JPS62298668A - Geothermal power system - Google Patents

Geothermal power system

Info

Publication number
JPS62298668A
JPS62298668A JP13978286A JP13978286A JPS62298668A JP S62298668 A JPS62298668 A JP S62298668A JP 13978286 A JP13978286 A JP 13978286A JP 13978286 A JP13978286 A JP 13978286A JP S62298668 A JPS62298668 A JP S62298668A
Authority
JP
Japan
Prior art keywords
steam
power generation
heat exchanger
hot water
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13978286A
Other languages
Japanese (ja)
Inventor
Takeshi Terada
武 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP13978286A priority Critical patent/JPS62298668A/en
Publication of JPS62298668A publication Critical patent/JPS62298668A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To enhance heat collecting efficiency by separating the geothermal steam into air and water, driving a generator through rotation of a turbine with the separated steam, performing gasification of Fleon gas using the hot water, and rotating a Fleon turbine using this gasification gas for driving of generator. CONSTITUTION:Geothermal steam from a pipeline 1 is separated by an air-water separator 2 into steam and hot water, wherein the steam is sent to a steam turbine 3 to be utilized for driving a generator 4. The used steam comes into a condenser 5 and is condensed into water by cooling water from a cooling tower 7. The hot water, on the other hand, flows through No.1 stage and No.2 stage heat exchangers 12, 18, and is exhausted to outside the system after rotating a small hydraulic wheel 19. Fleon gas is supplied to these heat exchangers 12, 18 by a Fleon pump 17 and turned into pressurized fluid by the heat exchangers 12, 18, to be then lead out to a Fleon turbine 13, wherein it is used for driving a power generator 14.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔発明の属する技術分野〕 この発明は、従来の地熱発電システムにおいて廃棄され
ている比較的低温の熱水に残っているエネルギを効率よ
く利用するようにした地熱発電システムに関する。
[Detailed description of the invention] 3. Detailed description of the invention [Technical field to which the invention pertains] This invention efficiently utilizes the energy remaining in relatively low-temperature hot water that is discarded in conventional geothermal power generation systems. This article relates to a geothermal power generation system.

〔従来技術とその問題点〕[Prior art and its problems]

従来の地熱発電システムでは、地熱井から得られる熱水
(飽和水)を含む地熱蒸気は、初段の気水分離器へ送流
して蒸気と熱水とに分離し、蒸気は蒸気タービンへ送り
、熱水はさらに次段の気水分離器へ送り低圧の状態に驚
脹させて蒸気を発生させ、それを前記蒸気タービンの低
圧細口供給し発電に利用しているが、この次段の気水分
離器で分離された熱水は、河川等へ排出し廃棄されるか
或いは地熱井戸へ戻されてしまう場合が多く折角の地熱
エネルギの活用が充分に行われているきは言えない面が
あった。
In conventional geothermal power generation systems, geothermal steam containing hot water (saturated water) obtained from geothermal wells is sent to the first stage steam separator to separate it into steam and hot water, and the steam is sent to a steam turbine. The hot water is further sent to the next-stage steam-water separator, where it is inflated to a low-pressure state to generate steam, which is then supplied to the low-pressure narrow port of the steam turbine and used for power generation. The hot water separated by the separator is often discharged into rivers and disposed of, or returned to geothermal wells, and it is difficult to say whether geothermal energy is being fully utilized. Ta.

