JPH01285607A - Hybrid binary generating system - Google Patents

Hybrid binary generating system

Info

Publication number
JPH01285607A
JPH01285607A JP11107288A JP11107288A JPH01285607A JP H01285607 A JPH01285607 A JP H01285607A JP 11107288 A JP11107288 A JP 11107288A JP 11107288 A JP11107288 A JP 11107288A JP H01285607 A JPH01285607 A JP H01285607A
Authority
JP
Japan
Prior art keywords
working fluid
vaporizers
heat source
evaporator
unit power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11107288A
Other languages
Japanese (ja)
Inventor
Hiroyuki Sumitomo
住友 博之
Akira Horiguchi
章 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisaka Works Ltd
Original Assignee
Hisaka Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisaka Works Ltd filed Critical Hisaka Works Ltd
Priority to JP11107288A priority Critical patent/JPH01285607A/en
Publication of JPH01285607A publication Critical patent/JPH01285607A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To enable ensurance of a high heat paragraph and to enable the increase of an output by a method wherein a working fluid preheater is mounted to each of a plurality of unit generating devices which is adapted to circulate working fluid within a working fluid loop and drive a generator by means of a steam prime mover situated in the pool. CONSTITUTION:Each unit generating device forms a working fluid loop mechanism in which vaporizers E1 and E2, steam prime movers T1 and T2, condensers C1 and C2, and pumps P1 and P2 are interconnected in series for closing. Working fluid in a liquid phase, e.g. fleon, is vaporized in a way to derive heat from heat source fluid by means of the vaporizers E1 and E2. The generated high temperature and high pressure fleon steam is fed to steam prime movers T1 and T2 to drive generators G1 and G2. In a so formed device, each unit generating device is provided with preheaters H1 and H2 to preheat fleon are mounted on the upper stream side of the vaporizers E1 and E2. After heat source fluid is caused to flow first to the vaporizers E1 and E2, it is forced to flow to the preheaters H1 and H2. In this case, the vaporizers E1 and E2 and the preheaters H1 and H2 are interconnected in series, and a heat source is used commonly.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、フロン等の作動流体を用い、工場やプラン
ト等から排出される温廃水、地熱水その他を熱源として
ランキンサイクルに基づき作動するバイナリ−発電シス
テムの改良に関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention operates based on the Rankine cycle using a working fluid such as fluorocarbons and using warm wastewater discharged from factories, plants, etc., geothermal water, etc. as a heat source. Concerning improvements in binary power generation systems.

〔従来の技術〕[Conventional technology]

この種バイナリー発電システムの一例として、特開昭6
0−144594号公報に記載されているものは、第3
図に示すように、蒸発S (E) 、蒸気原動機(T)
、凝縮器(C)およびポンプ(P)を直列に接続して閉
じた作動流体ループを構成し、この作動流体ループ内で
作動流体としてフロンを循環させるようにしている。し
かして液相のフロンが蒸発器(E)にて熱源流体から熱
を奪って蒸発し、発生した高温・高圧のフロン蒸気は蒸
気原動機(T)に供給され、発電K (G)を駆動する
のに利用される。仕事を終えて低温・低圧となったフロ
ン蒸気は、蒸気原動機(T)から排出されると凝縮器(
C)へ進み、そこで冷却水に熱を与えて凝縮する。凝縮
して液相となったフロンはポンプ(P)で再び蒸発器(
E)へ送られる。
As an example of this type of binary power generation system,
What is described in Publication No. 0-144594 is
As shown in the figure, evaporation S (E), steam motor (T)
, a condenser (C), and a pump (P) are connected in series to form a closed working fluid loop, and fluorocarbon is circulated as a working fluid within this working fluid loop. Then, the liquid phase Freon absorbs heat from the heat source fluid and evaporates in the evaporator (E), and the generated high temperature and high pressure Freon vapor is supplied to the steam motor (T), which drives the power generation K (G). used for. After completing its work, the low-temperature, low-pressure Freon vapor is discharged from the steam engine (T) and sent to the condenser (T).
Proceed to step C), where the cooling water is heated and condensed. The fluorocarbons that have condensed into a liquid phase are sent to the evaporator (P) again by the pump (P).
E).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

