JP2014084857A - Binary power generation system - Google Patents

Binary power generation system Download PDF

Info

Publication number
JP2014084857A
JP2014084857A JP2012237354A JP2012237354A JP2014084857A JP 2014084857 A JP2014084857 A JP 2014084857A JP 2012237354 A JP2012237354 A JP 2012237354A JP 2012237354 A JP2012237354 A JP 2012237354A JP 2014084857 A JP2014084857 A JP 2014084857A
Authority
JP
Japan
Prior art keywords
heat
fluid
power generation
geothermal
cooling fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012237354A
Other languages
Japanese (ja)
Inventor
Yasuharu Kawabata
康晴 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012237354A priority Critical patent/JP2014084857A/en
Publication of JP2014084857A publication Critical patent/JP2014084857A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/17Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using tubes closed at one end, i.e. return-type tubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a binary power generation system that can also utilize heat of an existing spring hot water or geothermal steam, or geothermal heat of an existing hot spring well with a shallow drilling depth, substantially reducing risk such as scale adhesion and dried-up hot spring, reducing cost and consumption power required for cooling low boiling point medium and capable of performing a high efficient and low cost geothermal power generation.SOLUTION: In a binary power generation system, a closed loop circulation flow path is constituted in such a way that heat source fluid absorbs heat through heat exchanging with geothermal fluid or geothermal heat, heat is radiated through an evaporator and circulated again to perform a heat exchanging with the geothermal fluid or geothermal heat, a closed loop flow path for radiating heat into the ground to perform a cooling action for the cooling fluid for cooling the low boiling point medium is constituted, or a closed loop flow path is constituted such that there are provided a freezer and a heat exchanger in which the heat source fluid after passing through an evaporator is applied as a driving heat source, a temperature of cooling fluid is controlled to supply cooling fluid to a condenser in such a way that the low boiling point medium at the condenser can be optimized so as to supply cooling fluid to the condenser.

Description

本発明は、温泉地帯における温泉や地熱蒸気を汲み上げることなく、また温泉や地熱蒸気を利用するとしても、これら地熱流体の既存の生産量や性状に影響を与えることなく、温泉熱や地熱蒸気、または地熱を熱源として低沸点媒体を蒸発させるとともに、冷却水の補給水量を削減しながら、低沸点媒体の冷却凝縮と蒸発気化を最適化しながら発電を行う、バイナリー発電システムの技術分野に関する。 The present invention does not pump hot springs or geothermal steam in hot spring areas, and even if hot springs or geothermal steam is used, hot spring heat or geothermal steam, without affecting the existing production and properties of these geothermal fluids, In addition, the present invention relates to a technical field of a binary power generation system that generates power while optimizing cooling condensation and evaporation and evaporation of a low boiling point medium while evaporating a low boiling point medium using geothermal heat as a heat source and reducing the replenishment amount of cooling water.

温泉熱や地熱蒸気、または地熱を熱源として発電を行う地熱発電は、地球の高温マグマ層を熱源とし、発電の過程において燃料消費や温室効果ガスの排出を伴わないことから、エネルギー自給率の向上や温暖化防止に資する発電手段として、近年注目されている。   Geothermal power generation, which generates electricity using hot spring heat, geothermal steam, or geothermal heat sources, uses the high-temperature magma layer of the earth as a heat source, and does not involve fuel consumption or greenhouse gas emissions during the power generation process. In recent years, it has attracted attention as a means of power generation that contributes to prevention of global warming.

従来の地熱発電システムでは、地熱帯を掘削して水を注入し、発生する地熱蒸気を利用して発電するフラッシュ方式のほか、掘削穴から汲み上げる源泉湯または地熱蒸気を利用して低沸点媒体を加熱蒸発して蒸気タービンを駆動する、バイナリー発電方式が広く知られている。 In the conventional geothermal power generation system, in addition to the flash method in which water is injected by excavating the geotropics and generating electricity using the generated geothermal steam, the low boiling point medium is generated using source hot springs or geothermal steam pumped from the drilling holes. A binary power generation system that heats and vaporizes to drive a steam turbine is widely known.

しかしながら、源泉湯や地熱蒸気にはシリカや炭酸カルシウム等の不純物が多量に含まれるため、この不純物が源泉湯や地熱蒸気の採取管内、さらには地熱発電システムやバイナリー発電システム内にある蒸発器などの流路内でスケールとなって付着してしまう。 However, since source springs and geothermal steam contain a large amount of impurities such as silica and calcium carbonate, these impurities are collected in source springs and geothermal steam sampling tubes, as well as evaporators in geothermal power generation systems and binary power generation systems, etc. It adheres as a scale in the flow path.

スケールが付着すると、システム内の媒体流量が減少するほか、蒸発器等の熱交換器における熱交換効率が低下するため、経年的に発電出力が減少し、長期使用が困難となる。スケール付着を防止するためには、加水や薬剤注入などの方法があるが、何れも多大なコストを要するとともに、発電用の熱源である源泉湯や地熱蒸気、または地熱の温度を低下させてしまうため、発電出力が低下してしまう課題がある。 If the scale adheres, the flow rate of the medium in the system is reduced, and the heat exchange efficiency in a heat exchanger such as an evaporator is lowered, so that the power generation output decreases with time, making long-term use difficult. In order to prevent scale adhesion, there are methods such as hydration and chemical injection. However, all of them require a great deal of cost and lower the temperature of the source hot spring, geothermal steam, or geothermal heat source for power generation. Therefore, there is a problem that the power generation output decreases.

また、温泉地帯から多量の源泉湯や地熱蒸気を新規に採取したり、既存の生産量を増加させる場合には、周囲の源泉湯や地下水が減少するリスクが発生するため、こうしたリスクを軽減するためは、源泉湯や地熱蒸気をそのまま利用するのではなく、源泉湯や地熱蒸気の高温熱だけを利用する発電方式の確立が必要であった。 In addition, if a large amount of hot spring water or geothermal steam is newly collected from the hot spring area or if the existing production volume is increased, the risk of reducing the surrounding hot spring water and groundwater will be reduced. Therefore, it was necessary to establish a power generation system that uses only the hot springs of source springs and geothermal steam instead of using source springs and geothermal steam as they are.

近年、これらの課題解決につながる技術として、特許文献1に記載されている地熱発電装置が提案されている。本技術は加圧水を媒体とし、熱源となる地熱帯まで水を加圧注入して蒸気を得て発電するため、発電システム内でのスケール付着リスクと、多量の地下水利用による温泉枯渇リスクの両方を大幅に軽減できるものである。 In recent years, a geothermal power generation device described in Patent Document 1 has been proposed as a technology that leads to solving these problems. Since this technology uses pressurized water as a medium and pressurizes and injects water into the tropics as a heat source to generate steam and generate electricity, both the risk of scale adhesion in the power generation system and the risk of hot spring exhaustion due to the use of a large amount of groundwater It can be greatly reduced.

特開2011−52621号公報JP 2011-52621 A

前記の通り、従来技術によれば、スケール付着や温泉枯渇のリスクを大幅に軽減しながら地熱を利用した発電が可能となるものの、解決すべき7つの課題が残されている。 As described above, according to the prior art, while it is possible to generate electricity using geothermal heat while greatly reducing the risk of scale adhesion and hot spring depletion, seven problems to be solved remain.

一つは高温の地熱帯で地熱を採取するため、一般的に地下数百m〜数kmと言われる 地熱帯まで掘削を行って加圧水注入管と熱水取出管を挿入する必要があり、掘削深度や 配管長が長くなって地熱開発コストが増大するほか、これより浅い掘削深度である既存の温泉井戸における源泉湯や自然の地熱蒸気熱を利用する発電には対応できない課題がある。 One is to collect geothermal heat in the hot geotropics, so it is necessary to drill up to the geotropics, which is generally said to be several hundred meters to several kilometers underground, and to insert a pressurized water injection pipe and a hot water extraction pipe. In addition to increasing the depth and piping length, geothermal development costs increase, and there are issues that cannot be addressed for power generation using source hot springs and natural geothermal steam heat in existing hot spring wells with shallower drilling depths.

また、配管長が長いため配管の圧力損失が増大し、加圧水供給を行うために、高圧給水ポンプの必要動力が増大して正味の発電出力が減少するほか、熱水取出管外側の地中では、吸熱する高温地熱帯付近は高温であるものの、地表に向かって徐々に地中温度は低下し、一般的には地下数十mまでの範囲は地中温度が約10℃〜15℃の一定となっているため、熱水上昇過程で周囲地中への放熱が継続し、温度低下して発電出力が減少する課題がある。 In addition, because the pipe length is long, the pressure loss of the pipe increases, and in order to supply pressurized water, the required power of the high-pressure feed pump increases and the net power output decreases, and in the ground outside the hot water outlet pipe In the vicinity of the tropics where heat is absorbed, the temperature in the tropics is high, but the underground temperature gradually decreases toward the surface of the earth. In general, the underground temperature is about 10 ° C to 15 ° C in the range up to several tens of meters. Therefore, there is a problem that heat dissipation continues into the surrounding ground during the hot water rising process, and the power generation output decreases due to a temperature drop.

さらに、熱水取出管先端部が底板で閉じられた構造となっているため、地熱帯との伝熱面積が狭く、地熱の温度や循環水の流速によっては、供給水が充分に加熱されることなく上昇し、発電出力や発電効率が低下するという課題がある。 Furthermore, since the tip of the hot water outlet pipe is closed by the bottom plate, the heat transfer area with the geotropics is narrow, and the supplied water is heated sufficiently depending on the geothermal temperature and the circulating water flow rate. There is a problem that the power generation output and the power generation efficiency decrease without increasing.

また、前記第一の課題である、源泉湯や自然の地下蒸気熱を利用した発電については、バイナリー発電システムを用いる方法が知られているが、この方式では低沸点媒体を冷却凝縮するために多量の冷熱が必要であり、この冷熱供給に多量の補給水や電力を消費する場合には、コスト上昇や正味発電出力の低下を招くほか、充分な冷熱供給によって低沸点媒体を凝縮できない場合には、発電出力が低下するという課題がある。 In addition, a method using a binary power generation system is known for power generation using the source spring and natural underground steam heat, which is the first problem, but in this method, a low boiling point medium is cooled and condensed. When a large amount of cold energy is required and a large amount of makeup water or electric power is consumed for this cold heat supply, the cost increases and the net power output decreases, and the low boiling point medium cannot be condensed by sufficient cold heat supply. Has a problem that the power generation output decreases.

