JP2010038507A - Heat pump utilizing underground heat reserve - Google Patents

Heat pump utilizing underground heat reserve Download PDF

Info

Publication number
JP2010038507A
JP2010038507A JP2008205172A JP2008205172A JP2010038507A JP 2010038507 A JP2010038507 A JP 2010038507A JP 2008205172 A JP2008205172 A JP 2008205172A JP 2008205172 A JP2008205172 A JP 2008205172A JP 2010038507 A JP2010038507 A JP 2010038507A
Authority
JP
Japan
Prior art keywords
heat
water
underground
temperature
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008205172A
Other languages
Japanese (ja)
Inventor
Toshio Nishida
俊夫 西田
Yoshinori Nishino
義則 西野
Shinichi Tamura
進一 田村
Masatake Nishino
正毅 西野
Masamitsu Moriyama
真光 森山
Yoichi Furubayashi
洋一 古林
Original Assignee
Nbl Kk
エヌビイエル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nbl Kk, エヌビイエル株式会社 filed Critical Nbl Kk
Priority to JP2008205172A priority Critical patent/JP2010038507A/en
Publication of JP2010038507A publication Critical patent/JP2010038507A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Abstract

<P>PROBLEM TO BE SOLVED: To constitute a heat pump system capable of executing underground heat reserve and geothermal utilization to save energy of an air conditioning device and a hot water supply device, as movement of heat quantity of several times to operating energy of the heat pump has limitations, though in a conventional air conditioner (air conditioning device), the heating and cooling is performed by a heat pump while applying the outside air as a heat source to keep a comfortable living room temperature (25 degrees to 28 degrees). <P>SOLUTION: Heat moving efficiency of the heat pump can be improved by reversing the change of the outside air temperature in summer and winter. That is, a problem can be solved by switching the utilization of outside air heat to the underground heat reserve. The heat moving efficiency of the heat pump can be improved by moving heat from high-temperature energy of summer in winter, and moving heat from low-temperature energy of winter in summer. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ヒートポンプを用いた熱効率向上法とヒートアイランド防止法及び設備に関する。   The present invention relates to a thermal efficiency improvement method using a heat pump, a heat island prevention method, and equipment.
従来の空調機器構成は外気熱を基本とするヒートポンプによる熱移動である。外気温は夏場が高く、冬場は低い。目的の居室温度は一定であることから、夏場は高い外気熱から居室内の冷却をする。冬場は低い外気温から室内を暖房する。これを熱媒体のガスを用いるヒートポンプで熱移動する。高圧側のガス温度は外気温より高いことから、ガスが持つ熱を外気に放出する。ガス減圧側の温度が居室内より低いことからガスの持つ低い熱が居室内空気熱を吸収冷却していた。   The conventional air conditioner configuration is heat transfer by a heat pump based on outside air heat. Outside temperatures are high in summer and low in winter. Since the target room temperature is constant, the room is cooled from high outside air heat in summer. In winter, the room is heated from a low outside temperature. This is transferred by a heat pump using a heat medium gas. Since the gas temperature on the high pressure side is higher than the outside air temperature, the heat of the gas is released to the outside air. Since the temperature on the gas decompression side was lower than that in the room, the low heat of the gas absorbed and cooled the air heat in the room.
本発明はこのヒートポンプの熱移動効率を向上させることが目的である。熱移動効率を向上させると、ヒートポンプ稼働エネルギが一定であるにもかかわらず、熱移動を多くする。これは熱移動エネルギの削減を意味する。
The object of the present invention is to improve the heat transfer efficiency of this heat pump. Increasing the heat transfer efficiency increases the heat transfer despite the constant heat pump operating energy. This means a reduction in heat transfer energy.
すなわち、本発明の目的である空調エネルギを省エネできる。これには、外気熱に相当する熱源を外気から年中一定である地下熱に変更すること、夏場の高温を地下に蓄熱、冬場で取り出す。反対に冬場の低温を地下に蓄熱して夏場で取り出すことが目的を解決する。