バイナリ−発電システムの出力は、 で与えられる。ただし、ηは作動流体(この場合、フロ
ン)によって定まる計数である。上式より、(蒸発温度
−凝縮温度)すなわち熱落差を大きくすれば出力が増大
することがわかる。
The output of the binary power generation system is given by: However, η is a coefficient determined by the working fluid (in this case, Freon). From the above equation, it can be seen that by increasing (evaporation temperature - condensation temperature), that is, the heat drop, the output increases.

この発明の目的は、したがって、熱落差をできるだけ大
きくして出力を増大させうるバイナリ−発電システムを
提供することである。
The object of the invention is therefore to provide a binary power generation system in which the heat drop can be made as large as possible to increase the power output.

〔課題を解決するための手段〕[Means to solve the problem]

この発明は、第1図に示すようにバイナリ−発電システ
ムをハイブリッド化して、熱源に対して直列に接続した
複数の単位発電装置(+!l 1 )(ぬ2)−以下省
略−の混成となすとともに、各単位発電装置に予熱器(
H)を設けて蒸発器に供給される作動流体を蒸発器にお
ける加熱に先立って予熱するようにした。その際、予B
B(H)の熱源としては蒸発器(E)用の熱源を共用す
る。すなわち、加熱流体をまず第1の単位発電装置(庵
1)の蒸発器(El)に流し、続いて第2の単位発電装
置(磁2)の蒸発器(E2)に流し、°このようにして
すべての単位発電装置の蒸発器に順次直列に流し、しか
る後、今度は第1の単位発電袋f(ml)の予熱器(H
l)から始めてすべての単位発電装置の予熱器に順次直
列に流すのである。
As shown in Fig. 1, this invention hybridizes a binary power generation system and combines a plurality of unit power generation devices (+!l 1 ) (nu 2) - hereinafter omitted - connected in series to a heat source. At the same time, a preheater (
H) was provided to preheat the working fluid supplied to the evaporator prior to heating in the evaporator. At that time, Pre-B
As the heat source for B(H), the heat source for the evaporator (E) is shared. That is, the heating fluid is first passed through the evaporator (El) of the first unit power generator (Hermitage 1), and then passed through the evaporator (E2) of the second unit power generator (Magnetic 2). The water is supplied to the evaporators of all unit power generation devices in series, and then the preheater (H
Starting from 1), it is sequentially passed in series to the preheaters of all unit power generators.

〔作用〕[Effect]

バイナリ−発電システムにおける蒸発器の機能は、液相
の作動流体を、熱源流体から蒸発の潜熱を奪って蒸発さ
せ、高温・高圧の作動流体蒸気を発生させることにある
。そして、既述のとおりこの作動流体蒸気の蒸発温度が
高いほど熱落差が大きくなって出力が増大する。そこで
予熱器(H)は、蒸発器(E)に供給される作動流体を
、蒸発器(E)における加熱に先立って予熱することに
より、その蒸発温度を高くする。すわち、第4図に示す
線図かられかるように、通常蒸発温度t1は熱源流体の
出口温度tsz−Δtpで与えられるところ、予熱器(
H)を付設することによって、第2図に示すように、熱
源流体の蒸発器出口温度がtszからtsz’に上がる
ため、それに対応して作動流体の蒸発温度をLm二から
t+H’ まで高めることができる。
The function of the evaporator in the binary power generation system is to evaporate the liquid-phase working fluid by removing latent heat of evaporation from the heat source fluid, thereby generating high-temperature, high-pressure working fluid vapor. As described above, the higher the evaporation temperature of the working fluid vapor, the greater the heat drop and the greater the output. Therefore, the preheater (H) increases the evaporation temperature of the working fluid supplied to the evaporator (E) by preheating it prior to heating in the evaporator (E). In other words, as can be seen from the diagram shown in FIG.
By adding H), the evaporator outlet temperature of the heat source fluid increases from tsz to tsz' as shown in Figure 2, so the evaporation temperature of the working fluid must be correspondingly increased from Lm2 to t+H'. I can do it.