以下従来の地熱発電システムについて図面に基づいて詳
しく説明する6第2図は従来例の地熱発電システムの概
略系統図であって、管路1を介し地熱井(図示せず)か
らの地熱蒸気(合胞和水)は、まず第1段目の気水分離
器2へ送られここで蒸気と熱水とに分離し、蒸気は蒸気
タービン3の高圧部へ送られ発電機4をすわすことに利
用され、残った熱水は第2段目の気水分離器8に送られ
低圧の状91こ膨張させて、さらに蒸気と熱水に分離し
、蒸気は蒸気タービン3の低圧部へ送り、さきに高圧部
へ送られた蒸気と協同して蒸気タービン3を駆動し、直
結されている発電機4をまわしで発電する〇 蒸気タービン4を駆動した蒸気は、復水器5に入り冷却
塔7からの冷却水に直接々触して冷却され復水となり、
復水ポンプ6Iこよって冷却塔7へ送られ冷却水として
利用される。また復水器5にji −e −、jcよっ
−Cヨ。あわ、□気油、ブ。砺似1゜が配設されており
蒸気に混入して来る空気及び蒸気中に含まれてる不凝縮
性ガスを大気中に放出するようになっている。
The conventional geothermal power generation system will be explained in detail below based on the drawings.6 Figure 2 is a schematic diagram of the conventional geothermal power generation system, in which geothermal steam ( The combined hydrocarbon water) is first sent to the first stage steam/water separator 2 where it is separated into steam and hot water, and the steam is sent to the high pressure section of the steam turbine 3 to power the generator 4. The remaining hot water is sent to the second-stage steam-water separator 8, where it is expanded to a low-pressure state and further separated into steam and hot water, and the steam is sent to the low-pressure section of the steam turbine 3. In cooperation with the steam sent to the high pressure section earlier, the steam turbine 3 is driven, and the directly connected generator 4 is turned to generate electricity. The steam that has driven the steam turbine 4 enters the condenser 5 and is cooled. It comes into direct contact with the cooling water from tower 7 and is cooled and becomes condensed water.
The condensate pump 6I sends the water to the cooling tower 7 and uses it as cooling water. Also, ji -e -, jc yo -C yo in condenser 5. Bubbles, □ki oil, bu. A 1° angle is provided to release air mixed into the steam and non-condensable gases contained in the steam into the atmosphere.

このように2段に気水分離器を備え、地熱蒸気を2段に
膨張させて壷られる蒸気でタービンを駆動し発電するシ
ステムにおいて、第2段目の気水分離器8で蒸気を分尊
した後の熱水は放流排出されるが、この放流される熱水
は熱交換器による圧力損失をうけたとはいえ、まだかな
りの圧力レベルと温度を有しており、それを廃棄すると
いうことは地熱蒸気のもつエネルギを十分利用しつくし
たとは言えない、本発明は、この残存エネルギをさらI
こ効率的Iこ活用しようとするものである。
In this system, which is equipped with two stages of steam and water separators, geothermal steam is expanded in two stages, and the steam generated is used to drive a turbine and generate electricity. The hot water after this process is discharged and discharged, but even though this discharged hot water has suffered a pressure loss due to the heat exchanger, it still has a considerable pressure level and temperature, so it is necessary to discard it. It cannot be said that the energy of geothermal steam has been fully utilized.The present invention aims to further utilize this remaining energy.
The aim is to make efficient use of this.

〔発明の目的〕[Purpose of the invention]

本発明は、上記した地熱蒸気を2段に膨張させ発電する
システムに比しさらに効率よく熱水の残存エネルギを発
電機の駆動及び復水ポンプ、メカニカルガス抽出器等の
動力として回収使用するシステムの提供を目的とする。
The present invention is a system that recovers and uses the residual energy of hot water more efficiently than the above-described system that expands geothermal steam in two stages to generate electricity. The purpose is to provide.

〔発明の要旨〕[Summary of the invention]