例えば開放式のクーリングタワーを用いて放熱冷却を行う場合は、自然蒸発する冷却水の補給が必要となるほか、夏季は冷却水の温度が充分に下がらずに媒体の凝縮効率が低下し、発電出力が低下する課題がある。 For example, when performing heat radiation cooling using an open cooling tower, it is necessary to replenish naturally evaporating cooling water, and in summer, the cooling water temperature does not drop sufficiently, reducing the efficiency of medium condensation and generating power output. There is a problem that decreases.

また、こうした夏季の冷却水温度低下を促す手段として、夏季でも10〜15℃一定である地下数十m以深の地中や河川、湖沼や海中への放熱や、太陽熱や温泉熱を熱源とする冷熱変換手段を用いた冷熱活用する方法が考えられるが、こうした放熱源を活用したり、再生可能エネルギーの熱を冷熱変換して利用するための具体的な方法が明示されていない。 In addition, as a means to promote the cooling water temperature decrease in summer, heat is released to the ground, rivers, lakes and seas below several tens of meters, which is constant at 10 to 15 ° C even in summer, and solar heat and hot spring heat. Although a method of utilizing cold energy using a cold energy conversion means is conceivable, a specific method for utilizing such a heat radiation source or converting the heat of renewable energy to cold energy is not clearly described.

一方、寒冷地等において本技術を利用する場合には、冬季や夜間、早朝に冷却水が必要以上に温度低下し、凝縮器出口の低沸点媒体が必要以上に温度低下することで蒸発気化が抑制され、発電出力が低下するリスクがある。   On the other hand, when using this technology in cold districts, the temperature of the cooling water drops more than necessary in winter, at night, and in the early morning, and the low boiling point medium at the outlet of the condenser drops more than necessary, causing evaporation and evaporation. There is a risk that power generation output will be reduced.

本発明は、このような課題に鑑みてなされたものであり、その目的は、既存の源泉湯や地熱蒸気の熱、または掘削深度が浅い既存温泉井戸の地熱でも利用可能で、スケール付着や温泉枯渇のリスクを大幅に軽減するとともに、低沸点媒体の冷却に要する補給水と消費電力を低減し、低沸点媒体の凝縮液化と蒸発気化を最適に保つことで高効率かつ低コストの地熱発電を可能とする、バイナリー発電システムを提供することである。   The present invention has been made in view of such problems, and the purpose of the present invention is to use heat from existing hot springs and geothermal steam, or geothermal heat from existing hot spring wells with a shallow excavation depth. Highly efficient and low-cost geothermal power generation is achieved by greatly reducing the risk of depletion, reducing the makeup water and power consumption required for cooling low-boiling point media, and maintaining optimal condensation and evaporation of low-boiling point media. It is possible to provide a binary power generation system.

上記課題を解決するため、請求項1に記載の発明は、
熱源流体と蒸発器内で熱交換させて得られる低沸点媒体の蒸気を蒸気タービンに導いて発電機を駆動した後、タービン通過後の低沸点媒体を冷却流体と凝縮器内で熱交換させて凝縮させ、循環ポンプにより前記蒸発器に再循環させるバイナリー発電システムのうち、
前記熱源流体を、地熱流体または地熱から吸熱させて温度上昇させた後に、前記蒸発器に供給して低沸点媒体を蒸発させた後、熱源流体循環ポンプによって、再び地熱流体または地熱から吸熱させる、循環閉ループ流路を構成していることを特徴とする。
In order to solve the above-mentioned problem, the invention described in claim 1
After the steam of the low boiling point medium obtained by exchanging heat in the heat source fluid and the evaporator is guided to the steam turbine and the generator is driven, the low boiling point medium after passing through the turbine is heat exchanged in the cooling fluid and the condenser. Among the binary power generation systems that are condensed and recirculated to the evaporator by a circulation pump,
After the heat source fluid absorbs heat from the geothermal fluid or geothermal and raises the temperature, it is supplied to the evaporator to evaporate the low boiling point medium, and then the heat source fluid circulation pump again absorbs heat from the geothermal fluid or geothermal heat. A circulation closed-loop flow path is configured.

請求項2に記載の発明は、
熱源流体と蒸発器内で熱交換させて得られる低沸点媒体の蒸気を蒸気タービンに導いて発電機を駆動した後、タービン通過後の低沸点媒体を冷却流体と凝縮器内で熱交換させて凝縮させ、循環ポンプにより前記蒸発器に再循環させるバイナリー発電システムのうち、
前記冷却流体を、周囲の空気、地中、貯留雨水、地下水、河川水、湖沼水または海水の何れか一つ以上に放熱させて温度低下させた後に、冷却流体循環ポンプによって前記凝縮器に供給し、低沸点媒体を凝縮させた後に再び前記放熱媒体に放熱させる、循環閉ループ流路を構成していることを特徴とする。
The invention described in claim 2
After the steam of the low boiling point medium obtained by exchanging heat in the heat source fluid and the evaporator is guided to the steam turbine and the generator is driven, the low boiling point medium after passing through the turbine is heat exchanged in the cooling fluid and the condenser. Among the binary power generation systems that are condensed and recirculated to the evaporator by a circulation pump,
The cooling fluid is radiated to one or more of ambient air, underground, stored rainwater, groundwater, river water, lake water, and seawater to lower the temperature, and then supplied to the condenser by a cooling fluid circulation pump The low-boiling point medium is condensed, and then the heat-radiating medium is again radiated to the circulation closed loop flow path.

請求項3に記載の発明は、
請求項1に記載のバイナリー発電システムにおいて、熱源流体の循環流路が、流路内を抽気減圧した密閉配管で構成され、密封された熱源流体が、地熱流体または地熱から吸熱して蒸発した後に、バイナリー発電システムの低沸点媒体を蒸発させる蒸発器内部で低沸点媒体に放熱しながら凝縮液化し、液化した熱源流体が熱源流体循環ポンプによって再び吸熱のために再循環される、減圧された閉ループ流路を構成していることを特徴とする。
The invention according to claim 3
2. The binary power generation system according to claim 1, wherein the circulation path of the heat source fluid is configured by a sealed pipe in which the inside of the flow path is extracted and decompressed, and the sealed heat source fluid absorbs heat from the geothermal fluid or geothermal heat and evaporates. , A low-pressure closed loop in which the low-boiling medium of the binary power generation system is condensed and liquefied while dissipating heat to the low-boiling medium inside the evaporator, and the liquefied heat source fluid is recirculated again for heat absorption by the heat source fluid circulation pump A flow path is configured.

請求項4に記載の発明は、
請求項2に記載のバイナリー発電システムにおいて、冷却流体の循環流路が、流路内を抽気減圧した密閉配管で構成され、密封された冷却流体が周囲の空気、地中、貯留雨水、地下水、河川水、湖沼水または海水の何れか一つ以上に放熱して凝縮液化した後に、冷却流体循環ポンプによってバイナリー発電システムの凝縮器に供給され、凝縮器内部で低沸点媒体から吸熱しながら蒸発気化し、気化した冷却流体蒸気が再び放熱媒体に向けて再循環される、減圧閉ループ流路を構成していることを特徴とする。
The invention according to claim 4
The binary power generation system according to claim 2, wherein the circulation path of the cooling fluid is configured by a sealed pipe in which the inside of the flow path is extracted and decompressed, and the sealed cooling fluid includes ambient air, underground, stored rainwater, groundwater, After heat is dissipated into one or more of river water, lake water, or seawater, it is condensed and supplied to the condenser of the binary power generation system by the cooling fluid circulation pump, and the evaporated gas absorbs heat from the low boiling point medium inside the condenser. The depressurized closed-loop flow path is configured in which the vaporized cooling fluid vapor is recirculated again toward the heat dissipation medium.

請求項5に記載の発明は、
請求項1に記載のバイナリー発電システムにおいて、熱源流体循環流路が二重管で構成され、内側管の配管外周部と、外側管の外周部のうち、地熱流体または地熱から吸熱を行う先端および先端外周部を除く配管外周部が断熱材で覆われているか、二層構造の内部が抽気されて真空断熱状態に保持されていることを特徴とする。
The invention described in claim 5
2. The binary power generation system according to claim 1, wherein the heat source fluid circulation channel is configured by a double pipe, and a tip that absorbs heat from a geothermal fluid or geothermal heat among a pipe outer peripheral part of the inner pipe and an outer peripheral part of the outer pipe; The outer periphery of the pipe except the outer periphery of the tip is covered with a heat insulating material, or the inside of the two-layer structure is extracted and held in a vacuum heat insulating state.

請求項6に記載の発明は、
請求項5に記載のバイナリー発電システムにおいて、内側管内に低沸点媒体の蒸発器通過後の熱源流体を鉛直下方向に流下させて、外側管の地下先端部および先端外周部で地熱流体または地熱から吸熱し、高温水または飽和蒸気として温度上昇させながら、内側管と外側管の間隙流路を前記の蒸発器に向けて還流させることを特徴とする。
The invention described in claim 6
The binary power generation system according to claim 5, wherein the heat source fluid after passing through the evaporator of the low boiling point medium is caused to flow vertically downward in the inner pipe, and from the geothermal fluid or geothermal heat at the underground tip and the outer periphery of the tip of the outer pipe. While absorbing heat and increasing the temperature as high-temperature water or saturated steam, the gap flow path between the inner tube and the outer tube is refluxed toward the evaporator.

請求項7に記載の発明は、
請求項5に記載のバイナリー発電システムにおいて、熱源流体が地熱流体または地熱から吸熱を行う外側管の地下先端の形状が、鉛直下方中心に向けて凸形状を有していることを特徴とする。
The invention described in claim 7
6. The binary power generation system according to claim 5, wherein the shape of the underground tip of the outer tube that absorbs heat from the geothermal fluid or geothermal heat has a convex shape toward the vertically lower center.