また、ハイブリッド化することによって、熱落差を第3
図の従来型より大きくとれ、出力が増大する。
In addition, by hybridizing, the thermal drop can be reduced to a third level.
It can be made larger than the conventional type shown in the figure, increasing output.

さらに、熱源流体を蒸発器と予熱器とで共用するにあた
り、先にすべての単位発電装置(患1) (患2)・・
・の蒸発器(Ex)(Et)・・・に順次直列に流し、
その後、すべての単位発電装置(磁1)(ぬ2)・・・
の予熱器(H+)(Hz)・・・に順次、直列に流すよ
うにしたので、いっそう大きな熱落差を確保することが
できる。比較のため第1A図に、熱源流体を第1の蒸発
器(El)、第1の予熱器(Hl) 、第2の蒸発器(
E2)、第2の予熱器(Hz)というように流す場合を
例示しである。しかして、各熱交換器の熱量をΔT20
℃とすれば、同図に付記した数値で示すような温度条件
となり、蒸発温度はそれぞれ97℃および57℃という
設計条件となる。これに対して本発明によれば、第1図
に付記した数値で示すような温度゛条件となり、第2の
単位発電装置(嵐2)における蒸発温度は77℃となる
Furthermore, in order to share the heat source fluid between the evaporator and preheater, all unit power generators (case 1) (case 2)...
・Sequentially flow in series to the evaporators (Ex) (Et)...
After that, all unit power generators (Magnetic 1) (Nu2)...
Since the heat is caused to flow sequentially in series to the preheater (H+) (Hz)..., an even larger heat drop can be secured. For comparison, FIG. 1A shows the heat source fluid in the first evaporator (El), the first preheater (Hl), and the second evaporator (
E2), the second preheater (Hz) is shown as an example. Therefore, the amount of heat of each heat exchanger is ΔT20
℃, the temperature conditions are as shown by the numerical values appended to the figure, and the design conditions are evaporation temperatures of 97° C. and 57° C., respectively. On the other hand, according to the present invention, the temperature conditions are as shown by the numerical values appended to FIG. 1, and the evaporation temperature in the second unit power generator (Arashi 2) is 77°C.

これは第1八図の場合に比べて20℃高い、したがって
、前掲の式かられかるように、出力の増大が実現する。
This is 20° C. higher than the case shown in FIG. 18, and therefore, as can be seen from the above equation, an increase in output is achieved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明は蒸発器、蒸気原動機、
凝縮器およびポンプを直列に接続した作動流体ループ内
で作動流体を循環させ、蒸気原動機により発電機を駆動
するようにした単位発電装置を複数有し、蒸発器に供給
する熱源を共用するハイブリッドバイナリ−発電システ
ムにおいて、各単位発電装置に、蒸発器に供給される前
の作動流体を予熱するための予熱器を設け、熱源流体を
まずすべての単位発電装置の蒸発器に直列に流し、その
後すべての単位発電装置の予熱器に直列に流すようにし
たから、従来に比べて大きな熱落差を確保して出力を増
大させることができる。
As explained above, this invention provides an evaporator, a steam engine,
A hybrid binary system that circulates working fluid in a working fluid loop in which a condenser and pump are connected in series, has multiple unit power generators that drive a generator using a steam motor, and shares the heat source that supplies the evaporator. - In a power generation system, each unit power generator is provided with a preheater for preheating the working fluid before being supplied to the evaporator, and the heat source fluid is first passed in series to the evaporator of all unit power generators, and then all Since the heat is passed in series to the preheater of the unit power generator, it is possible to secure a larger heat drop than before and increase the output.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明によハイブリッドバイナリ−発1シス
テムのブロック線図、 第1A図は比較例を示す第1図と同様のブロック線図、 第2図は予熱器を付設した蒸発器における流体の温度変
化を示す線図、 第3図は従来のバイナリ−発電システムを例示するブロ
ック線図、 第4図は予熱器を具備しない蒸発器における流体の温度
変化を示す線図である。 Es El −、E2  :蒸発器 H,H1,82:予熱器 T% TI % T2  :蒸気原動機G、cl、G2
  :発電機 C% CI SC2:凝縮器 P、 Pl 、p= :ポンプ 階1:第1の単位発電装置 阻2:第2の単位発電装置
Fig. 1 is a block diagram of a hybrid binary generator system according to the present invention, Fig. 1A is a block diagram similar to Fig. 1 showing a comparative example, and Fig. 2 shows fluid flow in an evaporator equipped with a preheater. FIG. 3 is a block diagram illustrating a conventional binary power generation system. FIG. 4 is a diagram showing temperature changes of fluid in an evaporator without a preheater. Es El -, E2: Evaporator H, H1, 82: Preheater T% TI% T2: Steam motor G, cl, G2
: Generator C% CI SC2: Condenser P, Pl, p= : Pump floor 1: First unit power generator 2: Second unit power generator

