CZ2004460A3 - Absorption heat pump with regeneration - Google Patents

Absorption heat pump with regeneration Download PDF

Info

Publication number
CZ2004460A3
CZ2004460A3 CZ2004460A CZ2004460A CZ2004460A3 CZ 2004460 A3 CZ2004460 A3 CZ 2004460A3 CZ 2004460 A CZ2004460 A CZ 2004460A CZ 2004460 A CZ2004460 A CZ 2004460A CZ 2004460 A3 CZ2004460 A3 CZ 2004460A3
Authority
CZ
Czechia
Prior art keywords
sorbent
heat
expeller
rich
absorber
Prior art date
Application number
CZ2004460A
Other languages
Czech (cs)
Other versions
CZ302037B6 (en
Inventor
Jaromír Zerzánek
Original Assignee
Jaromír Zerzánek
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jaromír Zerzánek filed Critical Jaromír Zerzánek
Priority to CZ20040460A priority Critical patent/CZ302037B6/en
Publication of CZ2004460A3 publication Critical patent/CZ2004460A3/en
Publication of CZ302037B6 publication Critical patent/CZ302037B6/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

The present invention relates to a process for producing electrical energy from heat of environment or from heat of any other source with low-temperature potential thermal energy, for example from heat of solar collectors, atmospheric air, water, soil or heat of technological processes where thermal energy is withdrawn at temperatures up to +25 degC. Head off-take from a low-temperature source is carried out within a generator (1) and namely by expelling carbon dioxide from a rich sorbent. Subsequently, carbon dioxide being in the form of superheated steam drives a first turbine (30) provided with a first electric generator (33) for producing electrical energy. After expansion downstream the first turbine, carbon dioxide is aftercooled in an ejector (21) and dissolved in an absorber (2) in a lean sorbent to thereby forming a rich sorbent. The rich sorbent is technologically aftercooled and then it is transported by a pump (52) via heat exchangers (13, 22) into the expeller (1) wherein absorption heat and a heat of external source are regenerative added back thereto in said heat exchangers (13, 22). The expelled carbon dioxide under working pressure and temperature of about +20 degC enters again the first turbine (30) closing thus working cycle. After leaving the expeller (1), the lean sorbent transfers heat to the rich sorbent and can also transfer pressure energy on a second turbine (42). Further, the lean sorbent participates through the mediation of the ejector (21) in aftercooling of carbon dioxide. Apparatus for generating electrical energy comprises an absorber, an expeller and at least one turbine driving an electric generator. The expeller (1) is connected with the absorber (2) through a distribution system (4) of a lean sorbent, a distribution system (5) of a rich sorbent and a distribution system (3) of carbon dioxide. The expeller (1) comprises a first heat exchanger (12) and a second heat exchanger (13). The first heat exchanger (12) is located on side adjacent the expeller (1) connection to the carbon dioxide distribution system (3) and the connection of rich sorbent distribution system (5). The second heat exchanger (13) is situated on side contiguous to the connection of the lean sorbent distribution system (4). A first absorber heat exchanger (22) forms part of the absorber (2), which is situated on side contiguous to the connection of the absorber (2) to the carbon dioxide distribution system (3) and to the connection of the absorber (2) to the lean sorbent distribution system (4), whereby at the same time the first heat exchanger (12) of the expeller (1) is provided with supply (121) of heat transferring medium of external environment and discharge (122) of the heat transferring medium into the external environment. A first turbine (30) for driving a first electric generator (33) is incorporated in said carbon dioxide distribution system (3), wherein said first turbine (30) inlet piping (31) is connected to the expeller (1) while the outlet piping (32) thereof is connected to the absorber (2). Said rich sorbent distribution system (5) is divided in the direction toward the expeller (1) into a branch of a rich sorbent first fraction and a branch of a rich sorbent second fraction. Said branch of the rich sorbent first fraction comprises a rich sorbent fourth pining (57) and a rich sorbent sixth piping (59) while said absorber first heat exchanger (22) is connected therebetween. Outlet side of said sixth piping (59) is connected with a first inlet (111) of the expeller (1). Said branch of the rich sorbent second fraction comprises a rich sorbent third piping (56) and a rich sorbent fifth piping (58), while the second heat exchanger (13) of the expeller (1) is connected therebetween. Outlet side of said fifth piping (58) is connected with a second inlet (112) of the expeller (1) and at the same time the inlet side of the rich sorbent fourth piping (57) and the inlet side of the rich sorbent third piping (56) are connected via a flow regulating element (55), preferably a three-way control valve, with said absorber (2) outlet.

