thawed by heating, the difference between the temperature of the heat absorber in the frozen state and the refrigerant condensation temperature does not become so large. It is possible to prevent the instability of driving and the reduction of efficiency.

【0022】次に、上述した通常吸熱運転から解氷運転
へ運転状態を切り換える制御について纏めて説明する。
図7及び図8に示すように、一対の室外機ユニットO
1,O2の冷媒出口には、それぞれ吸熱器Rとして機能
する第一及び第二吸熱器7,8の結氷状態を検出するた
めの検出手段Dである温度センサからなる各別の結氷セ
ンサS1,S2を設けてあり、それら結氷センサS1,
S2からの検出信号を、切換え制御手段CCに入力する
ように構成してある。切換制御手段CCからは、上述の
検出信号に応じて冷媒循環路の構成を切換制御すべく、
両室外機ユニットO1,O2の切換弁v17〜v21,
v23〜v27への制御信号を出力するように構成して
ある。
Next, the control for switching the operating state from the above-mentioned normal endothermic operation to the deicing operation will be summarized.
As shown in FIGS. 7 and 8, the pair of outdoor unit O
At the refrigerant outlets of O1 and O2, separate ice sensors S1 each including a temperature sensor as a detection means D for detecting the ice state of the first and second heat absorbers 7 and 8 functioning as heat absorbers R1, respectively. S2 is provided, and these ice sensors S1,
The detection signal from S2 is input to the switching control means CC. From the switching control means CC, in order to control the switching of the structure of the refrigerant circulation path in accordance with the above detection signal,
Switching valves v17 to v21 for both outdoor unit units O1 and O2,
It is configured to output a control signal to v23 to v27.

【0023】第二室外機ユニットO2の第二吸熱器8が
結氷状態になったことが第二結氷センサS2によって検
出されると、切換制御手段CCは各切換弁を切り換えて
第二吸熱器8を凝縮器機能させて加熱する第二室外機用
解氷運転を行う。先に説明した解氷運転状態がこれであ
る。この状態を図7に示す。このとき、第一吸熱器7に
は、先に述べたように低沸点冷媒Bを循環させて引続い
て吸熱を行わせる。
When the second freezing sensor S2 detects that the second heat absorber 8 of the second outdoor unit O2 is in the frozen state, the switching control means CC switches the switching valves to switch the second heat absorber 8 to the freezing state. The defrosting operation for the second outdoor unit, which heats by making the condenser function, is performed. This is the ice-breaking operation state described above. This state is shown in FIG. At this time, as described above, the low boiling point refrigerant B is circulated in the first heat absorber 7 to continuously absorb heat.

【0024】第二室外機用解氷運転が終了すれば、第二
吸熱器8には高沸点冷媒Aを循環させ、第一吸熱器7に
は引続いて低沸点冷媒Bを循環させる。この状態では、
次には第一吸熱器7の方が先に結氷状態になる。第一吸
熱器7が結氷状態になったことが第一結氷センサS1に
よって検出されると、切換制御手段CCは各切換弁を切
り換えて第一吸熱器7を凝縮器機能させて加熱する第一
室外機用解氷運転を行う。この状態を図8に示す。そし
て、このときには、第二吸熱器8に低沸点冷媒Bを循環
させて引続いて吸熱を行う。
When the second outdoor unit deicing operation is completed, the high boiling point refrigerant A is circulated in the second heat absorber 8 and the low boiling point refrigerant B is continuously circulated in the first heat absorber 7. In this state,
Next, the first heat absorber 7 comes into a frozen state first. When the first freezing sensor S1 detects that the first heat absorber 7 is in an icing state, the switching control unit CC switches each switching valve to make the first heat absorber 7 function as a condenser and heat the first heat absorber 7. Defrost operation for outdoor units. This state is shown in FIG. Then, at this time, the low boiling point refrigerant B is circulated in the second heat absorber 8 to continuously absorb heat.

【0025】切換制御手段CCは、上述のようにして、
何れかの結氷センサS1,S2からの検出信号に応じ
て、第一室外機用解氷運転か第二室外機用解氷運転かを
行うように運転状態を切り換え、解氷運転の間、残りの
吸熱器Rを用いて吸熱を続けることを繰り返して行うよ
うに構成してある。
The switching control means CC, as described above,
In response to the detection signal from any one of the ice sensors S1 and S2, the operation state is switched so that the first outdoor unit thaw operation or the second outdoor unit thaw operation is performed, and the remaining operation is performed during the thaw operation. The heat absorber R is used to continuously absorb heat.