That is, the air conditioning energy that is the object of the present invention can be saved. For this purpose, the heat source corresponding to outside air heat is changed from outside air to underground heat that is constant throughout the year, the high temperature in summer is stored underground, and is taken out in winter. On the other hand, storing the low temperature in winter in the basement and taking it out in summer solves the purpose.
本発明は図1に示す目的の居室内空調を行うためにガスヒートポンプ機能を用いた熱変換において、通水可能な透水管を地下に埋設して地下水をポンプ循環して地下1.5メートル以下に上部に高温域・下部に低温域として年間季節変動の必要熱量を地下蓄熱することで、従来の外気変換で少ない温度差の変換であったものを夏場は冬の冷熱・冬場は夏の温熱を利用することを可能にして、外気温度変換の熱効率を数倍向上することを可能にする。   In the heat conversion using the gas heat pump function in order to perform indoor air conditioning for the purpose shown in FIG. 1, the underground water is buried in the underground and the underground water is pumped and circulated to 1.5 meters or less below the ground. In the summer, it is a low temperature region in the upper part and the lower part of the annual heat required for seasonal variation is stored underground. It is possible to improve the thermal efficiency of outdoor temperature conversion several times.
図1に示す効率的な地下蓄熱を可能にするには、季節変動する表層約1.5メートル以下にある安定した約20度から25度の地下温度熱源、図4の約1000メートル毎に約30度上昇する地下温度熱源を利用し、伝熱速度の遅い土壌特性に有効な蓄熱のための熱移動を行う必要がある。
In order to enable efficient underground heat storage shown in FIG. 1, a stable underground temperature heat source of about 20 to 25 degrees below a seasonally changing surface layer of about 1.5 meters or less, about every 1000 meters in FIG. It is necessary to use an underground temperature heat source that rises 30 degrees, and to perform heat transfer for heat storage that is effective for soil properties with a slow heat transfer rate.
必要となる地下井戸工事が追加されることから、工事が簡単であり費用も安価でなければ普及できない。変換蓄熱のためのエネルギが少量でなければならない。さらに、蓄熱による地下水の環境汚染、地下水位の変化など弊害を防止する必要条件が加わる。
Since necessary underground well construction is added, it cannot be spread unless construction is simple and inexpensive. The energy for conversion heat storage must be small. In addition, there are additional requirements to prevent adverse effects such as environmental pollution of groundwater due to heat storage and changes in groundwater level.
図3に示す地下蓄熱式エアコンの効率向上原理説明図から、ヒートポンプは例えばフレオン・アンモニア・炭酸ガスなどガスを熱媒体として使用ガスによって異なるが圧縮による液化時は高温となり、減圧による気化時に低温となる特性がある。この循環コンプレッサを内在して作動することで、連続した高温・低温特性を作り出している。高温時に熱放出(冷却)するとエネルギ保存法則から低温時に吸熱する。すなわち放熱と吸熱を行う熱変換器を用いれば熱移動が可能になる。この時、放熱量を多くすれば当然吸熱量も増加する。しかし熱媒体のガス特性から高温と低温の差温度は経済的なフレオンなど低圧液化ガスを使用すると有効温度が約50度から60度と小さい。   From the explanatory diagram of the principle of improving the efficiency of the underground thermal storage air conditioner shown in FIG. 3, the heat pump uses, for example, gas such as Freon, ammonia, and carbon dioxide as the heat medium. There is a characteristic. By operating this circulating compressor, continuous high and low temperature characteristics are created. When heat is released (cooled) at high temperatures, it absorbs heat at low temperatures due to the law of conservation of energy. In other words, heat transfer is possible by using a heat converter that performs heat dissipation and heat absorption. At this time, if the amount of heat radiation is increased, the amount of heat absorption naturally increases. However, due to the gas characteristics of the heat medium, the effective temperature is as low as about 50 to 60 degrees when the low temperature liquefied gas such as economical Freon is used.
一方、居室温度は季節変動に影響されずほぼ20度から25度と一定を要求されることから、夏場では外気温度が30度、熱変換に必要な温度差を約10度と仮定すると高温領域でガス特性が一般に最大50度であるため圧縮ガス体(液体)温度は40度となる。すなわち、ポンプ能力(定時間当たりの熱媒体ガス量)を一定にすれば約10度放熱分の熱量が吸熱されることになる。すなわち、居室内を空調するには夏場は冷房・冬場は暖房を必要とすることから目的の吸熱・放熱をえるには外部との放熱の効率を向上させることが熱効率向上となる。
