JPH07301474A - Heat absorber - Google Patents

Heat absorber

Info

Publication number
JPH07301474A
JPH07301474A JP9278694A JP9278694A JPH07301474A JP H07301474 A JPH07301474 A JP H07301474A JP 9278694 A JP9278694 A JP 9278694A JP 9278694 A JP9278694 A JP 9278694A JP H07301474 A JPH07301474 A JP H07301474A
Authority
JP
Japan
Prior art keywords
heat
absorbers
refrigerant
state
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9278694A
Other languages
Japanese (ja)
Inventor
Akira Morikawa
朗 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP9278694A priority Critical patent/JPH07301474A/en
Publication of JPH07301474A publication Critical patent/JPH07301474A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To prevent a plurality of heat absorbers from simultaneously becoming iced states by providing the plurality of the absorbers, and ice melting means for ice melting the absorbers becoming iced states, and operating the plurality of the absorbers at the time of a steady heat absorbing operation in the state that constant load heat absorbing capacities per unit heat transfer area are different from each other. CONSTITUTION:Refrigerant Mhg from a compressor Cmp is fed to heaters Ha-Ha of indoor units Ia-Ic via an oil separator Os, etc., in the steady heat absorbing operation state at the time of heating, and the refrigerant Mw condensed here is distributed to arrive at expansion valves exd, exe. The refrigerant Mw of pressure-reduced and expanded vapor two-phase state is fed to heat absorbers Ra, Rb of outdoor units Oa, Ob to evaporate the atmosphere OA as a heat absorption source. In this case, both the absorbers Ra, Rb are so operated that constant load heat absorbing capacities per unit heat transfer area are difference between the absorbers Ra and Rb. A refrigerant circulating passage is switched when any absorber becomes an iced state, and the absorber of the iced side is so controlled as to be ice melted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低温吸熱源から吸熱す
る複数の吸熱器と、結氷状態となった前記吸熱器を解氷
する解氷手段とを設けた吸熱装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat absorbing device provided with a plurality of heat absorbers for absorbing heat from a low temperature heat absorbing source and an ice thawing means for thawing the frozen heat absorbers.

【0002】[0002]

【従来の技術】低温吸熱源から吸熱する吸熱器を備えた
一般的なヒートポンプ回路では、暖房運転時において低
温の吸熱源温度よりも冷媒の蒸発温度が一層低いことに
起因して吸熱器に付着する霜や氷を除去するための解氷
手段として、圧縮機からの冷媒の供給先を加熱器から吸
熱器に変更することでその吸熱器を凝縮器機能させて発
熱させ、ホットガス方式で解氷運転を行わせる運転切換
手段を設けることが行われている。
2. Description of the Related Art In a general heat pump circuit having a heat absorber that absorbs heat from a low-temperature heat source, the vaporization temperature of the refrigerant is lower than the temperature of the low-temperature heat source during heating operation, and the heat sink circuit adheres to the heat absorber. As a means of defrosting to remove frost and ice, by changing the supply destination of the refrigerant from the compressor from the heater to the heat absorber, the heat absorber functions as a condenser to generate heat, and the hot gas method is used. It has been practiced to provide operation switching means for performing ice operation.

【0003】この構成を図面を用いてさらに説明する
と、図13及び図14に示すように、室内機I’に設け
た加熱器H’と室外機O’に設けた吸熱器R’とに亘っ
て圧縮機Cmp’と膨張弁exp1’,exp2’を介
在させて空調装置を構成してある。図13は暖房運転時
を示し、圧縮機Cmp’からの高圧気相冷媒Mhg’を
加熱器H’に供給することで、その加熱器R’を放熱用
凝縮器として機能させて発熱させる一方、その加熱器
H’を通った後の液相冷媒Mw’を膨張弁exp1’,
exp2’を経て減圧膨張させて低圧気液二相状態にし
て吸熱器R’に供給することで、その吸熱器R’を吸熱
用蒸発器として機能させて吸熱させ、その吸熱器R’を
通った後の低圧気相の冷媒M’をアキュムレータA’を
経て圧縮機Cmp’に還流させ、もって定常吸熱運転を
行うように構成してある。一方、図14は解氷運転時を
示し、上述した定常吸熱運転状態から冷媒循環路の構成
の切換えによって、圧縮機Cmp’からの高圧気相冷媒
Mhg’を吸熱器R’に供給するように冷媒の流れを変
更し、そのことで吸熱器R’を凝縮器機能させて発熱さ
せて解氷を行うように構成してある。
This structure will be further described with reference to the drawings. As shown in FIGS. 13 and 14, the heater H'provided in the indoor unit I'and the heat absorber R'provided in the outdoor unit O'are covered. The compressor Cmp 'and the expansion valves exp1' and exp2 'are interposed to constitute an air conditioner. FIG. 13 shows the heating operation, and by supplying the high-pressure vapor-phase refrigerant Mhg ′ from the compressor Cmp ′ to the heater H ′, the heater R ′ functions as a heat dissipation condenser to generate heat. The liquid-phase refrigerant Mw ′ after passing through the heater H ′ is connected to the expansion valve exp1 ′,
By passing through the exp2 ′ and decompressing and expanding it into a low-pressure gas-liquid two-phase state and supplying it to the heat absorber R ′, the heat absorber R ′ functions as an endothermic evaporator to absorb heat, and then passes through the heat absorber R ′. The low-pressure gas-phase refrigerant M ′ after the recirculation is recirculated to the compressor Cmp ′ through the accumulator A ′ so that the steady endothermic operation is performed. On the other hand, FIG. 14 shows the operation for thawing, and the high-pressure gas-phase refrigerant Mhg ′ from the compressor Cmp ′ is supplied to the heat absorber R ′ by switching the configuration of the refrigerant circulation path from the above-described steady heat absorption operation state. The flow of the refrigerant is changed so that the heat absorber R ′ is caused to function as a condenser to generate heat to perform the deicing.

【0004】ところが、このような構成では、吸熱器が
1つだけであるので、吸熱器に付いた霜や氷を除くべく
解氷運転を行っている間は、吸熱は行えずに、暖房を続
けることができないことから、吸熱器を複数設け、それ
ら複数の吸熱器を設置するに、例えば図15に示すよう
に互いに異なる方向に向けるなどして設置環境を相異な
らせることで、複数の吸熱器の全てが同時に結氷状態に
なることを避けるようにして、一部の吸熱器について解
氷運転を行っている場合でも残りの吸熱器を使っての定
常吸熱運転を行えるようにすることが考えられている。
However, in such a structure, since there is only one heat absorber, heat cannot be absorbed during the defrosting operation to remove frost and ice attached to the heat absorber, and heating is performed. Since it is not possible to continue, by providing a plurality of heat absorbers, and by installing the plurality of heat absorbers, for example, by directing them in different directions as shown in FIG. It is possible to avoid that all of the heat sinks become frozen at the same time so that even if some of the heat absorbers are performing the deicing operation, steady heat absorption operation can be performed using the remaining heat absorbers. Has been.

【0005】[0005]

【発明が解決しようとする課題】しかし、上述した設置
方向を互いに異ならせる等して複数の吸熱器を設ける構
成においては、全ての吸熱器の結氷状態の同時出現の回
避は、あくまで確率的に期待されるだけであって確実性
に乏しく、しかも設置条件に制約があって、時として連
続暖房運転を維持できなくなる虞があった。
However, in the structure in which a plurality of heat absorbers are provided by making the installation directions different from each other as described above, avoiding the simultaneous appearance of the frozen state of all the heat absorbers is only stochastically. There was a possibility that it would not be possible to maintain continuous heating operation, because it was only expected and lacked certainty, and there were restrictions on installation conditions.

【0006】本発明の目的は、上記実情に鑑み、複数の
吸熱器が同時に結氷状態になることを確実に防止して、
連続暖房を可及的に長く続けることを可能にする吸熱装
置を提供することにある。
In view of the above situation, an object of the present invention is to reliably prevent a plurality of heat absorbers from being frozen at the same time,
It is to provide a heat absorbing device that enables continuous heating to be continued as long as possible.

【0007】[0007]

【課題を解決するための手段】本発明による吸熱装置の
第1の特徴構成は、低温吸熱源から吸熱する複数の吸熱
器と、結氷状態となった前記吸熱器を解氷する解氷手段
とを設け、その解氷手段が非作動状態にある定常吸熱運
転時に、複数の前記吸熱器を、単位伝熱面積あたりの定
負荷吸熱能力が互いに相違する状態で吸熱作用させる制
御手段を設けたことにある。
A first characteristic configuration of a heat absorbing device according to the present invention is a plurality of heat absorbers that absorb heat from a low temperature heat absorbing source, and an ice thawing means that thaws the heat absorbers in a frozen state. And a control means for causing the plurality of heat absorbers to absorb heat in a state where the constant load heat absorption capacities per unit heat transfer area are different from each other during steady heat absorption operation in which the deicing means is in a non-operating state. It is in.

【0008】本発明による吸熱装置の第2の特徴構成
は、上記の第1の特徴構成において、制御手段を、複数
の前記吸熱器について前記解氷手段による解氷の経歴が
新しいものほど単位伝熱面積あたりの定負荷吸熱能力を
小さくするように、前記解氷手段による解氷があるごと
に、それら吸熱器の単位伝熱面積あたりの定負荷吸熱能
力の比を変更する構成としたことにある。
A second characteristic configuration of the heat absorbing device according to the present invention is the same as the first characteristic configuration described above, in which the control means controls the unit transmission of a plurality of the heat absorbers having a newer history of defrosting by the defrosting means. In order to reduce the constant load heat absorption capacity per heat area, the ratio of the constant load heat absorption capacity per unit heat transfer area of the heat absorbers is changed every time there is thawing by the thawing means. is there.

【0009】一方、本発明による吸熱装置の第3の特徴
構成は、低温吸熱源としての外気を前記吸熱器に通風す
る外気ファンを複数の前記吸熱器に対し各別に設ける構
成としたものに適用する場合に、前述した第1の特徴構
成或いは第2の特徴構成において、制御手段を複数の外
気ファン夫々の送風量を調整して、前記吸熱器夫々の単
位伝熱面積あたりの定負荷吸熱能力を個別に調整する構
成としたことにある。
On the other hand, the third characteristic constitution of the heat absorbing device according to the present invention is applied to a constitution in which an outside air fan for circulating the outside air as a low temperature heat absorption source to the heat absorber is provided for each of the plurality of heat absorbers. In this case, in the first characteristic configuration or the second characteristic configuration described above, the control means adjusts the blowing amount of each of the plurality of outside air fans, and the constant load heat absorption capacity per unit heat transfer area of each of the heat absorbers. Is to be adjusted individually.