【0026】〔別実施例〕次に、本発明のさらに別の実
施例を説明する。 <1> 先の実施例では、通常吸熱運転時に吸熱用蒸発
器Eとして機能させる吸熱器Rと、放熱用凝縮器Cとし
て機能させる加熱器Hとの間に、低温側ヒートポンプ回
路Sbと高温ヒートポンプ回路Saとの2つのヒートポ
ンプ回路を熱的に直列に介在させていたが、それに替え
て、3つ以上のヒートポンプ回路を熱的に直列に介在さ
せてもよい。そして、その場合には、解氷運転において
凝縮器機能させて加熱する吸熱器Rを、中間又は低温端
に位置するヒートポンプ回路の凝縮器として機能させる
構成とすればよい。また、使用する冷媒は、沸点の異な
る別種のものを混合して用いてもよいし、先の実施例の
ように、複数段圧縮形式で複数のヒートポンプ回路が独
立している場合には、沸点の異なる別種のものを用いて
もよいし、或いは単一の冷媒をヒートポンプ回路毎の圧
力条件の違いで沸点に差をつけて用いるようにしてもよ
い。
[Other Embodiments] Next, still another embodiment of the present invention will be described. <1> In the above embodiment, the low temperature side heat pump circuit Sb and the high temperature heat pump are provided between the heat absorber R that functions as the heat absorbing evaporator E during the normal heat absorbing operation and the heater H that functions as the heat radiating condenser C. Although two heat pump circuits including the circuit Sa are thermally interposed in series, three or more heat pump circuits may be thermally interposed in series instead. Then, in that case, the heat absorber R that functions as a condenser and heats in the deicing operation may be configured to function as a condenser of a heat pump circuit located at an intermediate or low temperature end. Further, the refrigerant to be used may be a mixture of different types having different boiling points, or, as in the previous embodiment, when a plurality of heat pump circuits are independent in a multi-stage compression type, the boiling point is Different types may be used, or a single refrigerant may be used with different boiling points depending on the pressure conditions of each heat pump circuit.

【0027】<2> 本発明を実施するにあたって、先
の実施例のように吸熱器Rを複数設けることに替えて、
解氷運転時には吸熱に基づく暖房を行わないことを前提
に、吸熱器Rを1台だけ設ける構成としてもよい。ま
た、吸熱器Rを複数設ける場合であっても、使用環境等
に応じてそれら複数の吸熱器Rを同時に解氷運転するよ
うに構成してもよい。
<2> In carrying out the present invention, instead of providing a plurality of heat absorbers R as in the previous embodiment,
Only one heat absorber R may be provided on the assumption that the heating based on the heat absorption is not performed during the thawing operation. Further, even when a plurality of heat absorbers R are provided, the plurality of heat absorbers R may be configured to perform the ice-melting operation at the same time depending on the use environment and the like.

【0028】<3> 吸熱器Rの結氷状態を検出する検
出手段Dとしては、先の実施例で説明した冷媒出口温度
を検出する温度センサに替えて、冷媒出口圧力の変化を
見て結氷状態か否かを判断する圧力センサを設けたり、
或いは、霜や氷で反射率が変化することを検出する光セ
ンサを設けたりして実施してもよい。
<3> The detecting means D for detecting the frozen state of the heat absorber R is replaced with the temperature sensor for detecting the refrigerant outlet temperature described in the previous embodiment, and the frozen state is observed by observing the change of the refrigerant outlet pressure. A pressure sensor to judge whether or not,
Alternatively, it may be implemented by providing an optical sensor that detects that the reflectance changes due to frost or ice.

【0029】<4> 加熱を行う加熱器Hは、給気ファ
ン3,6により給気SA1,SA2が通風されてダクト
式により第一及び第二空調対象域に送給されるものに限
らず、空調対象域内に設けられて空調対象空気を直接加
熱するように構成しても良い。
<4> The heater H for heating is not limited to the one in which the supply air SA1, SA2 is ventilated by the supply air fans 3, 6 and is fed to the first and second air-conditioning target areas by the duct type. Alternatively, the air conditioning target air may be provided in the air conditioning target area to directly heat the air conditioning target air.

【0030】<5> 回路外の吸熱源は、大気OAに限
らず、水、その他の液体等適宜変更できる。温調対象空
気は、第一空調対象域への給気SA1及び第二空調対象
域への給気SA2のように、第一空調対象域と第二空調
対象域とに分離されている必要はなく、同一空気や同一
の対象でも良い。
<5> The heat absorption source outside the circuit is not limited to the atmosphere OA, but water, other liquids, or the like can be appropriately changed. The temperature control target air needs to be separated into a first air conditioning target area and a second air conditioning target area, like air supply SA1 to the first air conditioning target area and air supply SA2 to the second air conditioning target area. Alternatively, the same air or the same object may be used.

