JP2014202149A - Geothermal power generation system - Google Patents

Geothermal power generation system Download PDF

Info

Publication number
JP2014202149A
JP2014202149A JP2013080031A JP2013080031A JP2014202149A JP 2014202149 A JP2014202149 A JP 2014202149A JP 2013080031 A JP2013080031 A JP 2013080031A JP 2013080031 A JP2013080031 A JP 2013080031A JP 2014202149 A JP2014202149 A JP 2014202149A
Authority
JP
Japan
Prior art keywords
medium
flow path
heat
underground
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013080031A
Other languages
Japanese (ja)
Inventor
廣明 松島
Hiroaki Matsushima
廣明 松島
貴行 志田
Takayuki Shida
貴行 志田
康晴 川端
Yasuharu Kawabata
康晴 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013080031A priority Critical patent/JP2014202149A/en
Publication of JP2014202149A publication Critical patent/JP2014202149A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a geothermal power generation system capable of being used even in a winze at a low shaft bottom temperature, a winze at a small boring depth or at a location at which it is difficult to secure cooling water, lessening the influence of surrounding hot springs and scale adhesion, reducing cost relating to medium cooling and pumping, and achieving high efficiency and space saving installation.SOLUTION: A closed loop circulation type geothermal power generation system uses a coaxial double-pipe heat exchanger 1 by constituting a helical channel between an outer tube inner wall and an inner heat insulating tube of the coaxial double-pipe heat exchanger 1 for accelerating underground heat exchange by underground heat absorption of a power generation medium and formation of condensate liquid by underground heat radiation of the power generated medium, accelerating the condensed liquid formation by heat radiation into the underground and cooling by helical flow down of the medium in low-temperature underground layers such as a shallow constant-temperature layer and a water-bearing layer, and accelerating heat absorption from the underground and heating in high-temperature underground layers such as a deep high-temperature layer and a geothermal layer, thereby facilitating raising a temperature of the medium in a bottom portion of a double tube shaft.

Description

本発明は、温泉や地熱蒸気を新規に、または増量して汲み上げることがなく、かつスケール付着の影響を受けることなく長期安定運用が可能な、同軸二重管熱交換器を利用する閉ループ循環型の地熱発電システムの技術分野に関する。 The present invention is a closed-loop circulation type using a coaxial double-tube heat exchanger that does not pump up hot springs or geothermal steam newly or increase in volume, and is capable of long-term stable operation without being affected by scale adhesion. The technical field of geothermal power generation systems.

特に、発電用媒体の吸熱と放熱を、地中で効率よく行えるようにすることで、掘削深度が浅く、坑底温度が比較的低い坑井でも利用可能で、坑井掘削と冷却設備、および冷却水確保や補機動力のコストを削減しながら、効率よく発電を行う地熱発電システムに関する。 In particular, by making it possible to efficiently absorb and dissipate heat in the power generation medium in the ground, it can also be used in wells with a shallow excavation depth and a relatively low bottom temperature, and well drilling and cooling equipment, and The present invention relates to a geothermal power generation system that efficiently generates power while reducing costs for securing cooling water and auxiliary power.

温泉熱や地熱蒸気、または地熱を熱源として発電を行う地熱発電は、地球の高温マグマ層を熱源とし、発電の過程で燃料消費や温室効果ガスの排出を伴わないことから、エネルギー自給率の向上や温暖化防止に資する発電手段として、近年注目されている。   Geothermal power generation, which generates electricity using hot spring heat, geothermal steam, or geothermal heat sources, uses the high-temperature magma layer of the earth as a heat source, and does not involve fuel consumption or greenhouse gas emissions during the power generation process. In recent years, it has attracted attention as a means of power generation that contributes to prevention of global warming.

従来の地熱発電システムでは、地熱帯を掘削して水を注入し、発生する地熱蒸気を利用して発電するフラッシュ方式のほか、温泉井戸からの源泉湯や地熱蒸気により低沸点媒体を加熱蒸発して蒸気タービンを駆動する、バイナリー発電方式が広く知られている。 In conventional geothermal power generation systems, a low-boiling medium is heated and evaporated by source hot springs and geothermal steam from a hot spring well, as well as a flash method in which water is injected by excavating geotropics and generating geothermal steam. Binary power generation systems that drive steam turbines are widely known.

しかしながら、温泉地帯で新たに坑井掘削を行って多量の地熱蒸気や温泉を生産したり、既存の蒸気や温泉量を汲み上げる場合には、周囲の源泉温度が低下したり、温泉湧出量や地下水量が減少する懸念が生じるため、新規の地熱蒸気生産や源泉汲み上げの増量を行うことなく、地下の高温地熱だけを効率よく利用する発電方式を確立する必要がある。 However, when new well drilling is performed in the hot spring area to produce a large amount of geothermal steam and hot springs, or when the existing steam and hot spring volume is pumped up, the temperature of the surrounding hot springs decreases, the amount of hot spring discharge and groundwater Because there is a concern that the amount will decrease, it is necessary to establish a power generation system that efficiently uses only underground high-temperature geothermal heat without increasing the amount of new geothermal steam production or source pumping.

また、一般に温泉や地熱蒸気には炭酸カルシウムなどが多量に含まれ、温度変化や空気接触によって、源泉井戸や地熱蒸気の生産井内のほか、発電システム内の流路や構成機器内にスケールとして析出し、流路を閉塞して熱交換効率の低下や故障等を引き起こす。 In general, hot springs and geothermal steam contain a large amount of calcium carbonate, etc., and are deposited as scales in source wells and geothermal steam production wells, as well as in flow paths and components in the power generation system, due to temperature changes and air contact. In addition, the flow path is blocked, resulting in a decrease in heat exchange efficiency or failure.

近年、これらの課題解決に繋がる技術として、特許文献1に記載されている、閉ループ循環型の地熱発電が提案されている。本技術は加圧水を媒体とし、熱源となる地熱帯まで水を加圧注入して蒸気を得て発電するため、既存温泉への影響とスケール付着による故障発生という二つのリスクを同時に軽減できる、温泉共生型の優れた地熱発電技術である。 In recent years, as a technique for solving these problems, closed loop circulation type geothermal power generation described in Patent Document 1 has been proposed. This technology uses pressurized water as a medium and pressurizes and injects water to the tropics, which is the heat source, to generate steam and generate electricity, so it is possible to simultaneously reduce the two risks of impact on existing hot springs and failure due to scale adhesion. It is an excellent symbiotic geothermal power generation technology.

特開2011−52621号公報JP 2011-52621 A

前記の通り従来技術によれば、周囲温泉への影響やスケール付着のリスクを大幅に軽減できる、地熱直接利用での発電が可能となるものの、解決すべき5つの課題がある。 As described above, according to the prior art, although it is possible to generate electricity through direct use of geothermal heat, which can greatly reduce the impact on surrounding hot springs and the risk of scale adhesion, there are five problems to be solved.

一つは高温地熱帯で集中的に地熱採取を行うため、地下数kmの高温地熱層まで掘削を行って、この深度まで加圧水の注入管と熱水取出のための断熱管を挿入する必要があり、掘削深度や配管が長くなって地熱開発と地熱抽出のコストが増大するほか、熱交換を行う配管材料の耐熱強度や断熱性も高い性能が求められ、配管コストがさらに増大する。 One is to collect geothermal heat intensively in the high-temperature tropics, so it is necessary to excavate to a high-temperature geothermal layer several kilometers below the ground, and to insert pressurized water injection pipes and heat insulation pipes for hot water extraction to this depth. In addition to increasing the drilling depth and piping, the cost of geothermal development and geothermal extraction is increased, and the piping material that performs heat exchange is required to have high heat resistance and heat insulation performance, which further increases the piping cost.

また、一般的に地下数百mの範囲にある既存の源泉井戸などでは、本方式での地熱発電が実施困難であるほか、地下数百mの坑底温度が高い地熱層であっても、注水継続とともに地熱層の温度が低下し、時間経過とともに媒体温度が上昇し難くなるという課題がある。 In addition, it is difficult to implement geothermal power generation using this method in existing wells that are generally several hundred meters below ground. There is a problem that the temperature of the geothermal layer decreases with continued water injection, and the medium temperature hardly rises with time.