請求項8に記載の発明は、
請求項5に記載のバイナリー発電システムにおいて、熱源流体が地熱流体または地熱から吸熱を行う外側管の地下先端部および先端外周部の一部または全部に、熱交換促進用のフィンが取り付けられていることを特徴とする。
The invention according to claim 8 provides:
6. The binary power generation system according to claim 5, wherein heat exchange promoting fins are attached to a part or all of the underground tip and tip outer periphery of the outer tube where the heat source fluid absorbs heat from the geothermal fluid or geothermal heat. It is characterized by that.

請求項9に記載の発明は、
熱源流体と蒸発器内で熱交換させて得られる低沸点媒体の蒸気を蒸気タービンに導いて発電機を駆動した後、タービン通過後の低沸点媒体を冷却流体と凝縮器内で熱交換させて凝縮させ、循環ポンプにより前記蒸発器に再循環させるバイナリー発電システムのうち、
前記蒸発器を通過して温度が低下した熱源流体の一部または全部を、吸収式または吸着式の冷凍機における再生器に供給して熱交換させることにより、蒸発器通過後の熱源流体を吸収式または吸着式冷凍機の再生熱源として活用し、本冷凍機から得られる冷却流体を、前記蒸気タービン通過後の低沸点媒体を凝縮液化させるための冷却流体として供給することを特徴とする。
The invention according to claim 9 is:
After the steam of the low boiling point medium obtained by exchanging heat in the heat source fluid and the evaporator is guided to the steam turbine and the generator is driven, the low boiling point medium after passing through the turbine is heat exchanged in the cooling fluid and the condenser. Among the binary power generation systems that are condensed and recirculated to the evaporator by a circulation pump,
The heat source fluid that has passed through the evaporator is partially or wholly supplied to the regenerator in the absorption type or adsorption type refrigerator to exchange heat, thereby absorbing the heat source fluid that has passed through the evaporator. It is utilized as a regeneration heat source for a refrigerating type or adsorption type refrigerator, and a cooling fluid obtained from the present refrigerator is supplied as a cooling fluid for condensing and liquefying a low-boiling-point medium after passing through the steam turbine.

請求項10に記載の発明は、
熱源流体と蒸発器内で熱交換させて得られる低沸点媒体の蒸気を蒸気タービンに導いて発電機を駆動した後、タービン通過後の低沸点媒体を冷却流体と凝縮器内で熱交換させて凝縮させ、循環ポンプにより前記蒸発器に再循環させるバイナリー発電システムのうち、
前記蒸発器を通過して温度が低下した熱源流体の一部または全部を、前記凝縮器に供給する冷却流体と熱交換させ、前記凝縮器に供給する冷却流体の温度が過度に低下した際に、
冷却流体の温度を上昇させてから低沸点媒体の凝縮器に供給することを特徴とする。
The invention according to claim 10 is:
After the steam of the low boiling point medium obtained by exchanging heat in the heat source fluid and the evaporator is guided to the steam turbine and the generator is driven, the low boiling point medium after passing through the turbine is heat exchanged in the cooling fluid and the condenser. Among the binary power generation systems that are condensed and recirculated to the evaporator by a circulation pump,
When a part or all of the heat source fluid that has passed through the evaporator and its temperature has been lowered is heat exchanged with the cooling fluid that is supplied to the condenser, and the temperature of the cooling fluid that is supplied to the condenser is excessively reduced ,
The temperature of the cooling fluid is raised before being supplied to the condenser of the low boiling point medium.

請求項11に記載の発明は、
請求項2に記載のバイナリー発電システムにおいて、低沸点媒体を凝縮冷却するための冷却流体循環流路が、クーリングタワーで放熱を行う循環流路に加えて、前記クーリングタワーの出口から流量調整弁を経て分岐された一部の冷却用流体が、請求項2に記載の地中、貯留雨水、地下水、河川水、湖沼水または海水のうち、一つ以上の放熱媒体とも熱交換を行って追加的な冷却を行う閉ループ流路か、請求項9に記載の吸収式または吸着式の冷凍機によって追加的な冷却が行われる閉ループ流路か、またはこれら二つの閉ループ流路を直列に接続した閉ループ流路を通じて追加冷却させた冷却流体を、前記のクーリングタワーから出た冷却流体と混合することで、冷却流体の温度を更に低下させてから、低沸点媒体の凝縮器に供給することを特徴とする。
The invention according to claim 11
3. The binary power generation system according to claim 2, wherein a cooling fluid circulation passage for condensing and cooling the low boiling point medium branches from the outlet of the cooling tower via a flow rate adjustment valve in addition to the circulation passage for radiating heat in the cooling tower. A part of the cooling fluid is subjected to additional cooling by exchanging heat with at least one heat-dissipating medium of underground, stored rainwater, groundwater, river water, lake water, or seawater according to claim 2. Through a closed loop channel that performs additional cooling by the absorption or adsorption refrigerator according to claim 9, or a closed loop channel that connects these two closed loop channels in series. The additional cooling fluid is mixed with the cooling fluid from the cooling tower to further reduce the temperature of the cooling fluid and then supplied to the low boiling point medium condenser. And features.

請求項12に記載の発明は、
請求項2に記載のバイナリー発電システムにおいて、低沸点媒体を凝縮冷却するための冷却流体循環流路が、請求項10に記載の冷却流体昇温手段と、請求項11に記載の冷却流体の追加冷却手段とを併せもち、冷却流体昇温手段への熱源流体供給流量と、冷却流体追加冷却手段に分岐供給させる冷却流体の流量をそれぞれ制御することによって、低沸点媒体の凝縮器に供給される冷却流体の温度が、低沸点媒体が凝縮器出口で確実に凝縮液化され、かつ液化した低沸点媒体が過度に冷却され、蒸発器における蒸発気化が抑制されることのない温度に保つ、冷却流体の温度制御手段を備えたことを特徴とする。
The invention according to claim 12
12. The binary power generation system according to claim 2, wherein the cooling fluid circulation passage for condensing and cooling the low boiling point medium is the cooling fluid temperature raising means according to claim 10 and the cooling fluid addition according to claim 11. In addition to the cooling means, the heat source fluid supply flow rate to the cooling fluid temperature raising means and the flow rate of the cooling fluid to be branched and supplied to the cooling fluid additional cooling means are respectively controlled to be supplied to the condenser of the low boiling point medium. Cooling fluid in which the temperature of the cooling fluid is maintained at a temperature at which the low boiling point medium is reliably condensed and liquefied at the condenser outlet, and the liquefied low boiling point medium is excessively cooled and evaporation and vaporization in the evaporator is not suppressed. The temperature control means is provided.

本発明によれば、既存の源泉湯や地熱蒸気の熱、または掘削深度が浅い既存の温泉井戸であっても、スケールの付着や温泉の枯渇リスクを大幅に軽減しながら、効率よく温泉の熱または地熱を活用して発電を行うことが可能になる。また、低沸点媒体の冷却に要する補水と消費電力を低減することで、高効率かつ低コストでのバイナリー発電が可能となる。 According to the present invention, even with existing source hot springs, geothermal steam heat, or existing hot spring wells with a shallow excavation depth, the heat of hot springs can be efficiently reduced while greatly reducing the risk of scale adhesion and hot spring depletion. Or it becomes possible to generate electricity using geothermal heat. Further, by reducing the replenishment water and power consumption required for cooling the low boiling point medium, binary power generation with high efficiency and low cost is possible.

本発明に係る第1実施形態のバイナリー発電システムの概略構成例を示す模式図である。1 is a schematic diagram illustrating a schematic configuration example of a binary power generation system according to a first embodiment of the present invention. 図1のバイナリー発電システムの熱源流体循環流路の配管構成の詳細を示す模式図である。It is a schematic diagram which shows the detail of a piping structure of the heat source fluid circulation flow path of the binary power generation system of FIG. 図2の熱源流体循環流路の地下先端熱交換部を、鉛直下方から見た詳細を示す模式図である。It is a schematic diagram which shows the detail which looked at the underground tip heat exchange part of the heat-source fluid circulation flow path of FIG. 本発明に係る第2実施形態のバイナリー発電システムの概略構成例を示す模式図である。It is a schematic diagram which shows the schematic structural example of the binary power generation system of 2nd Embodiment which concerns on this invention. 本発明に係る冷却流体の温度制御方法を示すフローチャートである。4 is a flowchart illustrating a cooling fluid temperature control method according to the present invention.

以下、図面を参照して本発明を実施するための最良の形態について説明する。なお、本発明の範囲は特許請求の範囲記載のものであって、本実施形態に限定されるものではない。 The best mode for carrying out the present invention will be described below with reference to the drawings. The scope of the present invention is described in the scope of claims, and is not limited to this embodiment.

(第1実施形態) (First embodiment)

まず、本発明の第1実施形態に係る、バイナリー発電システムの概略構成および機能について、図に基づき説明する。 First, a schematic configuration and functions of a binary power generation system according to a first embodiment of the present invention will be described with reference to the drawings.

図1に示すように、本発明のバイナリー発電システムでは、低沸点媒体の閉ループ循環流路1において、液化した低沸点媒体を循環させる低沸点媒体循環ポンプ2と、地熱流体との熱交換により低沸点媒体を蒸発させる蒸発器3と、発生蒸気を駆動力として発電を行う蒸気タービン4と、蒸気タービン通過後の低沸点媒体を冷却流体との熱交換により凝縮液化させる凝縮器5で構成されるバイナリー発電機を用いる。 As shown in FIG. 1, in the binary power generation system of the present invention, in the closed loop circulation channel 1 of the low boiling point medium, the low boiling point medium circulation pump 2 that circulates the liquefied low boiling point medium is exchanged with the geothermal fluid. It comprises an evaporator 3 for evaporating a boiling point medium, a steam turbine 4 for generating electric power using generated steam as a driving force, and a condenser 5 for condensing and liquefying a low boiling point medium after passing through the steam turbine by heat exchange with a cooling fluid. Use a binary generator.