On the other hand, the room temperature is not affected by seasonal fluctuations and is required to be constant between 20 degrees and 25 degrees. Therefore, it is assumed that the outdoor temperature is 30 degrees in summer and the temperature difference required for heat conversion is about 10 degrees. Since the gas characteristic is generally 50 degrees at the maximum, the compressed gas body (liquid) temperature is 40 degrees. That is, if the pump capacity (the amount of heat medium gas per fixed time) is made constant, the amount of heat released by about 10 degrees is absorbed. That is, air conditioning in the living room requires cooling in the summer and heating in the winter. Therefore, to obtain the desired heat absorption and heat dissipation, improving the efficiency of heat radiation to the outside improves the heat efficiency.
図3に示す従来の外気熱利用では放熱が約10度であるが、夏場が冬の冷熱蓄熱、冬場が夏の温熱蓄熱を地下に蓄熱すれば、地下蓄熱との循環に地下水を用いれば放熱の温度差が約30度となり、同一ヒートポンプで外気温利用に比べて地下蓄熱利用を行えば熱移動が約3倍となる。さらに図4に示す深層地下熱を利用すれば効率は増加する。すなわち、ヒートポンプの効率が高まることで同一必要熱移動のエネルギが少なくなる省エネができる。
In the conventional use of outside air heat shown in Fig. 3, the heat dissipation is about 10 degrees, but if the summer stores the cold heat storage in the winter and the summer heat storage in the summer in the basement, heat is dissipated if groundwater is used for circulation with the underground heat storage. The difference in temperature is about 30 degrees, and heat transfer is about three times as much if underground heat storage is used compared to outside temperature using the same heat pump. Furthermore, if deep underground heat shown in FIG. 4 is utilized, efficiency will increase. In other words, energy efficiency can be reduced by reducing the energy of the same necessary heat transfer by increasing the efficiency of the heat pump.
本発明の成果は、図3に示すように外気変換に対して、地下蓄熱利用は空調エネルギが約1/3となり,およそ70パーセントの省エネが可能となる。さらに深層地下温度を用いると、冬場の効率がより向上する。すなわち、空調エネルギが約1/6へと低下が可能となり、世界的な問題となっている電力供給のための炭酸ガス発生量を減少させる効果を併せ持つ。さらに、季節変動熱変化を地下蓄熱して平滑化することから、夏場のヒートアイランド(空調による大気の加熱)防止効果と冬場の過冷却防止となる。
As a result of the present invention, as shown in FIG. 3, the use of underground heat storage is about 1/3 of the air-conditioning energy for the outside air conversion, and energy saving of about 70% is possible. In addition, the use of deep underground temperatures improves winter efficiency. That is, the air-conditioning energy can be reduced to about 1/6, and it has the effect of reducing the amount of carbon dioxide generated for power supply, which is a global problem. In addition, since seasonally changing heat is stored and smoothed underground, it can prevent summer heat island (air heating by air conditioning) and prevent overcooling in winter.
図2に示す給湯器併用がより省エネ効果を高める。地下蓄熱の空調設備に夏場の高温放熱を給湯に利用すれば、夏場の給湯エネルギが不要となり、冬場においても夜間などにおいて熱効率の高いヒートポンプによる給湯加熱は省エネと普及のための設備効率を高める。   The combined use of the water heater shown in FIG. 2 enhances the energy saving effect. By using high-temperature heat radiation in the summer for air-conditioning equipment for underground heat storage for hot water supply, no hot water supply energy is required in the summer.
図1に示す、夏場・冬場の地下蓄熱循環水による屋上・屋根などからの追加吸熱による温熱・冷熱の吸収は、より熱変換効率を向上させる。   As shown in FIG. 1, absorption of heat and cold by additional heat absorption from the rooftop and roof by the underground heat storage circulating water in summer and winter improves the heat conversion efficiency.
個別空調・給湯のヒートポンプシステムは、図1・図2の構成を使用する。一般家庭小規模商業施設ではヒートポンプ圧縮機は低圧のガス媒体を採用する。コンプレッサは単一でインバータ回転可変制御を採用、複数並列接続の居室内吸熱・放熱器と必要給湯器を接続する。地下蓄熱井戸は縦型で口径が100ミリメートルから250ミリメートル、深さが3メートルから10メートルで腐食しない
FRP廃材による透水性のある管を使用埋設、内部に地下水位の約1メートル下と井戸の底の2本の循環水管を設置、井戸の中間部に上下の水流れを緩慢にするオリフィス(管外部に水が透水するように少量流れる程度)を設置する。これらの構成設備を採用して省エネ空調・給湯を得る。