このように、地下数kmに及ぶ掘削や、注水継続による媒体温度低下が起こりやすくなる背景には、媒体を昇温させる熱交換面が、主として高温地熱層内の坑底部に限定される一方、この吸熱部分に向けて、加圧水が二重管外側を鉛直下方に直線的に流下するため、坑底部に至るまでに高温層があるにも関わらず、こうした地中高温層との熱交換を充分に行うことなく、低温の媒体が坑底部にそのまま流下してしまうことが挙げられる。 In this way, the background of excavation over several kilometers underground and the medium temperature drop due to continued water injection tends to occur, while the heat exchange surface for raising the temperature of the medium is mainly limited to the bottom of the well in the high-temperature geothermal layer, The pressurized water flows down the double pipe vertically downward toward this endothermic part, so even though there is a high temperature layer up to the bottom of the well, sufficient heat exchange with the underground high temperature layer is possible. The low-temperature medium flows down to the bottom of the well without being performed.

また従来技術では、発電後の媒体を地上で復水して加圧注水するため、地上部で充分に冷却して凝縮液化させた後に、加圧ポンプで昇圧して地下注水を行うことから、地上部の冷却システムに係る設置スペースと設備コストに加え、多量の冷却水が必要となるほか、加圧ポンプの昇圧動力が必要となり、正味の発電量が減少してしまうという課題がある。 In addition, in the prior art, since the medium after power generation is condensed on the ground and pressurized and injected, after being cooled sufficiently on the ground and condensed and liquefied, the pressure is increased with a pressure pump and underground injection is performed. In addition to the installation space and equipment cost associated with the above-ground cooling system, a large amount of cooling water is required, and the pressurizing power of the pressurizing pump is required, resulting in a decrease in net power generation.

特に、発電後媒体の凝縮液化において、地中低温層を有効活用する方法が明示されていないという課題がある。すなわち、地下数mから百m前後までの恒温層は、季節によらず地中温度が約10℃〜15℃の一定となっているほか、恒温層の温度が高温化する地熱帯であっても、地下流水や海水が流れ込む帯水層では地中温度が低下するが、こうした地下浅部の恒温層や滞水層の地中冷熱を、媒体冷却に活用する方法が明示されていなかった。 In particular, there is a problem that a method for effectively utilizing the underground low-temperature layer is not clearly described in condensing liquid after power generation. In other words, the constant temperature layer from several meters to around a hundred meters is a geotropical zone where the underground temperature is constant between about 10 ° C and 15 ° C, regardless of the season, and the temperature of the constant temperature layer increases. However, although the underground temperature decreases in the aquifer where the groundwater and seawater flow, there is no clear method for using the underground cold in the shallow subsurface and aquifer for medium cooling.

加えて、発電後の媒体を効率良く冷却する手段として、発電後の媒体を吸着式あるいは吸収式の冷凍機熱源として利用して冷熱を取り出し、得られた冷熱を利用して冷凍機から出た媒体を更に冷却するといった具体策が明示されていないため、媒体の冷却や凝縮液化に多大な設備とコストを要するという課題があった。 In addition, as a means for efficiently cooling the medium after power generation, the cold power is taken out using the medium after power generation as an adsorption or absorption type refrigerator heat source, and the obtained cold heat is used to exit the refrigerator. Since a specific measure for further cooling the medium is not clearly described, there has been a problem that a large amount of equipment and cost are required for cooling and condensing the medium.

特に地熱や地熱流体が豊富な地域では、多量の冷却水調達や冷熱生産が困難であるため、こうした場所で冷水を極力使用せずに、効率よく媒体を冷却する方法が必要となっていた。   In particular, in areas where there are abundant geothermal and geothermal fluids, it is difficult to procure a large amount of cooling water and produce cold heat. Therefore, a method for efficiently cooling the medium without using cold water as much as possible has been required.

本発明は、このような課題に鑑みてなされたものであり、その目的は、掘削深度が浅く坑底温度が低い坑井でも、また多量の冷水調達が困難な場所においても利用可能で、周囲温泉への影響やスケール付着のリスクを大幅に軽減するとともに、地熱吸熱と地中放熱を効率的に行うことで、地熱開発と媒体冷却に係るコストも大幅に削減し、附帯設備の設置スペースや補機動力も削減することで、高効率かつ低コスト、さらに省スペースでの実施を可能とする、新たな地熱発電システムを提供することである。   The present invention has been made in view of such problems, and its purpose is to be used in wells where the depth of excavation is shallow and the bottom temperature is low, and where it is difficult to procure a large amount of cold water. The impact on hot springs and the risk of scale adhesion are greatly reduced, and geothermal heat absorption and underground heat dissipation are efficiently performed, greatly reducing the costs associated with geothermal development and media cooling. It is to provide a new geothermal power generation system that enables high efficiency, low cost, and space-saving implementation by reducing auxiliary power.

上記課題を解決するため、請求項1に記載の発明は、
水やペンタンなどの媒体を、高温の地熱または地熱流体からの吸熱により昇温上昇させ、地上で発電利用した後に冷却して凝縮液化させ、再び地熱または地熱流体から吸熱させる、閉ループ循環型の流路を構成する地中熱交換器のうち、
前記閉ループ循環流路の地中埋設部が、地中と熱交換を行う外側管と、昇温させた媒体を断熱しながら地上に上昇させる、内側断熱管とで構成された同軸二重管となっており、さらに前記外側管の内壁と内側断熱管の隙間に形成される二重管外側流路のうち、地中への放熱または地中からの吸熱を促進させる地中熱交換促進部分に、前記流路を螺旋化させる螺旋流路構成板を備えることで、媒体が地中を流下する際の地中との熱交換を促進させることを特徴とする。
In order to solve the above-mentioned problem, the invention described in claim 1
A closed-loop circulation type flow in which water, pentane, and other media are heated and raised by absorbing heat from high-temperature geothermal or geothermal fluid, cooled to condensate after use on the ground, and then absorbed again from geothermal or geothermal fluid. Of the underground heat exchangers that make up the road,
A coaxial double pipe composed of an outer tube that exchanges heat with the underground, and an inner heat insulating tube that raises the heated medium to the ground while insulating the heated medium. Furthermore, in the double pipe outer flow path formed in the gap between the inner wall of the outer pipe and the inner heat insulating pipe, in the underground heat exchange promotion part that promotes heat radiation to the ground or heat absorption from the ground By providing a spiral flow path constituting plate that spirals the flow path, heat exchange with the ground when the medium flows down in the ground is promoted.

請求項2に記載の発明は、
請求項1に記載の螺旋流路構成板が、熱伝導性の高い材料で構成され、前記外側管内壁に接して挿入される熱交換促進管の内壁に固定されているか、前記の熱交換促進管と一体成型されていることで、媒体が螺旋流路を流下する際に、熱交換促進管の内壁だけでなく、螺旋流路構成板上でも熱交換できるようにしたことを特徴とする。
The invention described in claim 2
The spiral flow path constituting plate according to claim 1 is made of a material having high heat conductivity and is fixed to an inner wall of a heat exchange promoting tube inserted in contact with the inner wall of the outer tube, or the heat exchange promoting By being integrally formed with the pipe, when the medium flows down the spiral flow path, heat exchange can be performed not only on the inner wall of the heat exchange promoting pipe but also on the spiral flow path constituting plate.

請求項3に記載の発明は、
請求項1に記載の螺旋流路構成板が、熱伝導性の高い材料で構成され、前記内側断熱管の外壁に固定されるか、前記内側断熱管と一体成型された螺旋流路構成板付内側断熱管を、外側管の内壁に密着するよう挿入することで、媒体が螺旋流路を流下する際に、熱交換促進管の内壁だけでなく、螺旋流路構成板上でも熱交換できるようにしたことを特徴とする。
The invention according to claim 3
The spiral flow path component plate according to claim 1, which is made of a material having high heat conductivity, and is fixed to an outer wall of the inner heat insulation tube or integrally formed with the inner heat insulation tube. By inserting the heat insulating pipe so as to be in close contact with the inner wall of the outer pipe, when the medium flows down the spiral flow path, heat exchange can be performed not only on the inner wall of the heat exchange promoting pipe but also on the spiral flow path constituting plate. It is characterized by that.

請求項4に記載の発明は、
請求項2及び3に記載の螺旋流路において、螺旋流路構成板の設置位置と、設置間隔と、構成板の傾斜角度とを、前記外側管の内壁温度分布に基づいて調節した上で、固定または一体成型することにより、地熱または地熱流体からの吸熱位置及び吸熱量か、地中低温層または帯水層への放熱位置及び放熱量を制御することを特徴とする。
The invention according to claim 4
In the spiral flow path according to claim 2 and 3, after adjusting the installation position of the spiral flow path component plate, the installation interval, and the inclination angle of the component plate based on the inner wall temperature distribution of the outer tube, By fixing or integrally molding, the heat absorption position and heat absorption amount from geothermal or geothermal fluid, or the heat radiation position and heat radiation amount to the underground low temperature layer or aquifer are controlled.