上記目的は本発明によれば、地熱蒸気を第1段目の気水
分離器で高圧蒸気と熱水に分離しその蒸気を蒸気タービ
ンの駆動Iこ利用するとともに、前記第1段目の気水分
離器に後続ルて熱交換器を2段に配設し、前記気水分離
器で分離された熱水を第1段目の熱交換器でフロンガス
を加熱し、第2段目の熱交換器で前記フロンガスを予熱
するのに利用してフロンタービンを駆動し発電させ、さ
らに第2段目の熱交換器を通流した後の低温の熱水で小
形水車を駆動し発電又は補助動力を得るようすることに
よって達成される。
According to the present invention, the above object is achieved by separating geothermal steam into high pressure steam and hot water in the first stage steam separator, and using the steam to drive a steam turbine. A heat exchanger is installed in two stages following the water separator, and the hot water separated by the steam water separator is heated with fluorocarbon gas in the heat exchanger of the first stage, and the heat exchanger is heated in the second stage. The fluorocarbon gas is used to preheat the fluorocarbon gas in an exchanger to drive a fluorocarbon turbine to generate electricity, and the low-temperature hot water after passing through the second stage heat exchanger is used to drive a small water turbine to generate electricity or auxiliary power. This is achieved by ensuring that the

〔発明の実施例〕[Embodiments of the invention]

以下本発明を適用した実施例の図面1こ基づいて説明す
る。第1図は実施例の地熱発電システムの概略系統図で
あって、従来例の説明に用いた第2図と同一部品につい
ては同一の符号を付しである。
An embodiment to which the present invention is applied will be described below with reference to FIG. FIG. 1 is a schematic system diagram of a geothermal power generation system according to an embodiment, and the same parts as in FIG. 2 used for explaining the conventional example are given the same reference numerals.

へ送られここで蒸気と熱水とに分離し、蒸気は蒸気ター
ビン3へ送られ発電機4をまわすことに利用され接続さ
れている電力系統(図示せず)へ電力を供給する。使用
後の蒸気は復水器5へ入り、冷却塔7より送られる冷却
水に接触して復水しモータ薯こよって駆動される復水ポ
ンプによって冷却塔7へ送られ冷却水として利用される
The steam is sent to the steam turbine 3, where it is separated into steam and hot water, and the steam is sent to the steam turbine 3, where it is used to turn the generator 4 and supply electric power to the connected electric power system (not shown). The used steam enters the condenser 5, contacts the cooling water sent from the cooling tower 7, condenses, and is sent to the cooling tower 7 by a condensate pump driven by a motor to be used as cooling water. .

気水分離器2に残った熱水は、該気水分離器2に後続し
て2段に配設されている第1段の熱交換器12及び第2
段の熱交換器18とへ管路31を介して送流されさらl
こ小形水車19を通流した後系外へ排出される。
The hot water remaining in the steam-water separator 2 is transferred to a first-stage heat exchanger 12 and a second-stage heat exchanger 12, which are arranged in two stages following the steam-water separator 2.
The heat exchanger 18 of the stage is sent via the pipe 31 and further
After flowing through the small water turbine 19, it is discharged outside the system.