The individual air conditioning / hot water supply heat pump system uses the configuration shown in FIGS. In general household small-scale commercial facilities, the heat pump compressor employs a low-pressure gas medium. The compressor adopts a single variable inverter rotation control, and connects a plurality of parallel-connected indoor heat absorption / radiation devices and necessary water heaters. Underground thermal storage wells are vertical and have a diameter of 100 to 250 millimeters, a depth of 3 to 10 meters, and are embedded with permeable pipes made of FRP waste material that does not corrode. Two circulating water pipes are installed at the bottom, and an orifice (a small amount of water flows so that water can permeate outside the pipe) is installed in the middle of the well. Use these components to obtain energy-saving air conditioning and hot water supply.
地下蓄熱方法において、地下水が安定しない(移動する速度が速い地下水のある地域)などでは、井戸周囲(適用可能地上区域)に防水材を地底と周囲に打ち込み、蓄熱域を区画して、必要熱移動を防止、地下水位の確保を行う。なお、大規模集合住宅などには複数本の井戸を用いる場合などは、周囲に防水隔壁など設置するとより簡単に効率的な地域蓄熱ができる。
In the underground heat storage method, if the groundwater is not stable (area where the groundwater moves at a high speed), waterproof material is driven around the well (applicable ground area) around the ground and the surrounding area, and the heat storage area is divided into necessary heat. Prevent movement and secure groundwater level. In addition, when using a plurality of wells in a large-scale apartment house, etc., it is possible to more easily and efficiently store local heat by installing a waterproof partition around the well.
地下水汚染が発生するなど恐れある地域においては、地下水を循環せずに、高圧ガス熱媒体を地下井戸に直接設置することも可能である。 また井戸を設置しないで交換フィン付き管を埋設して循環水による熱変換、直接ガス熱媒体による変換も可能である。   In areas where groundwater contamination may occur, high-pressure gas heat medium can be installed directly in the underground well without circulating the groundwater. It is also possible to bury pipes with exchange fins without installing wells and to convert heat with circulating water or directly with a gas heat medium.
地下水の移動がある地域などでは、縦型井戸ではなく、地下に水平に透水管を埋設して安定地下水熱を利用することで効率が高まる。
In areas where there is movement of groundwater, the efficiency increases by using a stable underground water heat by burying a permeation pipe horizontally in the basement instead of a vertical well.
大規模の並列接続を行う地域冷暖房としての熱供給循環水には深層地下約1200メートル以下の40度を越える温水を冬場利用が得策。夏場は地下表層水の複数本井戸からの取水が良い。循環は深層地下と表層地下水を季節毎に行う。
For the heat supply circulation water for district heating and cooling with large-scale parallel connection, warm water exceeding 40 degrees below the depth of about 1200 meters can be used in winter. In summer, water from multiple wells in the surface water is good. The circulation is conducted in the deep underground and surface groundwater every season.
本発明のエアコンの地熱利用省エネシステム構成図Configuration diagram of geothermal energy-saving energy system for air conditioner of the present invention 本発明のエアコン・給湯器設備の地熱利用省エネシステム構成図Configuration diagram of geothermal energy-saving system for air conditioner / water heater equipment of the present invention 本発明の地下蓄熱式エアコンの効率向上原理説明図Explanatory diagram of the principle of improving efficiency of underground heat storage air conditioner of the present invention 深層地下熱利用の温度と深さ・用途の関係説明図Explanatory diagram of relationship between temperature, depth and application of deep underground heat utilization
符号の説明Explanation of symbols
(1)水ポンプ
(2)屋外エアコンユニット
(3)熱交換器
(4)コンプレッサー
(5)ガスタンク
(6)電磁弁
(7)冷媒ガス管
(8)屋上・屋根散水
(9)夏場の高温蓄熱
(10)透水管
(11)表層管
(12)深層管
(13)電磁弁
(14)冷媒ガス管
(15)ガスタンク
(16)コンプレッサー
(17)熱交換器
(18)屋外エアコンユニット
(19)給湯
(20)水道
(21)温水タンク
(22)水ポンプ
(23)表層管
(24)A部地下
(25)透水管
(26)深層管
(1) Water pump (2) Outdoor air conditioner unit (3) Heat exchanger (4) Compressor (5) Gas tank (6) Solenoid valve (7) Refrigerant gas pipe (8) Rooftop / roof watering (9) High temperature heat storage in summer (10) Permeable pipe (11) Surface layer pipe (12) Deep layer pipe (13) Solenoid valve (14) Refrigerant gas pipe (15) Gas tank (16) Compressor (17) Heat exchanger (18) Outdoor air conditioner unit (19) Hot water supply (20) Water supply (21) Warm water tank (22) Water pump (23) Surface layer pipe (24) Part A underground (25) Permeable pipe (26) Deep layer pipe