Description

ABSORPČNÍ TEPELNÉ ČERPADLO S REGENERACÍABSORPTION HEAT PUMP WITH REGENERATION

Popis funkce tepelného čerpadla konstrukčně řešeného pro výrobu elektrické energie je zřejmý z připojeného schématu a objasněn následně.The description of the function of the heat pump structurally designed for the production of electric energy is evident from the attached diagram and explained below.

Principielně je systém řešen fúzí Camotova tepelného motoru a Camotovy chladničky v absorpčně regenerační pozici. Tepelný stroj s ohledem na malý teplotní rozsah pracovních teplot cca 65C°, má malou tepelnou účinnost. Avšak s ohledem na limitní horní teplotní hranici cca +20°C pracovního media, vzhledem na tepelnou dostupnost, např. absorbovaná sluneční energie atmosférou (skleníkový efekt), dále zemní půdou nebo vodou, případně z jiných nízkoteplotních zdrojů tepla, pro jeho energetickou výtěžnost, je jeho tepelná účinnost bezvýznamná.In principle, the system is solved by fusing the Camot heat engine and the Camot refrigerator in the absorption regeneration position. Due to the small temperature range of about 65 ° C, the thermal machine has a low thermal efficiency. However, with respect to the upper temperature limit of approx. + 20 ° C of the working medium, due to the heat availability, eg absorbed solar energy through the atmosphere (greenhouse effect), the soil or water or from other low-temperature heat sources for its energy yield, its thermal efficiency is insignificant.

Nosným hnacím mediem systému je přehřátá pára kysličníku uhličitého CO2, ohřátá vnějším teplem z podnulové teploty cca -17°C na horní pracovní teplotu cca +20°C.The carrier medium of the system is superheated steam of CO2, heated by external heat from a zero temperature of about -17 ° C to an upper working temperature of about + 20 ° C.

Přehřátá pára CO2 (přerušovaná tenká čára - stav 1), ve vypuzovači G v přehříváku generátoru páry - zvenčí do systému přivedeným teplem vypuzená z bohatého sorbentu, vstupuje do protitlakové expanzní parní turbiny Di pod tlakem cca 21 B a vyšším , cca +20°C, 1 kg * s’2 CO2 (30 kg * s'1 CO2 pro cca 912 kW na svorkách generátoru).Superheated steam CO 2 (dashed thin line - state 1), in the stripper G in the superheater of the steam generator - externally entrained into the system from the rich sorbent, enters the backpressure expansion steam turbine Di at a pressure of about 21 B and higher, about + 20 ° C, 1 kg * s ' 2 CO2 (30 kg * s' 1 CO2 for approx. 912 kW at generator terminals).

Pára průchodem turbínou Di předá na lopatkách turbíny kinetickou energii v kW/V (příkladně 912kW/6300V) měřenou na svorkách generátoru AG. Pára CO2 poté expanduje na protitlak cca 8,5 B a teplotu cca -30 °C.The steam passes through the turbine Di to transmit kinetic energy in kW / V (for example 912kW / 6300V) measured at the terminals of the AG generator on the turbine blades. The CO 2 steam then expands to a back pressure of about 8.5 B and a temperature of about -30 ° C.

Na teplotu kolem -30 °C ochlazená přehřátá pára CO2 po expanzi ( plná tenká čára - stav 2 ) vstupuje do podtlakové oblasti ejektoru E, kde je dále podchlazena.Cooled superheated CO 2 vapor to about -30 ° C after expansion (solid thin line - state 2) enters the vacuum area of the ejector E, where it is further subcooled.