一方第1段目の熱交換器12及び第2段目の熱交換4工
8の高熱交換器には蛇行する伝熱管がそれぞれ配備され
、これら伝熱管は、フロンタービン13、凝縮器15、
ホットウェル16、フロンポンプ17を屓次接続してな
る1つの閉回路を形成する管路32の1部を構成するよ
うに接続されている。したがってこの閉回路を流れるフ
ロンガスは、2つの熱交換器12及び18を千次通流す
る熱水によって加熱され加圧気体となってフロンタービ
ン13へ供給され該タービンを駆動し、それに連結され
る発電機14をまわし、発電が行ワレル。フロンタービ
ン13で仕事をしたフロンは凝縮器15で間接的に冷さ
れ凝縮液化されてホットウェル16に貯る。このフロン
をフロンポンプ17によって加圧して管路32を介し第
2段目の熱交換器18で予熱し、第1段目の熱交換器1
2でさらに加熱され加圧気体となって管路32を介して
フロータ−ビン13へ送られそれを駆動し、発電機14
をまわすのである。なお図示していないが第2段熱交換
器18は、他の廃熱源或いは太陽熱集熱装置、第2段熱
交換器18内Jこ配役される伝熱管、送水ポンプ及び太
陽熱集熱装置へと屓次接続して形成する閉回路を付加し
て、太陽熱集貫流させ、該熱交換器内を環流するフロン
を加温することを必要に応じて実施してもよい。
On the other hand, the first-stage heat exchanger 12 and the second-stage heat exchanger 4 high heat exchanger 8 are each provided with meandering heat transfer tubes, and these heat transfer tubes are connected to a front turbine 13, a condenser 15,
The hot well 16 and the freon pump 17 are connected to form a part of a conduit 32 that forms one closed circuit. Therefore, the fluorocarbon gas flowing through this closed circuit is heated by the hot water flowing through the two heat exchangers 12 and 18, becomes a pressurized gas, and is supplied to the fluorocarbon turbine 13, which drives the turbine and is connected to it. The generator 14 is turned on and power is generated. The fluorocarbons worked in the fluorocarbon turbine 13 are indirectly cooled in the condenser 15, condensed and liquefied, and stored in the hot well 16. This Freon is pressurized by the Freon pump 17 and preheated in the second stage heat exchanger 18 via the pipe line 32, and then transferred to the first stage heat exchanger 1.
2, the gas is further heated, becomes a pressurized gas, and is sent to the float turbine 13 via the pipe line 32, driving it and generating the generator 14.
It turns the . Although not shown, the second stage heat exchanger 18 can be connected to other waste heat sources, solar heat collectors, heat transfer tubes, water pumps, and solar heat collectors arranged in the second stage heat exchanger 18. If necessary, a closed circuit formed by sequential connection may be added to collect and flow solar heat and heat the fluorocarbon circulating within the heat exchanger.

以上説明してきたように本発明による地熱発電システム
は、地熱蒸気の蒸気によって発電するサイクルと、フロ
ンガスによる発電サイクルとのバイナリサイクルとなる
ように構成すると亡もに、フロン発電に利用した熱水で
、さらに小形水車19を駆動させその回転力で復水ポン
プを駆動するようにしであるので、地熱蒸気のもつエネ
ルギを100℃以下の低温域まで有効に活用することが
できるのである。このようlここの発明の考え方は地熱
蒸気だけに適用されるものではなく、廃熱水を排出する
諸工業にも適用することもできる。
As explained above, the geothermal power generation system according to the present invention is configured to have a binary cycle consisting of a power generation cycle using geothermal steam and a power generation cycle using fluorocarbon gas. Furthermore, since the small water turbine 19 is driven and its rotational force is used to drive the condensate pump, the energy of the geothermal steam can be effectively utilized down to a low temperature range of 100° C. or less. In this way, the concept of the present invention is not only applicable to geothermal steam, but can also be applied to various industries that discharge waste hot water.

〔発明の効果〕〔Effect of the invention〕

以上の説明かられかるように、本発明の発電システムは
、地熱井から得られる熱水(飽和水)8含む地熱蒸気に
よる発電システムは、分離される蒸気を直接的に利用す
る発電回路と分離された熱水の熱を間接的に利用する発
電回路とのバイナリサイクルに形成し、さらに後者の発
電回路から排出する廃却低温熱水で小形水車を駆動し発
電又は復水ポンプ等本システムの補助機器の補助動力と
なし得るように構成したことにより、単に分離された蒸
気エネルギを利用するのみでな(熱水に含まれるエネル
ギを七ことん利用し、地熱蒸気が保有するエネルギの利
用効率を格段に向上させることが可能な発電システムを
提供できるのである。
As can be seen from the above description, the power generation system of the present invention uses geothermal steam containing hot water (saturated water) obtained from a geothermal well, and is separated from the power generation circuit that directly uses the separated steam. A binary cycle is formed with a power generation circuit that uses the heat of the hot water indirectly, and the waste low-temperature hot water discharged from the latter power generation circuit drives a small water turbine to generate power or condensate pump etc. By configuring it so that it can be used as auxiliary power for auxiliary equipment, it is possible to use not only the separated steam energy, but also the energy contained in the hot water, and the efficiency of using the energy contained in geothermal steam. This makes it possible to provide a power generation system that can significantly improve energy efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用した実施例の地熱発電システムの
概略構成図で、第2図は従来の地熱発電システムの概略
系統図である。 2:気水分離器、3;蒸気タービン、5;復水器、7;
冷却塔、12:第1段熱交換器、13;フロンタービン
、1s;凝縮器、17;フロンポンプ、18:第2段熱
交換器、19;小形水車、31.32,33.34:管
路。
FIG. 1 is a schematic diagram of a geothermal power generation system according to an embodiment of the present invention, and FIG. 2 is a schematic diagram of a conventional geothermal power generation system. 2: Steam water separator, 3; Steam turbine, 5; Condenser, 7;
Cooling tower, 12: First stage heat exchanger, 13; Freon turbine, 1s; Condenser, 17; Freon pump, 18: Second stage heat exchanger, 19; Small water turbine, 31.32, 33.34: Pipes Road.