ここで、前記バイナリー発電機の低沸点媒体を蒸発させる熱源としては、地熱流体または地熱から吸熱して前記バイナリー発電機の蒸発器3で放熱を行い、再び地熱流体または地熱から吸熱を行う熱源流体循環流路6を流れる熱源流体を用いる。本発明では、このように熱源流体の流路を閉ループの循環流路とすることで、温泉の源泉を直接蒸発器に供給しないため、蒸発器等でのスケール付着を防止するとともに、温泉を大量に汲み出さないため、温泉の枯渇リスクを軽減しながら、バイナリー発電を行うことができるようになる。 Here, as a heat source for evaporating the low boiling point medium of the binary generator, a heat source fluid that absorbs heat from a geothermal fluid or geothermal heat, dissipates heat in the evaporator 3 of the binary generator, and again absorbs heat from the geothermal fluid or geothermal heat. A heat source fluid flowing through the circulation channel 6 is used. In the present invention, since the heat source fluid flow path is a closed-loop circulation flow path as described above, the hot spring source is not directly supplied to the evaporator. Since it is not pumped out, it is possible to perform binary power generation while reducing the risk of hot spring exhaustion.

なお、この熱源流体循環流路には、蒸発器通過後に温度低下した熱源流体を循環させるために熱源流体循環ポンプ7を持つほか、必要に応じて循環流の流れ方向や圧力調整を行うために、逆流防止弁やバッファータンクを設けても良い。また、地下で地熱流体または地熱から吸熱して温度上昇した熱源流体が、バイナリー発電機の蒸発器に供給されるまでの流路を流れる過程で放熱によって温度低下することがないよう、さらに蒸発器通過後の熱源流体を再び地熱流体または地熱によって再加熱するにあたっての効率を高めるよう、熱源流体循環流路は、吸熱部と蒸発器を除いて断熱材8で断熱しておくことが望ましい。 The heat source fluid circulation channel has a heat source fluid circulation pump 7 for circulating the heat source fluid whose temperature has been lowered after passing through the evaporator, and for adjusting the flow direction and pressure of the circulation flow as necessary. A backflow prevention valve or a buffer tank may be provided. In addition, in order to prevent the heat source fluid that has absorbed heat from the geothermal fluid or underground heat in the basement from flowing through the flow path until it is supplied to the binary generator evaporator, the temperature is not lowered by heat dissipation. It is desirable to insulate the heat source fluid circulation channel with the heat insulating material 8 except for the heat absorption part and the evaporator so as to increase the efficiency in reheating the heat source fluid after passing again with the geothermal fluid or geothermal heat.

一方、前記バイナリー発電機の蒸気タービン通過後の高温低沸点媒体を凝縮液化させる凝縮器5において、低沸点媒体から吸熱する冷却用流体を供給する冷却用流体循環流路9についても、周囲の空気、地中、貯留雨水、地下水、河川水、湖沼水または海水の何れか一つ以上に放熱して温度低下させた後に、冷却流体循環ポンプ10によって再びバイナリー発電機の凝縮器に供給させる、循環閉ループ流路を構成している。本発明では、このように冷却流体の流路も閉ループの循環流路とすることで、冷却水の補水や夏場の冷却温度低下に要する電力消費を抑えることができるようになる。 On the other hand, in the condenser 5 for condensing and liquefying the high-temperature low-boiling medium after passing through the steam turbine of the binary generator, the cooling fluid circulation passage 9 for supplying the cooling fluid that absorbs heat from the low-boiling medium is also used as ambient air Circulate in which heat is radiated to any one or more of underground, stored rainwater, groundwater, river water, lake water, and seawater, and then supplied to the condenser of the binary generator by the cooling fluid circulation pump 10 again. A closed loop flow path is configured. In the present invention, the flow path of the cooling fluid is also a closed loop circulation path, so that it is possible to suppress power consumption required for supplementing the cooling water and lowering the cooling temperature in summer.

なお、冷却流体循環流路についても、必要に応じて循環流の流れ方向や圧力調整を行うために、逆流防止弁やバッファータンクを設け、外気温による温度上昇や過冷却の恐れがある場合においては、冷却流体循環流路の一部または全部を断熱材で断熱しても良い。 For the cooling fluid circulation flow path, a backflow prevention valve and buffer tank are provided to adjust the flow direction and pressure of the circulation flow as necessary. May insulate part or all of the cooling fluid circulation channel with a heat insulating material.

また、熱源流体の閉ループ循環流路6と冷却流体の閉ループ循環流路9は、それぞれ純水などの熱交換用流体が封入された上で配管内部が抽気減圧され、それぞれの流体が液化している流路上に設置された循環ポンプで、閉ループ内を循環流動するようになっている。 Further, the closed loop circulation channel 6 for the heat source fluid and the closed loop circulation channel 9 for the cooling fluid are each filled with a heat exchange fluid such as pure water, and the inside of the piping is evacuated and decompressed, and each fluid is liquefied. The circulation pump installed on the flow path is circulated in the closed loop.

ここで、それぞれの循環流路で液体が減圧充填されているのは、各閉ループ流路の吸熱または放熱部位における、吸熱および放熱の効率を高めるためである。すなわち、熱源流体の閉ループ流路6においては、地熱流体または地熱の熱を吸熱する熱交換部で熱源流体を蒸発気化させて熱輸送量と熱輸送効率の両方を高め、かつバイナリー発電システムの低沸点媒体蒸発器3で熱源流体を凝縮液化させながら、低沸点媒体を効率よく蒸発させるとともに、冷却流体の閉ループ流路9においては、蒸気タービン駆動後の低沸点媒体の熱を吸熱する熱交換部で冷却流体を蒸発気化させて低沸点媒体の凝縮液化を促進するとともに、冷却流体が放熱すべき熱の輸送量と輸送効率の両方を高め、かつクーリングタワーや地中などの放熱部で凝縮液化させることで、冷却流体を効率よく放熱させるようにしている。 Here, the reason why the liquid is filled under reduced pressure in each circulation channel is to increase the efficiency of heat absorption and heat dissipation in the heat absorption or heat dissipation portion of each closed loop flow channel. That is, in the closed-loop flow path 6 of the heat source fluid, the heat source fluid is evaporated and vaporized in the heat exchanging portion that absorbs the heat of the geothermal fluid or the geothermal heat, thereby improving both the heat transport amount and the heat transport efficiency. While the heat source fluid is condensed and liquefied by the boiling point medium evaporator 3, the low boiling point medium is efficiently evaporated, and the closed loop channel 9 of the cooling fluid absorbs the heat of the low boiling point medium after driving the steam turbine. Evaporates and evaporates the cooling fluid to promote condensation and liquefaction of low-boiling-point media, enhances both the amount of heat transported by the cooling fluid and the efficiency of transportation, and condenses and liquefies in the heat dissipation section of the cooling tower and underground In this way, the cooling fluid is efficiently dissipated.

また、前記熱源流体循環流路6の地中埋設部は、図2に示す通り、蒸発器3を出て温度低下した熱源流体を温泉井戸の鉛直下方に流す内側管11と、底面部で温泉熱、温泉蒸気または温泉井戸底面の地熱を吸熱して昇温された熱源流体が、発電機の蒸発器に向かって上昇するための流路を構成する外側管14との二重管構造となっている。 Further, as shown in FIG. 2, the underground portion of the heat source fluid circulation channel 6 includes a hot spring at the bottom portion and an inner pipe 11 that causes the heat source fluid that has exited the evaporator 3 to flow downward in the vertical direction of the hot spring well. The heat source fluid that has been heated by absorbing heat, hot spring steam, or geothermal heat from the bottom of the hot spring well has a double tube structure with the outer tube 14 that forms a flow path for rising toward the evaporator of the generator. ing.

さらに前記の内側管11および外側管14それぞれも二重管構造とし、内側二重管11は抽気口12を、外側二重管14については抽気口15を介してそれぞれの二重管内部13および16を真空ポンプで抽気して真空断熱状態に保っている。こうして、熱源流体の閉ループ循環流路では、外側配管と内側配管の間隙流路を上昇する高温熱源流体から内側管を流下する低温熱源流体への放熱を抑制するとともに、前記高温熱源流体の熱が外側管周囲の地中や地下水に放熱して温度低下することも抑制している。 Further, each of the inner tube 11 and the outer tube 14 has a double tube structure. The inner double tube 11 has an extraction port 12, and the outer double tube 14 has an extraction port 15 through an extraction port 15. 16 is extracted with a vacuum pump and kept in a vacuum insulation state. In this way, in the closed loop circulation flow path of the heat source fluid, heat dissipation from the high temperature heat source fluid rising in the gap flow path between the outer pipe and the inner pipe to the low temperature heat source fluid flowing down the inner pipe is suppressed, and the heat of the high temperature heat source fluid is reduced. It also suppresses the temperature drop by radiating heat to the underground or groundwater around the outer pipe.

加えて、熱源流体が地熱流体または地熱と熱交換を行う外側管の先端熱交換部17は、地熱流体または地熱と充分な熱交換が行えるよう、断熱措置のない単管部の距離を確保するとともに、先端形状は鉛直下方向中心に向けた円錐形状となっている。   In addition, the tip heat exchange part 17 of the outer tube, in which the heat source fluid exchanges heat with the geothermal fluid or geothermal heat, secures the distance of the single pipe part without insulation measures so that sufficient heat exchange with the geothermal fluid or geothermal heat can be performed. At the same time, the tip shape is a conical shape toward the center in the vertically downward direction.

これにより、温泉井戸内の源泉貯留層内に外側管14の先端熱交換部が挿入された状態において、充分な吸熱面積が確保されるとともに、熱交換部で熱源流体に熱を与えて温度低下した源泉は貯留層内を井戸中心の鉛直下方向に流下する一方、井戸内の周囲高温源泉が上昇循環するため、源泉貯留層内での源泉湯の対流が形成され、さらに熱交換が促進されるようになっている。 Thereby, in the state where the tip heat exchange part of the outer pipe 14 is inserted in the source reservoir in the hot spring well, a sufficient heat absorption area is secured, and the heat exchange fluid is heated in the heat exchange part to lower the temperature. The source springs flow down the reservoir vertically downward from the center of the well, while the surrounding hot springs rise and circulate in the well, creating a convection of source hot water in the source reservoir and further promoting heat exchange. It has become so.