Ejektor E plní funkci směšovače syté páry CO2 o teplotě cca -30 °C a expanzí dříve podchlazeného hubeného sorbentu HS na tlak okolo 8,5 B, čímž vytváří směs bohatého sorbentu BS, za současného účinného ochlazování, to je odebírání absorpčního tepla, na kondenzační teplotu CO2 až kolem -45°C. Ejektor E je součástí absorberu C - syté a mokré páry CO2 do sorbentu společně s umožněním kapkové kondenzace do směsi.The Ejector E functions as a saturated CO 2 mixer at a temperature of about -30 ° C and expands the previously supercooled, thin HS sorbent to a pressure of about 8.5 B, creating a rich sorbent BS mixture while cooling efficiently, i.e. a condensation temperature of CO 2 up to about -45 ° C. Ejector E is part of the absorber C - saturated and wet vapor of CO 2 into the sorbent together with allowing drop condensation into the mixture.

Hubený sorbent HS ( dvojitá prázdná čára - stav 3', 4', 5' ), ochlazený v regeneračním výměníku Ti, expanzí v turbině D2 v kW/V (příkladně 50kW/380V) - ve funkci expanzního redukčního ventilu RV - odevzdá část své tlakové energie k výrobě elektrické energie o napětí např. 380 V. Poté podchlazený vstupuje jako ochlazovací medium do výměníku T2 a dále jakoThin sorbent HS (double empty line - state 3 ', 4', 5 '), cooled in regeneration exchanger Ti, expansion in turbine D2 in kW / V (for example 50kW / 380V) - in function of expansion reducing valve RV - pressure energy to produce electrical energy with a voltage of eg 380 V. Then the subcooled enters as a cooling medium into the heat exchanger

t) hnací medium do ejektoru E a v něm se mísí s ochlazenou sytou párou CO2. Za ejektorem E stéká vabsorberu C po plniči s velkou povrchovou plochou, podporující blánovou absorpci CO2 do sorbentu, za současného dochlazování ve výměníku T3 v prostoru absorberu C. Bohatý sorbent BS se shromažďuje ve spodní sběrné části BS, k jeho odvodu z absorberu C.(t) propellant into the Ejector E and mixed with the cooled saturated CO 2 vapor. Behind the ejector E, the vabsorber C flows down a large surface filler supporting membrane-like absorption of CO 2 into the sorbent, while cooling in the exchanger T3 in the absorber C space. The rich sorbent BS collects in the lower collector BS to drain it from the absorber C.

Bohatý sorbent BS ( dvojitá přerušovaně plná čára stav 3”, 4 ), který stékáním po plniči absorboval v absorberu C maximum CO2 , je odveden na vstup napájecího tlakového čerpadla H.The rich sorbent BS (double intermittent solid line state 3 ”, 4), which by running down the filler absorbed the maximum CO 2 in the absorber C, is led to the inlet of the supply pressure pump H.

Napájecí tlakové čerpadlo H bohatého sorbentu BS, zvýší tlak sorbentu z cca 8,5 B na pracovní tlak na vstupu do turbíny Di, to je min. 20 B a více. Je poháněno asynchronním motorem ve V/kW napájeným el. energií vyrobenouThe feed pressure pump H of the rich sorbent BS increases the sorbent pressure from approx. 8.5 B to the working pressure at the turbine inlet Di, i.e. min. 20 B or more. It is powered by an asynchronous motor in V / kW powered by el. energy produced

T generátorem AG na turbině D, (příkladně 6300V/1 lOkW).T generator AG on turbine D, (for example 6300V / 10kW).

; Ochlazený hubený sorbent HS ( stav 5 ' ), po výstupu z regeneračního výměníku Ti , ve kterém odevzdal své získané teplo v generátoru přehřáté páry G bohatému sorbentu BS, dále vstupuje do turbiny D2 ve funkci škrtícího redukčního ventilu RV s následnou expanzí a snížením tlaku dále snižuje svoji teplotu na pracovní chladící teplotu a tlak potřebný pro vstup do ejektoru E. ; The cooled thin sorbent HS (5 'state), after leaving the regeneration exchanger Ti, in which it has given its recovered heat in the superheated steam generator G to the rich sorbent BS, further enters turbine D 2 as a throttle reduction valve RV with subsequent expansion and depressurization further reduces its temperature to the working cooling temperature and the pressure required to enter the ejector E.