請求項5に記載の発明は、
請求項4に記載の地中熱交換量の制御法のうち、外側管の内壁温度が螺旋流路内を流下する媒体温度よりも高い領域において、螺旋流路構成板の板間垂直距離を狭めるか、板の傾斜角度を緩やかにすることの何れか、またはこれらの組み合せにより、螺旋流路を流下する媒体の加熱を促進させることを特徴とする。
The invention described in claim 5
In the method for controlling the amount of underground heat exchange according to claim 4, the vertical distance between the plates of the spiral flow path constituting plate is narrowed in a region where the inner wall temperature of the outer pipe is higher than the medium temperature flowing down in the spiral flow path. Further, it is characterized in that heating of the medium flowing down the spiral flow path is promoted by either gradual inclination of the plate or a combination thereof.

請求項6に記載の発明は、
請求項4に記載の地中熱交換量の制御法のうち、外側管の内壁温度が螺旋流路内を流下する媒体温度よりも低い領域において、螺旋流路構成板の板間垂直距離を狭めるか、板の傾斜角度を緩やかにすることの何れか、またはこれらの組み合せにより、螺旋流路を流下する媒体の冷却を促進させることを特徴とする。
The invention described in claim 6
In the method for controlling the amount of underground heat exchange according to claim 4, the vertical distance between the plates of the spiral flow path constituting plate is narrowed in a region where the inner wall temperature of the outer pipe is lower than the medium temperature flowing down in the spiral flow path. In addition, it is characterized in that cooling of the medium flowing down the spiral flow path is promoted by either gradual inclination of the plate or a combination thereof.

請求項7に記載の発明は、
請求項5に記載の地中加熱促進方法と、請求項6に記載の地中冷却促進方法の両方を、閉ループ循環流路を構成する螺旋流路構成型同軸熱交換器内に、外側管内壁の温度分布に応じて適用することで、発電後の媒体を直接、前記同軸熱交換器の螺旋流路内に圧入して、地下浅部の恒温層や地下帯水層で凝縮液化させた上で流下させ、さらに地下深部の高温層や地熱帯で昇温予熱を行った上で、深部地熱層の坑底に接する外側管の内底面に流下させて昇温させ、内側断熱管内を上昇させて地上で媒体蒸気により発電機を駆動し、発電後の媒体を再び地中に圧入させる、閉ループ循環流路で地熱発電を行うことを特徴とする。
The invention described in claim 7
Both the underground heating promotion method according to claim 5 and the underground cooling promotion method according to claim 6 are arranged in a spiral flow path configuration type coaxial heat exchanger constituting a closed loop circulation flow path, and an outer pipe inner wall By applying according to the temperature distribution of the medium, the medium after power generation is directly pressed into the spiral flow path of the coaxial heat exchanger and condensed and liquefied in a constant temperature layer or a subsurface aquifer in the shallow underground. In addition, the temperature is preheated in the deep underground layer and in the tropical region, and then the temperature is lowered to the inner bottom surface of the outer tube that contacts the bottom of the deep geothermal layer to raise the inside of the inner heat insulating tube. Then, geothermal power generation is performed in a closed loop circulation channel in which a generator is driven by medium vapor on the ground, and the medium after power generation is pressed into the ground again.

請求項8に記載の発明は、
請求項1に記載の閉ループ循環流路で得られる高温媒体か、前記の高温媒体を発電等に利用して温度低下した媒体を、温水または蒸気駆動型の吸着式または吸収式の冷凍機駆動熱源として供給して媒体温度を低下させるとともに、前記媒体を駆動熱源として得た冷却水を用いて、前記冷凍機駆動後の媒体を冷却することを特徴とする。
The invention according to claim 8 provides:
A hot medium obtained by the closed-loop circulation channel according to claim 1 or a medium whose temperature is lowered by using the high-temperature medium for power generation or the like is used as a hot water or steam-driven adsorption or absorption refrigerator-driven heat source. The temperature of the medium is decreased by supplying the cooling medium, and the cooling medium obtained by using the medium as a driving heat source is used to cool the medium after driving the refrigerator.

本発明によれば、同軸二重管で構成される熱交換器の地中および地熱部における熱交換効率が大幅に向上するため、掘削深度が浅く坑底温度が低い坑井であっても、また冷却水の確保が困難な場所においても、既存温泉への影響とスケール析出によるリスクを大幅に軽減しながら、高効率かつ省スペースで地熱発電を行うことが可能となる。 According to the present invention, since the heat exchange efficiency in the underground and geothermal part of the heat exchanger composed of coaxial double pipes is greatly improved, even in a well having a shallow excavation depth and a low bottom temperature, Even in places where it is difficult to secure cooling water, it is possible to perform geothermal power generation with high efficiency and space saving while greatly reducing the impact on existing hot springs and the risk of scale deposition.

本発明に係る第1実施形態の閉ループ循環型地熱発電システムの概略構成を示す模式図である。It is a mimetic diagram showing a schematic structure of a closed loop circulation type geothermal power generation system of a 1st embodiment concerning the present invention. 図1の地熱発電システムを構成する螺旋流路構成型同軸熱交換器のうち、坑底に接続設置される媒体滴下ノズル付き先端管の詳細を示す模式図である。It is a schematic diagram which shows the detail of the front end pipe | tube with a medium dropping nozzle connected and installed in the bottom of a spiral flow path type | mold coaxial heat exchanger which comprises the geothermal power generation system of FIG. 図2の媒体滴下ノズル付き先端管のうち、媒体滴下ノズルの配置と、内側断熱管支持部の詳細を示す模式図である。It is a schematic diagram which shows the detail of arrangement | positioning of a medium dripping nozzle and an inner side heat insulation pipe | tube support part among the tip pipes with a medium dripping nozzle of FIG. 図1の地熱発電システムを構成する螺旋流路構成型同軸熱交換器のうち、地中での加熱促進部と冷却促進部に挿入する、螺旋流路構成板一体成型の熱交換促進管の詳細を示す模式図である。Details of the heat exchange promoting tube integrally formed with the spiral channel constituting plate inserted into the heating promoting unit and the cooling promoting unit in the ground among the spiral channel constituting type coaxial heat exchanger constituting the geothermal power generation system of FIG. 1. It is a schematic diagram which shows. 図1の地熱発電システムを構成する螺旋流路構成型同軸熱交換器のうち、熱交換促進管を支持するために挿入する、スペーサー管の詳細を示す模式図である。It is a schematic diagram which shows the detail of the spacer pipe | tube inserted in order to support a heat exchange promotion pipe | tube among the spiral flow path structure type | mold coaxial heat exchanger which comprises the geothermal power generation system of FIG. 本発明に係る第2実施形態の閉ループ循環型地熱発電システムの概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the closed loop circulation type geothermal power generation system of 2nd Embodiment which concerns on this invention.

以下、図面を参照して本発明を実施するための最良の形態について説明する。なお、本発明の範囲は特許請求の範囲記載のものであって、本実施形態に限定されるものではない。 The best mode for carrying out the present invention will be described below with reference to the drawings. The scope of the present invention is described in the scope of claims, and is not limited to this embodiment.

(第1実施形態) (First embodiment)

まず、本発明の第1実施形態に係る、螺旋流路構成型同軸熱交換器を利用した、閉ループ循環型地熱発電システムの概略構成および機能について、図に基づいて説明する。 First, a schematic configuration and function of a closed-loop circulation geothermal power generation system using a spiral flow path configuration type coaxial heat exchanger according to a first embodiment of the present invention will be described with reference to the drawings.

図1に示すように、本発明の地熱発電システムは、水、またはペンタン等の発電用媒体が循環する閉ループ循環流路において、媒体が地中と熱交換を行う螺旋流路構成型の同軸二重管熱交換器1と、本熱交換器を介して地熱吸熱により得られる高温高圧の媒体蒸気により、蒸気タービンを介して発電を行う発電装置2とで構成される。 As shown in FIG. 1, the geothermal power generation system of the present invention is a closed-loop circulation flow path in which a power generation medium such as water or pentane circulates. It is composed of a heavy pipe heat exchanger 1 and a power generator 2 that generates power via a steam turbine using high-temperature and high-pressure medium steam obtained by geothermal heat absorption via this heat exchanger.

さらに前記熱交換器1は、坑底に挿入される媒体滴下ノズル付き先端管3と、前記先端管3に溶接接続されて坑井に挿入される外側管4と、前記先端管の接続面中央に配された内側断熱管支持ガイド部5によって、外側管と同軸に支持固定される内側断熱管6により、同軸二重管熱交換器の主要部が構成されている。 Further, the heat exchanger 1 includes a tip tube 3 with a medium dropping nozzle inserted into the bottom, an outer tube 4 welded to the tip tube 3 and inserted into the well, and a center of the connection surface of the tip tube A main part of the coaxial double pipe heat exchanger is constituted by the inner heat insulating tube 6 supported and fixed coaxially with the outer tube by the inner heat insulating tube supporting guide portion 5 arranged in the inner space.