なお、源泉の温度が低かったり、源泉貯留層の深さが浅く、充分な熱交換面積を確保 することが難しい場合には、図2および図3に示す通り、外側管14の先端熱交換部に、前記源泉貯留層の対流を妨げないよう、鉛直方向に取り付けた熱交換促進用の平板フィン18を取り付けると良い。 If the source temperature is low or the source reservoir is shallow and it is difficult to secure a sufficient heat exchange area, as shown in FIG. 2 and FIG. In addition, it is preferable to attach flat plate fins 18 for promoting heat exchange attached in the vertical direction so as not to disturb the convection of the source reservoir.

こうして、減圧された熱源流体の循環流路6において、内側管11を蒸発器通過によって温度低下した熱源流体19が流下し、温泉井戸の地中底部で地熱流体である温泉や温泉蒸気か、地熱帯からの地熱を吸熱することで低沸点にて熱源流体の飽和蒸気20となって上昇し、地上のバイナリー発電機の蒸発器3において凝縮液化しながら放熱してバイナリー発電機の低沸点媒体を蒸発気化させれば、源泉湯の温度が低い温泉井戸においても、地熱を容易かつ効率的に蒸発器に輸送し、低沸点媒体に供給することが可能となる。 Thus, in the circulation path 6 of the reduced heat source fluid, the heat source fluid 19 whose temperature has been lowered by passing through the evaporator flows down the inner pipe 11, and the hot spring or hot spring steam that is a geothermal fluid at the bottom of the hot spring well is By absorbing geothermal heat from the tropics, it rises as a saturated vapor 20 of a heat source fluid at a low boiling point, dissipates heat while condensing and liquefying in the evaporator 3 of the binary generator on the ground, and uses the low boiling medium of the binary generator. By evaporating, even in a hot spring well where the temperature of the source hot spring is low, it becomes possible to easily and efficiently transport geothermal heat to the evaporator and supply it to the low boiling point medium.

一方、低沸点媒体を凝縮冷却するための冷却流体循環流路9は、地中温が10〜15℃一定となっている地下10m以深、かつ地熱の影響を受けない地下100m程度の範囲で挿入されたU字放熱管で構成されている。なお、温泉地帯で地中温度が高く、地下深くでは十分な地中熱冷却が期待できない場合は、地下10mから50m程度の範囲で水平配管としたり、地下水脈と熱交換を行う配管とするなど、冷却用途に対応した地中配管を施工したり、U字放熱管を近隣河川や湖沼内に経由させても良い。これにより、従来の開放式のクーリングタワー冷却と比較して、夏場でも安定した冷却流体の供給が可能になるとともに、冷却水の補水が不要となり、バイナリー発電の安定稼働と高効率化が可能となる。 On the other hand, the cooling fluid circulation channel 9 for condensing and cooling the low boiling point medium is inserted in a range of about 10 m below the ground where the underground temperature is 10 to 15 ° C. and not affected by geothermal heat. It is composed of a U-shaped radiator tube. If the underground temperature is high in the hot spring area and sufficient underground heat cooling cannot be expected deep underground, use a horizontal pipe in the range of about 10 to 50 m underground, or a pipe that exchanges heat with the underground water vein. In addition, underground piping corresponding to the cooling application may be constructed, or a U-shaped heat radiating pipe may be routed in a neighboring river or lake. This makes it possible to supply a stable cooling fluid even in summer compared to the conventional open-type cooling tower cooling, and eliminates the need for supplemental cooling water, enabling stable operation and higher efficiency of binary power generation. .

次に、本発明の第2実施形態に係る、バイナリー発電システムの概略構成および機能について、図に基づき説明する。 Next, the schematic configuration and function of the binary power generation system according to the second embodiment of the present invention will be described with reference to the drawings.

図4に示すように、本発明のバイナリー発電システムでは、低沸点媒体の閉ループ循環流路6において、熱源流体が地熱流体から吸熱するにあたり、既存の温泉井戸に隣接設置した開放型の源泉湯熱交換器21を用いている。これにより、既存の温泉井戸と温泉利用はそのままに、温泉熱を用いて熱源流体で発電用の熱を吸熱しつつ、源泉温度を熱交換により低下させることで、加水等によって源泉濃度を薄めながら温度低下させる負担を軽減させることができる。なお、この場合は熱交換器21の表面に温泉のスケールが付着するが、熱源流体の閉ループ流路と隔てられているため、バイナリー発電機にスケールが付着することはなく、定期的に熱交換器21の表面に付着したスケールを除去するだけで良い。 As shown in FIG. 4, in the binary power generation system of the present invention, when the heat source fluid absorbs heat from the geothermal fluid in the closed loop circulation flow path 6 of the low boiling point medium, the open source hot water is installed adjacent to the existing hot spring well. An exchanger 21 is used. As a result, while using the existing hot spring wells and hot springs as they are, the hot spring heat is used to absorb the heat for power generation with the heat source fluid, while the source temperature is lowered by heat exchange, so that the source concentration is reduced by addition of water, etc. The burden of lowering the temperature can be reduced. In this case, the scale of the hot spring adheres to the surface of the heat exchanger 21, but since it is separated from the closed loop flow path of the heat source fluid, the scale does not adhere to the binary generator, and heat exchange is performed periodically. It is only necessary to remove the scale attached to the surface of the vessel 21.

さらに、本発明のバイナリー発電システムでは、低沸点媒体を凝縮液化させる冷却流体の閉ループ流路9について、主たる冷却流体の放熱冷却手段として利用する密閉式クーリングタワー22に加え、蒸発器3を通過して温度が低下した熱源流体の一部または全部を分岐し、この熱源流体の熱を利用して駆動する熱源流体駆動型冷凍機23と、冬季などに冷却流体が過度に冷却され、凝縮器5の低沸点媒体が過度に冷却されるのを抑制するため、冷却流体を昇温する熱源流体利用型熱交換器24とを備えている。 Furthermore, in the binary power generation system of the present invention, the closed-loop flow path 9 of the cooling fluid that condenses and liquefies the low boiling point medium passes through the evaporator 3 in addition to the hermetic cooling tower 22 used as a heat-radiating cooling means for the main cooling fluid. The heat source fluid drive type refrigerator 23 that branches part or all of the heat source fluid whose temperature has dropped and is driven using the heat of the heat source fluid, and the cooling fluid is excessively cooled in winter and the like. In order to suppress excessive cooling of the low boiling point medium, a heat source fluid utilization type heat exchanger 24 for raising the temperature of the cooling fluid is provided.

ここで、本システムにおける冷却流体の温度制御は、冷却流体閉ループ流路9のうち、凝縮器5の上流に設置された冷却流体温度計25の温度測定結果に応じて、熱源流体分岐流量調整弁26および冷凍機駆動熱源流体流量調整弁27と、熱交換器24による冷却水昇温を制御する冷却流体加熱用熱源流体流量調整弁28の開度を調整することで、凝縮器5に供給される冷却流体の温度を、バイナリー発電機を循環する低沸点媒体が凝縮器5の出口で確実に液化され、かつ液化温度が蒸発器3における低沸点媒体の蒸発気化が比較的少ない地熱供給で行われる温度に制御されている。 Here, the temperature control of the cooling fluid in the present system is performed in accordance with the temperature measurement result of the cooling fluid thermometer 25 installed upstream of the condenser 5 in the cooling fluid closed loop flow path 9. 26 and the refrigerator drive heat source fluid flow rate adjustment valve 27 and the opening degree of the cooling fluid heating heat source fluid flow rate adjustment valve 28 for controlling the temperature rise of the cooling water by the heat exchanger 24, thereby being supplied to the condenser 5. The low-boiling medium circulating through the binary generator is reliably liquefied at the outlet of the condenser 5 and the liquefaction temperature is supplied by geothermal supply with relatively low evaporation of the low-boiling medium in the evaporator 3. Temperature is controlled.

この冷却流体の温度については、図5のフローチャートに示す方法で制御され、具体的な制御は図4に記載の冷却流体温度制御装置29に入力した測定温度に基づき、冷却流体温度制御装置29から出力される各調整弁への開度信号出力によって行われる。こうして冷却流体の低温化と過冷却の防止を適切に制御することにより、外気温に応じて凝縮器内における低沸点媒体の凝縮と、蒸発器内における低沸点媒体の蒸発を確実かつ省エネルギー化することで、クーリングタワー補水や補機電力の消費を抑えた発電が可能となる。 The temperature of the cooling fluid is controlled by the method shown in the flowchart of FIG. 5, and specific control is performed from the cooling fluid temperature control device 29 based on the measured temperature input to the cooling fluid temperature control device 29 shown in FIG. 4. This is performed by outputting an opening degree signal to each regulating valve that is output. In this way, by appropriately controlling cooling fluid cooling and prevention of overcooling, condensation of the low boiling point medium in the condenser and evaporation of the low boiling point medium in the evaporator are surely and energy-saving according to the outside air temperature. This makes it possible to generate electricity with reduced consumption of cooling tower water and auxiliary power.

このように、本発明のバイナリー発電システムを構成すれば、既存の源泉湯や地熱蒸気の熱、または掘削深度が浅い既存温泉井戸であっても、スケールの付着や温泉枯渇のリスクを大幅に軽減しながら、効率よく温泉の熱または地熱を活用して発電することが可能となる。加えて、低沸点媒体の冷却に要するコストと消費電力を低減することで、高効率かつ低コストでのバイナリー発電が可能となる。 In this way, if the binary power generation system of the present invention is configured, the risk of scale adhesion and hot spring depletion is greatly reduced even with existing source hot springs, heat from geothermal steam, or existing hot spring wells with a shallow excavation depth. However, it is possible to efficiently generate power using the heat or geothermal heat of the hot spring. In addition, by reducing the cost and power consumption required for cooling the low boiling point medium, binary power generation with high efficiency and low cost becomes possible.

本発明は、前記の実施形態に限定されるものではない。前記の実施形態は例示であり、本発明の特許請求範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the embodiment described above. The above-described embodiment is an exemplification, and the present invention has the same configuration as that of the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. Are included in the technical scope.