Bohatý sorbent BS ( stav 4 ), po výstupu z napájecího tlakového čerpadla H o tlaku cca 21 B vstupuje do třícestného regulačního ventilu TV, který dávkuje množství BS ve směru regeneračního výměníku Ti ( stav 5 ) a ve směru výměníku T3 (stav 5').The rich sorbent BS (state 4), after leaving the supply pressure pump H at a pressure of about 21 B, enters the three-way control valve DHW, which delivers the amount of BS in the regeneration exchanger direction Ti (state 5) and exchanger direction T 3 (state 5 ') ).

Regenerační výměník tepla Tb před vstupem BS do generátoru páry G předehřívá bohatý sorbent BS odebraným teplem hubenému sorbentu HS. Výměník tepla T3 odebírá k regeneraci absorpční teplo bohatému sorbentu v průběhu absorpce CO2 do sorbentu v prostoru absorberu C.The regenerative heat exchanger T b before the entry of the BS into the steam generator G preheats the rich sorbent BS with the removed heat-thinned sorbent HS. The heat exchanger T 3 absorbs the heat of absorption of the rich sorbent during the absorption of CO 2 into the sorbent in the absorber space C.

Hubený sorbent HS, o teplotě cca +20°C ( stav 5' ), vystupující zvypuzovaěe - generátoru páry CO2 G, o tlaku cca 21 B, procházející regeneračním výměníkem tepla Tb po ochlazení vstupuje do turbiny Ď2.The lean sorbent HS, with a temperature of approx. + 20 ° C (5 'state), emerging from the CO 2 G steam generator, having a pressure of approx. 21 B, passing through the regenerative heat exchanger T b after cooling enters the turbine Ď 2 .

Bohatý sorbent BS ( stav 6 ), předehřátý odevzdaným teplem z HS, po výstupu z výměníku tepla Ti , vstupuje do sprchy v generátoru páry CO2 G, ve kterém stéká po plniči a za spoluúčasti ohřevu media prostřednictvím výměníku T4 a plníce vnějším dodaným teplem Q na teplotu cca +20°C, uvolňuje přehřátou páru CO2, o tlaku potřebném pro chod expanzní turbíny (např. kolem 21 B), dále jako hubený sorbent HS klesá do spodní části generátoru páry G.The rich sorbent BS (state 6), preheated by the heat from the HS after leaving the heat exchanger Ti, enters the shower in the CO 2 G steam generator, where it flows down the filler and co-heating the medium through the T 4 exchanger and the external heat Q to a temperature of approx. + 20 ° C, it releases superheated steam of CO 2 , with the pressure required for the operation of the expansion turbine (eg around 21 B).

Bohatý sorbent BS ( stav 6 ), průchodem výměníkem T3 vstřebal absorpční teplo a je odveden sprchou do vypuzovaěe G.The rich sorbent BS (state 6) absorbs the heat of absorption through the exchanger T 3 and is discharged into the ejector G.

Vstupem BS do G ( stav 6, 6' ), výstupem HS z Ti ( stav 5' ) a výstupem napájecí přehřáté páry CO2 z G ( stav 1 ) odvedené do turbíny Dl, je dokončen termodynamický kruhový cyklus uzavřeného oběhu tepelného stroje.By entering BS into G (state 6, 6 '), HS out of Ti (state 5') and the output of superheated CO 2 steam from G (state 1) discharged to turbine D1, the thermodynamic ring cycle of the closed circuit of the heat engine is completed.

