JP2020148200A - Geothermal heat recovery device - Google Patents

Geothermal heat recovery device Download PDF

Info

Publication number
JP2020148200A
JP2020148200A JP2019129202A JP2019129202A JP2020148200A JP 2020148200 A JP2020148200 A JP 2020148200A JP 2019129202 A JP2019129202 A JP 2019129202A JP 2019129202 A JP2019129202 A JP 2019129202A JP 2020148200 A JP2020148200 A JP 2020148200A
Authority
JP
Japan
Prior art keywords
geothermal
recovery device
inner pipe
pipe
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019129202A
Other languages
Japanese (ja)
Other versions
JP7315952B2 (en
Inventor
猛 大森
Takeshi Omori
猛 大森
大森 英樹
Hideki Omori
英樹 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TEO KK
Original Assignee
TEO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TEO KK filed Critical TEO KK
Publication of JP2020148200A publication Critical patent/JP2020148200A/en
Application granted granted Critical
Publication of JP7315952B2 publication Critical patent/JP7315952B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

To provide a geothermal heat recovery device which can suppress temperature drop of a fluid heated by geothermal heat to efficiently recover the heated fluid.SOLUTION: A geothermal heat recovery device 10 includes an outer pipe 12 and an inner pipe 14 buried in the ground and communicating with each other at lower parts thereof, and recovers geothermal heat by heating fluid flowing from above the ground while the fluid passes through the outer pipe 12 and the inner pipe 14, and making the heated fluid flow out again to above the ground. The inner pipe 14 has a heat insulation part 22 in a part thereof except the lower part.SELECTED DRAWING: Figure 1

Description

本発明は、地熱回収装置に係り、例えば、地熱発電に用いられる地熱回収装置に関する。 The present invention relates to a geothermal recovery device, for example, a geothermal recovery device used for geothermal power generation.

地表面に降った雨や雪が地下深部まで浸透し高温の流体となった地熱流体を利用して発電を行う地熱発電は、化石燃料を必要とせず環境に与える影響が少ないことから再生可能エネルギーとして期待が高まっている。また、地熱発電は、日本に存在する多数の火山帯を利用できることや、天候の影響を受けないという点からも注目されている。 Geothermal power generation, which uses geothermal fluid that has become a high-temperature fluid that has penetrated deep underground into the ground surface, does not require fossil fuels and has little impact on the environment, so it can be used as renewable energy. Expectations are rising. Geothermal power generation is also attracting attention because it can utilize many volcanic belts that exist in Japan and is not affected by the weather.

この地熱発電としては、地下の地熱流体の貯留層から汲み上げた熱水や蒸気により、タービンを回すことで発電するいわゆるフラッシュ方式やドライスチーム方式のほか、地下の地熱流体の貯留層から汲み上げた熱水や蒸気により沸点の低い有機媒体等を加熱して蒸気を作り出し、この蒸気によりタービンを回すことで発電するいわゆるバイナリー方式などがある。 This geothermal power generation includes the so-called flash method and dry steam method, in which hot water and steam pumped from the underground geothermal fluid reservoir are used to generate electricity by turning a turbine, and the heat pumped from the underground geothermal fluid reservoir. There is a so-called binary method in which steam is produced by heating an organic medium having a low boiling point with water or steam, and the turbine is rotated by the steam to generate power.

一方、地熱の回収方法としては、地下の貯留層から汲み上げた熱水や蒸気をそのまま利用するのではなく、地上から流入させた流体を地熱により加熱させ再び地上に流出することで地熱を回収する方法も提案されている。 On the other hand, as a method of recovering geothermal heat, instead of using hot water or steam pumped from the underground reservoir as it is, the fluid that has flowed in from the ground is heated by the geothermal heat and flows out to the ground again to recover the geothermal heat. A method has also been proposed.

このような地熱を回収する装置としては、例えば、地中に配置される外管であって、地上側又はその近傍の開口部以外は閉塞されており、底部及び底部から上方向に数十〜数百mの領域において流体が外部の地熱と熱交換可能な外管と、外管の内部に配置される内管であって、少なくとも底部又はその近傍部分が開放されており、底部が外管の底部から上方向に数十〜数百mの範囲内に位置している内管とを備える装置が提案されている(特許文献1参照)。 As a device for recovering such geothermal heat, for example, an outer pipe placed in the ground is closed except for an opening on the ground side or its vicinity, and is tens to several tens to the bottom and upward from the bottom. An outer pipe in which a fluid can exchange heat with external geothermal heat in a region of several hundred meters, and an inner pipe arranged inside the outer pipe, at least the bottom or a vicinity thereof is open, and the bottom is the outer pipe. A device including an inner tube located within a range of several tens to several hundreds of meters upward from the bottom of the device has been proposed (see Patent Document 1).

特開2016−098806号公報JP-A-2016-098806

上記特許文献1に記載の地熱を回収する装置は、流体(以下、加熱用流体ということがある)が外管から流入し内管から流出するものであるが、内管が高い熱伝導性を有するステンレス鋼製であるため、内管内を通して地上に流出させる途中(上部の比較的低い温度域)で熱した流体が冷えてしまうという問題が生じていた。 The device for recovering geothermal heat described in Patent Document 1 is a device in which a fluid (hereinafter, may be referred to as a heating fluid) flows in from an outer pipe and flows out from an inner pipe, but the inner pipe has high thermal conductivity. Since it is made of stainless steel, there is a problem that the heated fluid cools while flowing out to the ground through the inner pipe (relatively low temperature range in the upper part).