【0010】また、本発明による吸熱装置の第4の特徴
構成は、上述した第1の特徴構成〜第3の特徴構成のう
ちの何れか1つにおいて、制御手段を、複数の吸熱器の
夫々に対する冷媒供給量を調整して、前記吸熱器夫々の
単位伝熱面積あたりの定負荷吸熱能力を個別に調整する
構成としたことにある。
A fourth characteristic configuration of the heat absorbing device according to the present invention is the one of the above-mentioned first characteristic configuration to third characteristic configuration, wherein the control means is provided for each of the plurality of heat absorbers. The constant load heat absorption capacity per unit heat transfer area of each of the heat absorbers is individually adjusted by adjusting the amount of refrigerant supplied to the heat absorbers.

【0011】さらに、本発明による吸熱装置の第5の特
徴構成は、上述した第1の特徴構成〜第4の特徴構成の
うちの何れか1つにおいて、制御手段を、複数の吸熱器
の夫々における冷媒蒸発温度を変更して、前記吸熱器夫
々の単位伝熱面積あたりの定負荷吸熱能力を個別に調整
する構成としたことにある。
Further, a fifth characteristic configuration of the heat absorbing device according to the present invention is the one of the above-mentioned first characteristic configuration to fourth characteristic configuration, wherein the control means is provided for each of the plurality of heat absorbers. In the constitution, the refrigerant vaporization temperature is changed to individually adjust the constant load heat absorption capacity per unit heat transfer area of each of the heat absorbers.

【0012】[0012]

【作用】本発明の第1の特徴構成によれば、複数の吸熱
器間での単位伝熱面積あたりの定負荷吸熱能力を異なら
せて運転することで、換言すれば、複数の吸熱器の一部
を多く働かせ残りはさほど働かせないようにすること
で、多く働いた吸熱器の方がさほど働かなかった吸熱器
よりも、確実に先に結氷状態となるようにできる。
According to the first characteristic configuration of the present invention, the constant load heat absorption capacity per unit heat transfer area between the plurality of heat absorbers is changed to operate, that is, the plurality of heat absorbers are operated. By letting some work more and the rest less work, you can ensure that the heat sinks that worked a lot get iced before the ones that don't work a lot.

【0013】本発明の第2の特徴構成によれば、複数の
吸熱器間での単位伝熱面積あたりの定負荷吸熱能力の比
を解氷があるごとに変更して解氷の経歴が新しいものほ
ど単位伝熱面積あたりの定負荷吸熱能力が低くなるよう
にするから、解氷が終わった吸熱器よりも未だ解氷が終
わっていない吸熱器の方を常に多く働かせて、解氷が終
わっていない吸熱器の結氷状態への移行を早めるととも
に解氷が済んだ吸熱器の結氷状態への移行を遅らせるこ
とを、繰り返し行わせ、何れかの吸熱器を交互に用いて
の定常吸熱運転状態を維持できる。
According to the second characteristic constitution of the present invention, the ratio of the constant load heat absorption capacity per unit heat transfer area among a plurality of heat absorbers is changed every time there is a thaw, and the history of the thaw is new. Since the constant load heat absorption capacity per unit heat transfer area becomes lower as much as possible, the end of the defrosting is always done by working more heat absorbers that have not yet been thawed. The normal endothermic operation state in which any one of the heat absorbers is used alternately is made to accelerate the transition of the heat absorber to the frozen state and delay the transition of the thawed ice cube to the frozen state. Can be maintained.

【0014】本発明の第3の特徴構成によれば、複数の
吸熱器に対し各別に設けた外気ファン夫々の送風量を調
整して、送風量を多くした外気ファンに対応する吸熱器
ほど多く働かせて先に結氷状態となるようにでき、複数
の吸熱器間で結氷時期を確実にことならせるための操作
を外気ファンの送風量調整のみで行える。
According to the third characteristic configuration of the present invention, the heat-absorbers corresponding to the outside-air fan having a large amount of air-blowing are adjusted by adjusting the air-blowing amount of each of the outside-air fans provided separately for the plurality of heat absorbers. It can be made to work to get into the freezing state first, and the operation for surely setting the freezing time among a plurality of heat absorbers can be performed only by adjusting the blow rate of the outside air fan.

【0015】本発明の第4の特徴構成によれば、複数の
吸熱器夫々に対する冷媒供給量を調整して、冷媒供給量
を多くした吸熱器ほど多く働かせて先に結氷状態となる
ようにでき、複数の吸熱器間で結氷時期を確実に異なら
せるための操作を、冷媒供給量を調整するバルブ操作の
みで行える。
According to the fourth characteristic configuration of the present invention, the refrigerant supply amount to each of the plurality of heat absorbers can be adjusted so that the heat absorber having the larger refrigerant supply amount works more and becomes the freezing state first. The operation for surely changing the ice formation time among the plurality of heat absorbers can be performed only by the valve operation for adjusting the refrigerant supply amount.

【0016】本発明の第5の特徴構成によれば、複数の
吸熱器夫々における冷媒蒸発温度を異ならせてあるか
ら、各吸熱器に対する冷媒供給量は常に同じにしたまま
でよく、冷媒供給量調整のためにバルブ開度調整を行う
場合に比して、圧力損失が生じることを少なくできる。
According to the fifth characteristic configuration of the present invention, since the refrigerant evaporating temperature in each of the plurality of heat absorbers is made different, the amount of refrigerant supplied to each heat absorber may always remain the same. It is possible to reduce the occurrence of pressure loss as compared with the case where the valve opening degree is adjusted for adjustment.

【0017】[0017]

【発明の効果】従って、本発明の第1の特徴構成によれ
ば、単位伝熱面積あたりの定負荷吸熱能力を大きくした
吸熱器を先に結氷状態にすることで、複数の吸熱器の全
てが同時に結氷状態になったり或いはそれの検知に応じ
て行われる解氷運転が同時に出来することを確実に防止
して、吸熱能力が大幅に低下することや吸熱不能状態に
陥ることを回避でき、確実な連続運転を行える吸熱装置
を提供できるようになった。
As described above, according to the first characteristic configuration of the present invention, all of the plurality of heat absorbers can be obtained by first putting the heat absorber having a large constant load heat absorption capacity per unit heat transfer area into the icing state. It is possible to prevent the simultaneous defrosting operation at the same time or the simultaneous operation of the deicing operation performed in response to the detection of the defrosting operation, and it is possible to avoid a large decrease in the heat absorption capacity or a state where the heat absorption cannot be performed. It has become possible to provide a heat absorbing device that can perform reliable continuous operation.

【0018】また、本発明の第2の特徴構成によれば、
解氷を行う毎に吸熱器間での運転条件を順次変更して複
数の吸熱器間で結氷時期を確実に異ならせることを繰り
返しながら、一部の吸熱器について解氷運転を行ってい
る間も他の吸熱器によって定常吸熱運転を行う状態を長
期にわたって続けることができるから、結氷が頻繁に生
じるような厳寒状態であっても、吸熱能力低下や吸熱不
能をより確実にかつ長期間防止して連続運転を維持でき
る優れた吸熱装置を提供できるようになった。
According to the second characteristic configuration of the present invention,
While performing the deicing operation for some heat absorbers, repeating the operation conditions between the heat absorbers each time the ice is thawed to make sure that the ice formation times differ among multiple heat absorbers. Even if it is in a severe cold state where frequent ice formations occur, it is possible to more reliably and reliably prevent the endothermic capacity from decreasing or not absorbing heat even for a long period of time. It has become possible to provide an excellent heat absorbing device capable of maintaining continuous operation.

【0019】一方、本発明の第3の特徴構成によれば、
上述した連続運転を可能にするための調整操作を、冷媒
の流れを変えることなく外気ファンの送風量の調節のみ
によって行えるから、構成の複雑化を招来することなく
簡単な操作によって行える。
On the other hand, according to the third characteristic configuration of the present invention,
The adjustment operation for enabling the continuous operation described above can be performed only by adjusting the air flow rate of the outside air fan without changing the flow of the refrigerant, and thus can be performed by a simple operation without causing a complicated structure.

【0020】また、本発明の第4の特徴構成によれば、
前述した連続運転を可能にするための調整操作を冷媒流
れを変えて行うから、低温吸熱源としての外気を外気フ
ァンによって通風させる構成を採らない自然通風型にも
適用することができる。
According to the fourth characteristic configuration of the present invention,
Since the adjustment operation for enabling continuous operation described above is performed by changing the refrigerant flow, it can be applied to a natural ventilation type that does not adopt a configuration in which outside air as a low temperature heat absorption source is ventilated by an outside air fan.

【0021】さらに、本発明の第5の特徴構成によれ
ば、前述した連続運転を可能にするための調整操作を、
冷媒流れを変えることなく冷媒の蒸発温度の変更によっ
て行うから、自然通風型にも適用できることに加えて、
冷媒の圧力損失を招来しないことでより効率的な連続運
転が可能になる。
Further, according to the fifth characteristic configuration of the present invention, the adjusting operation for enabling the above-described continuous operation is performed.
Since it is performed by changing the evaporation temperature of the refrigerant without changing the flow of the refrigerant, in addition to being applicable to the natural ventilation type,
By not causing pressure loss of the refrigerant, more efficient continuous operation becomes possible.

【0022】[0022]

【実施例】以下、図面に基づいて、本発明の実施例を説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0023】〔第1実施例〕図1〜図3に、低温吸熱源
から吸熱する複数の吸熱器Rを設けた吸熱装置を組み込
んだヒートポンプ式の空調装置を示してある。この空調
装置は、上記吸熱装置を構成する一対の室外機ユニット
Oa,Obと3つの室内機ユニットIa,Ib,Ic
と、両者の間に介装された圧縮機ユニットCuと、各ユ
ニット間に設けられた3本のわたり配管pa,pb,p
cとから構成されている。図1は3つの室内機ユニット
Ia,Ib,Icを用いて暖房を行う定常吸熱運転状態
を示し、図2及び図3は一対の室外機ユニットOa,O
b内の吸熱器Rを解氷する解氷運転状態を示す。
[First Embodiment] FIGS. 1 to 3 show a heat pump type air conditioner incorporating a heat absorbing device provided with a plurality of heat absorbers R for absorbing heat from a low temperature heat absorbing source. This air conditioner includes a pair of outdoor unit units Oa and Ob and three indoor unit units Ia, Ib and Ic which constitute the heat absorbing device.
And a compressor unit Cu interposed between the two units, and three crossover pipes pa, pb, p provided between the units.
and c. FIG. 1 shows a steady heat absorption operation state in which heating is performed using three indoor unit units Ia, Ib, Ic, and FIGS. 2 and 3 show a pair of outdoor unit units Oa, O.
The ice-melting operation state which thaws the heat absorber R in b is shown.