Claims (8)

  1. ヒートポンプを用いた空調機器・冷凍機・給湯機器において、外気以外に熱媒体として地下水を利用する機器を個別または並列に接続して、水ポンプにより地下水を循環させて地下蓄熱変換する構造を用いて熱変換効率の向上とヒートアイランド環境温度上昇防止を行うガスヒートポンプ装置。   In air-conditioning equipment, refrigerators, and hot water supply equipment using heat pumps, use equipment that uses groundwater as a heat medium in addition to outside air individually or in parallel, and circulates groundwater with a water pump to convert underground heat storage. Gas heat pump device that improves heat conversion efficiency and prevents heat island environment temperature rise.
  2. 請求項1装置の地下蓄熱に必要な井戸構造において、竪穴井戸を使用時井戸管は多数個の通水可能な穴を持ち、井戸は単数使用の場合は高温熱変換水を上部に放熱し冷熱変換水を下部に放熱、吸熱時はその逆に接続するために複数個の長さの異なる循環水管を内装してなる蓄熱井戸構造。   In the well structure necessary for underground heat storage of the apparatus of claim 1, when using a pit well, the well pipe has a large number of holes through which water can flow, and when a single well is used, the high temperature heat conversion water is radiated to the upper part to cool A heat storage well structure with a plurality of circulating water pipes with different lengths in order to dissipate the converted water in the lower part and to reversely connect it when absorbing heat.
  3. 請求項1装置の地下蓄熱に必要な井戸構造において、外部熱変換を必要とする単数または複数個のガス圧縮機の熱変換機に接続する循環ポンプ水冷媒を、地下蓄熱井戸管に流水可能な多数の穴を持つ管または熱変換に必要な表面積を有する穴なし管を用いて、個別管はそれぞれ高温用と低温用に分離して使用する縦型井戸を複数個または横水平方向に平行に配列、または連続渦巻き状に井戸管を地下に埋設して高温水と低温水の流れ方向を特定にして地下熱蓄熱効率を向上させるための蓄熱井戸構造。   The well structure required for underground heat storage of the apparatus according to claim 1, wherein the circulating pump water refrigerant connected to the heat converter of one or more gas compressors that require external heat conversion can flow into the underground heat storage well pipe Using a tube with a large number of holes or a tube without a hole having the surface area required for heat conversion, each individual tube is divided into a plurality of vertical wells to be used separately for high temperature and low temperature, or in parallel in the horizontal and horizontal directions. Thermal storage well structure for improving underground heat storage efficiency by arranging well pipes underground or arranging them in a continuous spiral to specify the flow direction of high and low temperature water.
  4. ヒートポンプを用いた空調機器・冷凍機・給湯機器において、室内熱変換機単数または複数個と接続する圧縮機の個別の外部熱変換機器高圧ガスを個別地下竪穴井戸に多数個通水可能な穴を持つ井戸管内で、地下水に熱変換して蓄熱することを目的にした熱媒体ガスを地下循環する構造にして熱変換効率の向上とヒートアイランド外気温度上昇防止を行う構造。   In air-conditioning equipment, refrigerators, and hot water supply equipment using heat pumps, individual external heat conversion equipment for compressors connected to one or more indoor heat converters can have a number of holes through which individual high-pressure gas can be passed through individual underground wells. A structure in which heat medium gas is circulated underground for the purpose of storing heat by converting it into groundwater in a well pipe, which improves heat conversion efficiency and prevents heat island outside air temperature rise.