1・・・・低沸点媒体循環流路
2・・・・低沸点媒体循環ポンプ
3・・・・蒸発器
4・・・・蒸気タービン
5・・・・凝縮器
6・・・・熱源流体循環流路
7・・・・熱源流体循環ポンプ
8・・・・断熱材
9・・・・冷却流体循環流路
10・・・・冷却流体循環ポンプ
11・・・・熱源流体内側二重管
12・・・・内側二重管内抽気口
13・・・・内側二重管真空断熱層
14・・・・熱源流体外側二重管
15・・・・外側二重管内抽気口
16・・・・外側二重管真空断熱層
17・・・・外側管先端熱交換部
18・・・・先端熱交換促進フィン
19・・・・減圧熱源流体
20・・・・熱源流体飽和蒸気
21・・・・開放型源泉湯熱交換器
22・・・・密閉式クーリングタワー
23・・・・熱源流体駆動型冷凍機
24・・・・熱源流体利用型熱交換器
25・・・・冷却流体温度計
26・・・・熱源流体分岐流量調整弁
27・・・・冷凍機駆動熱源流体流量調整弁
28・・・・冷却流体加熱用熱源流体流量調整弁
29・・・・冷却流体温度制御装置



DESCRIPTION OF SYMBOLS 1 ... Low boiling point medium circulation flow path 2 ... Low boiling point medium circulation pump 3 ... Evaporator 4 ... Steam turbine 5 ... Condenser 6 ... Heat source fluid circulation Heat source fluid circulation pump 8 ... Heat insulation material 9 ... Cooling fluid circulation channel 10 ... Cooling fluid circulation pump 11 ... Heat source fluid inner double pipe 12 ...・ ・ ・ Inside double pipe bleed port 13 ・ ・ ・ Inside double pipe vacuum insulation layer 14 ・ ・ ・ Heat source fluid outer double pipe 15 ・ ・ ・ Outside double pipe bleed port 16 ・ ・ ・ Outside two Double pipe vacuum heat insulation layer 17 ··· Outer tube tip heat exchange section 18 ··· Tip heat exchange promotion fin 19 ··· Depressurized heat source fluid 20 ··· Heat source fluid saturated steam 21 ··· Open type Source water heat exchanger 22... Sealed cooling tower 23... Heat source fluid driven refrigerator 24. 25 ... Cooling fluid thermometer 26 ... Heat source fluid branch flow rate adjustment valve 27 ... Refrigerating machine drive heat source fluid flow rate adjustment valve 28 ... Heat source fluid flow rate adjustment valve 29 for cooling fluid heating ... ..Cooling fluid temperature control device



Claims (12)

熱源流体と蒸発器内で熱交換させて得られる低沸点媒体の蒸気を蒸気タービンに導いて発電機を駆動した後、タービン通過後の低沸点媒体を冷却流体と凝縮器内で熱交換させて凝縮させ、循環ポンプにより前記蒸発器に再循環させるバイナリー発電システムのうち、
前記熱源流体を、地熱流体または地熱から吸熱させて温度上昇させた後に、前記蒸発器に供給して低沸点媒体を蒸発させた後、熱源流体循環ポンプによって、再び地熱流体または地熱から吸熱させる、循環閉ループ流路を構成していることを特徴とする、バイナリー発電システム。
After the steam of the low boiling point medium obtained by exchanging heat in the heat source fluid and the evaporator is guided to the steam turbine and the generator is driven, the low boiling point medium after passing through the turbine is heat exchanged in the cooling fluid and the condenser. Among the binary power generation systems that are condensed and recirculated to the evaporator by a circulation pump,
After the heat source fluid absorbs heat from the geothermal fluid or geothermal and raises the temperature, it is supplied to the evaporator to evaporate the low boiling point medium, and then the heat source fluid circulation pump again absorbs heat from the geothermal fluid or geothermal heat. A binary power generation system characterized in that it constitutes a circulating closed loop flow path.
熱源流体と蒸発器内で熱交換させて得られる低沸点媒体の蒸気を蒸気タービンに導いて発電機を駆動した後、タービン通過後の低沸点媒体を冷却流体と凝縮器内で熱交換させて凝縮させ、循環ポンプにより前記蒸発器に再循環させるバイナリー発電システムのうち、
前記冷却流体を、周囲の空気、地中、貯留雨水、地下水、河川水、湖沼水または海水の何れか一つ以上に放熱させて温度低下させた後に、冷却流体循環ポンプによって前記凝縮器に供給し、低沸点媒体を凝縮させた後に再び前記放熱媒体に放熱させる、循環閉ループ流路を構成していることを特徴とする、バイナリー発電システム。
After the steam of the low boiling point medium obtained by exchanging heat in the heat source fluid and the evaporator is guided to the steam turbine and the generator is driven, the low boiling point medium after passing through the turbine is heat exchanged in the cooling fluid and the condenser. Among the binary power generation systems that are condensed and recirculated to the evaporator by a circulation pump,
The cooling fluid is radiated to one or more of ambient air, underground, stored rainwater, groundwater, river water, lake water, and seawater to lower the temperature, and then supplied to the condenser by a cooling fluid circulation pump The binary power generation system is characterized in that it constitutes a circulating closed loop flow path that condenses the low boiling point medium and then radiates heat again to the heat radiating medium.
請求項1に記載のバイナリー発電システムにおいて、熱源流体の循環流路が、流路内を抽気減圧した密閉配管で構成され、密封された熱源流体が、地熱流体または地熱から吸熱して蒸発した後に、バイナリー発電システムの低沸点媒体を蒸発させる蒸発器内部で低沸点媒体に放熱しながら凝縮液化し、液化した熱源流体が熱源流体循環ポンプによって再び吸熱のために再循環される、減圧された閉ループ流路を構成していることを特徴とする、バイナリー発電システム。 2. The binary power generation system according to claim 1, wherein the circulation path of the heat source fluid is configured by a sealed pipe in which the inside of the flow path is extracted and decompressed, and the sealed heat source fluid absorbs heat from the geothermal fluid or geothermal heat and evaporates. , A low-pressure closed loop in which the low-boiling medium of the binary power generation system is condensed and liquefied while dissipating heat to the low-boiling medium inside the evaporator, and the liquefied heat source fluid is recirculated again for heat absorption by the heat source fluid circulation pump A binary power generation system comprising a flow path. 請求項2に記載のバイナリー発電システムにおいて、冷却流体の循環流路が、流路内を抽気減圧した密閉配管で構成され、密封された冷却流体が周囲の空気、地中、貯留雨水、地下水、河川水、湖沼水または海水の何れか一つ以上に放熱して凝縮液化した後に、冷却流体循環ポンプによってバイナリー発電システムの凝縮器に供給され、凝縮器内部で低沸点媒体から吸熱しながら蒸発気化し、気化した冷却流体蒸気が再び放熱媒体に向けて再循環される、減圧閉ループ流路を構成していることを特徴とする、バイナリー発電システム。 The binary power generation system according to claim 2, wherein the circulation path of the cooling fluid is configured by a sealed pipe in which the inside of the flow path is extracted and decompressed, and the sealed cooling fluid includes ambient air, underground, stored rainwater, groundwater, After heat is dissipated into one or more of river water, lake water, or seawater, it is condensed and supplied to the condenser of the binary power generation system by the cooling fluid circulation pump, and the evaporated gas absorbs heat from the low boiling point medium inside the condenser. A binary power generation system comprising a reduced pressure closed loop flow path in which the vaporized and vaporized cooling fluid vapor is recirculated toward the heat dissipation medium again. 請求項1に記載のバイナリー発電システムにおいて、熱源流体循環流路が二重管で構成され、内側管の配管外周部と、外側管の外周部のうち、地熱流体または地熱から吸熱を行う先端および先端外周部を除く配管外周部が断熱材で覆われているか、二層構造の内部が抽気されて真空断熱状態に保持されていることを特徴とする、バイナリー発電システム。 2. The binary power generation system according to claim 1, wherein the heat source fluid circulation channel is configured by a double pipe, and a tip that absorbs heat from a geothermal fluid or geothermal heat among a pipe outer peripheral part of the inner pipe and an outer peripheral part of the outer pipe; A binary power generation system, wherein a pipe outer peripheral portion excluding a tip outer peripheral portion is covered with a heat insulating material, or the inside of a two-layer structure is extracted and held in a vacuum heat insulating state. 請求項5に記載のバイナリー発電システムにおいて、内側管内に低沸点媒体の蒸発器通過後の熱源流体を鉛直下方向に流下させて、外側管の地下先端部および先端外周部で地熱流体または地熱から吸熱し、高温水または飽和蒸気として温度上昇させながら、内側管と外側管の間隙流路を前記の蒸発器に向けて還流させることを特徴とする、バイナリー発電システム。 The binary power generation system according to claim 5, wherein the heat source fluid after passing through the evaporator of the low boiling point medium is caused to flow vertically downward in the inner pipe, and from the geothermal fluid or geothermal heat at the underground tip and the outer periphery of the tip of the outer pipe. A binary power generation system, wherein the gap between the inner tube and the outer tube is recirculated toward the evaporator while absorbing heat and increasing the temperature as high-temperature water or saturated steam. 請求項5に記載のバイナリー発電システムにおいて、熱源流体が地熱流体または地熱から吸熱を行う外側管の地下先端の形状が、鉛直下方中心に向けて凸形状を有していることを特徴とする、バイナリー発電システム。 The binary power generation system according to claim 5, wherein the shape of the underground tip of the outer pipe that absorbs heat from the geothermal fluid or geothermal heat has a convex shape toward the vertically lower center. Binary power generation system. 請求項5に記載のバイナリー発電システムにおいて、熱源流体が地熱流体または地熱から吸熱を行う外側管の地下先端部および先端外周部の一部または全部に、熱交換促進用のフィンが取り付けられていることを特徴とする、バイナリー発電システム。 6. The binary power generation system according to claim 5, wherein heat exchange promoting fins are attached to a part or all of the underground tip and tip outer periphery of the outer tube where the heat source fluid absorbs heat from the geothermal fluid or geothermal heat. Binary power generation system. 熱源流体と蒸発器内で熱交換させて得られる低沸点媒体の蒸気を蒸気タービンに導いて発電機を駆動した後、タービン通過後の低沸点媒体を冷却流体と凝縮器内で熱交換させて凝縮させ、循環ポンプにより前記蒸発器に再循環させるバイナリー発電システムのうち、
前記蒸発器を通過して温度が低下した熱源流体の一部または全部を、吸収式または吸着式の冷凍機における再生器に供給して熱交換させることにより、蒸発器通過後の熱源流体を吸収式または吸着式冷凍機の再生熱源として活用し、本冷凍機から得られる冷却流体を、前記蒸気タービン通過後の低沸点媒体を凝縮液化させるための冷却流体として供給することを特徴とする、バイナリー発電システム。
After the steam of the low boiling point medium obtained by exchanging heat in the heat source fluid and the evaporator is guided to the steam turbine and the generator is driven, the low boiling point medium after passing through the turbine is heat exchanged in the cooling fluid and the condenser. Among the binary power generation systems that are condensed and recirculated to the evaporator by a circulation pump,
The heat source fluid that has passed through the evaporator is partially or wholly supplied to the regenerator in the absorption type or adsorption type refrigerator to exchange heat, thereby absorbing the heat source fluid that has passed through the evaporator. A binary that is utilized as a regenerative heat source for a refrigerating type or adsorption type refrigerator, and that supplies a cooling fluid obtained from this refrigerator as a cooling fluid for condensing and liquefying a low-boiling-point medium that has passed through the steam turbine Power generation system.
熱源流体と蒸発器内で熱交換させて得られる低沸点媒体の蒸気を蒸気タービンに導いて発電機を駆動した後、タービン通過後の低沸点媒体を冷却流体と凝縮器内で熱交換させて凝縮させ、循環ポンプにより前記蒸発器に再循環させるバイナリー発電システムのうち、
前記蒸発器を通過して温度が低下した熱源流体の一部または全部を、前記凝縮器に供給する冷却流体と熱交換させ、前記凝縮器に供給する冷却流体の温度が過度に低下した際に、
冷却流体の温度を上昇させてから低沸点媒体の凝縮器に供給することを特徴とする、バイナリー発電システム。
After the steam of the low boiling point medium obtained by exchanging heat in the heat source fluid and the evaporator is guided to the steam turbine and the generator is driven, the low boiling point medium after passing through the turbine is heat exchanged in the cooling fluid and the condenser. Among the binary power generation systems that are condensed and recirculated to the evaporator by a circulation pump,
When a part or all of the heat source fluid that has passed through the evaporator and its temperature has been lowered is heat exchanged with the cooling fluid that is supplied to the condenser, and the temperature of the cooling fluid that is supplied to the condenser is excessively reduced ,
A binary power generation system, characterized in that the temperature of the cooling fluid is raised before being supplied to a condenser having a low boiling point medium.
請求項2に記載のバイナリー発電システムにおいて、低沸点媒体を凝縮冷却するための冷却流体循環流路が、クーリングタワーで放熱を行う循環流路に加えて、前記クーリングタワーの出口から流量調整弁を経て分岐された一部の冷却用流体が、請求項2に記載の地中、貯留雨水、地下水、河川水、湖沼水または海水のうち、一つ以上の放熱媒体とも熱交換を行って追加的な冷却を行う閉ループ流路か、請求項9に記載の吸収式または吸着式の冷凍機によって追加的な冷却が行われる閉ループ流路か、またはこれら二つの閉ループ流路を直列に接続した閉ループ流路を通じて追加冷却させた冷却流体を、前記のクーリングタワーから出た冷却流体と混合することで、冷却流体の温度を更に低下させてから、低沸点媒体の凝縮器に供給することを特徴とする、バイナリー発電システム。 3. The binary power generation system according to claim 2, wherein a cooling fluid circulation passage for condensing and cooling the low boiling point medium branches from the outlet of the cooling tower via a flow rate adjustment valve in addition to the circulation passage for radiating heat in the cooling tower. A part of the cooling fluid is subjected to additional cooling by exchanging heat with at least one heat-dissipating medium of underground, stored rainwater, groundwater, river water, lake water, or seawater according to claim 2. Through a closed loop channel that performs additional cooling by the absorption or adsorption refrigerator according to claim 9, or a closed loop channel that connects these two closed loop channels in series. The additional cooling fluid is mixed with the cooling fluid from the cooling tower to further reduce the temperature of the cooling fluid and then supplied to the low boiling point medium condenser. And wherein, binary power generation system. 請求項2に記載のバイナリー発電システムにおいて、低沸点媒体を凝縮冷却するための冷却流体循環流路が、請求項10に記載の冷却流体昇温手段と、請求項11に記載の冷却流体の追加冷却手段とを併せもち、冷却流体昇温手段への熱源流体供給流量と、冷却流体追加冷却手段に分岐供給させる冷却流体の流量をそれぞれ制御することによって、低沸点媒体の凝縮器に供給される冷却流体の温度が、低沸点媒体が凝縮器出口で確実に凝縮液化され、かつ液化した低沸点媒体が過度に冷却され、蒸発器における蒸発気化が抑制されることのない温度に保つ、冷却流体の温度制御手段を備えたことを特徴とする、バイナリー発電システム。



