本発明の課題は、地熱により加熱された流体の温度低下を抑制して、地熱を効率的に回収することができる地熱回収装置を提供することにある。 An object of the present invention is to provide a geothermal recovery device capable of efficiently recovering geothermal heat by suppressing a temperature drop of a fluid heated by geothermal heat.

本発明者らは、加熱用流体の温度低下を抑制して効率的に地熱を回収する手段を検討する中で、内管の一部(下部を除く部分)に断熱部を設けることにより、地熱により加熱された流体の温度低下を抑制して、地熱を効率的に回収することができることを見いだし、本発明を完成するに至った。 The present inventors are studying a means for efficiently recovering geothermal heat by suppressing a temperature drop of the heating fluid, and by providing a heat insulating portion in a part of the inner pipe (a part excluding the lower part), the geothermal heat is obtained. It has been found that the temperature drop of the fluid heated by the above can be suppressed and the geothermal heat can be efficiently recovered, and the present invention has been completed.

すなわち、本発明は、以下の通りのものである。
[1]地中に埋設され下部において互いに連通する外管と内管とを備え、地上から流入する流体を外管及び内管を通過する間に地熱により加熱し、該加熱した流体を再び地上に流出させて地熱を回収する地熱回収装置であって、
前記内管が、その下部を除く部分に断熱部を有していることを特徴とする地熱回収装置。
[2]内管が、地中温度が100℃以下の範囲に断熱部を有していることを特徴とする上記[1]記載の地熱回収装置。
[3]内管が、その下部側部に、外管と連通する連通開口を有していることを特徴とする上記[1]又は[2]記載の地熱回収装置。
[4]内管の底部が閉塞されていることを特徴とする上記[3]記載の地熱回収装置。
[5]下部側部の連通開口が、内管の下端から0.5〜5mの範囲内に設けられていることを特徴とする上記[3]又は[4]記載の地熱回収装置。
[6]内管の下端が、外管の内部底面から0〜10mの範囲に位置することを特徴とする上記[1]〜[5]のいずれか記載の地熱回収装置。
[7]内管の下端が、外管の内部底面から0を超えて30cm以下の範囲に位置することを特徴とする上記[6]記載の地熱回収装置。
That is, the present invention is as follows.
[1] An outer pipe and an inner pipe that are buried in the ground and communicate with each other at the lower part are provided, and the fluid flowing from the ground is heated by geothermal heat while passing through the outer pipe and the inner pipe, and the heated fluid is heated again on the ground. It is a geothermal recovery device that recovers geothermal heat by flowing it out to
A geothermal recovery device characterized in that the inner pipe has a heat insulating portion in a portion other than the lower portion thereof.
[2] The geothermal recovery device according to the above [1], wherein the inner pipe has a heat insulating portion in a range where the underground temperature is 100 ° C. or lower.
[3] The geothermal recovery device according to the above [1] or [2], wherein the inner pipe has a communication opening for communicating with the outer pipe on the lower side portion thereof.
[4] The geothermal recovery device according to the above [3], wherein the bottom of the inner pipe is closed.
[5] The geothermal recovery device according to the above [3] or [4], wherein the communication opening on the lower side portion is provided within a range of 0.5 to 5 m from the lower end of the inner pipe.
[6] The geothermal recovery device according to any one of the above [1] to [5], wherein the lower end of the inner pipe is located in a range of 0 to 10 m from the inner bottom surface of the outer pipe.
[7] The geothermal recovery device according to the above [6], wherein the lower end of the inner pipe is located in a range of more than 0 and 30 cm or less from the inner bottom surface of the outer pipe.

[8]地上から流入する流体が内管を通って外管から地上に流出する地熱回収装置であって、
外管が、地中温度が100℃以下の範囲に断熱部を有していることを特徴とする上記[1]〜[7]のいずれか記載の地熱回収装置。
[9]上記[1]〜[8]のいずれか記載の地熱回収装置と、
前記地熱回収装置から流出した流体を利用して発電する発電機と、
を備えたことを特徴とする地熱発電システム。
[10]発電機が、地熱回収装置から流出した流体によりタービンを回転させて発電することを特徴とする上記[9]に記載の地熱発電システム。
[11]発電機が、地熱回収装置から流出した流体によって加熱された作動用流体によりタービンを回転させて発電することを特徴とする上記[9]に記載の地熱発電システム。
[8] A geothermal recovery device in which a fluid flowing in from the ground flows out from an outer pipe to the ground through an inner pipe.
The geothermal recovery device according to any one of the above [1] to [7], wherein the outer pipe has a heat insulating portion in a range where the underground temperature is 100 ° C. or less.
[9] The geothermal recovery device according to any one of the above [1] to [8] and
A generator that uses the fluid flowing out of the geothermal recovery device to generate electricity,
A geothermal power generation system characterized by being equipped with.
[10] The geothermal power generation system according to the above [9], wherein the generator rotates a turbine with a fluid flowing out of the geothermal recovery device to generate electricity.
[11] The geothermal power generation system according to the above [9], wherein the generator rotates a turbine with an operating fluid heated by a fluid flowing out of the geothermal recovery device to generate electricity.