【0024】3つの室内機ユニットIa,Ib,Icに
はそれぞれ、凝縮器機能させて発熱する加熱器Ha,H
b,Hcと、その加熱器Ha,Hb,Hcによる温調空
気を給気SAa,SAb,SAcとして各別の空調対象
域に送給する給気ファンFia,Fib,Ficとを設
けてある。なおha,hb,hcは、前記加熱器Ha,
Hb,Hcを冷房運転時に蒸発器機能させて冷却除湿し
た空気を加熱するための再熱器である。一対の室外機ユ
ニットOa,Obには、それぞれ蒸発器機能させて低温
吸熱源である大気OAから吸熱する吸熱器R(Ra,R
b)と、対応する吸熱器R(Ra,Rb)に大気を通風
する各別の外気ファンFo(Foa,Fob)とを設け
てある。また、圧縮器ユニットCuには、冷媒を加圧し
て送り出す圧縮機Cmpと、この圧縮機Cmpからの冷
媒中から霧状の油分を分離して圧縮機Cmpに戻すため
のオイルセパレータOSと、前記圧縮機Cmpに還流さ
れる低圧気相の冷媒から不完全蒸発時の液相冷媒を除去
するためのアキュムレータAとを設けてある。そして、
室内機ユニットIa,Ib,Icの加熱器Ha,Hb,
Hcと、室外機ユニットOa,Obの吸熱器Ra,Rb
とに、圧縮機Cmpにより冷媒を循環させて、大気OA
を吸熱源として給気SAa,SAb,SAcを加熱温調
するヒートポンプ回路を構成してある。このヒートポン
プ回路には、定常吸熱運転時に加熱器Ha,Hb,Hc
からの液相冷媒Mwに対する流量調節機能をも持たせた
膨張弁exa,exb,excと、それら膨張弁ex
a,exb,excを経た後に合流分岐した液相冷媒M
wを減圧膨張させて、吸熱器Ra,Rbに低圧気液二相
冷媒Mwgを供給する膨張弁exd,exeを介装して
ある。なお、va〜vmは運転モードなどに従って冷媒
循環路の構成を切り換える切換弁、exf,exg,e
xhは冷房運転時に用いる膨張弁である。図1〜図3に
おいて、黒塗りの太線は、その部分の冷媒状態が高圧気
相であることを示し、細いハッチングを施した太線は、
その部分の冷媒状態が液相であることを示し、点ハッチ
ングを施した太線は、その部分の冷媒状態が低圧の気液
二相であることを示し、更に、白抜きの太線は、その部
分の冷媒状態が低圧気相であることを示す。また、膨張
弁exa〜exh、及び、切換弁va〜vmにおいて、
白抜きのものは、冷媒の通流状態を示し、黒塗りのもの
は、非通流状態又は閉塞状態を示すものである。
The three indoor unit units Ia, Ib, Ic respectively have heaters Ha, H which function as condensers and generate heat.
b, Hc, and air supply fans Fia, Fib, Fic for supplying temperature-controlled air by the heaters Ha, Hb, Hc to the respective air-conditioning target areas as air supply SAa, SAb, SAc. Note that ha, hb, hc are the heaters Ha,
This is a reheater for heating the air dehumidified by cooling by causing Hb and Hc to function as an evaporator during cooling operation. Each of the pair of outdoor unit units Oa and Ob has a heat absorber R (Ra, R) which functions as an evaporator and absorbs heat from the atmosphere OA which is a low temperature heat absorption source.
b) and a separate outside air fan Fo (Foa, Fob) that ventilates the atmosphere to the corresponding heat absorber R (Ra, Rb). In addition, a compressor Cmp that pressurizes and sends out the refrigerant to the compressor unit Cu, an oil separator OS that separates mist-like oil from the refrigerant from the compressor Cmp and returns it to the compressor Cmp, An accumulator A is provided for removing the liquid-phase refrigerant at the time of incomplete evaporation from the low-pressure gas-phase refrigerant that is returned to the compressor Cmp. And
Heaters Ha, Hb of the indoor unit Ia, Ib, Ic,
Hc and heat absorbers Ra and Rb of the outdoor unit Oa and Ob
In addition, the refrigerant is circulated by the compressor Cmp, and the atmosphere OA
A heat pump circuit for controlling the heating temperature of the supply air SAa, SAb, SAc by using as a heat absorption source is configured. This heat pump circuit includes heaters Ha, Hb, Hc during steady heat absorption operation.
Expansion valves exa, exb, and exc that also have a flow rate adjusting function for the liquid-phase refrigerant Mw from
Liquid-phase refrigerant M branched and joined after passing through a, exb, and exc
Expansion valves exd and exe are provided to expand w under reduced pressure and supply the low pressure gas-liquid two-phase refrigerant Mwg to the heat absorbers Ra and Rb. In addition, va to vm are switching valves exf, exg, e that switch the configuration of the refrigerant circulation path according to the operation mode and the like.
xh is an expansion valve used during cooling operation. 1 to 3, the thick black line indicates that the state of the refrigerant in that portion is the high pressure gas phase, and the thick line with thin hatching indicates
The refrigerant state of the part indicates that it is in the liquid phase, the thick line with dot hatching indicates that the refrigerant state of the part is low-pressure gas-liquid two-phase, and further, the thick white line indicates that part. Shows that the refrigerant state of is a low pressure gas phase. Further, in the expansion valves exa to exh and the switching valves va to vm,
The white ones show the flowing state of the refrigerant, and the black ones show the non-flowing state or the closed state.

【0025】次に、図1を用いて、上述した空調装置の
暖房時の定常吸熱運転状態を説明する。
Next, the steady-state heat absorption operation state during heating of the air conditioner will be described with reference to FIG.

【0026】圧縮機Cmpは、低圧気相状態の冷媒Mを
吸入し、圧縮して吐出する。この圧縮機Cmpからの高
圧気相状態になった冷媒Mhgは、オイルセパレータO
Sを経た後わたり配管pcを介して室内機ユニットI
a,Ib,Icの加熱器Ha,Hb,Hcに通流され、
空調対象域への給気SAa,SAb,SAcを放熱対象
として凝縮される。凝縮後に液相状態となった冷媒Mw
は、わたり配管paを介し分流されて膨張弁exd,e
xeに達し、減圧膨張された気液二相状態の冷媒Mwg
が室外機ユニットOa,Obの吸熱器Ra,Rbに通流
され、大気OAを吸熱源として蒸発される。その後、低
圧気相状態となった冷媒Mは、わたり配管pbを介しア
キュムレータAを経た後再び圧縮機Cmpに還流され、
上述したサイクルが繰り返される。
The compressor Cmp sucks in, compresses and discharges the refrigerant M in a low-pressure gas phase. The refrigerant Mhg in the high-pressure gas phase from the compressor Cmp is the oil separator O.
After passing through S, the indoor unit I through the pipe pc
a, Ib, Ic heaters Ha, Hb, Hc flow,
The air supply SAa, SAb, SAc to the air conditioning target area is condensed as a heat dissipation target. Refrigerant Mw in liquid phase after condensation
Is diverted through the crossover pipe pa and expanded valves exd, e
xe, the refrigerant Mwg in a gas-liquid two-phase state that has been decompressed and expanded
Is passed through the heat absorbers Ra and Rb of the outdoor unit Oa and Ob, and is evaporated by using the atmosphere OA as a heat absorption source. After that, the refrigerant M in the low-pressure gas phase is returned to the compressor Cmp after passing through the accumulator A through the crossover pipe pb,
The cycle described above is repeated.

【0027】さて、上述した暖房時の定常吸熱運転にお
いて、一対の吸熱器Ra,Rbが同時に結氷状態になる
ことで吸熱能力が大幅に低下する事態を回避すべく、そ
れら両吸熱器Ra,Rb間で、単位伝熱面積あたりの定
負荷吸熱能力を互いに異ならせて運転させるように構成
してある。具体的には、両吸熱器Ra,Rbに大気OA
を通気させる各別の外気ファンFoa,Fob夫々の送
風量を異ならせ、通気大気量を多くした方の吸熱器を先
に結氷状態にさせるようにしてある。
In the steady heat absorption operation during heating as described above, in order to avoid a situation in which the heat absorption capability of the pair of heat absorbers Ra and Rb is simultaneously frozen, the heat absorption capacity of the both heat absorbers Ra and Rb is significantly reduced. The constant load heat absorption capacities per unit heat transfer area are made to differ from each other during operation. Specifically, the air OA is applied to both heat absorbers Ra and Rb.
The amount of air blown by each of the outside air fans Foa and Fob through which air is ventilated is made different, and the heat absorber having the larger amount of ventilated air is first put into the frozen state.

【0028】そして、何れかの吸熱器が結氷状態になれ
ば、引続いて冷媒循環路の構成を切り換え、結氷状態に
なった吸熱器を凝縮器機能させて発熱させることで、そ
の吸熱器を解氷運転させるように構成してある。次に、
その解氷運転状態を説明する。
When any one of the heat absorbers becomes in an icing state, the structure of the refrigerant circulation path is continuously switched, and the heat sinks in the icing state are caused to function as a condenser to generate heat, so that the heat absorbers are It is configured to be operated in the thaw mode. next,
The ice-breaking operation state will be described.

【0029】図2は、第二外気ファンFobの送風量を
第一外気ファンFoaよりも多くした結果第二吸熱器R
bが結氷状態になったことに応じて行われる第二室外機
解氷運転状態を示す。
FIG. 2 shows that the amount of air blown by the second outside air fan Fob is larger than that of the first outside air fan Foa, so that the second heat absorber R is shown.
The second outdoor unit thawing operation state performed in response to the icing state of b is shown.