Claims (1)

【特許請求の範囲】[Claims] (1)蒸発器、蒸気原動機、凝縮器およびポンプを直列
に接続した作動流体ループ内で作動流体を循環させ、蒸
気原動機により発電機を駆動するようにした単位発電装
置を複数有し、蒸発器に供給する熱源を共用するハイブ
リッドバイナリー発電システムにおいて、 各単位発電装置に、蒸発器に供給される前の作動流体を
予熱するための予熱器を設け、 熱源流体をまずすべての単位発電装置の蒸発器に流し、
その後すべての単位発電装置の予熱器に流すようにした
ことを特徴とするハイブリッドバイナリー発電システム
(1) It has a plurality of unit power generating devices in which a working fluid is circulated in a working fluid loop in which an evaporator, a steam motor, a condenser, and a pump are connected in series, and the steam motor drives a generator. In a hybrid binary power generation system that shares a heat source that is supplied to the unit power generators, each unit power generator is equipped with a preheater for preheating the working fluid before being supplied to the evaporator, and the heat source fluid is first evaporated in all unit power generators. Pour into a bowl;
A hybrid binary power generation system characterized in that the flow is then made to flow to the preheater of all unit power generation devices.
JP11107288A 1988-05-07 1988-05-07 Hybrid binary generating system Pending JPH01285607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11107288A JPH01285607A (en) 1988-05-07 1988-05-07 Hybrid binary generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11107288A JPH01285607A (en) 1988-05-07 1988-05-07 Hybrid binary generating system

Publications (1)

Publication Number Publication Date
JPH01285607A true JPH01285607A (en) 1989-11-16

Family

ID=14551670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11107288A Pending JPH01285607A (en) 1988-05-07 1988-05-07 Hybrid binary generating system

Country Status (1)

Country Link
JP (1) JPH01285607A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077359A1 (en) 2010-12-07 2012-06-14 三菱重工業株式会社 Radial turbine
WO2012077365A1 (en) 2010-12-07 2012-06-14 三菱重工業株式会社 Radial turbine
JP2012149541A (en) * 2011-01-17 2012-08-09 Mitsubishi Heavy Ind Ltd Exhaust heat recovery power generating apparatus and marine vessel
WO2012132514A1 (en) * 2011-03-31 2012-10-04 三菱重工業株式会社 Exhaust-heat recovery power generation device
JP2012202262A (en) * 2011-03-24 2012-10-22 Kobe Steel Ltd Generator
JP2014084857A (en) * 2012-10-28 2014-05-12 Yasuharu Kawabata Binary power generation system
JP2014129800A (en) * 2012-12-28 2014-07-10 Mitsubishi Heavy Ind Ltd Power generating system, and maintenance method of power generating system
US8845278B2 (en) 2011-01-27 2014-09-30 Mitsubishi Heavy Industries, Ltd. Radial turbine
WO2019003807A1 (en) 2017-06-26 2019-01-03 株式会社神戸製鋼所 Thermal energy recovery device and thermal energy recovery method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171808A (en) * 1985-01-28 1986-08-02 Toshiba Corp Dual rankine cycle power plant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171808A (en) * 1985-01-28 1986-08-02 Toshiba Corp Dual rankine cycle power plant