本発明の地熱回収装置によれば、地熱により加熱された流体の温度低下を抑制して、地熱を効率的に回収することができる。 According to the geothermal recovery device of the present invention, it is possible to suppress the temperature drop of the fluid heated by the geothermal heat and efficiently recover the geothermal heat.

本発明の第1の実施形態に係る地熱回収装置を説明するための概略断面図である。It is schematic cross-sectional view for demonstrating the geothermal recovery apparatus which concerns on 1st Embodiment of this invention. 本発明の第2の実施形態に係る地熱回収装置を説明するための概略断面図である。It is schematic cross-sectional view for demonstrating the geothermal recovery apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3の実施形態に係る地熱回収装置を説明するための概略断面図である。It is schematic cross-sectional view for demonstrating the geothermal recovery apparatus which concerns on 3rd Embodiment of this invention. 本発明の地熱回収装置を備える加熱用流体を発電に直接利用する方式の地熱発電システムの構成の概略を示す説明図である。It is explanatory drawing which shows the outline of the structure of the geothermal power generation system of the system which directly uses the heating fluid provided with the geothermal recovery device of this invention for power generation. 本発明の地熱回収装置を備えるバイナリー方式地熱発電システムの構成の概略を示す説明図である。It is explanatory drawing which shows the outline of the structure of the binary type geothermal power generation system which includes the geothermal recovery device of this invention.

本発明の地熱回収装置は、地中に埋設され下部において互いに連通する外管と内管とを備え、地上から流入する流体を外管及び内管を通過する間に地熱により加熱し、加熱した流体を再び地上に流出させて地熱を回収する地熱回収装置であり、内管が、その下部を除く部分に断熱部を有していることを特徴とする。 The geothermal recovery device of the present invention includes an outer pipe and an inner pipe that are buried in the ground and communicate with each other at the lower part, and the fluid flowing in from the ground is heated by geothermal heat while passing through the outer pipe and the inner pipe. It is a geothermal recovery device that recovers geothermal heat by letting the fluid flow out to the ground again, and is characterized in that the inner pipe has a heat insulating portion in a portion other than the lower portion thereof.

本発明の地熱回収装置においては、地熱により加熱された流体が地上に流出する際の温度低下を抑制することができ、地熱を効率的に回収することができる。また、本発明の地熱回収装置は、地中の熱水や蒸気を直接回収するものではないことから、温泉等の資源が枯渇することがなく、さらに、装置内に硫黄等のスケールが付着することがないため、メンテナンス等の費用も安価であると共に、長時間の使用が可能である。 In the geothermal recovery device of the present invention, it is possible to suppress a temperature drop when the fluid heated by the geothermal heat flows out to the ground, and the geothermal heat can be efficiently recovered. Further, since the geothermal recovery device of the present invention does not directly recover hot water or steam in the ground, resources such as hot springs are not depleted, and scales such as sulfur adhere to the device. Since there is no such thing, maintenance costs are low and it can be used for a long time.

本発明の地熱回収装置は、地中に埋設した内管又は外管から加熱用流体を流入させ、少なくとも地中温度が100℃以上の地下の地熱流体の貯留層(高温部分)において加熱用流体を加熱して、外管又は内管を通じて再び地上へ流出させて地熱を回収する。すなわち、少なくとも外管が地熱流体の貯留層まで達する構造であるが、この地熱流体の貯留層としては、例えば、地中温度100℃以上が好ましく、120℃以上がより好ましく、150℃以上がさらに好ましい。本発明の地熱回収装置に用いる加熱用流体としては、水や、沸点が100℃以下の有機媒体などを好適に例示することができる。 The geothermal recovery device of the present invention allows a heating fluid to flow in from an inner pipe or an outer pipe buried in the ground, and the heating fluid is at least in a reservoir (high temperature portion) of an underground geothermal fluid having an underground temperature of 100 ° C. or higher. Is heated and discharged to the ground again through the outer pipe or the inner pipe to recover the geothermal heat. That is, at least the outer pipe has a structure that reaches the storage layer of the geothermal fluid. As the storage layer of the geothermal fluid, for example, the underground temperature is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and further preferably 150 ° C. or higher. preferable. As the heating fluid used in the geothermal recovery device of the present invention, water, an organic medium having a boiling point of 100 ° C. or lower, and the like can be preferably exemplified.

(外管)
本発明の地熱回収装置における外管は、地中に埋設され下部において内管と連通する。外管の断面形状としては、例えば、正方形、長方形、円形等各種形状を挙げることができるが、円形であることが好ましい。この外管は、底部及び側部が閉塞されている。
(Outer pipe)
The outer pipe in the geothermal recovery device of the present invention is buried in the ground and communicates with the inner pipe at the lower part. Examples of the cross-sectional shape of the outer tube include various shapes such as a square, a rectangle, and a circle, but a circular shape is preferable. The bottom and sides of this outer tube are closed.