ここで媒体滴下ノズル付き先端管3は、図2に示すように、高温地熱層での耐久性と熱交換効率を高めるため、高い耐熱・耐食性と熱伝導性を有する炭化ケイ素等で製造された片側閉止管か、または炭化ケイ素等で外側面をコーティングした片側閉止管で構成されている。なお、この先端管上面は図3に示す通り、複数の媒体滴下ノズル7と、上部に同軸設置する内側断熱管を支持する、ガイド部5を有したノズル板8が溶接接続されている。 Here, as shown in FIG. 2, the tip tube 3 with a medium dropping nozzle is manufactured of silicon carbide or the like having high heat resistance / corrosion resistance and heat conductivity in order to enhance durability and heat exchange efficiency in a high temperature geothermal layer. It is composed of a single-side closed tube or a single-side closed tube whose outer surface is coated with silicon carbide or the like. As shown in FIG. 3, the top surface of the tip tube is welded to a plurality of medium dropping nozzles 7 and a nozzle plate 8 having a guide portion 5 that supports an inner heat insulating tube that is coaxially installed on the upper portion.

なお、前記ノズル板8は、同軸二重管熱交換器を介して地中熱によって媒体沸点より3〜10℃程度低い温度にまで予熱昇温された媒体を、鉛直下方向に流路面積が小さくなる複数の絞り流路を介して、坑底接触部9の内壁、すなわち同軸二重管熱交換器の先端閉止底面に向けてシャワー状に流下させるもので、絞り流路形成による逆流防止と、複数流路からの媒体分散滴下によって、媒体の昇温気化を促進させる機能を有するものである。 In addition, the nozzle plate 8 has a channel area in the vertically downward direction for a medium preheated to a temperature lower by about 3 to 10 ° C. than the boiling point of the medium by underground heat through a coaxial double tube heat exchanger. It is made to flow down in a shower-like manner toward the inner wall of the bottom contact portion 9, that is, the bottom face of the end of the coaxial double-tube heat exchanger, through a plurality of smaller throttle passages, The medium has a function of accelerating the temperature-evaporation of the medium by the medium dispersion and dropping from a plurality of flow paths.

さらに、前記ノズル板8の上面に支持され、かつ前記ノズル板に溶接接続された外側管の内壁に接する形で、図4に示す炭化ケイ素製の螺旋流路構成板10を一体成した熱交換促進管11が挿入設置されている。これは、深部高温層からの地中熱吸熱によって、媒体が先端管3に到達するまでの流下過程で、媒体の温度を沸点近くにまで充分に昇温予熱させておくことを目的として、設置するものである。 Further, the heat exchange is integrated with the silicon carbide spiral flow path constituting plate 10 shown in FIG. 4 so as to be in contact with the inner wall of the outer tube supported by the upper surface of the nozzle plate 8 and welded to the nozzle plate. The promotion tube 11 is inserted and installed. It is installed for the purpose of preheating the temperature of the medium sufficiently close to the boiling point in the flow down process until the medium reaches the tip tube 3 due to the underground heat absorption from the deep high temperature layer. To do.

一方、地下浅部の恒温層や低温帯水層と接する領域では、外側管の内壁温度が地中との熱交換によって低下するため、前記地中熱吸熱促進部と同様に、炭化ケイ素製の螺旋流路構成板一体成型、熱交換促進管12を挿入設置して、媒体の放熱冷却促進に活用する。
なお、前記吸熱促進部と放熱冷却促進部の間には、それぞれの場所に挿入する熱交換促進管を支持しつつ、熱交換促進管の間での熱伝導を抑制するため、図5に示す高断熱素材のスペーサー管13が挿入設置されている。
On the other hand, in the region in contact with the isothermal layer and the low-temperature aquifer in the shallow underground, the inner wall temperature of the outer tube decreases due to heat exchange with the ground, and therefore, similar to the above-described underground heat absorption enhancement part, Spiral flow path component plate integral molding, heat exchange promoting tube 12 is inserted and installed to promote heat dissipation and cooling of the medium.
In addition, in order to suppress the heat conduction between the heat exchange promotion pipes while supporting the heat exchange promotion pipes inserted between the heat absorption promotion parts and the heat radiation cooling promotion parts, as shown in FIG. A spacer tube 13 made of a highly insulating material is inserted and installed.

こうして、地中との熱交換を促進する必要のない領域では、スペーサー管を用いた鉛直下方への直線的な流路として圧力損失を減らすことで、特に放熱冷却促進部で凝縮液化した媒体が、少ない圧力損失で速やかに吸熱促進部まで流下するように流路を構成しておき、吸熱促進部から上方で、媒体が液体状態で液面14まで貯留するようにしておけば、圧力損失が高くなる吸熱促進部の螺旋流路を流下させるための圧力を高められ、よって媒体を圧送するためのポンプ動力を削減させることができる。 Thus, in areas where heat exchange with the ground does not need to be promoted, by reducing the pressure loss as a linear flow path vertically downward using a spacer tube, the medium condensed and liquefied in particular in the heat radiation cooling promotion section If the flow path is configured to quickly flow down to the endothermic promotion portion with a small pressure loss and the medium is stored up to the liquid level 14 in the liquid state above the endothermic promotion portion, the pressure loss is reduced. It is possible to increase the pressure for flowing down the spiral flow path of the endothermic promotion portion that becomes higher, and thus it is possible to reduce the pump power for pumping the medium.

なお、この方法によっても凝縮液化した媒体の圧送が困難である場合には、スペーサー管13の外側直線流路内に、媒体圧送を補助するための小型液中ポンプを設置しても良い。 If it is difficult to pump the condensed liquid by this method, a small submerged pump for assisting the medium pumping may be installed in the outer straight flow path of the spacer tube 13.

以上の構成により、深部高温層および地熱層で効率良く吸熱を行って昇温した媒体が、内側断熱管内を上昇して、地上部で発電機に接続された蒸気タービンを駆動した後に低温低圧の蒸気となり、これが同軸二重管熱交換器を介して低温の浅部恒温層や滞水層に向けて直接圧入され、凝縮液化して再び深部高温層へ流下していくこととなる。   With the above configuration, the medium that has been efficiently absorbed by the deep high-temperature layer and the geothermal layer rises in the inner heat insulating pipe, and after driving the steam turbine connected to the generator on the ground, It becomes steam, and this is directly injected into the low temperature shallow constant temperature layer and the aquifer through the coaxial double pipe heat exchanger, and is condensed and liquefied and flows down to the deep high temperature layer again.

こうして、地上から直接圧入された低温低圧蒸気が、浅部恒温層や滞水層に放熱しながら流下する過程で凝縮液化するため、同軸二重管の冷却促進部で螺旋流路内が減圧状態となり、前記の低温低圧蒸気がさらに効率よく吸引され、螺旋流路内を流下するようになる。すなわち本システムにおいては、一般的な地熱発電で見られる冷却塔や復水器の機能が、螺旋流路構成型同軸二重管の地中埋設部内で行われる形態となるのである。   In this way, the low-temperature and low-pressure steam directly injected from the ground is condensed and liquefied in the process of flowing down while radiating heat to the shallow constant temperature layer and the aquifer, so the inside of the spiral flow path is decompressed at the cooling promotion part of the coaxial double pipe Thus, the low-temperature low-pressure steam is sucked more efficiently and flows down in the spiral flow path. In other words, in this system, the functions of the cooling tower and the condenser found in general geothermal power generation are performed in the underground buried portion of the spiral flow path configuration type coaxial double pipe.

このように、閉ループの循環流路を構成する一つの同軸二重管熱交換器において、地中への放熱冷却による凝縮液化と、地中からの吸熱昇温による蒸発気化までの状態変化が、媒体の地中流下とともに行われるように、流路と地中熱交換のプロセスを構成することで、媒体の冷却装置や冷却水を不要化あるいは簡略化させ、同時に地中での熱交換促進と補機動力の削減による発電効率の向上と、附帯設備の省略による省スペース化が可能となる。 In this way, in one coaxial double tube heat exchanger that constitutes a closed-loop circulation flow path, the state change from condensation to liquefaction due to heat radiation cooling to the ground and evaporation to vaporization due to endothermic temperature rise from the ground, By configuring the flow path and underground heat exchange process to be performed along with the underground flow of the medium, the medium cooling device and cooling water are unnecessary or simplified, and at the same time, the heat exchange in the ground is promoted. It is possible to improve power generation efficiency by reducing auxiliary power and to save space by omitting incidental facilities.