【0030】圧縮機Cmpは、低圧気相状態の冷媒Mを
吸入し、圧縮して吐出する。この圧縮機Cmpからの高
圧気相状態になった冷媒Mhgは、オイルセパレータO
Sを経た後、わたり配管pcを介して分流され、室内機
ユニットIa,Ib,Icの加熱器Ha,Hb,Hc及
び第二吸熱器Rbに通流され、加熱器Ha,Hb,Hc
では空調対象域への給気SAa,SAb,SAcを放熱
対象として凝縮される。一方、第二供給機Rbは凝縮機
機能されて発熱が行われ、これにより第二吸熱器Rbに
おいて解氷が行われる。加熱器Ha,Hb,Hc、及
び、第二吸熱器Rbで凝縮されて液相状態となった冷媒
Mwは、合流され、わたり配管paを介して膨張弁ex
dに達し、減圧膨張されて気液二相状態の冷媒Mwgが
第一吸熱器Raに通流され、大気OAを吸熱源として蒸
発される。その後、低圧気相状態となった冷媒Mは、わ
たり配管pbを介しアキュムレータAを経た後再び圧縮
機Cmpに還流され、上述したサイクルが繰り返され
る。上述のようにして、第二吸熱器Rbを凝縮器機能さ
せての解氷運転中も第一吸熱器Raを用いての吸熱を行
いながら、室内機ユニットIa,Ib,Icの加熱器H
a,Hb,Hcを用いての暖房を継続して行うことがで
きるように構成してある。
The compressor Cmp draws in, compresses and discharges the refrigerant M in a low-pressure gas phase. The refrigerant Mhg in the high-pressure gas phase from the compressor Cmp is the oil separator O.
After passing through S, the flow is divided via the crossover pipe pc, and is passed to the heaters Ha, Hb, Hc and the second heat absorber Rb of the indoor unit Ia, Ib, Ic, and the heaters Ha, Hb, Hc.
Then, the supply air SAa, SAb, SAc to the air conditioning target area is condensed as a heat dissipation target. On the other hand, the second supply device Rb functions as a condenser to generate heat, which causes the second heat absorber Rb to thaw. The refrigerant Mw condensed in the heaters Ha, Hb, Hc and the second heat absorber Rb to be in a liquid phase state is merged, and the expansion valve ex is passed through the cross pipe pa.
After reaching d, the refrigerant Mwg in a gas-liquid two-phase state after being expanded under reduced pressure is passed through the first heat absorber Ra and evaporated using the atmosphere OA as a heat absorption source. After that, the refrigerant M in the low-pressure vapor phase state is returned to the compressor Cmp again after passing through the accumulator A through the cross pipe pb, and the above-described cycle is repeated. As described above, the heater H of the indoor unit Ia, Ib, Ic while absorbing heat using the first heat absorber Ra even during the deicing operation with the second heat absorber Rb functioning as a condenser.
The heating using a, Hb, and Hc can be continuously performed.

【0031】さて、第二室外機解氷運転が終了すれば、
再び図1に示す定常吸熱運転に戻るが、このとき、先程
とは異なって、第一外気ファンFoaの送風量を第二外
気ファンFobよりも多くするようにしてある。そし
て、その結果、第一吸熱器Raが結氷状態になったこと
に応じて図3に示す第一室外機解氷運転が行われる。こ
の第一室外機解氷運転は、先に説明した第二室外機解氷
運転と凝縮器機能させる吸熱器が異なるだけで他は同じ
であるので説明は省略する。何れにしても、上述のよう
に冷媒循環路の構成を切り換え、結氷状態となった吸熱
器Rを凝縮器機能させて加熱することで解氷運転させ
る。
Now, when the second outdoor unit deicing operation is completed,
Again returning to the steady endothermic operation shown in FIG. 1, at this time, unlike the previous case, the blowing amount of the first outside air fan Foa is made larger than that of the second outside air fan Fob. Then, as a result, the first outdoor unit defrosting operation shown in FIG. 3 is performed in response to the first heat absorber Ra being in the icing state. This first outdoor unit ice thawing operation is the same as the second outdoor unit ice thawing operation described above, except that the heat absorbers that function as the condensers are the same, and the description thereof is omitted. In any case, the structure of the refrigerant circulation path is switched as described above, and the heat absorber R in the frozen state is caused to function as a condenser and is heated to perform the ice-melting operation.

【0032】その後、第一室外機解氷運転が終了すれ
ば、再び図1に示す定常吸熱運転に戻り、今度は、再び
第二外気ファンFobの送風量を第一外気ファンFoa
よりも多くする。このように、解氷があるごとに、外気
ファンFoa,Fob夫々の送風量を調整しての吸熱器
Ra,Rbの単位伝熱面積あたりの定負荷吸熱能力の比
の変更を行い、先に述べたように、解氷の経歴が新しい
ものほど上記能力を小さくすることで、両吸熱器Ra,
Rbが同時に結氷状態になることを確実に防止して、暖
房運転を継続して行えるようにしてある。
After that, when the first outdoor unit ice thawing operation is completed, the operation returns to the steady heat absorption operation shown in FIG. 1 again, and this time, the blowing amount of the second outside air fan Fob is again set to the first outside air fan Foa.
More than. In this way, each time the ice is thawed, the ratio of the constant load heat absorption capacity per unit heat transfer area of the heat absorbers Ra and Rb is adjusted by adjusting the air flow rates of the outside air fans Foa and Fob, respectively. As described above, the newer the history of deicing, the smaller the above-mentioned capacity is.
Rb is surely prevented from being frozen at the same time so that the heating operation can be continued.

【0033】図4には、上述した各運転状態の切換制御
を行う制御系の概略を示す。制御手段CCは、一対の外
気ファンFoa,Fobに対して、それら両外気ファン
Foa,Fobの送風量を変更調整するための制御信号
を出力する。何れか一方の外気ファンFoa又はFob
の送風量を他方よりも多くして先に述べたように対応す
る一方の吸熱器Rが先に結氷状態になれば、吸熱器Rに
付設の検出手段Dがそれを検出して制御手段CCに検出
信号を送り、制御手段CCは切換弁へ制御信号を出力し
て冷媒循環路の構成を切り換えて前述したように解氷運
転を行う。すなわち、吸熱器Rを凝縮器機能させて加熱
しうるようにした冷媒循環路構成が、結氷状態となった
吸熱器Rを解氷する解氷手段を構成している。結氷状態
となった吸熱器Rに対する解氷運転が終了すれば、制御
手段CCは再度冷媒循環路の構成を切り換えて定常吸熱
運転を行い、その際、一対の外気ファンFoa,Fob
の送風量の比を先の定常吸熱運転時とは逆に変更し、以
後、解氷があるごとに、上述の制御を繰り返すように構
成してある。
FIG. 4 shows an outline of a control system for performing the switching control of each of the above operating states. The control means CC outputs a control signal to the pair of outside air fans Foa, Fob for changing and adjusting the air flow rates of the outside air fans Foa, Fob. Either outside air fan Foa or Fob
If one of the corresponding heat absorbers R is in the icing state first as described above by increasing the amount of air blown from the other, the detecting means D attached to the heat absorber R detects it and the control means CC The control means CC outputs a control signal to the switching valve to switch the configuration of the refrigerant circulation path to perform the deicing operation as described above. That is, the refrigerant circulation path configuration in which the heat absorber R is made to function as a condenser so as to be heated constitutes the ice thawing means for thawing the heat absorber R in the frozen state. When the thawing operation for the heat absorber R in the icing state is completed, the control means CC again switches the configuration of the refrigerant circulation path to perform the steady heat absorption operation, and at that time, the pair of outside air fans Foa, Fob.
The ratio of the blown air amount is changed to the reverse of that in the steady endothermic operation, and thereafter, the above control is repeated every time the ice is thawed.

【0034】〔第2実施例〕図5〜図10に外部吸熱源
から吸熱する吸熱器Rと加熱対象を加熱する加熱器Hと
を設けた空調装置を示してある。図5及び図8には圧縮
機ユニットU内の構成を、図6及び図9には一対の室内
機ユニットI1,I2内の構成を、そして図7及び図1
0には一対の室外機ユニットO1,O2内の構成をそれ
ぞれ示してある。圧縮機ユニットUと、両室内機ユニッ
トI1,I2及び両室外機ユニットO1,O2との間
は、6本のわたり配管p1〜p6で配管接続してある。
図5〜図7は一対の室内機ユニットI1,I2を用いて
暖房を行う定常吸熱運転状態を示し、図8〜図10は一
対の室外機ユニットO1,O2内の吸熱器Rの結氷状態
の検出に基づいて行われる解氷運転状態を示している。
[Second Embodiment] FIGS. 5 to 10 show an air conditioner provided with a heat absorber R for absorbing heat from an external heat absorbing source and a heater H for heating an object to be heated. 5 and 8 show the configuration inside the compressor unit U, FIGS. 6 and 9 show the configuration inside the pair of indoor unit units I1 and I2, and FIG. 7 and FIG.
Reference numeral 0 indicates the configuration inside the pair of outdoor unit units O1 and O2, respectively. The compressor unit U and the both indoor unit units I1 and I2 and the both outdoor unit units O1 and O2 are connected by six spanning pipes p1 to p6.
5 to 7 show a steady heat absorption operation state in which heating is performed by using the pair of indoor unit units I1 and I2, and FIGS. 8 to 10 show an ice formation state of the heat absorber R in the pair of outdoor unit units O1 and O2. It shows an ice-breaking operation state performed based on the detection.

【0035】図6及び図9に示すように、第一室内機ユ
ニットI1には、加熱対象である第一の空調対象域への
空気を加熱する放熱用凝縮器Cとして作用する加熱器H
である第一加熱器1と、その第一加熱器1による温調空
気を給気SA1として第一の空調対象域に送給する第一
給気ファン3とを設けてある。なお、2は、第一加熱器
1を冷房運転時に蒸発器機能させて冷却除湿した空気を
加熱するための再熱器である。また、第二室内機ユニッ
トI2には、同じく加熱対象である第二の空調対象域へ
の空気を加熱する放熱用凝縮器Cとして作用する加熱器
Hである第二加熱器4と、その第二加熱器4による温調
空気を給気SA2として第二の空調対象域に送給する第
二給気ファン6とを設けてある。なお、5は、第二加熱
器4を冷房運転時に蒸発器機能させて冷却除湿した空気
を加熱するための再熱器である。一方、図7及び図10
に示すように、第一室外機ユニットO1及び第二室外機
ユニットO2には、低温吸熱源である大気OAから吸熱
する吸熱用蒸発器Eとして作用する吸熱器Rである第一
及び第二吸熱器7,8と、対応する吸熱器7,8に大気
OAを通風する各別の外気ファン9,10とを設けてあ
る。さらに、図5及び図8に示すように、圧縮機ユニッ
トUには、相互熱交換可能に構成した、冷媒凝縮器とし
て機能する凝縮器経路Xc及び冷媒蒸発器として機能す
る蒸発器経路Xeを備えた中継熱交換器Xと、一対の圧
縮機Cpa,Cpbとを設けてある。
As shown in FIGS. 6 and 9, the first indoor unit I1 has a heater H acting as a heat-radiating condenser C for heating air to the first air-conditioning target area to be heated.
The first heater 1 and the first air supply fan 3 for supplying the temperature-controlled air from the first heater 1 as the air supply SA1 to the first air conditioning target area are provided. Reference numeral 2 is a reheater for causing the first heater 1 to function as an evaporator during cooling operation to heat the air that has been cooled and dehumidified. In addition, the second indoor unit I2 includes a second heater 4 that is a heater H that acts as a heat dissipation condenser C that heats air to a second air conditioning target area that is also a heating target, and a second heater 4 thereof. A second air supply fan 6 is provided for supplying the temperature-controlled air from the second heater 4 to the second air conditioning target area as the air supply SA2. Reference numeral 5 is a reheater for causing the second heater 4 to function as an evaporator during cooling operation to heat the air dehumidified by cooling. Meanwhile, FIG. 7 and FIG.
As shown in FIG. 1, the first outdoor unit O1 and the second outdoor unit O2 are the first and second heat absorbers R that function as the heat-absorbing evaporator E that absorbs heat from the atmosphere OA that is a low-temperature heat source. The air conditioners 7 and 8 and the respective outside air fans 9 and 10 that ventilate the air OA to the corresponding heat absorbers 7 and 8 are provided. Further, as shown in FIGS. 5 and 8, the compressor unit U is provided with a condenser path Xc functioning as a refrigerant condenser and an evaporator path Xe functioning as a refrigerant evaporator, which are configured to be capable of mutual heat exchange. The relay heat exchanger X and a pair of compressors Cpa and Cpb are provided.