12. The binary power generation system according to claim 2, wherein the cooling fluid circulation passage for condensing and cooling the low boiling point medium is the cooling fluid temperature raising means according to claim 10 and the cooling fluid addition according to claim 11. In addition to the cooling means, the heat source fluid supply flow rate to the cooling fluid temperature raising means and the flow rate of the cooling fluid to be branched and supplied to the cooling fluid additional cooling means are respectively controlled to be supplied to the condenser of the low boiling point medium. Cooling fluid in which the temperature of the cooling fluid is maintained at a temperature at which the low boiling point medium is reliably condensed and liquefied at the condenser outlet, and the liquefied low boiling point medium is excessively cooled and evaporation and vaporization in the evaporator is not suppressed. A binary power generation system comprising a temperature control means.



























JP2012237354A 2012-10-28 2012-10-28 Binary power generation system Pending JP2014084857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012237354A JP2014084857A (en) 2012-10-28 2012-10-28 Binary power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012237354A JP2014084857A (en) 2012-10-28 2012-10-28 Binary power generation system

Publications (1)

Publication Number Publication Date
JP2014084857A true JP2014084857A (en) 2014-05-12

Family

ID=50788148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012237354A Pending JP2014084857A (en) 2012-10-28 2012-10-28 Binary power generation system

Country Status (1)

Country Link
JP (1) JP2014084857A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5731051B1 (en) * 2014-06-05 2015-06-10 俊一 田原 Boiling water type geothermal exchanger and boiling water type geothermal power generator
JP5791836B1 (en) * 2015-02-16 2015-10-07 俊一 田原 Boiling water type geothermal exchanger and boiling water type geothermal power generator
JP5839528B1 (en) * 2015-04-27 2016-01-06 俊一 田原 Temperature drop compensation type geothermal exchanger and temperature drop compensation type geothermal power generator
JP2016098806A (en) * 2014-11-26 2016-05-30 協同テック株式会社 Circulation type geothermal power generation system and its construction method
WO2016204287A1 (en) * 2015-06-19 2016-12-22 ジャパン・ニュー・エナジー株式会社 Geothermal electricity generating system, geothermal electricity generating device, geothermal electricity generating method, or medium transfer pipe, geothermal electricity generating device and geothermal electricity generating method employing medium transfer pipe, and method of installing medium transfer pipe in fracture zone
KR20170003811A (en) * 2015-06-30 2017-01-10 한국생산기술연구원 Binary rankine cycle system
WO2017141645A1 (en) * 2016-02-19 2017-08-24 株式会社神戸製鋼所 Geothermal heat recovery device and geothermal heat recovery device operating method
JP2018044439A (en) * 2016-04-27 2018-03-22 中松 義郎 Method for suppressing opposition of geothermal generation, accelerating utilization of power geothermal energy and accelerating geothermal power generation
CN108131262A (en) * 2018-02-02 2018-06-08 长沙紫宸科技开发有限公司 A kind of geothermal energy temperature and pressure electric organ
CN108756821A (en) * 2018-05-28 2018-11-06 中国石油大学(华东) Oil well thermoelectric heat generation system and method
CN108775275A (en) * 2018-05-28 2018-11-09 中国石油大学(华东) Individual well closed cycle underground thermoelectric heat generation system and method
CN108799024A (en) * 2018-05-28 2018-11-13 中国石油大学(华东) U-tube heat exchange closed cycle underground thermoelectric heat generation system and method
JP2020121909A (en) * 2019-01-31 2020-08-13 株式会社グラヴィトン Sodium hydride production system
JP2020121908A (en) * 2019-01-31 2020-08-13 株式会社グラヴィトン Sodium hydride production system
JP2020148200A (en) * 2019-03-07 2020-09-17 株式会社 テーオー Geothermal heat recovery device
JP2021004603A (en) * 2020-09-18 2021-01-14 ジャパン・ニュー・エナジー株式会社 Geothermal power generator
US10914293B2 (en) 2018-06-20 2021-02-09 David Alan McBay Method, system and apparatus for extracting heat energy from geothermal briny fluid
EP3752776A4 (en) * 2018-02-12 2021-04-28 Quantitative Heat OY Geothermal heat exchanger, geothermal heat arrangement and method for charging thermal energy into ground
EP3749907A4 (en) * 2018-02-08 2021-10-13 Greenfire Energy Inc. Closed loop energy production from producing geothermal wells
FR3123419A1 (en) * 2021-06-01 2022-12-02 Sylvain De Sa Costa geothermal heat exchanger

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49103122A (en) * 1973-02-05 1974-09-30
JPS52122745A (en) * 1976-04-06 1977-10-15 Sperry Rand Corp Method and apparatus for earth heat energy recovery
JPS5791385A (en) * 1980-11-27 1982-06-07 Toshiba Corp Binary cycle plant of terrestrial heat
JPS57174658A (en) * 1981-03-30 1982-10-27 Megatetsuku Corp Geothermal heat transmitter
JPS62298668A (en) * 1986-06-16 1987-12-25 Fuji Electric Co Ltd Geothermal power system
JPH01285607A (en) * 1988-05-07 1989-11-16 Hisaka Works Ltd Hybrid binary generating system
JPH03111606A (en) * 1989-09-22 1991-05-13 Hisaka Works Ltd Water generating type binary generator
JPH085162A (en) * 1994-06-17 1996-01-12 Fujikura Ltd Geothermal energy extractor
JP2000161198A (en) * 1998-11-25 2000-06-13 Keiji Sugano Sealed fluid circulation device for collecting steam utilizing geothermal energy
JP2010532841A (en) * 2007-07-06 2010-10-14 グリーンフィールド エネジー リミテッド Geothermal energy system and method of operation
JP2011052621A (en) * 2009-09-03 2011-03-17 Kyushu Power Service:Kk Geothermal power generator
JP2012500925A (en) * 2008-08-22 2012-01-12 ニコラ レイキック Built-in underground geothermal generator
JP2012136946A (en) * 2010-12-24 2012-07-19 Mitsubishi Heavy Ind Ltd Binary power generation system
JP2013181457A (en) * 2012-03-01 2013-09-12 Kobe Steel Ltd Binary power generator and method for controlling the same
JP2013181456A (en) * 2012-03-01 2013-09-12 Kobe Steel Ltd Binary power generator and method for controlling the same