なお、地中における媒体の凝縮液化や効率的な昇温気化にあたっては、地中での熱交換促進が欠かせないが、これを実現する上では、同軸二重管熱交換器の外側管を挿入した後に、外側管内壁の温度分布を計測し、その結果に基づいて媒体を冷却促進すべき領域と、昇温促進すべき領域を特定し、それぞれの領域における螺旋流路構成板の設置間隔や設置角度を調整して、螺旋流路内における地中熱交換の最適化を図ることが望ましい。   In order to condense and liquefy the medium in the ground and to efficiently heat and evaporate, it is essential to promote heat exchange in the ground. To achieve this, the outer tube of the coaxial double-tube heat exchanger is connected. After the insertion, the temperature distribution of the inner wall of the outer tube is measured, and based on the result, the region where the medium should be promoted for cooling and the region where the temperature rise should be promoted are specified. It is desirable to optimize the underground heat exchange in the spiral flow path by adjusting the installation angle.

また、前記の熱交換促進方法によってもなお、蒸気タービン等の駆動に必要な地熱抽出が困難である場合には、同軸二重管熱交換器を含む閉ループ循環流路内を、真空ポンプ等を用いて減圧することで、循環流路内の媒体沸点を低下させて、少ない吸熱量でも媒体が容易に気化できるようにすることが望ましい。   In addition, when the heat exchange promotion method described above still cannot extract the geothermal heat necessary for driving a steam turbine or the like, a vacuum pump or the like is provided in the closed loop circulation flow path including the coaxial double pipe heat exchanger. It is desirable to reduce the boiling point of the medium in the circulation flow path by using the reduced pressure so that the medium can be easily vaporized even with a small endothermic amount.

また、同軸二重管熱交換器の外側管については、地中での耐食性と熱交換効率の両方を高くするため、炭化ケイ素等の耐熱、耐食性材料で外側表面にコーティングを施すことが望ましいが、前記螺旋流路の最適化によって充分な熱交換量を確保でき、かつ地中腐食のリスクが少ない場合には、一般的な鋼管を用いて低コスト化を図ることも可能である。 Also, for the outer tube of the coaxial double tube heat exchanger, it is desirable to coat the outer surface with a heat and corrosion resistant material such as silicon carbide in order to increase both the corrosion resistance and heat exchange efficiency in the ground. When a sufficient amount of heat exchange can be secured by optimizing the spiral flow path and the risk of underground corrosion is low, it is possible to reduce the cost by using a general steel pipe.

加えて、前記内側断熱管についても、高い断熱性を保つために真空断熱管を用いることも可能であるが、真空断熱材を内包させた二重管のほか、耐圧、耐熱、耐水性の面で優れるエンジニアリングプラスチックで配管を構成し、これを溶着接続して利用しても良い。 In addition, it is possible to use a vacuum heat insulating tube for the inner heat insulating tube, in order to maintain high heat insulating properties, but in addition to a double tube containing a vacuum heat insulating material, a pressure resistant, heat resistant and water resistant surface. It is also possible to construct a pipe with engineering plastics that are excellent and to weld and connect them.

なお、外側管と内側断熱管の接続方法については、溶接や溶着等の他に、ネジ配管接続やフランジ接続を行う方法も考えられ、これらは接続管の材料や配管仕様、使用環境などから適切な方法を選定すれば良い。 As for the method of connecting the outer pipe and the inner heat insulating pipe, in addition to welding and welding, it is also possible to use screw pipe connection or flange connection, which are appropriate from the connection pipe material, piping specifications, usage environment, etc. It is sufficient to select a suitable method.

このように構成された本発明システムを活用すれば、掘削深度が浅く、坑底温度が低い地熱層においても、また冷却水の調達が困難な場所であっても、新規の蒸気生産や温泉の汲み上げ量を増加させることなく、またスケール析出による故障リスクを伴うことなく、高効率、低コスト、かつ省スペースで地熱発電を行うことが可能となる。 By utilizing the system of the present invention configured in this way, even in geothermal formations where the excavation depth is shallow and the bottom temperature is low, or in places where it is difficult to procure cooling water, new steam production and hot spring It is possible to perform geothermal power generation with high efficiency, low cost and space-saving without increasing the pumping amount and without risk of failure due to scale deposition.

(第2実施形態) (Second Embodiment)

図6は、本発明の第2実施形態に係る地熱発電システムにおける、効率的な冷却方法の概略構成および機能を示すものである。これは、冷却水の調達が困難で、さらに地熱等の影響で浅部恒温層が高温化している地域や、地下に滞水層が無いなど、媒体の凝縮液化を地中で行うことが困難な場合に、地上で冷却水の消費量を最小限に抑えながら、効率よく媒体冷却を行うためのシステム構成例である。以下、図に基づいて、その内容を説明する。 FIG. 6 shows a schematic configuration and functions of an efficient cooling method in the geothermal power generation system according to the second embodiment of the present invention. This is because it is difficult to procure cooling water, and it is difficult to condense and liquefy the medium in the ground, such as areas where the shallow constant temperature layer is heated due to geothermal heat, etc., or there is no aquifer under the ground. In this case, the system configuration example is for efficiently cooling the medium while minimizing the consumption of cooling water on the ground. The contents will be described below with reference to the drawings.

図2に示すように、本発明の地熱発電システムは、水、またはペンタン等の発電用媒体が循環する閉ループ循環流路において、発電後の媒体を駆動熱源とする吸着式冷凍機15と、この冷凍機を駆動するための密閉式クーリングタワー16と、この冷凍機から得られる冷却水を利用して、冷凍機駆動後の媒体を追加冷却する水冷式熱交換器17と、この熱交換器で凝縮液化された媒体を地中に圧送する媒体圧送ポンプ18から構成されている。なお、発電システム2の上流と、前記の媒体圧送ポンプ18を通過した後の媒体循環流路は、前記の同軸二重管式熱交換器1に接続されて循環閉ループ型の流路を構成しているが、図ではこれを省略する。   As shown in FIG. 2, the geothermal power generation system of the present invention includes an adsorption refrigeration machine 15 that uses a medium after power generation as a drive heat source in a closed loop circulation channel in which a power generation medium such as water or pentane circulates, A hermetic cooling tower 16 for driving the refrigerator, a water-cooled heat exchanger 17 for additionally cooling the medium after driving the refrigerator using the cooling water obtained from the refrigerator, and condensation in this heat exchanger The medium pump 18 is configured to pump the liquefied medium into the ground. The upstream side of the power generation system 2 and the medium circulation passage after passing through the medium pumping pump 18 are connected to the coaxial double pipe heat exchanger 1 to form a circulation closed loop type passage. However, this is omitted in the figure.

本システムでは、発電後の媒体蒸気か液化した高温媒体を熱源として冷凍機を駆動し、媒体から熱を奪いながら冷熱を取り出しつつ、更にこの過程で得られる冷熱を、前記冷凍機を通過して温度低下した媒体の追加冷却に利用することで媒体冷却や凝縮液化をさらに促進し、媒体を地上で効率よく液化して、液送ポンプによる地中圧送を可能としている。 In this system, the refrigerator is driven using the medium vapor after power generation or the liquefied high-temperature medium as a heat source, taking out the cold while taking heat away from the medium, and further, the cold obtained in this process passes through the refrigerator. By using it for additional cooling of the medium whose temperature has decreased, medium cooling and condensate liquefaction are further promoted, and the medium can be liquefied efficiently on the ground, enabling underground pumping by a liquid feed pump.

なお、前記の冷凍機駆動にあたっては冷却水を要するクーリングタワーが必要となるが、このクーリングタワーを開放式ではなく密閉式とすれば、冷却水補水量を抑えられるため、冷却水調達が困難な場所においても、効率よく媒体冷却を行うことが可能となる。 In order to drive the refrigerator, a cooling tower that requires cooling water is required. However, if this cooling tower is a closed type rather than an open type, the amount of cooling water replenishment can be reduced, so that it is difficult to procure cooling water. However, the medium can be efficiently cooled.

本発明は、前記の実施形態に限定されるものではなく、例えば地熱を効率良く抽出することで得られる高温媒体を利用した温室栽培や冬季のロードヒーティングなど、発電以外の温熱利用や、高温媒体を利用する吸着式冷凍機等を活用した冷熱利用でも適用が可能である。このように、前記実施形態は例示であり、本発明の特許請求範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above-described embodiment, for example, the use of heat other than power generation, such as greenhouse cultivation using a high-temperature medium obtained by efficiently extracting geothermal heat or winter road heating, or high temperature The present invention can also be applied to the use of cold heat using an adsorption refrigerator that uses a medium. As described above, the above-described embodiment is an exemplification, and what has substantially the same configuration as the technical idea described in the claims of the present invention and exhibits the same function and effect is any type. Are also included in the technical scope of the present invention.