【0031】<6> 尚、特許請求の範囲の項に図面と
の対照を便利にするために符号を記すが、該記入により
本発明は添付図面の構成に限定されるものではない。
<6> In the claims, reference numerals are given for convenience of comparison with the drawings, but the present invention is not limited to the structures of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】通常吸熱運転時の圧縮機ユニットまわりの冷媒
流れを示す回路図
FIG. 1 is a circuit diagram showing a refrigerant flow around a compressor unit during normal endothermic operation.

【図2】通常吸熱運転時の室内機ユニットまわりの冷媒
流れを示す回路図
FIG. 2 is a circuit diagram showing a refrigerant flow around an indoor unit during normal endothermic operation.

【図3】通常吸熱運転時の室外機ユニットまわりの冷媒
流れを示す回路図
FIG. 3 is a circuit diagram showing a refrigerant flow around an outdoor unit during normal endothermic operation.

【図4】解氷運転時の圧縮機ユニットまわりの冷媒流れ
を示す回路図
FIG. 4 is a circuit diagram showing the flow of refrigerant around the compressor unit during the thawing operation.

【図5】解氷運転時の室内機ユニットまわりの冷媒流れ
を示す回路図
FIG. 5 is a circuit diagram showing a refrigerant flow around the indoor unit during the thawing operation.

【図6】解氷運転時の室外機ユニットまわりの冷媒流れ
を示す回路図
FIG. 6 is a circuit diagram showing a refrigerant flow around the outdoor unit during the thawing operation.

【図7】第二室外機用解氷運転時の室外機ユニットに対
する制御を示す概略図
FIG. 7 is a schematic diagram showing control of the outdoor unit during the second defrosting operation for the outdoor unit.

【図8】第一室外機用解氷運転時の室外機ユニットに対
する制御を示す概略図
FIG. 8 is a schematic diagram showing control of an outdoor unit during a first outdoor unit deicing operation.

【図9】従来の通常吸熱運転時の冷媒流れを示す回路図FIG. 9 is a circuit diagram showing a refrigerant flow during a conventional normal endothermic operation.

【図10】従来の解氷運転時の冷媒流れを示す回路図FIG. 10 is a circuit diagram showing a refrigerant flow during a conventional deicing operation.

【符号の説明】[Explanation of symbols]

OA 外部吸熱源 R 吸熱器 H 加熱器 D 検出手段 E 吸熱用蒸発器 C 放熱用凝縮器 Sa ヒートポンプ回路 Sb ヒートポンプ回路 CC 切換制御手段 OA external heat absorption source R heat absorber H heater D detection means E heat absorption evaporator C heat dissipation condenser Sa heat pump circuit Sb heat pump circuit CC switching control means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 外部吸熱源(OA)から吸熱する吸熱器
(R)と、加熱対象を加熱する加熱器(H)と、前記吸
熱器(R)の結氷状態を検出する検出手段(D)とを設
け、 ヒートポンプ構成として、吸熱用蒸発器(E)と放熱用
凝縮器(C)との間に複数のヒートポンプ回路(Sa),
(Sb)を熱的に直列に介在させた直列回路群を設け、 前記検出手段(D)の検出情報に基づいて、 前記吸熱器(R)を前記吸熱用蒸発器(E)として機能
させ、かつ、前記加熱器(H)を前記放熱用凝縮器
(C)として機能させる通常吸熱運転から、 前記吸熱器(R)を凝縮器機能させて加熱する解氷運転
へ運転状態を切り換える切換制御手段(CC)を設けた
ヒートポンプ装置であって、 前記切換制御手段(CC)は前記の解氷運転において前
記吸熱器(R)を前記直列回路群で中間又は低温端に位
置する所定ヒートポンプ回路の凝縮器として機能させる
構成としてあるヒートポンプ装置。
1. A heat absorber (R) that absorbs heat from an external heat source (OA), a heater (H) that heats an object to be heated, and a detection means (D) that detects a frozen state of the heat absorber (R). And a plurality of heat pump circuits (Sa) are provided between the heat absorbing evaporator (E) and the heat radiating condenser (C) as a heat pump configuration.
A series circuit group in which (Sb) is thermally interposed in series is provided, and the heat absorber (R) functions as the heat absorption evaporator (E) based on the detection information of the detection means (D), Further, a switching control means for switching the operating state from a normal endothermic operation in which the heater (H) functions as the heat dissipation condenser (C) to an thawing operation in which the heat absorber (R) functions as a condenser and heats up. (CC) provided in the heat pump device, wherein the switching control means (CC) condenses the heat absorber (R) in a predetermined heat pump circuit located at an intermediate or low temperature end in the series circuit group in the deicing operation. A heat pump device configured to function as a container.
【請求項2】 前記吸熱器(R)を複数設け、 前記切換制御手段(CC)は、前記吸熱器(R)のうち
の一部について前記の解氷運転を行う際、他の吸熱器
(R)を前記吸熱用蒸発器(E)として機能させ、か
つ、前記加熱器(H)を前記放熱用凝縮器(C)として
機能させて前記の通常吸熱運転を継続する構成としてあ
る請求項1記載のヒートポンプ装置。
2. A plurality of the heat absorbers (R) are provided, and when the switching control means (CC) performs the ice-melting operation for a part of the heat absorbers (R), another heat absorber ( R) is made to function as said evaporator (E) for heat absorption, and said heater (H) is made to function as said condenser (C) for heat radiation, and it is the structure which continues said normal heat absorption operation. The heat pump device described.
JP9278794A 1994-05-02 1994-05-02 Heat pump apparatus Pending JPH07301473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9278794A JPH07301473A (en) 1994-05-02 1994-05-02 Heat pump apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9278794A JPH07301473A (en) 1994-05-02 1994-05-02 Heat pump apparatus