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49103122A (en) * 1973-02-05 1974-09-30
JPS52122745A (en) * 1976-04-06 1977-10-15 Sperry Rand Corp Method and apparatus for earth heat energy recovery
JPS5791385A (en) * 1980-11-27 1982-06-07 Toshiba Corp Binary cycle plant of terrestrial heat
JPS57174658A (en) * 1981-03-30 1982-10-27 Megatetsuku Corp Geothermal heat transmitter
JPS62298668A (en) * 1986-06-16 1987-12-25 Fuji Electric Co Ltd Geothermal power system
JPH01285607A (en) * 1988-05-07 1989-11-16 Hisaka Works Ltd Hybrid binary generating system
JPH03111606A (en) * 1989-09-22 1991-05-13 Hisaka Works Ltd Water generating type binary generator
JPH085162A (en) * 1994-06-17 1996-01-12 Fujikura Ltd Geothermal energy extractor
JP2000161198A (en) * 1998-11-25 2000-06-13 Keiji Sugano Sealed fluid circulation device for collecting steam utilizing geothermal energy
JP2010532841A (en) * 2007-07-06 2010-10-14 グリーンフィールド エネジー リミテッド Geothermal energy system and method of operation
JP2012500925A (en) * 2008-08-22 2012-01-12 ニコラ レイキック Built-in underground geothermal generator
JP2011052621A (en) * 2009-09-03 2011-03-17 Kyushu Power Service:Kk Geothermal power generator
JP2012136946A (en) * 2010-12-24 2012-07-19 Mitsubishi Heavy Ind Ltd Binary power generation system
JP2013181457A (en) * 2012-03-01 2013-09-12 Kobe Steel Ltd Binary power generator and method for controlling the same
JP2013181456A (en) * 2012-03-01 2013-09-12 Kobe Steel Ltd Binary power generator and method for controlling the same

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186431A1 (en) * 2014-06-05 2015-12-10 株式会社エスト Boiling-water-type ground heat exchanger and boiling-water-type ground heat power generator
JP2016011660A (en) * 2014-06-05 2016-01-21 俊一 田原 Boiling water type ground heat exchanger and boiling water type geothermal power generation apparatus
JP5731051B1 (en) * 2014-06-05 2015-06-10 俊一 田原 Boiling water type geothermal exchanger and boiling water type geothermal power generator
US9714643B2 (en) 2014-06-05 2017-07-25 Est. Inc. Boiling-water geothermal heat exchanger and boiling-water geothermal power generation equipment
JP2016098806A (en) * 2014-11-26 2016-05-30 協同テック株式会社 Circulation type geothermal power generation system and its construction method
JP5791836B1 (en) * 2015-02-16 2015-10-07 俊一 田原 Boiling water type geothermal exchanger and boiling water type geothermal power generator
JP2016151198A (en) * 2015-02-16 2016-08-22 俊一 田原 Ebullition water type geothermal exchanger and ebullition water type geothermal power generator
US10060652B2 (en) 2015-02-16 2018-08-28 Kyoei Denki Kogyo Corporation Boiling-water geothermal heat exchanger and boiling-water geothermal power generation equipment
JP5839528B1 (en) * 2015-04-27 2016-01-06 俊一 田原 Temperature drop compensation type geothermal exchanger and temperature drop compensation type geothermal power generator
JPWO2016204287A1 (en) * 2015-06-19 2018-04-05 ジャパン・ニュー・エナジー株式会社 Geothermal power generation system, geothermal power generation apparatus, geothermal power generation method or medium transfer pipe, geothermal power generation apparatus and geothermal power generation method using the medium transfer pipe, and method of installing a medium transfer pipe in a crushing zone
WO2016204287A1 (en) * 2015-06-19 2016-12-22 ジャパン・ニュー・エナジー株式会社 Geothermal electricity generating system, geothermal electricity generating device, geothermal electricity generating method, or medium transfer pipe, geothermal electricity generating device and geothermal electricity generating method employing medium transfer pipe, and method of installing medium transfer pipe in fracture zone
KR20170003811A (en) * 2015-06-30 2017-01-10 한국생산기술연구원 Binary rankine cycle system
KR101696822B1 (en) * 2015-06-30 2017-02-02 한국생산기술연구원 Binary rankine cycle system
US10794160B2 (en) 2016-02-19 2020-10-06 Kobe Steel, Ltd. Geothermal heat recovery device and geothermal heat recovery device operating method
WO2017141645A1 (en) * 2016-02-19 2017-08-24 株式会社神戸製鋼所 Geothermal heat recovery device and geothermal heat recovery device operating method
JP2017145811A (en) * 2016-02-19 2017-08-24 株式会社神戸製鋼所 Geothermal recovery device and method for operating the same
JP2018044439A (en) * 2016-04-27 2018-03-22 中松 義郎 Method for suppressing opposition of geothermal generation, accelerating utilization of power geothermal energy and accelerating geothermal power generation
CN108131262A (en) * 2018-02-02 2018-06-08 长沙紫宸科技开发有限公司 A kind of geothermal energy temperature and pressure electric organ
CN108131262B (en) * 2018-02-02 2023-07-25 长沙紫宸科技开发有限公司 Geothermal energy warm-pressing generator
US11255576B2 (en) 2018-02-08 2022-02-22 Greenfire Energy Inc. Closed loop energy production from producing geothermal wells
EP3749907A4 (en) * 2018-02-08 2021-10-13 Greenfire Energy Inc. Closed loop energy production from producing geothermal wells
EP3752776A4 (en) * 2018-02-12 2021-04-28 Quantitative Heat OY Geothermal heat exchanger, geothermal heat arrangement and method for charging thermal energy into ground
CN108756821A (en) * 2018-05-28 2018-11-06 中国石油大学(华东) Oil well thermoelectric heat generation system and method
CN108799024A (en) * 2018-05-28 2018-11-13 中国石油大学(华东) U-tube heat exchange closed cycle underground thermoelectric heat generation system and method
CN108775275A (en) * 2018-05-28 2018-11-09 中国石油大学(华东) Individual well closed cycle underground thermoelectric heat generation system and method
US10914293B2 (en) 2018-06-20 2021-02-09 David Alan McBay Method, system and apparatus for extracting heat energy from geothermal briny fluid
US11225951B2 (en) 2018-06-20 2022-01-18 David Alan McBay Method, system and apparatus for extracting heat energy from geothermal briny fluid
US11692530B2 (en) 2018-06-20 2023-07-04 David Alan McBay Method, system and apparatus for extracting heat energy from geothermal briny fluid
JP2020121908A (en) * 2019-01-31 2020-08-13 株式会社グラヴィトン Sodium hydride production system
JP2020121909A (en) * 2019-01-31 2020-08-13 株式会社グラヴィトン Sodium hydride production system
JP2020148200A (en) * 2019-03-07 2020-09-17 株式会社 テーオー Geothermal heat recovery device
JP7315952B2 (en) 2019-03-07 2023-07-27 株式会社 テーオー Geothermal recovery equipment
JP2021004603A (en) * 2020-09-18 2021-01-14 ジャパン・ニュー・エナジー株式会社 Geothermal power generator
JP7175024B2 (en) 2020-09-18 2022-11-18 ジャパン・ニュー・エナジー株式会社 geothermal power plant
FR3123419A1 (en) * 2021-06-01 2022-12-02 Sylvain De Sa Costa geothermal heat exchanger

Similar Documents

Publication Publication Date Title
JP2014084857A (en) Binary power generation system
US8650875B2 (en) Direct exchange geothermal refrigerant power advanced generating system
US9394771B2 (en) Single well, self-flowing, geothermal system for energy extraction
JP2014202149A (en) Geothermal power generation system
US20140116048A1 (en) Multi-Functional Solar Combined Heat and Power System
US11408646B2 (en) Ladder-structural gravity-assisted-heat-pipe geothermal energy recovery system without liquid-accumulation effect
BRPI0709837B1 (en) method, device and system for energy conversion
CN101696829A (en) Method for remotely transferring and storing geothermal energy, device and application thereof
CN107782014B (en) Solar adsorption type refrigerating device and method for permafrost region roadbed engineering
KR101431133B1 (en) OTEC cycle device that contains the ejector
US20150163965A1 (en) System and method of managing cooling elements to provide high volumes of cooling
CN1896501A (en) Energy conversion and converter, power generation and generator
JPWO2011004866A1 (en) Steam supply device
CN103758717A (en) Thermoelectric power generation method and thermoelectric power generation system
JP5904351B2 (en) Absorption cooler, heat exchanger
JP2010038507A (en) Heat pump utilizing underground heat reserve
KR20110061844A (en) Apparatus for ocean thermal power generation
JP2011077379A (en) Heat absorption and radiation system for solar cell panel
CN105508160B (en) Method for generating electricity by utilizing temperature difference and thermo-electric generation equipment
US9771926B2 (en) Steam power plant with a ground heat exchanger
KR20100125830A (en) Exhaust heat power generation system by low temperature refrigerants vaporization activity
CN203515701U (en) Low temperature form organic Rankine cycle ocean temperature difference energy and air energy combined power generation device
CN105091411A (en) Refrigerating and heating dual-purpose heat pipe type ground heat exchanger
KR101425962B1 (en) Binary Geothermal Power Generation System
CN205883157U (en) Surface of water floats photovoltaic board intelligence heat abstractor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170110