また、外管は、全部が地中に埋設されるものであってもよいが、一部が地上に設けられているものであってもよい。すなわち、外管が地中から地上に亘って設けられるものであってもよい。 Further, the outer pipe may be entirely buried in the ground, but may be partially provided on the ground. That is, the outer pipe may be provided from the ground to the ground.

外管の材料としては、熱伝導性を有する材料であれば特に制限されるものではなく、例えば、鉄、ステンレス鋼、炭素鋼を挙げることができ、熱伝導性、耐久性、コスト等の点から、ステンレス鋼が好ましい。また、外管の周囲は、一部又は全部がコンクリート等で覆われていてもよく、これにより耐久性を高めることができる。 The material of the outer tube is not particularly limited as long as it is a material having thermal conductivity, and examples thereof include iron, stainless steel, and carbon steel in terms of thermal conductivity, durability, cost, and the like. Therefore, stainless steel is preferable. Further, the periphery of the outer pipe may be partially or wholly covered with concrete or the like, whereby durability can be enhanced.

また、外管の長さとしては、少なくとも地熱流体の貯留層(高温部分)に到達する長さであればよく、設置場所等により適宜決定することができる。外管の長さとしては、例えば、地中温度100℃以上の範囲に100m以上存在する長さであることが好ましく、地中温度120℃以上の範囲に100m以上存在する長さであることがより好ましく、地中温度150℃以上の範囲に100m以上存在する長さであることがさらに好ましい。 Further, the length of the outer pipe may be at least as long as it reaches the storage layer (high temperature portion) of the geothermal fluid, and can be appropriately determined depending on the installation location and the like. The length of the outer pipe is, for example, preferably 100 m or more in the range of the underground temperature of 100 ° C. or higher, and 100 m or more in the range of the underground temperature of 120 ° C. or higher. More preferably, the length is 100 m or more in the range of the underground temperature of 150 ° C. or more.

外管の径としては、少なくとも内管を収容できるものであり、設置場所等によって適宜設定することができる。外管の内径としては、例えば、50〜500mmであり、80〜300mmが好ましく、100〜300mmがより好ましく、150〜300mmがさらに好ましい。外管の内径がこの範囲にあることにより、地中の高温部において加熱用流体が十分に滞留され、加熱用流体を十分に加熱することができる。 The diameter of the outer pipe can accommodate at least the inner pipe, and can be appropriately set depending on the installation location and the like. The inner diameter of the outer tube is, for example, 50 to 500 mm, preferably 80 to 300 mm, more preferably 100 to 300 mm, and even more preferably 150 to 300 mm. When the inner diameter of the outer pipe is in this range, the heating fluid is sufficiently retained in the high temperature portion in the ground, and the heating fluid can be sufficiently heated.

外管の上端は、地上において流体を流入又は流出可能な流入出口を有している。この流入出口は、流体を循環させるための循環ポンプや、熱交換器等の地熱発電システムの一部等に接続される。 The upper end of the outer pipe has an inflow port through which fluid can flow in or out on the ground. This inflow port is connected to a circulation pump for circulating a fluid, a part of a geothermal power generation system such as a heat exchanger, or the like.

(内管)
本発明の地熱回収装置における内管は、地中に埋設される外管の内部に設けられており、その下部において外管と連通する。内管の断面形状としては、例えば、正方形、長方形、円形等各種形状を挙げることができるが、円形であることが好ましい。
(Inner tube)
The inner pipe in the geothermal recovery device of the present invention is provided inside the outer pipe buried in the ground, and communicates with the outer pipe at the lower portion thereof. Examples of the cross-sectional shape of the inner tube include various shapes such as a square, a rectangle, and a circle, but a circular shape is preferable.

内管の径としては、例えば、10〜400mmであり、10〜200mmが好ましく、12〜150mmがより好ましく、15〜50mmがさらに好ましい。また、内管の容積と内管を除く外管の容積との比としては、加熱用流体を効率よく加熱できる点から、1:1.5〜100が好ましく、1:2〜80がより好ましく、1:20〜50がさらに好ましい。 The diameter of the inner tube is, for example, 10 to 400 mm, preferably 10 to 200 mm, more preferably 12 to 150 mm, still more preferably 15 to 50 mm. The ratio of the volume of the inner pipe to the volume of the outer pipe excluding the inner pipe is preferably 1: 1.5 to 100, more preferably 1: 2 to 80, from the viewpoint of efficiently heating the heating fluid. , 1: 20-50 is even more preferred.

また、内管は、全部が地中に埋設されるものであってもよいが、一部が地上に設けられているものであってもよい。すなわち、内管が地中から地上に亘って設けられるものであってもよい。 Further, the inner pipe may be entirely buried in the ground, but may be partially provided on the ground. That is, the inner pipe may be provided from the ground to the ground.