Publications (1)

Publication Number Publication Date
JPH07301473A true JPH07301473A (en) 1995-11-14

Family

ID=14064139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9278794A Pending JPH07301473A (en) 1994-05-02 1994-05-02 Heat pump apparatus

Country Status (1)

Country Link
JP (1) JPH07301473A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107763871A (en) * 2017-10-26 2018-03-06 焦景田 A kind of large-scale handpiece Water Chilling Units of air cooling superposition type
CN114440447A (en) * 2022-03-01 2022-05-06 浙江乾丰智能科技有限公司 Air energy water heater capable of achieving rapid defrosting and stable water temperature and using method
CN114484866A (en) * 2022-03-01 2022-05-13 浙江乾丰智能科技有限公司 Efficient defrosting device and method for air energy water heater

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107763871A (en) * 2017-10-26 2018-03-06 焦景田 A kind of large-scale handpiece Water Chilling Units of air cooling superposition type
CN114440447A (en) * 2022-03-01 2022-05-06 浙江乾丰智能科技有限公司 Air energy water heater capable of achieving rapid defrosting and stable water temperature and using method
CN114484866A (en) * 2022-03-01 2022-05-13 浙江乾丰智能科技有限公司 Efficient defrosting device and method for air energy water heater
CN114440447B (en) * 2022-03-01 2023-10-03 温岭煌格科技咨询有限公司 Air energy water heater capable of realizing rapid defrosting and stable water temperature and use method
CN114484866B (en) * 2022-03-01 2023-10-03 温岭煌格科技咨询有限公司 Efficient defrosting device and method for air energy water heater

Similar Documents

Publication Publication Date Title
US6679321B2 (en) Heat pump system
US6698217B2 (en) Freezing device
US7984621B2 (en) Air conditioning system for communication equipment and controlling method thereof
JP2020185829A (en) On-vehicle temperature control device
US7210303B2 (en) Transcritical heat pump water heating system using auxiliary electric heater
AU2001286333A1 (en) Method and arrangement for defrosting a vapor compression system
WO2002018854A1 (en) Method and arrangement for defrosting a vapor compression system
JP2014510895A (en) Thermal energy system and operating method thereof
US20050229629A1 (en) Refrigerant circuit and a refrigerating system
US5499508A (en) Air conditioner
JPH10166847A (en) Air conditioner for vehicle
JP2010127498A (en) Refrigerating cycle device
JPH07301473A (en) Heat pump apparatus
US20220088996A1 (en) Refrigeration cycle device
KR200274119Y1 (en) Heat pump system
JP2007057177A (en) Vapor compression type refrigerating cycle device
JP4609226B2 (en) Ejector type cycle
JP2000320914A (en) Refrigerating machine
CA3027892C (en) Transcritical r-744 refrigeration system for supermarkets with improved efficiency and reliability
JP2006322691A (en) Ejector cycle
JP2503660B2 (en) Heat storage type air conditioner
JPH07301474A (en) Heat absorber
KR101309193B1 (en) A cooling system for automobile using thermoelectric element
JP2017194180A (en) Refrigeration cycle device
JPH07301471A (en) Reheating type dehumidifying air conditioner