【0036】そして、室内機ユニットI1,I2の両加
熱器1,4及び中継熱交換器Xの蒸発器経路Xeに高沸
点冷媒Aを高温側圧縮機Cpaにより循環させるととも
に、一方の室外機ユニットO2の第二吸熱器8、及び、
中継熱交換器Xの凝縮器経路Xcに低沸点冷媒Bを低温
側圧縮機Cpbにより循環させ、もって、吸熱用蒸発器
Eと放熱を行う放熱用凝縮器Cとの間に、2つのヒート
ポンプ回路Sa,Sbを熱的に直列に介在させ、大気O
Aを低温吸熱源として給気SA1,SA2を加熱温調す
るヒートポンプ装置を構成してある。なお、他方の室外
機ユニットO1の第一吸熱器7には、室内機ユニットI
1,I2の両加熱器1,4からの戻り高沸点冷媒Aを分
岐して通流させ、蒸発させて吸熱した後に、中継熱交換
器Xの蒸発経路Xeを通った後の高沸点冷媒Aに合流さ
せるようにしてある。
Then, the high boiling point refrigerant A is circulated in the both heaters 1 and 4 of the indoor unit units I1 and I2 and the evaporator path Xe of the relay heat exchanger X by the high temperature side compressor Cpa, and one outdoor unit unit A second heat absorber 8 of O2, and
The low boiling point refrigerant B is circulated in the condenser path Xc of the relay heat exchanger X by the low temperature side compressor Cpb, and thus two heat pump circuits are provided between the heat absorbing evaporator E and the heat radiating condenser C for radiating heat. Sa and Sb are thermally intervened in series, and the atmosphere O
A heat pump device for controlling the heating temperature of the supply air SA1, SA2 using A as a low temperature heat absorption source is configured. The first heat absorber 7 of the other outdoor unit O1 includes the indoor unit I
The high boiling point refrigerant A returned from both the heaters 1 and 4 of I and I2 is branched and made to flow, and after evaporating and absorbing heat, the high boiling point refrigerant A after passing through the evaporation path Xe of the relay heat exchanger X. It is designed to join.

【0037】これは、一対の室外機ユニットO1,O2
のそれぞれの吸熱器7,8が同時に結氷状態になると吸
熱能力が大幅に低下することから、そのような事態を避
けるべく、通常吸熱運転時に通流させる冷媒の沸点を互
いに異ならせておくことで、両吸熱器7,8での単位伝
熱面積あたりの定負荷運転能力を異ならせ、そのことに
よって互いに結氷時期が重ならないようにしたものであ
る。つまり、上記能力を大きくした、即ち、この実施例
では外気温との差の大きい低沸点冷媒Bを通流させた第
二吸熱器8が確実に先に結氷することとなるわけであ
り、上記能力の違いを実現するべく、一方の第一吸熱器
7には高沸点冷媒Aを、他方の第二吸熱器8には低沸点
冷媒Bを通流させるように構成してある。
This is a pair of outdoor unit units O1 and O2.
Since the endothermic capacity of each of the heat absorbers 7 and 8 will be significantly reduced if they become icy at the same time, in order to avoid such a situation, it is possible to make the boiling points of the refrigerants flowing during the normal endothermic operation different from each other. The constant load operating capacities per unit heat transfer area of both heat absorbers 7 and 8 are made different so that the icing times do not overlap with each other. That is, the second heat absorber 8 having the increased capacity, that is, the low boiling point refrigerant B having a large difference from the outside air temperature in this embodiment, is sure to be frozen first. In order to realize the difference in capacity, the high boiling point refrigerant A is made to flow through the one first heat absorber 7, and the low boiling point refrigerant B is made to flow through the other second heat absorber 8.

【0038】低温側ヒートポンプ回路Sbには、中継熱
交換器Xの凝縮器経路Xcからの液相状態の低沸点冷媒
Bwに対する流量調節機能をも持たせた膨張弁exp1
と、その膨張弁exp1を経た後の液相状態の低沸点冷
媒Bwを減圧膨張させて、第二吸熱器8に低圧の気液二
相状態の低沸点冷媒Bwgを供給する膨張弁exp2と
を介装してある。また、高温側ヒートポンプ回路Saに
は、一対の加熱器1,4からの液相状態の高沸点冷媒A
wに対する流量調節機能をも持たせた膨張弁exp3,
exp4と、それら膨張弁exp3,exp4を経た後
に合流した液相状態の高沸点冷媒Awを減圧膨張させ
て、中継熱交換器Xの蒸発器経路Xe及び第一吸熱器7
に低圧の気液二相状態の高沸点冷媒Awgを供給する各
別の膨張弁exp5,exp6とを介装してある。な
お、v1〜v27は、運転モードなどに従って、冷媒循
環路の構成を切り換える切換弁、exp7,exp8
は、冷房運転時に用いる膨張弁を切り換える切換弁であ
る。図5〜図10において、黒塗りの太線は、その部分
の冷媒状態が高圧気相であることを示し、細いハッチン
グを施した太線は、その部分の冷媒状態が液相であるこ
とを示し、点ハッチングを施した太線は、その部分の冷
媒状態が低圧の気液二相であることを示し、更に、白抜
きの太線は、その部分の冷媒状態が低圧気相であること
を示す。また、膨張弁exp1〜exp8、及び、切換
弁v1〜v27において、白抜きのものは、冷媒の通流
状態を示し、黒塗りのものは、非通流状態又は閉塞状態
を示すものである。
The low temperature side heat pump circuit Sb also has an expansion valve exp1 having a flow rate adjusting function for the low boiling point refrigerant Bw in the liquid state from the condenser path Xc of the relay heat exchanger X.
And an expansion valve exp2 for decompressing and expanding the low-boiling-point refrigerant Bw in the liquid phase after passing through the expansion valve exp1 and supplying the low-boiling-point refrigerant Bwg in the low-pressure gas-liquid two-phase state to the second heat absorber 8. It is installed. In the high temperature side heat pump circuit Sa, the high boiling point refrigerant A in the liquid phase from the pair of heaters 1 and 4 is supplied.
Expansion valve exp3 that also has a flow rate control function for w
Exp4 and the high-boiling-point refrigerant Aw in the liquid phase, which has merged after passing through the expansion valves exp3 and exp4, are decompressed and expanded, and the evaporator path Xe and the first heat absorber 7 of the relay heat exchanger X are expanded.
In addition, expansion valves exp5 and exp6 are separately provided for supplying a low-boiling-point high-boiling-point refrigerant Awg in a gas-liquid two-phase state. Note that v1 to v27 are switching valves, exp7 and exp8, which switch the configuration of the refrigerant circulation path according to the operation mode and the like.
Is a switching valve that switches the expansion valve used during the cooling operation. 5 to 10, a black thick line indicates that the refrigerant state of the portion is a high-pressure gas phase, and a thick hatched line indicates that the refrigerant state of the portion is a liquid phase, The thick line with dot hatching indicates that the refrigerant state of that portion is low-pressure gas-liquid two-phase, and the thick white line indicates that the refrigerant state of that portion is low-pressure vapor phase. Further, in the expansion valves exp1 to exp8 and the switching valves v1 to v27, the white ones show the flowing state of the refrigerant, and the black ones show the non-flowing state or the closed state.

【0039】次に、図5〜図7を用いて上述した空調装
置の暖房時の定常吸熱運転状態を説明する。高温側ヒー
トポンプ回路Saにおいては、高温側圧縮機Cpaは、
低圧気相状態の高沸点冷媒Aを吸入し、圧縮して吐出す
る。この高温側圧縮機Cpaからの高圧気相状態の高沸
点冷媒Ahgは、わたり配管p1を介して室内機ユニッ
トI1,I2の加熱器1,4に通流され、空調対象域へ
の給気SA1,SA2を放熱対象として凝縮される。凝
縮後に液相状態になった高沸点冷媒Awは、わたり配管
p5を介し分流されて膨張弁exp5,exp6に達
し、減圧膨張された気液二相状態の高沸点冷媒Awgが
中継熱交換機Xの蒸発器経路Xe及び第一室外機ユニッ
トO1の第一吸熱器7に通流され、凝縮器経路Xcに通
流される高圧気相状態の低沸点冷媒Bhg及び大気OA
をそれぞれ吸熱源として蒸発される。その後、中継交換
器Xの蒸発器経路Xeからの及び第一吸熱器7からわた
り配管p3を介しての低圧気相状態となった高沸点冷媒
Aは、合流された後、再び高温側圧縮機Cpaに還流さ
れ、上述したサイクルが繰り返される。一方低温側ヒー
トポンプ回路Sbにおいては、低温側圧縮機Cpbは、
低圧気相状態の低沸点冷媒Bを吸入し、圧縮して吐出す
る。この低温側圧縮機Cpbからの高圧気相状態の低沸
点冷媒Bhgは中継熱交換器xの凝縮器経路Xcに通流
され、蒸発器経路Xeに通流される気液二相状態の高沸
点冷媒Awgを放熱対象として凝縮される。中継熱交換
器Xの凝縮器経路Xcからの凝縮後に液相状態になった
低沸点冷媒Bwは、わたり配管p6を介して膨張弁ex
p2に達し、減圧膨張された気液二相状態の低沸点冷媒
Bwgが第二室外機ユニットO2の第二吸熱器8に通流
され、大気OAを吸熱源として蒸発される。その後、低
圧気相状態となった低沸点冷媒Bは、わたり配管p4を
介して再び低温側圧縮機Cpbに還流され、上述したサ
イクルが繰り返される。
Next, the steady heat absorption operation state during heating of the air conditioner will be described with reference to FIGS. 5 to 7. In the high temperature side heat pump circuit Sa, the high temperature side compressor Cpa is
The high-boiling-point refrigerant A in the low-pressure gas phase is sucked, compressed, and discharged. The high-boiling-point high-boiling-point refrigerant Ahg from the high-temperature side compressor Cpa is passed through the pipes p1 to the heaters 1 and 4 of the indoor unit I1 and I2 to supply air to the air conditioning target area SA1. , SA2 are heat-dissipated and condensed. The high-boiling-point refrigerant Aw in the liquid phase state after condensation reaches the expansion valves exp5 and exp6 by being shunted through the pipe p5, and the high-boiling-point refrigerant Awg in the gas-liquid two-phase state that has been decompressed and expanded is transferred to the relay heat exchanger X. The low-boiling-point refrigerant Bhg in a high-pressure vapor state and the atmospheric air OA, which flow through the evaporator path Xe and the first heat absorber 7 of the first outdoor unit O1, and flow through the condenser path Xc.
Are vaporized using the respective heat absorption sources. After that, the high-boiling-point refrigerant A in the low-pressure gas phase from the evaporator path Xe of the relay exchanger X and from the first heat absorber 7 via the pipe p3 is merged, and then the high-temperature side compressor again. Reflux to Cpa and the above cycle is repeated. On the other hand, in the low temperature side heat pump circuit Sb, the low temperature side compressor Cpb is
The low-boiling-point refrigerant B in the low-pressure gas phase is sucked, compressed, and discharged. The high-boiling-point low-boiling-point refrigerant Bhg from the low-temperature side compressor Cpb is passed through the condenser path Xc of the relay heat exchanger x and the vapor-liquid two-phase high-boiling point refrigerant passed through the evaporator path Xe. Awg is condensed as a heat dissipation target. The low-boiling-point refrigerant Bw that has become in the liquid phase state after being condensed from the condenser path Xc of the relay heat exchanger X passes through the expansion pipe ex6 via the expansion pipe ex6.
The low-boiling-point refrigerant Bwg in a gas-liquid two-phase state that has reached p2 and has been expanded under reduced pressure is passed through the second heat absorber 8 of the second outdoor unit O2, and evaporated using the atmosphere OA as a heat absorption source. After that, the low-boiling-point refrigerant B in the low-pressure gas phase is recirculated to the low-temperature side compressor Cpb again through the crossing pipe p4, and the above cycle is repeated.