内管は、上記のように、その下部において外管と互いに連通するものであるが、その連通形態としては、例えば、内管の底面が開放されたものや、内管の下部に外管と連通する連通開口を有している形態が挙げられる。連通開口は、内管の底部及び/又は側部に設けることができる。具体的に、例えば、内管の閉塞された底部に孔及び/又はスリットを有する形態や、内管の下部側部に孔及び/又はスリットを有する形態(底部は閉塞又は開放)や、内管の閉塞された底部及び下部側部に孔及び/又はスリットを有する形態を挙げることができ、内管の底部が閉塞されると共に、内管の下部側部に孔及び/又はスリットを有する形態が好ましい。内管の底部を閉塞し、下部側部に孔及び/又はスリットを形成して流体を流通させることにより、内管内に汚物が流入することを防止できる。内管の下部側部に孔及び/又はスリットを有する形態の場合、孔及び/又はスリットは、例えば、内管の下端から0.5〜5mの範囲内に設けられていることが好ましく、0.8〜3mの範囲内に設けられていることがより好ましい。これにより、最も高温となる最深部(外管の下端内部)の加熱用流体を回収することができる。また、高熱の下部の耐久性を高めることができ、内管の変形を防止することができる。さらに、外管の底部に溜まった汚物の内管への流入をより防止することができる。 As described above, the inner pipe communicates with the outer pipe at the lower portion thereof, and the communication form thereof includes, for example, an inner pipe having an open bottom surface or an outer pipe at the lower portion of the inner pipe. Examples thereof include a form having a communication opening for communication. Communication openings can be provided at the bottom and / or sides of the inner tube. Specifically, for example, a form having a hole and / or a slit in the closed bottom of the inner tube, a form having a hole and / or a slit in the lower side of the inner tube (the bottom is closed or open), or an inner tube. The form having a hole and / or a slit in the closed bottom and the lower side of the inner pipe can be mentioned, and the form having a hole and / or a slit in the lower side of the inner pipe while the bottom of the inner pipe is closed can be mentioned. preferable. By closing the bottom of the inner pipe and forming a hole and / or a slit in the lower side to allow the fluid to flow, it is possible to prevent filth from flowing into the inner pipe. In the case of a form having a hole and / or a slit in the lower side portion of the inner pipe, the hole and / or the slit is preferably provided within a range of 0.5 to 5 m from the lower end of the inner pipe, for example, 0. It is more preferable that it is provided within the range of .8 to 3 m. As a result, the heating fluid in the deepest part (inside the lower end of the outer pipe), which has the highest temperature, can be recovered. In addition, the durability of the lower part of high heat can be enhanced, and the deformation of the inner pipe can be prevented. Further, it is possible to further prevent the inflow of the filth accumulated at the bottom of the outer pipe into the inner pipe.

また、内管の下端は、地熱流体の貯留層(高温部分)に位置することが好ましく、設置場所にもよるが、例えば、外管の内部底面から0〜150mの範囲に位置することが好ましく、外管の内部底面から0〜80mの範囲に位置することがより好ましく、0〜10mの範囲に位置することがさらに好ましく、0〜5mの範囲に位置することが特に好ましく、0を超えて30cm以下の範囲に位置することが最も好ましい。これにより、最も高温となる最深部(外管の下端内部)の加熱用流体を回収することができる。また、内管の下端を外管の内部底面から少し離して設けることにより、高温で内管が伸びた場合にも、内管が破損することを防止することができ、特に内管の径が小さい場合に有効である。 Further, the lower end of the inner pipe is preferably located in the storage layer (high temperature portion) of the geothermal fluid, and although it depends on the installation location, for example, it is preferably located in the range of 0 to 150 m from the inner bottom surface of the outer pipe. , It is more preferably located in the range of 0 to 80 m from the inner bottom surface of the outer pipe, further preferably located in the range of 0 to 10 m, particularly preferably located in the range of 0 to 5 m, and exceed 0. Most preferably, it is located in a range of 30 cm or less. As a result, the heating fluid in the deepest part (inside the lower end of the outer pipe), which has the highest temperature, can be recovered. Further, by providing the lower end of the inner pipe slightly away from the inner bottom surface of the outer pipe, it is possible to prevent the inner pipe from being damaged even when the inner pipe is stretched at a high temperature, and in particular, the diameter of the inner pipe is increased. It is effective when it is small.

本発明の内管は、その下部を除く部分に断熱部を有している。断熱部は、内管自体の一部が断熱構造となった構成であってもよく、内管の周囲に断熱部材を設けた構成であってもよい。内管自体の一部が断熱構造となった構成としては、例えば、管の一部が断熱二重構造となったものや、管の一部が断熱性材料から構成されるものを挙げることができる。また、内管の周囲に設けられる断熱部材としては、例えば、グラスウール、耐熱性発泡ポリスチレン、耐熱性発泡ウレタン等を挙げることができる。 The inner pipe of the present invention has a heat insulating portion except for the lower portion thereof. The heat insulating portion may have a structure in which a part of the inner pipe itself has a heat insulating structure, or may have a structure in which a heat insulating member is provided around the inner pipe. Examples of the structure in which a part of the inner pipe itself has a heat insulating structure include a structure in which a part of the pipe has a heat insulating double structure and a structure in which a part of the pipe is made of a heat insulating material. it can. In addition, examples of the heat insulating member provided around the inner pipe include glass wool, heat-resistant expanded polystyrene, and heat-resistant urethane foam.