1・・・・螺旋流路構成型同軸二重管熱交換器
2・・・・蒸気タービン発電装置
3・・・・媒体滴下ノズル付き先端管
4・・・・同軸二重管熱交換器外側管
5・・・・内側断熱管支持ガイド
6・・・・同軸二重管熱交換器内側断熱管
7・・・・媒体滴下ノズル
8・・・・ノズル板
9・・・・同軸二重管熱交換器の坑底接触部
10・・・地中熱交換促進管の螺旋流路構成板
11・・・地中吸熱促進用の熱交換促進管
12・・・地中放熱促進用の熱交換促進管
13・・・同軸二重管熱交換器のスペーサー管
14・・・凝縮液化した発電用媒体の液面
15・・・発電後媒体を駆動熱源とする吸着式冷凍機
16・・・密閉式クーリングタワー
17・・・発電後媒体の水冷式熱交換器
18・・・媒体圧送ポンプ






















DESCRIPTION OF SYMBOLS 1 ...... Coaxial double pipe heat exchanger with a spiral flow path 2 ... Steam turbine power generator 3 ... Tip pipe with medium dropping nozzle 4 ... Coaxial double pipe heat exchanger outside Pipe 5 ··· Inner insulated pipe support guide
6 ... Coaxial double pipe heat exchanger inner heat insulation pipe 7 ... Medium dropping nozzle 8 ... Nozzle plate 9 ... Downhole contact part 10 of coaxial double pipe heat exchanger ...・ Heat flow promotion plate 11 for underground heat exchange promotion tube ... Heat exchange promotion tube 12 for promoting underground heat absorption 12 ... Heat exchange promotion tube 13 for promoting underground heat release ... Coaxial double tube heat Spacer tube 14 of exchanger ... Liquid level 15 of condensed power generation medium ... Adsorption type refrigerator 16 using medium after power generation as drive heat source ... Sealing cooling tower 17 ... Water cooling of medium after power generation Type heat exchanger 18 ... Medium pressure pump






















Claims (8)

水やペンタンなどの媒体を、高温の地熱または地熱流体からの吸熱により昇温上昇させ、地上で発電利用した後に冷却して凝縮液化させ、再び地熱または地熱流体から吸熱させる、閉ループ循環型の流路を構成する地中熱交換器のうち、
前記閉ループ循環流路の地中埋設部が、地中と熱交換を行う外側管と、昇温させた媒体を断熱しながら地上に上昇させる、内側断熱管とで構成された同軸二重管となっており、さらに前記外側管の内壁と内側断熱管の隙間に形成される二重管外側流路のうち、地中への放熱または地中からの吸熱を促進させる地中熱交換促進部分に、前記流路を螺旋化させる螺旋流路構成板を備えることで、媒体が地中を流下する際の地中との熱交換を促進させることを特徴とする、螺旋流路構成型同軸熱交換器
A closed-loop circulation type flow in which water, pentane, and other media are heated and raised by absorbing heat from high-temperature geothermal or geothermal fluid, cooled to condensate after use on the ground, and then absorbed again from geothermal or geothermal fluid. Of the underground heat exchangers that make up the road,
A coaxial double pipe composed of an outer tube that exchanges heat with the underground, and an inner heat insulating tube that raises the heated medium to the ground while insulating the heated medium. Furthermore, in the double pipe outer flow path formed in the gap between the inner wall of the outer pipe and the inner heat insulating pipe, in the underground heat exchange promotion part that promotes heat radiation to the ground or heat absorption from the ground A spiral flow path configuration type coaxial heat exchange characterized by comprising a spiral flow path configuration plate that spirals the flow path to promote heat exchange with the ground when the medium flows down in the ground. vessel
請求項1に記載の螺旋流路構成板が、熱伝導性の高い材料で構成され、前記外側管内壁に接して挿入される熱交換促進管の内壁に固定されているか、前記の熱交換促進管と一体成型されていることで、媒体が螺旋流路を流下する際に、熱交換促進管の内壁だけでなく、螺旋流路構成板上でも熱交換できるようにしたことを特徴とする、螺旋流路構成板を利用した、地中熱交換の促進方法 The spiral flow path constituting plate according to claim 1 is made of a material having high heat conductivity and is fixed to an inner wall of a heat exchange promoting tube inserted in contact with the inner wall of the outer tube, or the heat exchange promoting When the medium flows down the spiral flow path, the heat exchange is facilitated not only on the inner wall of the heat exchange promoting pipe but also on the spiral flow path constituting plate. Method for promoting underground heat exchange using spiral flow path component plates 請求項1に記載の螺旋流路構成板が、熱伝導性の高い材料で構成され、前記内側断熱管の外壁に固定されるか、前記内側断熱管と一体成型された螺旋流路構成板付内側断熱管を、外側管の内壁に密着するよう挿入することで、媒体が螺旋流路を流下する際に、熱交換促進管の内壁だけでなく、螺旋流路構成板上でも熱交換できるようにしたことを特徴とする、螺旋流路構成板を利用した、地中熱交換の促進方法 The spiral flow path component plate according to claim 1, which is made of a material having high heat conductivity, and is fixed to an outer wall of the inner heat insulation tube or integrally formed with the inner heat insulation tube. By inserting the heat insulating pipe so as to be in close contact with the inner wall of the outer pipe, when the medium flows down the spiral flow path, heat exchange can be performed not only on the inner wall of the heat exchange promoting pipe but also on the spiral flow path constituting plate. A method for promoting underground heat exchange using a spiral flow path component plate 請求項2及び3に記載の螺旋流路において、螺旋流路構成板の設置位置と、設置間隔と、構成板の傾斜角度とを、前記外側管の内壁温度分布に基づいて調節した上で、固定または一体成型することにより、地熱または地熱流体からの吸熱位置及び吸熱量か、地中低温層または帯水層への放熱位置及び放熱量を制御することを特徴とする、螺旋流路構成型同軸熱交換器における、地中熱交換および熱交換量の制御方法 In the spiral flow path according to claim 2 and 3, after adjusting the installation position of the spiral flow path component plate, the installation interval, and the inclination angle of the component plate based on the inner wall temperature distribution of the outer tube, Helical channel configuration type characterized by controlling the heat absorption position and heat absorption amount from geothermal or geothermal fluid, or the heat radiation position and heat radiation amount to the underground low temperature layer or aquifer by fixing or integrally molding Control method of underground heat exchange and heat exchange amount in coaxial heat exchanger 請求項4に記載の地中熱交換量の制御法のうち、外側管の内壁温度が螺旋流路内を流下する媒体温度よりも高い領域において、螺旋流路構成板の板間垂直距離を狭めるか、板の傾斜角度を緩やかにすることの何れか、またはこれらの組み合せにより、螺旋流路を流下する媒体の加熱を促進させることを特徴とする、螺旋流路構成型同軸熱交換器における、媒体地中加熱の促進方法 In the method for controlling the amount of underground heat exchange according to claim 4, the vertical distance between the plates of the spiral flow path constituting plate is narrowed in a region where the inner wall temperature of the outer pipe is higher than the medium temperature flowing down in the spiral flow path. In a helical flow path configuration type coaxial heat exchanger characterized in that heating of the medium flowing down the helical flow path is promoted by any one of the gentler inclination angle of the plate or a combination thereof, Method for promoting medium underground heating 請求項4に記載の地中熱交換量の制御法のうち、外側管の内壁温度が螺旋流路内を流下する媒体温度よりも低い領域において、螺旋流路構成板の板間垂直距離を狭めるか、板の傾斜角度を緩やかにすることの何れか、またはこれらの組み合せにより、螺旋流路を流下する媒体の冷却を促進させることを特徴とする、螺旋流路構成型同軸熱交換器における、媒体地中冷却の促進方法 In the method for controlling the amount of underground heat exchange according to claim 4, the vertical distance between the plates of the spiral flow path constituting plate is narrowed in a region where the inner wall temperature of the outer pipe is lower than the medium temperature flowing down in the spiral flow path. In the coaxial heat exchanger having a helical flow path structure, the cooling of the medium flowing down the helical flow path is promoted by any one of these methods, or a combination of these, which makes the inclination angle of the plate gentle. Method for promoting medium underground cooling 請求項5に記載の地中加熱促進方法と、請求項6に記載の地中冷却促進方法の両方を、閉ループ循環流路を構成する螺旋流路構成型同軸熱交換器内に、外側管内壁の温度分布に応じて適用することで、発電後の媒体を直接、前記同軸熱交換器の螺旋流路内に圧入して、地下浅部の恒温層や地下帯水層で凝縮液化させた上で流下させ、さらに地下深部の高温層や地熱帯で昇温予熱を行った上で、深部地熱層の坑底に接する外側管の内底面に流下させて昇温させ、内側断熱管内を上昇させて地上で媒体蒸気により発電機を駆動し、発電後の媒体を再び地中に圧入させる、閉ループ循環型流路で地熱発電を行うことを特徴とする、螺旋流路構成型同軸熱交換器を含む閉ループ循環型の地熱発電システム Both the underground heating promotion method according to claim 5 and the underground cooling promotion method according to claim 6 are arranged in a spiral flow path configuration type coaxial heat exchanger constituting a closed loop circulation flow path, and an outer pipe inner wall By applying according to the temperature distribution of the medium, the medium after power generation is directly pressed into the spiral flow path of the coaxial heat exchanger and condensed and liquefied in a constant temperature layer or a subsurface aquifer in the shallow underground. In addition, the temperature is preheated in the deep underground layer and in the tropical region, and then the temperature is lowered to the inner bottom surface of the outer tube that contacts the bottom of the deep geothermal layer to raise the inside of the inner heat insulating tube. A helical flow path configuration type coaxial heat exchanger characterized in that geothermal power generation is performed in a closed-loop circulation flow path, in which a generator is driven on the ground with medium vapor, and the medium after power generation is again pressed into the ground. Including closed-loop circulation geothermal power generation system 請求項1に記載の閉ループ循環流路で得られる高温媒体か、前記の高温媒体を発電等に利用して温度低下した媒体を、温水または蒸気駆動型の吸着式または吸収式の冷凍機駆動熱源として供給して媒体温度を低下させるとともに、前記媒体を駆動熱源として得た冷却水を用いて、前記冷凍機駆動後の媒体を冷却することを特徴とする、媒体の追加冷却方法




