【0040】さて、上述した暖房時の定常吸熱運転を続
ける内に何れかの吸熱器7又は8が結氷状態になったこ
とが吸熱器7,8に付設の検出手段Dによって検出され
ると、制御手段CCが、上述の定常吸熱運転から、結氷
状態となった吸熱器7又は8を凝縮器機能させて加熱す
る解氷運転へ、運転状態を切り換えるように構成してあ
る。先に述べたように、室外機ユニットO1,O2の各
別の吸熱器7,8間で単位伝熱面積あたりの定負荷運転
能力に差を持たせてあるから、それら両吸熱器7,8の
結氷時期が重なることはなく、何れか一方のみが結氷状
態になりそれに応じて解氷運転が始まることとなる。次
に、その解氷運転状態を、図8〜図10を用いて第二吸
熱器8についての解氷運転時を例にとって説明する。
Now, when it is detected by the detecting means D attached to the heat absorbers 7 and 8 that one of the heat absorbers 7 or 8 is in an icing state while continuing the above-mentioned steady heat absorption operation during heating, The control means CC is configured to switch the operation state from the above-mentioned steady heat absorption operation to the deicing operation in which the heat absorber 7 or 8 in the frozen state is heated by making the condenser function to function as a condenser. As described above, since the constant load operating capacity per unit heat transfer area is different between the different heat absorbers 7 and 8 of the outdoor unit O1 and O2, both heat absorbers 7 and 8 are provided. There will be no overlap in the icing times, and only one of them will be in the icing state and the thawing operation will start accordingly. Next, the defrosting operation state will be described with reference to FIGS. 8 to 10 by taking an example of the defrosting operation of the second heat absorber 8.

【0041】解氷運転では、低温側ヒートポンプ回路S
bにおいては、低温側圧縮機Cpbは、低圧気相状態の
低沸点冷媒Bを吸入し、圧縮して吐出する。この低温側
圧縮機Cpbからの高圧気相状態の低沸点冷媒Bhg
は、分岐され、一部が中継熱交換器Xの凝縮器経路Xc
に通流され、蒸発器経路Xeに通流される気液二相状態
の高沸点冷媒Awgを放熱対象として凝縮されるととも
に、残りが、わたり配管p2を介して第二室外機ユニッ
トO2の第二吸熱器8に通流され、その吸熱器8を凝縮
器機能させることにより、その第二吸熱器Bに付着した
霜や氷を放熱対象として凝縮される。これにより解氷が
行われる。中継熱交換器Xの凝縮器経路Xcからわたり
配管p6を介しての、及び、第二室外機ユニットO2の
吸熱器8からの凝縮後に液相状態になった低沸点冷媒B
wは、合流されて膨張弁exp6に達し、減圧膨張され
た気液二相状態の低沸点冷媒Bwgが第一室外機ユニッ
トO1の第一吸熱器7に通流され、外気OAを吸熱源と
して蒸発される。すなわち、上述のように第二室外機ユ
ニットO2について解氷運転している間も、第一室外機
ユニットO1において通常吸熱運転を継続して行えるよ
うにしてある。蒸発後、低圧気相状態となった低沸点冷
媒Bは、わたり配管p4を介して再び低温側圧縮機Cp
bに還流され、上述したサイクルが繰り返される。一方
高温側ヒートポンプ回路Saにおいては、高温側圧縮機
Cpaは、低圧気相状態の高沸点冷媒Aを吸入し、圧縮
して吐出する。この高温側圧縮機Cpaからの高圧気相
状態の高沸点冷媒Ahgは、わたり配管p1を介して室
内機ユニットI1,I2の加熱器1,4に通流され、空
調対象域への給気SA1,SA2を放熱対象として凝縮
される。凝縮後に液相状態になった高沸点冷媒Awは、
わたり配管p5を介して膨張弁exp5に達し、減圧膨
張された気液二相状態の高沸点冷媒Awgが中継熱交換
器Xの蒸発器経路Xeに通流され、凝縮器経路Xcに通
流される高圧気相状態の低沸点冷媒Bhgを吸熱源とし
て蒸発される。その後、低圧気相状態となった高沸点冷
媒Aは、再び高温側圧縮機Cpaに還流され、上述した
サイクルが繰り返される。このようにして、解氷運転を
おこなっている間も、空調対象域への暖房された給気S
A1,SA2の送給は引き続いて行うことができるよう
にしてある。
In the thawing operation, the low temperature side heat pump circuit S
In b, the low temperature side compressor Cpb sucks in, compresses and discharges the low boiling point refrigerant B in a low pressure gas state. The low boiling point refrigerant Bhg in the high pressure gas phase from the low temperature side compressor Cpb
Is branched and a part of the condenser path Xc of the relay heat exchanger X is
The high-boiling-point refrigerant Awg in the gas-liquid two-phase state, which is passed through the evaporator passage Xe and is condensed as a heat radiation target, and the rest is the second of the second outdoor unit O2 through the crossover pipe p2. By flowing the heat absorber 8 and causing the heat absorber 8 to function as a condenser, frost or ice attached to the second heat absorber B is condensed as a heat radiation target. As a result, deicing is performed. The low-boiling-point refrigerant B in a liquid state after condensation from the condenser path Xc of the relay heat exchanger X via the pipe p6 and from the heat absorber 8 of the second outdoor unit O2.
w is merged and reaches the expansion valve exp6, and the low-boiling-point refrigerant Bwg in a gas-liquid two-phase state that has been decompressed and expanded is passed through the first heat absorber 7 of the first outdoor unit O1, and the outside air OA is used as a heat absorption source. Is evaporated. That is, as described above, the normal endothermic operation can be continuously performed in the first outdoor unit O1 even while the second outdoor unit O2 is being defrosted. After the evaporation, the low-boiling-point refrigerant B in a low-pressure vapor phase state is again passed through the piping p4 to the low-temperature side compressor Cp.
Reflux to b and the above cycle is repeated. On the other hand, in the high temperature side heat pump circuit Sa, the high temperature side compressor Cpa draws in, compresses and discharges the high boiling point refrigerant A in the low pressure gas phase state. The high-boiling-point high-boiling-point refrigerant Ahg from the high-temperature side compressor Cpa is passed through the pipes p1 to the heaters 1 and 4 of the indoor unit I1 and I2 to supply air to the air conditioning target area SA1. , SA2 are heat-dissipated and condensed. The high-boiling-point refrigerant Aw that has become a liquid state after condensation is
The high-boiling-point refrigerant Awg in the gas-liquid two-phase state that has reached the expansion valve exp5 via the crossover pipe p5 and has been decompressed and expanded is passed through the evaporator path Xe of the relay heat exchanger X and through the condenser path Xc. The low-boiling-point refrigerant Bhg in the high-pressure gas phase is evaporated using the heat absorption source. Then, the high-boiling-point refrigerant A in the low-pressure gas state is recirculated to the high temperature side compressor Cpa again, and the above-described cycle is repeated. In this way, the heated air supply S to the air-conditioning target area is performed even during the deicing operation.
The feeding of A1 and SA2 can be continuously performed.

【0042】そして、上述したように、解氷運転を行う
にあたって、結氷状態となった吸熱器Rを凝縮器機能さ
せて加熱するために、その吸熱器Rを前記複数のヒート
ポンプ回路Sa,Sbの直列回路群のうちの低温側ヒー
トポンプ回路Sbの凝縮器として機能させる構成として
あるから、加熱により解氷するに際し、周囲温度と冷媒
温度との差がさほど大きくならなくて済み、冷媒が過剰
に凝縮されることに起因した運転の不安定化や効率低下
を防止できるのである。
Then, as described above, in performing the thawing operation, in order to heat the heat absorber R in the icing state by functioning as a condenser, the heat absorber R is connected to the heat pump circuits Sa, Sb. Since it is configured to function as a condenser of the low temperature side heat pump circuit Sb of the series circuit group, when the ice is thawed by heating, the difference between the ambient temperature and the refrigerant temperature does not have to be so large, and the refrigerant is excessively condensed. It is possible to prevent the operation from becoming unstable and the efficiency from being lowered due to the operation.