  5. 請求項4の地下蓄熱効率向上策において、夏場の吸熱変換水を冬場の放熱温度を高めるまた反対に冬場の冷熱を夏場使用するために、循環水をより加熱・冷却する目的にポンプ循環する変換水を室外屋上または屋根に散水して加熱水を地下上部に冷却水を下部から注水蓄熱する方法。   5. The underground heat storage efficiency improvement measure as claimed in claim 4, wherein the endothermic conversion water in the summer is pumped for the purpose of heating and cooling the circulating water in order to increase the heat radiation temperature in the winter and conversely to use the cold in the winter in the summer. Water is sprinkled on the outdoor rooftop or roof, and heated water is injected into the basement and cooling water is injected from the bottom to store heat.
  6. シャワー水など必要給湯の蓄熱加熱を行う構造において、居室内冷却(夏場)時は地下蓄熱循環水との熱変換前に給湯器内の水加熱を行い、冬場においては夜間などヒートポンプに余力のあるときに給湯器の加熱を行う方法。   In a structure that heats and heats required hot water such as shower water, the water in the water heater is heated before heat conversion with underground heat storage circulating water during indoor cooling (summer), and the heat pump has extra power in the winter and at night. A method of heating the water heater sometimes.
  7. 蓄熱井戸の構造において、地下温度特性が地上温度の年間平均温度となる地下約1.5メートル深さ以下で地下水層を蓄熱地下として通水可能な穴つき管または放熱可能な面積を持つ穴なし熱交換可能な管を使用してなる蓄熱管の配置工法。   In the structure of a thermal storage well, there is no hole with a hole with a hole that can pass through the groundwater layer as a heat storage basement with a depth of about 1.5 meters below the ground, where the underground temperature characteristic is the average annual temperature of the ground temperature Heat storage tube placement method using heat exchangeable tubes.
  8. 蓄熱井戸の構造において、冬場の変換水を25度以上ある深層地下から取得すること、夏場の変換水を地下1.5メートル以下の浅い地下から取得することを特徴とする地下熱利用のヒートポンプシステム。   In the structure of a thermal storage well, the heat pump system using underground heat is characterized in that the conversion water in winter is obtained from a deep underground at 25 degrees or more, and the conversion water in summer is obtained from a shallow underground below 1.5 meters underground. .
JP2008205172A 2008-08-08 2008-08-08 Heat pump utilizing underground heat reserve Pending JP2010038507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008205172A JP2010038507A (en) 2008-08-08 2008-08-08 Heat pump utilizing underground heat reserve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008205172A JP2010038507A (en) 2008-08-08 2008-08-08 Heat pump utilizing underground heat reserve