Claims (1)

【特許請求の範囲】 1)蒸気タービン、復水器、復水ポンプ及び冷却塔とか
らなる蒸気発電サイクルと、有機熱媒体を加熱する熱交
換器、前記熱交換器を経由してきた有機熱媒体を供給し
て駆動されるフロンタービン、凝縮器及びフロンポンプ
とからなる有機熱媒体発電サイクルの2系統の発電サイ
クルを備えている地熱発電システムであって、地熱井か
らの地熱蒸気を気水分離器で蒸気と熱水とに分離して、
蒸気を前記蒸気タービンへ供給し、熱水を前記熱交換器
へ送流することによって、前記2系統の発電サイクルを
稼動させるとともに、前記熱交換器を通流した後の低温
熱水で小形水車を駆動し、発電又は補助動力を得るよう
に構成したことを特徴とする地熱発電システム。 2)特許請求の範囲第1項に記載の地熱発電システムに
おいて、気水分離器からの熱水が通流する熱交換器は、
直列に2段配設され、有機熱媒体を第1段目の熱交換器
で加熱膨張させてフロンタービンへ供給し、第2段目の
熱交換器でフロンポンプを介して送られて来る有機熱媒
体を予熱して前記第1段目の熱交換器へ送給するように
構成したことを特徴とする地熱発電システム。 3)特許請求の範囲第2項に記載の地熱発電システムに
おいて、第2段目の熱交換器に太陽熱集熱装置からの温
熱水を管路を介して貫流させる手段を付設し、該熱交換
器を通流する熱水を加温するように構成したことを特徴
とする地熱発電システム。
[Claims] 1) A steam power generation cycle consisting of a steam turbine, a condenser, a condensate pump, and a cooling tower, a heat exchanger that heats an organic heat medium, and an organic heat medium that has passed through the heat exchanger. This is a geothermal power generation system that is equipped with two power generation cycles: an organic heat medium power generation cycle consisting of a fluorocarbon turbine, a condenser, and a fluorocarbon pump that are driven by supplying fluorocarbons. Separate into steam and hot water in a vessel,
By supplying steam to the steam turbine and sending hot water to the heat exchanger, the two systems of power generation cycles are operated, and the low temperature hot water after flowing through the heat exchanger is used to generate a small water turbine. A geothermal power generation system characterized in that it is configured to drive a geothermal power generation system and obtain power generation or auxiliary power. 2) In the geothermal power generation system according to claim 1, the heat exchanger through which the hot water from the steam separator flows is:
The organic heat medium is heated and expanded in the first stage heat exchanger and supplied to the fluorocarbon turbine, and the second stage heat exchanger heats and expands the organic heat medium sent through the fluorocarbon pump. A geothermal power generation system characterized by being configured to preheat a heat medium and feed it to the first stage heat exchanger. 3) In the geothermal power generation system according to claim 2, the second stage heat exchanger is provided with means for causing hot water from the solar heat collector to flow through the pipe line, and the heat exchanger A geothermal power generation system characterized by being configured to heat hot water flowing through a vessel.
JP13978286A 1986-06-16 1986-06-16 Geothermal power system Pending JPS62298668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13978286A JPS62298668A (en) 1986-06-16 1986-06-16 Geothermal power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13978286A JPS62298668A (en) 1986-06-16 1986-06-16 Geothermal power system