【0043】次に、上述した定常吸熱運転から解氷運転
へ運転状態を切り換える制御について纏めて説明する。
図11及び図12に示すように、一対の室外機ユニット
O1,O2の冷媒出口には、それぞれ吸熱器Rとして機
能する第一及び第二吸熱器7,8の結氷状態を検出する
ための検出手段Dである温度センサからなる各別の結氷
センサS1,S2を設けてあり、それら結氷センサS
1,S2からの検出信号を、切換え制御手段CCに入力
するように構成してある。制御手段CCからは、上述の
検出信号に応じて冷媒循環路の構成を切換制御すべく、
両室外機ユニットO1,O2の切換弁v17〜v21,
v23〜v27への制御信号を出力するように構成して
ある。
Next, the control for switching the operating state from the above-mentioned steady heat absorption operation to the ice-melting operation will be summarized.
As shown in FIGS. 11 and 12, at the refrigerant outlets of the pair of outdoor unit units O1 and O2, the detection for detecting the icing state of the first and second heat absorbers 7 and 8 functioning as heat absorbers R, respectively. Each of the freezing sensors S1 and S2, which are the temperature sensors serving as the means D, are provided.
The detection signals from S1 and S2 are input to the switching control means CC. From the control means CC, in order to control the switching of the configuration of the refrigerant circulation path according to the above detection signal,
Switching valves v17 to v21 for both outdoor unit units O1 and O2,
It is configured to output a control signal to v23 to v27.

【0044】第二室外機ユニットO2の第二吸熱器8が
結氷状態になったことが第二結氷センサS2によって検
出されると、制御手段CCは各切換弁を切り換えて第二
吸熱器8を凝縮器機能させて加熱する第二室外機用解氷
運転を行う。先に説明した解氷運転状態がこれである。
この状態を図11に示す。このとき、第一吸熱器7に
は、先に述べたように低沸点冷媒Bを循環させて引続い
て吸熱を行わせる。
When the second freezing sensor S2 detects that the second heat absorber 8 of the second outdoor unit O2 is frozen, the control means CC switches the switching valves to turn the second heat absorber 8 on. Perform the defrosting operation for the second outdoor unit, which heats by making the condenser function. This is the ice-breaking operation state described above.
This state is shown in FIG. At this time, as described above, the low boiling point refrigerant B is circulated in the first heat absorber 7 to continuously absorb heat.

【0045】第二室外機用解氷運転が終了すれば、第二
吸熱器8には高沸点冷媒Aを循環させ、第一吸熱器7に
は引続いて低沸点冷媒Bを循環させる。この状態では、
次には第一吸熱器7の方が先に結氷状態になる。第一吸
熱器7が結氷状態になったことが第一結氷センサS1に
よって検出されると、制御手段CCは各切換弁を切り換
えて第一吸熱器7を凝縮器機能させて加熱する第一室外
機用解氷運転を行う。この状態を図12に示す。そし
て、このときには、第二吸熱器8に低沸点冷媒Bを循環
させて引続いて吸熱を行う。
When the second outdoor unit deicing operation is completed, the high boiling point refrigerant A is circulated through the second heat absorber 8 and the low boiling point refrigerant B is circulated through the first heat absorber 7. In this state,
Next, the first heat absorber 7 comes into a frozen state first. When the first freezing sensor S1 detects that the first heat absorber 7 is in an icing state, the control means CC switches each switching valve to make the first heat absorber 7 function as a condenser and heat the first outdoor. Carry out the ice-breaking operation for the machine. This state is shown in FIG. Then, at this time, the low boiling point refrigerant B is circulated in the second heat absorber 8 to continuously absorb heat.

【0046】制御手段CCは、上述のようにして、何れ
かの結氷センサS1,S2からの検出信号に応じて、第
一室外機用解氷運転か第二室外機用解氷運転かを行うよ
うに運転状態を切り換え、解氷運転の間、残りの吸熱器
Rを用いて吸熱を続けることを繰り返して行うように構
成してある。
As described above, the control means CC performs either the first outdoor unit thaw operation or the second outdoor unit thaw operation in accordance with the detection signal from any one of the ice sensors S1 and S2. As described above, the operation state is switched, and the heat absorption is continued using the remaining heat absorber R during the thawing operation.

【0047】すたわち、上述した第2実施例において
は、制御手段CCは、多段圧縮構成において、吸熱器R
の夫々に通流させる高低の沸点の二種類の冷媒A,Bを
切り換えることで冷媒蒸発温度を変更して、吸熱器R夫
々の単位伝熱面積あたりの定負荷吸熱能力を個別に調整
する構成としてある。
That is, in the above-described second embodiment, the control means CC has the heat absorber R in the multi-stage compression configuration.
The two types of refrigerants A and B having high and low boiling points which are made to flow through each of them are changed to change the refrigerant evaporation temperature, and the constant load heat absorption capacity per unit heat transfer area of each heat absorber R is individually adjusted. There is.

【0048】〔別実施例〕次に、本発明のさらに別の実
施例を説明する。 <1> 先の両実施例においては、制御手段CCは複数
の前記吸熱器Rについて前記解氷手段による解氷の経歴
が新しいものほど単位伝熱面積あたりの定負荷吸熱能力
を小さくするように、前記解氷手段による解氷があるご
とに、それら吸熱器Rの単位伝熱面積あたりの定負荷吸
熱能力の比を変更する構成としたものを説明したが、本
発明を実施するにあたって、吸熱器Rの単位伝達面積あ
たりの定負荷吸熱能力の比を変更する構成は省略して、
常に何れかの吸熱器Rの上記能力が大となるように制御
する構成としてもよい。
[Other Embodiments] Next, still another embodiment of the present invention will be described. <1> In both of the above embodiments, the control means CC reduces the constant load heat absorption capacity per unit heat transfer area as the history of the defrosting by the defrosting means of the plurality of heat absorbers R is newer. The description has been given of the configuration in which the ratio of the constant load heat absorption capacity per unit heat transfer area of the heat absorber R is changed every time there is ice thawing by the ice thawing means. The configuration for changing the ratio of the constant load heat absorption capacity per unit transmission area of the container R is omitted,
A configuration may be adopted in which any of the heat absorbers R is controlled so that the above capacity is always high.

【0049】<2> 先の第1実施例において、複数の
吸熱器R夫々の単位伝熱面積あたりの定負荷吸熱能力を
個別に調整するにあたって、各別の外気ファンFo夫々
の送風量を調整する構成に替えて、或いは、その構成に
加えて、各吸熱器の夫々に対する冷媒供給量を調整する
ことで吸熱器R夫々の上記能力を調整する構成を採用し
てもよい。
<2> In the above first embodiment, when individually adjusting the constant load heat absorption capacity per unit heat transfer area of each of the plurality of heat absorbers R, the blown air amount of each outside air fan Fo is adjusted. Instead of, or in addition to, the configuration described above, a configuration may be adopted in which the capacity of each heat absorber R is adjusted by adjusting the refrigerant supply amount to each heat absorber.

【0050】<3> 先の第2実施例において、複数の
吸熱器Rの夫々における冷媒蒸発温度を変更する構成に
加えて、外気ファンFo夫々の送風量を調整する構成、
及び、吸熱器Rの夫々に対する冷媒供給量を調整する構
成の、何れか一方、或いは、双方を合わせて採用して、
複数の吸熱器R夫々の単位伝熱面積あたりの定負荷吸熱
能力を個別に調整する構成としてもよい。
<3> In the above second embodiment, in addition to the configuration of changing the refrigerant evaporation temperature in each of the plurality of heat absorbers R, a configuration of adjusting the blowing amount of each outside air fan Fo,
And, adopting either one of the configurations for adjusting the refrigerant supply amount to each of the heat absorbers R, or both in combination,
The constant load heat absorption capacity per unit heat transfer area of each of the plurality of heat absorbers R may be individually adjusted.

【0051】<4> 先の第2実施例において、複数の
吸熱器Rの夫々における冷媒蒸発温度を変更する構成と
して、図示はしないが、沸点の異なる別種の冷媒を混合
して単一の圧縮機を用いて循環させる構成を採用しても
よい。また、先の第2実施例のように、複数段圧縮形式
で複数のヒートポンプ回路が独立して設けられている場
合に、冷媒蒸発温度の変更は、沸点の異なる別種の冷媒
を用いることで行ってもよいし、或いは、単一の冷媒
を、ヒートポンプ回路毎の圧力条件の違いで沸点差をつ
けて用いることで行ってもよい。また、使用する冷媒
は、フロン等の直膨冷媒だけに限らず、それ以外のブラ
イン等を用いてもよく、複数のヒートポンプ回路構成と
する場合、それらを組合わせて用いてもよい。
<4> In the second embodiment, the refrigerant evaporation temperature in each of the plurality of heat absorbers R is changed, although not shown, a different compression type refrigerant having different boiling points is mixed to obtain a single compression. You may employ | adopt the structure which circulates using a machine. When a plurality of heat pump circuits are independently provided in a multi-stage compression type as in the second embodiment, the refrigerant evaporation temperature is changed by using different kinds of refrigerants having different boiling points. Alternatively, a single refrigerant may be used with different boiling points depending on the pressure conditions of each heat pump circuit. Further, the refrigerant to be used is not limited to the direct expansion refrigerant such as CFC, but other brine or the like may be used, and when a plurality of heat pump circuit configurations are used, they may be used in combination.

【0052】<5> 解氷手段としては、先の実施例の
ように、冷媒循環路の構成を変更して吸熱器Rを凝縮器
機能させる構成に替えて、或いは、それに加えて、例え
ば、高圧ガス冷媒Mhgが通流されるヒータや別熱源の
ヒータを吸熱器Rに近接して設けても良いし、高圧ガス
冷媒Mhgが通流されるヒータや別熱源のヒータによっ
て解氷用の貯留水を加熱し、着霜した吸熱器Rに散水さ
せるように構成しても良い。
<5> As the deicing means, as in the previous embodiment, the structure of the refrigerant circulation path is changed to replace the structure in which the heat absorber R functions as a condenser, or in addition thereto, for example, A heater through which the high-pressure gas refrigerant Mhg flows or a heater of another heat source may be provided in the vicinity of the heat absorber R, or the stored water for deicing may be stored by the heater through which the high-pressure gas refrigerant Mhg flows or a heater of another heat source. The heat absorber R that is heated and frosted may be sprinkled with water.

【0053】<6> 吸熱器Rの結氷状態を検出する検
出手段Dとしては、先の第2実施例で説明した冷媒出口
温度検出する温度センサに替えて、冷媒出口圧力の変化
を見て結氷状態か否かを判断する圧力センサを設けた
り、或いは、霜や氷で反射率が変化することを検出する
光センサを設けたりして実施してもよい。さらに、検出
手段Dを省略して、人為操作で解氷運転を行う構成とし
てもよい。
<6> As the detecting means D for detecting the frozen state of the heat absorber R, instead of the temperature sensor for detecting the refrigerant outlet temperature as described in the second embodiment, ice is observed by observing the change in the refrigerant outlet pressure. It may be implemented by providing a pressure sensor for determining whether or not the state is present, or by providing an optical sensor for detecting that the reflectance changes due to frost or ice. Further, the detecting means D may be omitted, and the ice-melting operation may be performed manually.