Claims (6)

PATENTOVÉ NÁROKYPATENT CLAIMS 1. ) Způsob výroby energie dle funkčního schématu a popisu tepelného čerpadla konstrukčně řešeného pro výrobu elektrické energie, vyznačující se tím, že nízko teplotní potenciální tepelnou energii odebíranou z jakéhokoliv zdroje prostřednictvím teplonosné látky CO2 a dále za pomoci sorbentu fyzikálně využívá tepelnou energii ve svém kruhovém termodynamickém uzavřeném okruhu k její přeměně prostřednictvím turboelektrogenerátorů k výrobě elektrické energie.1.) Method of energy production according to the functional diagram and description of a heat pump designed for electricity production, characterized in that the low temperature potential thermal energy taken from any source by means of a CO 2 heat transfer substance and further using the sorbent physically uses thermal energy in its a circular thermodynamic closed circuit to convert it by means of turbo-generators to generate electricity. 2. ) Způsob podle nároku 1, vyznačující se tím, že čerpaná tepelná energie z okolního prostředí nebo zdrojů ohřívá teplonosnou látku CO2 do její pracovní teploty vzestupně cca až +20 C°, čímž v daném zařízení způsobuje vypuzování CO2 ze sorbentu za účelem získání přehřáté páry CO2 za daného tlaku k pohonu expanzní parní turbíny soustrojí turbogenerátoru výroby el. energie.2.) The method according to claim 1, characterized in that the pumped thermal energy from the surrounding environment or sources heats the CO 2 heat transfer medium to its working temperature in ascending order up to about + 20 ° C, thereby causing CO 2 to be expelled from the sorbent. obtaining superheated CO 2 steam at a given pressure to drive the expansion steam turbine of the turbine generator set of the production of el. energy. 3. ) Způsob podle nároku 1, vyznačující se tím, že v daném zařízení teplonosná látka průchodem expanzní turbínou po její expanzi, je dále dochlazována na absorpční teplotu v systému, a to za pomoci směšovacího ejektorového chlazení a odběrem absorpčního tepla k jeho regeneraci, tj. k jeho opětovnému využití k předohřevu bohatého sorbentu.3. The method according to claim 1, characterized in that in said device the heat transfer medium by passing through the expansion turbine after its expansion is further cooled to the absorption temperature in the system by means of mixing ejector cooling and collecting the absorption heat to regenerate it. for its reuse to preheat the rich sorbent. 4. ) Způsob podle nároku 1, vyznačující se tím, že v daném zařízení je teplonosná látka CO2 vázána do sorbentu za účinného snižování absorpční teploty dle popisu a dále jako bohatý sorbent je prostřednictvím napájecího tlakového čerpadla vedena za zvýšeného pracovního tlaku přes výměníky tepla do vypuzovače CO2.4. The method according to claim 1, characterized in that, in said apparatus, the CO 2 heat transfer medium is bound to the sorbent while effectively reducing the absorption temperature as described, and further, as a rich sorbent, is fed to the heat exchanger via CO 2 expellers. 5. ) Způsob podle nároku 3, vyznačuje se tím, že využívá regenerace, tj. kondenzačního a absorpčního tepla odebraného teplonosné látce a z bohatého sorbentu a je použita v termodynamickém cyklu systému k zpětnému ohřevu bohatého sorbentu za napájecím tlakovým čerpadlem.The method according to claim 3, characterized in that it utilizes the regeneration, i.e. the condensation and absorption heat, of the heat carrier and of the rich sorbent and is used in the thermodynamic cycle of the system to heat the rich sorbent downstream of the feed pressure pump. 6. ) Způsob podle nároku 1, vyznačuje se tím, že ve funkci expanzního škrtícího regulačního ventilu je možné využití turbíny D2, která spotřebuje část energie tlakového spádu na hubeném sorbentu k výrobě elektrické energie , a to záměnou za výše uvedený škrtící regulační ventil.6. The method according to claim 1, characterized in that in the function of the expansion throttle control valve it is possible to use a turbine D2 which consumes a part of the pressure drop energy on the lean sorbent to generate electric energy, in exchange for said throttle control valve.
CZ20040460A 2004-04-06 2004-04-06 Process for producing electrical energy and apparatus for making the same CZ302037B6 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CZ20040460A CZ302037B6 (en) 2004-04-06 2004-04-06 Process for producing electrical energy and apparatus for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CZ20040460A CZ302037B6 (en) 2004-04-06 2004-04-06 Process for producing electrical energy and apparatus for making the same

Publications (2)