Publications (1)

Publication Number Publication Date
JPS62298668A true JPS62298668A (en) 1987-12-25

Family

ID=15253295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13978286A Pending JPS62298668A (en) 1986-06-16 1986-06-16 Geothermal power system

Country Status (1)

Country Link
JP (1) JPS62298668A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259767A (en) * 1988-04-06 1989-10-17 Fujikura Ltd Geothermal power generation device
JP2014084857A (en) * 2012-10-28 2014-05-12 Yasuharu Kawabata Binary power generation system
JP2014092040A (en) * 2012-11-01 2014-05-19 Toshiba Corp Power generation system
JP2016044569A (en) * 2014-08-20 2016-04-04 株式会社東芝 Gas turbine power plant
CN105464729A (en) * 2016-01-07 2016-04-06 上海维尔泰克螺杆机械有限公司 Smoke and hot fluid waste heat recycling system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259767A (en) * 1988-04-06 1989-10-17 Fujikura Ltd Geothermal power generation device
JP2014084857A (en) * 2012-10-28 2014-05-12 Yasuharu Kawabata Binary power generation system
JP2014092040A (en) * 2012-11-01 2014-05-19 Toshiba Corp Power generation system
JP2016044569A (en) * 2014-08-20 2016-04-04 株式会社東芝 Gas turbine power plant
CN105464729A (en) * 2016-01-07 2016-04-06 上海维尔泰克螺杆机械有限公司 Smoke and hot fluid waste heat recycling system

Similar Documents

Publication Publication Date Title
JP5897302B2 (en) Steam turbine power generation system
JPH0791361A (en) Device for electric generation by temperature difference
US3893299A (en) Geothermal heat recovery by multiple flashing
JPS61149507A (en) Heat recovery device
CN207730035U (en) Sintering with Organic Rankine Cycle cools down power generation system using waste heat
EP0275619B1 (en) Method and apparatus for generating electric energy using hydrogen storage alloy
JPS62298668A (en) Geothermal power system
CN214998050U (en) Low-temperature solar photo-thermal power generation system
CN202813542U (en) Waste heat extracting and heat supply stepped heating system in power plant
CN212296518U (en) Complementary flow type organic Rankine cycle system and two-stage expansion machine
CN211078487U (en) Calcium carbide furnace cooling waste heat power generation system
CN212837985U (en) Electrolytic aluminum cell side wall waste heat recovery system
CN209875237U (en) Supercritical double-expansion two-stage regenerative organic Rankine cycle system
CN106523051A (en) Power generating system and electric power generating system
CN111396164A (en) System and method for recycling waste heat of side wall of electrolytic aluminum cell
US4530211A (en) System for producing steam and mechanical energy from a hydrothermal flow
CN216841833U (en) ORC power generation system for recycling low-temperature flue gas waste heat by high-efficiency heat pipe exchanger
CN213270009U (en) Lime kiln flue gas waste heat power generation system
CN116927912A (en) Technical method for recycling and comprehensively utilizing industrial exhaust steam
CN213713039U (en) Heat of high temperature high pressure lime set heat in conduction oil heat exchanger export is equipped with and utilizes device
CN218862694U (en) Coupling system for series connection of heat pump cycle and organic Rankine cycle
CN218293763U (en) Energy-efficient low temperature solar-thermal power generation system
CN210568322U (en) Flue gas waste heat ORC power generation system
CZ2004460A3 (en) Absorption heat pump with regeneration
CN213930892U (en) Thermal power plant circulating cooling water waste heat recycling system