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077359A1 (en) 2010-12-07 2012-06-14 三菱重工業株式会社 Radial turbine
WO2012077365A1 (en) 2010-12-07 2012-06-14 三菱重工業株式会社 Radial turbine
US8425182B2 (en) 2010-12-07 2013-04-23 Mitsubishi Heavy Industries, Ltd. Radial turbine
JP2012149541A (en) * 2011-01-17 2012-08-09 Mitsubishi Heavy Ind Ltd Exhaust heat recovery power generating apparatus and marine vessel
US8845278B2 (en) 2011-01-27 2014-09-30 Mitsubishi Heavy Industries, Ltd. Radial turbine
JP2012202262A (en) * 2011-03-24 2012-10-22 Kobe Steel Ltd Generator
WO2012132514A1 (en) * 2011-03-31 2012-10-04 三菱重工業株式会社 Exhaust-heat recovery power generation device
JP2012215124A (en) * 2011-03-31 2012-11-08 Mitsubishi Heavy Ind Ltd Exhaust-heat recovery power generation device
JP2014084857A (en) * 2012-10-28 2014-05-12 Yasuharu Kawabata Binary power generation system
JP2014129800A (en) * 2012-12-28 2014-07-10 Mitsubishi Heavy Ind Ltd Power generating system, and maintenance method of power generating system
US9957844B2 (en) 2012-12-28 2018-05-01 Mitsubishi Heavy Industries, Ltd. Power generation system, and maintenance method for power generation system
WO2019003807A1 (en) 2017-06-26 2019-01-03 株式会社神戸製鋼所 Thermal energy recovery device and thermal energy recovery method

Similar Documents

Publication Publication Date Title
JP3594635B2 (en) Geothermal power plant operating on high pressure geothermal fluid
JP4891369B2 (en) Power generation equipment using geothermal fluid
US9671138B2 (en) Cascaded power plant using low and medium temperature source fluid
EP2751395B1 (en) Cascaded power plant using low and medium temperature source fluid
US9784248B2 (en) Cascaded power plant using low and medium temperature source fluid
US4578953A (en) Cascaded power plant using low and medium temperature source fluid
US9341086B2 (en) Cascaded power plant using low and medium temperature source fluid
KR910004380B1 (en) Method and apparatus for implementing a therhodyanmic cycle with intercooling
JP2010540837A (en) Cascade type organic Rankine cycle (ORC) system using waste heat from reciprocating engine
CN102619581A (en) Organic rankine cycle fluid
JP2009221961A (en) Binary power generating system
WO2013115668A1 (en) Heat engine and method for utilizing waste heat
US3303646A (en) Redundant binary turboelectric power system
JPH03286103A (en) Steam turbine power generator
JPH01285607A (en) Hybrid binary generating system
JPS61149507A (en) Heat recovery device
JPH10274010A (en) Binary power generating system
US20120279213A1 (en) Cooling tower apparatus and method with waste heat utilization
JP7290520B2 (en) ORC power generation system
JPS6176710A (en) Waste heat recovery equipment
US4827877A (en) Heat recovery system utilizing non-azeotropic medium
JPH02188605A (en) Compound fluid turbine plant
JPH03111606A (en) Water generating type binary generator
JPH05280825A (en) Absorption heat pump
WO2015075537A2 (en) Cascaded power plant using low and medium temperature source fluid