Publication Number Publication Date
CZ2004460A3 true CZ2004460A3 (en) 2005-11-16
CZ302037B6 CZ302037B6 (en) 2010-09-15

Family

ID=35265628

Family Applications (1)

Application Number Title Priority Date Filing Date
CZ20040460A CZ302037B6 (en) 2004-04-06 2004-04-06 Process for producing electrical energy and apparatus for making the same

Country Status (1)

Country Link
CZ (1) CZ302037B6 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9429046B2 (en) 2011-03-22 2016-08-30 Climeon Ab Method for conversion of low temperature heat to electricity and cooling, and system therefore
GB201121520D0 (en) * 2011-12-14 2012-01-25 Univ Nottingham Heat absorption
WO2015006666A1 (en) 2013-07-11 2015-01-15 Eos Energy Storage, Llc Mechanical-chemical energy storage
SE1400492A1 (en) 2014-01-22 2015-07-23 Climeon Ab An improved thermodynamic cycle operating at low pressure using a radial turbine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2593197B2 (en) * 1988-08-02 1997-03-26 株式会社日立製作所 Thermal energy recovery method and thermal energy recovery device
JPH0291404A (en) * 1988-09-27 1990-03-30 Masayuki Arai Exhaust absorbing steam motor
JP3119718B2 (en) * 1992-05-18 2000-12-25 月島機械株式会社 Low voltage power generation method and device
RU2182246C1 (en) * 2000-10-26 2002-05-10 Мазий Василий Иванович Cost-effective thermal power plant
CN1140748C (en) * 2001-11-30 2004-03-03 清华大学 Absorbing heat pump heating equipment to utilize fume afterheat of gas-burning steam-circulating heat and power plant
DE10233230A1 (en) * 2002-07-22 2004-02-12 Schlüter, Claus, Dipl.-Ing. Expansion unit for integration into heat pump/compressor circuit, uses pressure/temperature drop from liquefier to evaporator to generate energy by switching on turbine before expansion valve

Also Published As

Publication number Publication date
CZ302037B6 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
CN202381129U (en) Power supplying system
JP5311366B2 (en) Turbine system, system and method for supplying energy to a supercritical carbon dioxide turbine
US20170058768A1 (en) Method And Device For Storing And Recovering Energy
CN203177503U (en) Fused salt heat storage heat exchange device for solar energy photothermal power generation
CN109026234A (en) A kind of Organic Rankine Cycle and heat pump driven cogeneration system and combined heat and power method
CN103089356A (en) Flash evaporation-double work medium combined power generation device
CN101929360A (en) Medium-low temperature heat source generating set based on energy cascade utilization and thermal circulation method thereof
CN111140445A (en) Gas-steam combined cycle cooling, heating and power multi-energy combined supply system
CN101484683A (en) Method and device for converting thermal energy into mechanical work
CN105840261A (en) System for recycling waste heat of air compressor for power generation and running method of system
CN208793051U (en) A kind of Organic Rankine Cycle and heat pump driven cogeneration system
CN103016074B (en) The water that heat energy combines with natural cold-energy, electricity, salt combined production device
CN101832623B (en) Pre-heat system of thermal power plant
CZ2004460A3 (en) Absorption heat pump with regeneration
CN102486317A (en) Heat supplying method of cooling water residual heat recycling energy-saving system of thermal power plant
CN218862694U (en) Coupling system for series connection of heat pump cycle and organic Rankine cycle
CN214998050U (en) Low-temperature solar photo-thermal power generation system
CN217002001U (en) Waste heat utilization device in methanol synthesis process
CN214199755U (en) Spray cooling system utilizing natural gas pressure energy of combined cycle unit
CN209960462U (en) Device for heating boiler feed water by utilizing heat pump to absorb waste heat of steam turbine
JPH0945350A (en) Fuel cell power generation plant
CN209431693U (en) A kind of Dish solar thermal power system
JP2004257601A (en) Waste heat collecting system
JPS62298668A (en) Geothermal power system
CN209857158U (en) Integrated system capable of recycling million-level unit cooling water waste heat

Legal Events

Date Code Title Description
MM4A Patent lapsed due to non-payment of fee

Effective date: 20190406