上記内管の断熱部は、地中温度が100℃以下の範囲に設けられていることが好ましく、120℃以下の範囲に設けられていることがより好ましい。これにより、加熱用流体が外管から流入して内管から地上に流出する方式の場合、周囲の外管を流れるより低温の流体からの伝熱を遮断し、内管を流れる流体の温度低下を抑制することができる。また、加熱用流体が内管から流入して外管から地上に流出する方式の場合、内管を流れるより低温の流体からの伝熱を遮断し、外管を流れる流体の温度低下を抑制することができる。例えば、加熱用流体を100℃以上に保つことが可能となることから、熱媒体に適した気体の状態で回収することも可能となる。 The heat insulating portion of the inner pipe is preferably provided in a range where the underground temperature is 100 ° C. or lower, and more preferably 120 ° C. or lower. As a result, in the case of a method in which the heating fluid flows in from the outer pipe and flows out from the inner pipe to the ground, heat transfer from a lower temperature fluid flowing through the surrounding outer pipe is blocked, and the temperature of the fluid flowing through the inner pipe is lowered. Can be suppressed. In addition, in the case of the method in which the heating fluid flows in from the inner pipe and flows out from the outer pipe to the ground, heat transfer from the lower temperature fluid flowing through the inner pipe is blocked, and the temperature drop of the fluid flowing through the outer pipe is suppressed. be able to. For example, since the heating fluid can be maintained at 100 ° C. or higher, it can be recovered in a gas state suitable for a heat medium.

内管の断熱部以外の材料としては、熱伝導性を有するものであれば特に制限されるものではなく、例えば、鉄、ステンレス鋼、炭素鋼を挙げることができ、熱伝導性、耐久性、コスト等の点から、ステンレス鋼が好ましい。 The material other than the heat insulating portion of the inner pipe is not particularly limited as long as it has thermal conductivity, and examples thereof include iron, stainless steel, and carbon steel, which have thermal conductivity and durability. Stainless steel is preferable from the viewpoint of cost and the like.

内管の下部(断熱部を有していない部分)の長さとしては、地中温度が100℃以上(好ましくは120℃以上、より好ましくは150℃以上)の地熱流体の貯留層(高温部分)の範囲内で適宜決定することができる。その長さとしては、例えば、1〜200mである。長さの上限は、地熱流体の貯留層に存在する外管の長さに依存する。一方、長さの下限は、下部側部に連通開口を設ける領域を確保する長さがあればよい。内管の下部の長さが長いものほど、加熱用流体の地熱流体の貯留層からの熱を加熱用流体が吸収できることから、高温の加熱用流体を回収できる傾向にあるが、短いほど、ばらつきのない安定した温度の加熱用流体を回収することができる傾向にある。したがって、内管下部の長さとしては、5〜70m程度が好ましく、10〜60m程度がより好ましい。 The length of the lower part of the inner pipe (the part that does not have a heat insulating part) is a reservoir of geothermal fluid (high temperature part) with an underground temperature of 100 ° C or higher (preferably 120 ° C or higher, more preferably 150 ° C or higher). ) Can be determined as appropriate. The length is, for example, 1 to 200 m. The upper limit of length depends on the length of the outer tube present in the geothermal fluid reservoir. On the other hand, the lower limit of the length may be a length that secures an area for providing a communication opening on the lower side portion. The longer the length of the lower part of the inner pipe, the more the heating fluid can absorb the heat from the geothermal fluid reservoir of the heating fluid, so the higher temperature heating fluid tends to be recovered. There is a tendency to be able to recover a heating fluid with a stable temperature. Therefore, the length of the lower part of the inner pipe is preferably about 5 to 70 m, more preferably about 10 to 60 m.

内管の上端は、地上において流体を流入又は流出可能な流入出口を有している。この流入出口は、流体を循環させるための循環ポンプや、熱交換器等の地熱発電システムの一部等に接続される。 The upper end of the inner pipe has an inflow port through which a fluid can flow in or out on the ground. This inflow port is connected to a circulation pump for circulating a fluid, a part of a geothermal power generation system such as a heat exchanger, or the like.

また、本発明の地熱回収装置においては、加熱用流体が内管から流入して外管から地上に流出する方式の場合、外管が、地中温度が100℃以下の範囲に断熱部を有していることが好ましい。これにより、加熱された流体が外管を通る(地上に流出させる)際、低温の地中からの伝熱による温度低下を抑制することができる。外管の断熱部の構成は、内管の断熱部と同様である。 Further, in the geothermal recovery device of the present invention, in the case of the method in which the heating fluid flows in from the inner pipe and flows out from the outer pipe to the ground, the outer pipe has a heat insulating portion in the range where the underground temperature is 100 ° C. or less. It is preferable to do so. As a result, when the heated fluid passes through the outer pipe (flows out to the ground), it is possible to suppress a temperature drop due to heat transfer from the low temperature underground. The structure of the heat insulating portion of the outer pipe is the same as that of the heat insulating portion of the inner pipe.