【0054】<7> 加熱を行う加熱器Ha,Hb,H
cは、給気ファンFia,Fib,Ficにより給気S
Aa,SAb,SAcが通風されてダクト式により3つ
の空調対象域に送給されるものに限らず、空調対象域内
に設けられて、空調対象空気を直接加熱するように構成
しても良い。
<7> Heaters Ha, Hb, H for heating
c is the air supply S by the air supply fans Fia, Fib, Fic
Aa, SAb, and SAc are not limited to those that are ventilated and sent to the three air conditioning target areas by a duct type, and may be provided in the air conditioning target area to directly heat the air conditioning target air.

【0055】<8> 回路外の吸熱源は、大気OAに限
らず、水、その他の液体等適宜変更できる。温調対象空
気は、第一空調対象域への給気SAa、第二空調対象域
への給気SAb、第3空調対象域への給気SAcのよう
に、第一空調対象域、第二空調対象域、第三空調対象域
とに分離されている必要はなく、同一空気や同一の対象
でも良い。
<8> The heat absorption source outside the circuit is not limited to the atmosphere OA, but water, other liquids, or the like can be changed as appropriate. The temperature control target air is the first air conditioning target area, the second air conditioning target area, the second air conditioning target area SAb, the third air conditioning target area SAc, or the like. The air-conditioning target area and the third air-conditioning target area do not have to be separated and may be the same air or the same object.

【0056】<9> 尚、特許請求の範囲の項に図面と
の対照を便利にするために符号を記すが、該記入により
本発明は添付図面の構成に限定されるものではない。
<9> Reference numerals are given in the claims for convenience of comparison with the drawings, but the present invention is not limited to the structures of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例における定常吸熱運転時の冷媒流れ
を示す回路図
FIG. 1 is a circuit diagram showing a refrigerant flow during steady heat absorption operation in a first embodiment.

【図2】第1実施例における第二室外機解氷運転時の冷
媒流れを示す回路図
FIG. 2 is a circuit diagram showing a refrigerant flow during a second outdoor unit deicing operation in the first embodiment.

【図3】第1実施例における第一室外機解氷運転時の冷
媒流れを示す回路図
FIG. 3 is a circuit diagram showing a refrigerant flow during a first outdoor unit deicing operation in the first embodiment.

【図4】第1実施例における制御系を示す概略図FIG. 4 is a schematic diagram showing a control system in the first embodiment.

【図5】第2実施例における定常吸熱運転時の圧縮機ユ
ニットまわりの冷媒流れを示す回路図
FIG. 5 is a circuit diagram showing a refrigerant flow around a compressor unit during steady heat absorption operation in the second embodiment.

【図6】第2実施例における定常吸熱運転時の室内機ユ
ニットまわりの冷媒流れを示す回路図
FIG. 6 is a circuit diagram showing a refrigerant flow around the indoor unit during steady heat absorption operation in the second embodiment.

【図7】第2実施例における定常吸熱運転時の室外機ユ
ニットまわりの冷媒流れを示す回路図
FIG. 7 is a circuit diagram showing a refrigerant flow around the outdoor unit during steady heat absorption operation in the second embodiment.

【図8】第2実施例における第二室外機用解氷運転時の
圧縮機ユニットまわりの冷媒流れを示す回路図
FIG. 8 is a circuit diagram showing a refrigerant flow around a compressor unit during a second outdoor unit deicing operation in the second embodiment.

【図9】第2実施例における第二室外機用解氷運転時の
室内機ユニットまわりの冷媒流れを示す回路図
FIG. 9 is a circuit diagram showing a refrigerant flow around the indoor unit during the second defrosting operation for the outdoor unit in the second embodiment.

【図10】第2実施例における第二室外機用解氷運転時
の室外機ユニットまわりの冷媒流れを示す回路図
FIG. 10 is a circuit diagram showing a refrigerant flow around the outdoor unit during the second defrosting operation for the outdoor unit in the second embodiment.

【図11】第2実施例における第二室外機用解氷運転時
の室外機ユニットに対する制御を示す概略図
FIG. 11 is a schematic diagram showing control of an outdoor unit during a second outdoor unit deicing operation in the second embodiment.

【図12】第2実施例における第一室外機用解氷運転時
の室外機ユニットに対する制御を示す概略図
FIG. 12 is a schematic diagram showing control of an outdoor unit during a first outdoor unit deicing operation in a second embodiment.

【図13】従来の定常吸熱運転時の冷媒流れを示す回路
FIG. 13 is a circuit diagram showing a refrigerant flow during a conventional steady heat absorption operation.

【図14】従来の解氷運転時の冷媒流れを示す回路図FIG. 14 is a circuit diagram showing a refrigerant flow during a conventional deicing operation.

【図15】従来の吸熱器複数設置タイプの概略図FIG. 15 is a schematic view of a conventional multiple heat absorber installation type.

【符号の説明】[Explanation of symbols]

R 吸熱器 CC 制御手段 OA 外気 Fo 外気ファン R Heat absorber CC Control means OA Outside air Fo Outside air fan

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 低温吸熱源から吸熱する複数の吸熱器
(R)と、結氷状態となった前記吸熱器(R)を解氷す
る解氷手段とを設けた吸熱装置であって、 前記解氷手段が非作動状態にある定常吸熱運転時に、複
数の前記吸熱器(R)を、単位伝熱面積あたりの定負荷
吸熱能力が互いに相違する状態で吸熱作用させる制御手
段(CC)を設けた吸熱装置。
1. A heat absorbing device provided with a plurality of heat absorbers (R) for absorbing heat from a low temperature heat absorbing source, and an ice thawing means for thawing the heat absorber (R) in a frozen state. A control means (CC) is provided for causing the plurality of heat absorbers (R) to absorb heat in a state where the constant load heat absorption capacities per unit heat transfer area are different from each other during the steady heat absorption operation in which the ice means is in the non-operating state. Endothermic device.
【請求項2】 前記制御手段(CC)は、複数の前記吸
熱器(R)について前記解氷手段による解氷の経歴が新
しいものほど単位伝熱面積あたりの定負荷吸熱能力を小
さくするように、前記解氷手段による解氷があるごと
に、それら吸熱器(R)の単位伝熱面積あたりの定負荷
吸熱能力の比を変更する構成としてある請求項1記載の
吸熱器装置。
2. The control means (CC) reduces the constant load heat absorption capacity per unit heat transfer area as the history of the defrosting by the defrosting means of the plurality of heat absorbers (R) is newer. 2. The heat absorber device according to claim 1, wherein the ratio of the constant load heat absorption capacity per unit heat transfer area of the heat absorbers (R) is changed every time the ice melter is thawed.
【請求項3】 前記低温吸熱源としての外気(OA)を
前記吸熱器(R)に通風する外気ファン(Fo)を複数
の前記吸熱器(R)に対し各別に設ける構成において、 前記制御手段(CC)は、前記外気ファン(Fo)夫々
の送風量を調整して、前記吸熱器(R)夫々の単位伝熱
面積あたりの定負荷吸熱能力を個別に調整する構成とし
てある請求項1又は2記載の吸熱装置。
3. The control means according to claim 1, wherein each of the plurality of heat absorbers (R) is provided with an outside air fan (Fo) for ventilating the outside air (OA) as the low temperature heat absorption source to the heat absorber (R). (CC) is configured to individually adjust the constant load heat absorption capacity per unit heat transfer area of each of the heat absorbers (R) by adjusting the blowing amount of each of the outside air fans (Fo). 2. The heat absorbing device according to 2.
【請求項4】 前記制御手段(CC)は、前記吸熱器
(R)の夫々に対する冷媒供給量を調整して、前記吸熱
器(R)夫々の単位伝熱面積あたりの定負荷吸熱能力を
個別に調整する構成としてある請求項1,2又は3記載
の吸熱装置。
4. The control means (CC) adjusts a refrigerant supply amount to each of the heat absorbers (R) to individually determine a constant load heat absorption capacity per unit heat transfer area of each of the heat absorbers (R). The heat absorbing device according to claim 1, wherein the heat absorbing device is configured to be adjusted to.
【請求項5】 前記制御手段(CC)は、前記吸熱器
(R)の夫々における冷媒蒸発温度を変更して、前記吸
熱器(R)夫々の単位伝熱面積あたりの定負荷吸熱能力
を個別に調整する構成としてある請求項1,2,3又は
4記載の吸熱装置。
5. The control means (CC) changes the refrigerant evaporation temperature in each of the heat absorbers (R) to individually determine a constant load heat absorption capacity per unit heat transfer area of each of the heat absorbers (R). The heat absorbing device according to claim 1, 2, 3, or 4, wherein the heat absorbing device is configured to be adjusted to.
JP9278694A 1994-05-02 1994-05-02 Heat absorber Pending JPH07301474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9278694A JPH07301474A (en) 1994-05-02 1994-05-02 Heat absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9278694A JPH07301474A (en) 1994-05-02 1994-05-02 Heat absorber

Publications (1)

Publication Number Publication Date
JPH07301474A true JPH07301474A (en) 1995-11-14

Family

ID=14064111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9278694A Pending JPH07301474A (en) 1994-05-02 1994-05-02 Heat absorber

Country Status (1)

Country Link
JP (1) JPH07301474A (en)

Similar Documents

Publication Publication Date Title
US9234676B2 (en) Hot water supply apparatus associated with heat pump
US7984621B2 (en) Air conditioning system for communication equipment and controlling method thereof
CA2420968C (en) Method and arrangement for defrosting a vapor compression system
JP6545354B2 (en) Heat pump apparatus and air conditioner
US6698217B2 (en) Freezing device
US20020092318A1 (en) Multi-stage refrigeration system
US20110271703A1 (en) Refrigerator
US20110120168A1 (en) Combined refrigerating/freezing and air conditioning system
AU2001286333A1 (en) Method and arrangement for defrosting a vapor compression system
CN108362027B (en) heat pump system and control method thereof
JP3762007B2 (en) Air conditioner for vehicles
JP6771302B2 (en) Air conditioner
JP2003106712A (en) Air conditioning device
JP2012162149A (en) Heat pump type vehicular air conditioner
JP5033337B2 (en) Refrigeration system and control method thereof
US20240149640A1 (en) Vehicle air conditioning system and vehicle air conditioning method
JPH07301474A (en) Heat absorber
JP6042037B2 (en) Refrigeration cycle equipment
JPH07301473A (en) Heat pump apparatus
WO2021014520A1 (en) Air-conditioning device
JP3781340B2 (en) Thermal storage refrigeration air conditioner
JP2002089977A (en) Air conditioner for vehicle
KR100820820B1 (en) Air conditioning system and control method for the same
JP2003083629A (en) Refrigerant circuit and structure of heat exchanger
JPH1053022A (en) Air-conditioning device for vehicle