Publications (1)

Publication Number Publication Date
JP2010038507A true JP2010038507A (en) 2010-02-18

Family

ID=42011252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008205172A Pending JP2010038507A (en) 2008-08-08 2008-08-08 Heat pump utilizing underground heat reserve

Country Status (1)

Country Link
JP (1) JP2010038507A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011220603A (en) * 2010-04-09 2011-11-04 Chemical Grouting Co Ltd Geothermal utilization system
KR101107090B1 (en) 2011-10-04 2012-01-30 주식회사 에스이티 District heating and cooling system using heat pump
WO2013075572A1 (en) * 2011-11-25 2013-05-30 阳光凯迪新能源集团有限公司 Seasonal energy-storage cooling and heating system
CN107314562A (en) * 2017-07-21 2017-11-03 湖北益通建设股份有限公司 A kind of heat energy utilization system of utilization ground end heat exchange chamber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011220603A (en) * 2010-04-09 2011-11-04 Chemical Grouting Co Ltd Geothermal utilization system
KR101107090B1 (en) 2011-10-04 2012-01-30 주식회사 에스이티 District heating and cooling system using heat pump
WO2013075572A1 (en) * 2011-11-25 2013-05-30 阳光凯迪新能源集团有限公司 Seasonal energy-storage cooling and heating system
CN107314562A (en) * 2017-07-21 2017-11-03 湖北益通建设股份有限公司 A kind of heat energy utilization system of utilization ground end heat exchange chamber
CN107314562B (en) * 2017-07-21 2018-05-29 湖北益通建设股份有限公司 A kind of heat energy utilization system using ground end heat exchange chamber

Similar Documents

Publication Publication Date Title
US7617697B2 (en) In-ground geothermal heat pump system
WO2006063532A1 (en) A heat tube device utilizing cold energy and application thereof
CN106225043A (en) Heat pump and heating system
CN101588701B (en) Temperature control method and temperature control system of machine cabinet
CN102393049A (en) Ground-source heat-pipe/heat-pump air conditioner
JP2013181676A (en) Air conditioning system and air conditioning method
JP2010038507A (en) Heat pump utilizing underground heat reserve
JP5067958B2 (en) Geothermal heat pump system and water heat pump system
AU2014298101B2 (en) Temperature management system
RU2636018C2 (en) Heating and hot water supply system
CN202419820U (en) Ground-source heat pipe and heat pump air-conditioner
JP2008256344A (en) Cooling/heating and heat/cold retaining system using cold in underground layer with less temeprature change for circulating liquid temperature-controlled by water temeprature control auxiliary device into whole building and container or in cooler/heater while using the liquid as cold source
JP2012057836A (en) Underground heat exchanger and heat pump using the same
WO2008096157A1 (en) A method of changing the temperature of a thermal load
JP2005300120A (en) Heat pump heating system of high efficiency by low-temperature water
JP5751599B2 (en) Hot water heating / cooling system
JP6442712B2 (en) Heat utilization device
JP6060463B2 (en) Heat pump system
CN107726502A (en) A kind of surface water using conduction oil as heat transfer medium ground source constant temperature system
KR20120082158A (en) Cooling/heating equipment of water heat exchanging type having generator
JPH10274444A (en) Underground heat-exchange system with heat-reservoir and manufacture thereof
JP2014081088A (en) Heat exchanging apparatus
CN102374696A (en) Heating, refrigeration and hot-water system utilizing solar energy and heat pump
JP5028638B1 (en) Geothermal utilization structure and geothermal heat exchanger buried structure
AT518241B1 (en) Heating and / or cooling system for a building