続いて、上述した本発明の地熱回収装置を用いた地熱発電システムについて説明する。
本発明の地熱発電システムは、上述した地熱回収装置と、地熱回収装置から流出した流体を利用して発電する発電機とを備えている。
Subsequently, a geothermal power generation system using the above-mentioned geothermal recovery device of the present invention will be described.
The geothermal power generation system of the present invention includes the above-mentioned geothermal recovery device and a generator that generates power by using the fluid flowing out from the geothermal recovery device.

本発明の地熱発電システムとしては、加熱用流体を発電に直接利用する方式や、加熱用流体を発電に間接的に利用するいわゆるバイナリー方式等の種々の地熱発電に採用することができる。具体的に例えば、加熱用流体を発電に直接利用する方式を採用する場合、本発明の地熱発電システムは、上述した地熱回収装置と、地熱回収装置から流出した流体によりタービンを回転させて発電する発電機とを備えている発電システムである。また、バイナリー方式を採用する場合、本発明の地熱発電システムは、上述した地熱回収装置と、地熱回収装置から流出した流体によって加熱された作動用流体によりタービンを回転させて発電する発電機とを備えている発電システムである。 The geothermal power generation system of the present invention can be adopted for various geothermal power generation methods such as a method in which a heating fluid is directly used for power generation and a so-called binary method in which a heating fluid is indirectly used for power generation. Specifically, for example, when adopting a method in which a heating fluid is directly used for power generation, the geothermal power generation system of the present invention generates electricity by rotating a turbine with the above-mentioned geothermal recovery device and the fluid flowing out of the geothermal recovery device. It is a power generation system equipped with a generator. Further, when the binary method is adopted, the geothermal power generation system of the present invention comprises the above-mentioned geothermal power recovery device and a generator that rotates a turbine by a working fluid heated by a fluid flowing out from the geothermal recovery device to generate electricity. It is a power generation system equipped.

以下、図面を用いて本発明の地熱回収装置の実施形態を具体的に説明するが、本発明はこれらの実施形態に制限されるものではない。 Hereinafter, embodiments of the geothermal recovery device of the present invention will be specifically described with reference to the drawings, but the present invention is not limited to these embodiments.

ここで、図1は、本発明の第1の実施形態に係る地熱回収装置を説明するための概略断面図である。図2は、本発明の第2の実施形態に係る地熱回収装置を説明するための概略断面図である。図3は、本発明の第3の実施形態に係る地熱回収装置を説明するための概略断面図である。 Here, FIG. 1 is a schematic cross-sectional view for explaining the geothermal recovery device according to the first embodiment of the present invention. FIG. 2 is a schematic cross-sectional view for explaining the geothermal recovery device according to the second embodiment of the present invention. FIG. 3 is a schematic cross-sectional view for explaining the geothermal recovery device according to the third embodiment of the present invention.

図1に示すように、本発明の第1の実施形態に係る地熱回収装置10は、地中に埋設され下部において互いに連通する外管12と内管14とを備えている。地熱回収装置10は、加熱用流体が外管12から内管14に流れる方式の装置である。 As shown in FIG. 1, the geothermal recovery device 10 according to the first embodiment of the present invention includes an outer pipe 12 and an inner pipe 14 which are buried in the ground and communicate with each other at the lower part. The geothermal recovery device 10 is a device in which a heating fluid flows from the outer pipe 12 to the inner pipe 14.

外管12は、例えば、内径200mm程度、地上部からの長さ(深さ)450m程度の地上から地熱帯(高温部)まで延びるステンレス鋼製の円筒体である。外管12は、底部及び側部が閉塞されており、上端に流入口16を有している。流入口16は、地熱回収装置10内に流体を循環させるための循環ポンプ18等に接続されている。また、地中の外管12の周囲は、コンクリート材20で覆われている。 The outer pipe 12 is, for example, a stainless steel cylinder extending from the ground to the tropics (high temperature part) having an inner diameter of about 200 mm and a length (depth) of about 450 m from the above-ground part. The outer pipe 12 has a bottom and a side closed, and has an inflow port 16 at the upper end. The inflow port 16 is connected to a circulation pump 18 or the like for circulating a fluid in the geothermal recovery device 10. Further, the periphery of the outer pipe 12 in the ground is covered with the concrete material 20.

内管14は、外管12の内部に設けられており、地上から地熱帯(高温部)まで延びる円筒体である。内管14は、内径35mm程度であって、その上部から中央部(例えば400m程度)が断熱二重管22で構成されている(断熱部)。また、これに続く下部の底部までの50m程度が、ステンレス鋼製の鋼管24で構成される。 The inner pipe 14 is provided inside the outer pipe 12 and is a cylindrical body extending from the ground to the tropics (high temperature portion). The inner pipe 14 has an inner diameter of about 35 mm, and a central portion (for example, about 400 m) from the upper portion thereof is composed of a heat insulating double pipe 22 (heat insulating portion). Further, about 50 m to the bottom of the lower portion following this is composed of a steel pipe 24 made of stainless steel.