A hot medium obtained by the closed-loop circulation channel according to claim 1 or a medium whose temperature is lowered by using the high-temperature medium for power generation or the like is used as a hot water or steam-driven adsorption or absorption refrigerator-driven heat source. And cooling the medium after driving the refrigerator using the cooling water obtained by using the medium as a driving heat source.




















JP2013080031A 2013-04-07 2013-04-07 Geothermal power generation system Pending JP2014202149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013080031A JP2014202149A (en) 2013-04-07 2013-04-07 Geothermal power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013080031A JP2014202149A (en) 2013-04-07 2013-04-07 Geothermal power generation system

Publications (1)

Publication Number Publication Date
JP2014202149A true JP2014202149A (en) 2014-10-27

Family

ID=52352811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013080031A Pending JP2014202149A (en) 2013-04-07 2013-04-07 Geothermal power generation system

Country Status (1)

Country Link
JP (1) JP2014202149A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104374121A (en) * 2014-12-03 2015-02-25 北京中科华誉能源技术发展有限责任公司 Large-diameter steel sleeve heat exchange device capable of extracting geothermal energy
JP2016164396A (en) * 2015-03-06 2016-09-08 ジャパン・ニュー・エナジー株式会社 Medium transfer pipe, geothermal power generator and geothermal power generation method using medium transfer pipe
WO2016204287A1 (en) * 2015-06-19 2016-12-22 ジャパン・ニュー・エナジー株式会社 Geothermal electricity generating system, geothermal electricity generating device, geothermal electricity generating method, or medium transfer pipe, geothermal electricity generating device and geothermal electricity generating method employing medium transfer pipe, and method of installing medium transfer pipe in fracture zone
JP2017067419A (en) * 2015-10-02 2017-04-06 株式会社竹中工務店 Underground heat exchange mechanism
CN106767078A (en) * 2017-01-04 2017-05-31 北京中热能源科技有限公司 A kind of energy storage heat-exchanger rig
CN106996658A (en) * 2017-05-02 2017-08-01 中能服能源科技股份有限公司 A kind of ultradeep well hot dry rock steam turbine formula heat pump waste heat recovery heating system
JP2018044439A (en) * 2016-04-27 2018-03-22 中松 義郎 Method for suppressing opposition of geothermal generation, accelerating utilization of power geothermal energy and accelerating geothermal power generation
JP2018053771A (en) * 2016-09-28 2018-04-05 株式会社大林組 Steam generator and geothermal power generation system
CN108131262A (en) * 2018-02-02 2018-06-08 长沙紫宸科技开发有限公司 A kind of geothermal energy temperature and pressure electric organ
CN108412463A (en) * 2018-04-27 2018-08-17 吉林建筑大学 A kind of geothermal well and its completion method
CN108507206A (en) * 2018-04-08 2018-09-07 山东达尔玛新能源科技有限公司 A kind of system and its application method acquiring hot dry rock thermal energy by U-shaped well
CN108775275A (en) * 2018-05-28 2018-11-09 中国石油大学(华东) Individual well closed cycle underground thermoelectric heat generation system and method
CN108799024A (en) * 2018-05-28 2018-11-13 中国石油大学(华东) U-tube heat exchange closed cycle underground thermoelectric heat generation system and method
JP2019082275A (en) * 2017-10-30 2019-05-30 イビデン株式会社 Geothermal power generation pipe
JP2019526022A (en) * 2016-06-15 2019-09-12 デ ルカ、ウンベルト Geothermal well with communication pipe
CN110905403A (en) * 2019-12-09 2020-03-24 中冶集团武汉勘察研究院有限公司 Construction method of large-diameter groundwater environment monitoring well
CN111271898A (en) * 2020-02-24 2020-06-12 陕西科技大学 Combined cooling heating and power system based on geothermal energy and working method thereof
CN112412717A (en) * 2020-12-09 2021-02-26 四川大学 Multi-zone composite in-situ geothermal power generation system
CN113404928A (en) * 2021-06-25 2021-09-17 江苏盐阜电站阀门辅机制造有限公司 Novel temperature reducing device of temperature reducing and pressure reducing valve
CN114370382A (en) * 2022-02-23 2022-04-19 四川纳川致远新能源科技有限公司 Single-well circulation heat-taking abandoned well power generation system based on microwave-assisted heating
CN114733808A (en) * 2022-04-13 2022-07-12 深圳市勘察研究院有限公司 Automatic cleaning auxiliary device for photovoltaic power generation panel
CN115523679A (en) * 2022-10-19 2022-12-27 湖南东尤水汽能节能有限公司 Intelligent oil gas well water vapor energy heat pump system
US20230304705A1 (en) * 2022-02-28 2023-09-28 EnhancedGEO Holdings, LLC Geothermal power from superhot geothermal fluid and magma reservoirs
US11841172B2 (en) 2022-02-28 2023-12-12 EnhancedGEO Holdings, LLC Geothermal power from superhot geothermal fluid and magma reservoirs
US11897828B1 (en) 2023-03-03 2024-02-13 EnhancedGEO, Holdings, LLC Thermochemical reactions using geothermal energy
US11905814B1 (en) 2023-09-27 2024-02-20 EnhancedGEO Holdings, LLC Detecting entry into and drilling through a magma/rock transition zone
US11905797B2 (en) 2022-05-01 2024-02-20 EnhancedGEO Holdings, LLC Wellbore for extracting heat from magma bodies
US11912572B1 (en) 2023-03-03 2024-02-27 EnhancedGEO Holdings, LLC Thermochemical reactions using geothermal energy
US11913679B1 (en) 2023-03-02 2024-02-27 EnhancedGEO Holdings, LLC Geothermal systems and methods with an underground magma chamber
US11912573B1 (en) 2023-03-03 2024-02-27 EnhancedGEO Holdings, LLC Molten-salt mediated thermochemical reactions using geothermal energy
US11918967B1 (en) 2022-09-09 2024-03-05 EnhancedGEO Holdings, LLC System and method for magma-driven thermochemical processes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49103122A (en) * 1973-02-05 1974-09-30
JPS5452349A (en) * 1977-09-30 1979-04-24 Ushio Nagase Natural steam power application system
JP2004036573A (en) * 2002-07-05 2004-02-05 Toshiba Corp Electric power/cold heat feeding combined system
US6708494B1 (en) * 1999-07-09 2004-03-23 Klett-Ingenieur-Gmbh Device for utlilizing geothermal heat and method for operating the same
JP2012136946A (en) * 2010-12-24 2012-07-19 Mitsubishi Heavy Ind Ltd Binary power generation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49103122A (en) * 1973-02-05 1974-09-30
JPS5452349A (en) * 1977-09-30 1979-04-24 Ushio Nagase Natural steam power application system
US6708494B1 (en) * 1999-07-09 2004-03-23 Klett-Ingenieur-Gmbh Device for utlilizing geothermal heat and method for operating the same
JP2004036573A (en) * 2002-07-05 2004-02-05 Toshiba Corp Electric power/cold heat feeding combined system
JP2012136946A (en) * 2010-12-24 2012-07-19 Mitsubishi Heavy Ind Ltd Binary power generation system

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104374121A (en) * 2014-12-03 2015-02-25 北京中科华誉能源技术发展有限责任公司 Large-diameter steel sleeve heat exchange device capable of extracting geothermal energy
JP2016164396A (en) * 2015-03-06 2016-09-08 ジャパン・ニュー・エナジー株式会社 Medium transfer pipe, geothermal power generator and geothermal power generation method using medium transfer pipe
WO2016204287A1 (en) * 2015-06-19 2016-12-22 ジャパン・ニュー・エナジー株式会社 Geothermal electricity generating system, geothermal electricity generating device, geothermal electricity generating method, or medium transfer pipe, geothermal electricity generating device and geothermal electricity generating method employing medium transfer pipe, and method of installing medium transfer pipe in fracture zone
JP2020012469A (en) * 2015-06-19 2020-01-23 ジャパン・ニュー・エナジー株式会社 Method for installing medium transfer pipe in crushing zone, geothermal power generator and geothermal power generation method
JPWO2016204287A1 (en) * 2015-06-19 2018-04-05 ジャパン・ニュー・エナジー株式会社 Geothermal power generation system, geothermal power generation apparatus, geothermal power generation method or medium transfer pipe, geothermal power generation apparatus and geothermal power generation method using the medium transfer pipe, and method of installing a medium transfer pipe in a crushing zone
JP2017067419A (en) * 2015-10-02 2017-04-06 株式会社竹中工務店 Underground heat exchange mechanism
JP2018044439A (en) * 2016-04-27 2018-03-22 中松 義郎 Method for suppressing opposition of geothermal generation, accelerating utilization of power geothermal energy and accelerating geothermal power generation
JP2019526022A (en) * 2016-06-15 2019-09-12 デ ルカ、ウンベルト Geothermal well with communication pipe
JP2018053771A (en) * 2016-09-28 2018-04-05 株式会社大林組 Steam generator and geothermal power generation system
CN106767078A (en) * 2017-01-04 2017-05-31 北京中热能源科技有限公司 A kind of energy storage heat-exchanger rig
CN106996658A (en) * 2017-05-02 2017-08-01 中能服能源科技股份有限公司 A kind of ultradeep well hot dry rock steam turbine formula heat pump waste heat recovery heating system
JP2019082275A (en) * 2017-10-30 2019-05-30 イビデン株式会社 Geothermal power generation pipe
CN108131262A (en) * 2018-02-02 2018-06-08 长沙紫宸科技开发有限公司 A kind of geothermal energy temperature and pressure electric organ
CN108131262B (en) * 2018-02-02 2023-07-25 长沙紫宸科技开发有限公司 Geothermal energy warm-pressing generator
CN108507206A (en) * 2018-04-08 2018-09-07 山东达尔玛新能源科技有限公司 A kind of system and its application method acquiring hot dry rock thermal energy by U-shaped well
CN108412463A (en) * 2018-04-27 2018-08-17 吉林建筑大学 A kind of geothermal well and its completion method
CN108775275A (en) * 2018-05-28 2018-11-09 中国石油大学(华东) Individual well closed cycle underground thermoelectric heat generation system and method
CN108799024A (en) * 2018-05-28 2018-11-13 中国石油大学(华东) U-tube heat exchange closed cycle underground thermoelectric heat generation system and method
CN110905403A (en) * 2019-12-09 2020-03-24 中冶集团武汉勘察研究院有限公司 Construction method of large-diameter groundwater environment monitoring well
CN111271898A (en) * 2020-02-24 2020-06-12 陕西科技大学 Combined cooling heating and power system based on geothermal energy and working method thereof
CN111271898B (en) * 2020-02-24 2021-08-27 陕西科技大学 Combined cooling heating and power system based on geothermal energy and working method thereof
CN112412717A (en) * 2020-12-09 2021-02-26 四川大学 Multi-zone composite in-situ geothermal power generation system
CN112412717B (en) * 2020-12-09 2024-06-11 四川大学 Multi-region composite type in-situ geothermal power generation system
CN113404928A (en) * 2021-06-25 2021-09-17 江苏盐阜电站阀门辅机制造有限公司 Novel temperature reducing device of temperature reducing and pressure reducing valve
CN114370382A (en) * 2022-02-23 2022-04-19 四川纳川致远新能源科技有限公司 Single-well circulation heat-taking abandoned well power generation system based on microwave-assisted heating
US20230304705A1 (en) * 2022-02-28 2023-09-28 EnhancedGEO Holdings, LLC Geothermal power from superhot geothermal fluid and magma reservoirs
US11841172B2 (en) 2022-02-28 2023-12-12 EnhancedGEO Holdings, LLC Geothermal power from superhot geothermal fluid and magma reservoirs
US11852383B2 (en) 2022-02-28 2023-12-26 EnhancedGEO Holdings, LLC Geothermal power from superhot geothermal fluid and magma reservoirs
CN114733808A (en) * 2022-04-13 2022-07-12 深圳市勘察研究院有限公司 Automatic cleaning auxiliary device for photovoltaic power generation panel
US11905797B2 (en) 2022-05-01 2024-02-20 EnhancedGEO Holdings, LLC Wellbore for extracting heat from magma bodies
US11918967B1 (en) 2022-09-09 2024-03-05 EnhancedGEO Holdings, LLC System and method for magma-driven thermochemical processes
CN115523679A (en) * 2022-10-19 2022-12-27 湖南东尤水汽能节能有限公司 Intelligent oil gas well water vapor energy heat pump system
US11913679B1 (en) 2023-03-02 2024-02-27 EnhancedGEO Holdings, LLC Geothermal systems and methods with an underground magma chamber
US11912572B1 (en) 2023-03-03 2024-02-27 EnhancedGEO Holdings, LLC Thermochemical reactions using geothermal energy
US11912573B1 (en) 2023-03-03 2024-02-27 EnhancedGEO Holdings, LLC Molten-salt mediated thermochemical reactions using geothermal energy
US11897828B1 (en) 2023-03-03 2024-02-13 EnhancedGEO, Holdings, LLC Thermochemical reactions using geothermal energy
US11905814B1 (en) 2023-09-27 2024-02-20 EnhancedGEO Holdings, LLC Detecting entry into and drilling through a magma/rock transition zone

Similar Documents

Publication Publication Date Title
JP2014202149A (en) Geothermal power generation system
US9394771B2 (en) Single well, self-flowing, geothermal system for energy extraction
US8650875B2 (en) Direct exchange geothermal refrigerant power advanced generating system
US11788516B2 (en) Systems and methods of generating electricity using heat from within the earth
US10598160B2 (en) Systems and methods of generating electricity using heat from within the earth
US9121393B2 (en) Passive heat extraction and electricity generation
JP2014084857A (en) Binary power generation system
US20110041500A1 (en) Supplemental heating for geothermal energy system
US11408646B2 (en) Ladder-structural gravity-assisted-heat-pipe geothermal energy recovery system without liquid-accumulation effect
CN101696829A (en) Method for remotely transferring and storing geothermal energy, device and application thereof
CN202132648U (en) Pipeline heating system
US20150330670A1 (en) System and method for utilizing oil and gas wells for geothermal power generation
JP5009683B2 (en) Geothermal utilization system
EP3645882A1 (en) System for the non conventional production of electrical power from a geothermal source and relevant plant
CN201858918U (en) Gravity heat pipe type heat transfer device for 10,000-meter single deep well
CN104653417A (en) Dry-hot-rock geothermal power generation system using ammonia as intermediate medium
Gao et al. A review of advances and applications of geothermal energy extraction using a gravity-assisted heat pipe
CN111964286A (en) Geothermal heating device and method with ultra-long gravity circulating pipe
CN201858096U (en) Myriameter single deep well gravity vacuum auxiliary heat pipe circulation dry heat rock electric generator
CN111648927A (en) In-situ heat-taking cogeneration system based on natural circulation principle
CN216244956U (en) Device for extracting medium-deep geothermal energy by circulating carbon dioxide phase change
CN114111072B (en) Device and method for extracting middle-deep geothermal energy through cyclic carbon dioxide phase change
JP5765555B2 (en) Tank storage liquid freeze prevention device and liquid storage tank with heat retention function
CN106322835A (en) Heating system by utilizing shallow layer geothermal energy in severe cold area
CN201339551Y (en) Underground geothermal steam-driven rotary device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170829