断熱二重管22は、少なくとも地上から地中温度が100℃以下の範囲(低温部、中温部)に設けられており、この範囲の内管14の内外における伝熱を遮断することができる。鋼管24は、地中温度が100℃以上の範囲(高温部)に設けられ、高い熱伝導性を有することから、この範囲の内管14は、外部からの熱が伝わり易くなっている。 The heat insulating double pipe 22 is provided at least in a range (low temperature part, medium temperature part) where the underground temperature is 100 ° C. or less from the ground, and can block heat transfer inside and outside the inner pipe 14 in this range. Since the steel pipe 24 is provided in a range where the underground temperature is 100 ° C. or higher (high temperature portion) and has high thermal conductivity, the inner pipe 14 in this range can easily transfer heat from the outside.

内管14の下端は、底面が閉塞されており、外管12の内部底面26から10〜20cm程度上方に設けられている。また、内管14は、その下部側部の1m程度の範囲(下端から0.5〜1.5mの範囲)に外管12と連通する複数の孔28を有している。また、内管14は、その上端に流出口30を有している。流出口30は、地熱回収装置10の外部の発電機32等の発電システムに接続されている。 The bottom surface of the lower end of the inner pipe 14 is closed, and is provided about 10 to 20 cm above the inner bottom surface 26 of the outer pipe 12. Further, the inner pipe 14 has a plurality of holes 28 communicating with the outer pipe 12 in a range of about 1 m (a range of 0.5 to 1.5 m from the lower end) on the lower side thereof. Further, the inner pipe 14 has an outlet 30 at its upper end. The outlet 30 is connected to a power generation system such as a generator 32 outside the geothermal recovery device 10.

次に、第2の実施形態に係る地熱回収装置34について説明する。なお、上記第1の実施形態に係る地熱回収装置10と同様の構成の部材については、同一符号を付して説明を省略する。本実施形態においては、内管36の下端の底面が開放され、内管36の下端が外管38の内部底面に近接していない点で上記実施例と異なる。 Next, the geothermal recovery device 34 according to the second embodiment will be described. The members having the same configuration as the geothermal recovery device 10 according to the first embodiment are designated by the same reference numerals, and the description thereof will be omitted. The present embodiment is different from the above embodiment in that the bottom surface of the lower end of the inner pipe 36 is opened and the lower end of the inner pipe 36 is not close to the inner bottom surface of the outer pipe 38.

図2に示すように、本発明の第2の実施形態に係る地熱回収装置34は、内管36を備えている。内管36は、その下部(断熱二重管以外の部分)が、例えば長さ11m程度のステンレス鋼製の鋼管40で構成される。また、内管36の下端は、底面が開放されており、外管38の内部底面42から例えば40m程度離れた位置に設けられている。 As shown in FIG. 2, the geothermal recovery device 34 according to the second embodiment of the present invention includes an inner pipe 36. The lower portion of the inner pipe 36 (a portion other than the heat insulating double pipe) is composed of, for example, a stainless steel pipe 40 having a length of about 11 m. The lower end of the inner pipe 36 has an open bottom surface, and is provided at a position separated from the inner bottom surface 42 of the outer pipe 38 by, for example, about 40 m.

次に、第3の実施形態に係る地熱回収装置44について説明する。なお、上記第1の実施形態に係る地熱回収装置10と同様の構成の部材については、同一符号を付して説明を省略する。本実施形態においては、外管46が、地中温度が100℃以下の範囲に断熱部48を有しており、加熱用流体が内管14から流入して外管46から地上に流出する方式である点で上記第1の実施例と異なる。 Next, the geothermal recovery device 44 according to the third embodiment will be described. The members having the same configuration as the geothermal recovery device 10 according to the first embodiment are designated by the same reference numerals, and the description thereof will be omitted. In the present embodiment, the outer pipe 46 has a heat insulating portion 48 in a range where the underground temperature is 100 ° C. or less, and the heating fluid flows in from the inner pipe 14 and flows out from the outer pipe 46 to the ground. This is different from the first embodiment.

図3に示すように、本発明の第3の実施形態に係る地熱回収装置44は、外管46を備えている。外管46は、その上部から中央部(例えば400m程度)が断熱二重管48で構成されている(断熱部)。また、これに続く下部の底部までの50m程度が、ステンレス鋼製の鋼管50で構成される。これにより、外管を流れる地熱により加熱された流体の低温の地下部からの温度低下を抑制して効率的に回収することができる。 As shown in FIG. 3, the geothermal recovery device 44 according to the third embodiment of the present invention includes an outer pipe 46. The outer pipe 46 has a heat insulating double pipe 48 at the center (for example, about 400 m) from the upper part (heat insulating part). Further, about 50 m to the bottom of the lower portion following this is composed of a steel pipe 50 made of stainless steel. As a result, it is possible to suppress the temperature drop of the fluid heated by the geothermal heat flowing through the outer pipe from the low temperature underground portion and efficiently recover the fluid.

上述した本発明の地熱回収装置を備えた地熱発電システムについて、図面を参照して具体的に説明する。図4は、本発明の地熱回収装置を備える加熱用流体を発電に直接利用する方式の地熱発電システムの構成の概略を示す説明図である。図5は、本発明の地熱回収装置を備えるいわゆるバイナリー方式地熱発電システムの構成の概略を示す説明図である。 The geothermal power generation system provided with the geothermal recovery device of the present invention described above will be specifically described with reference to the drawings. FIG. 4 is an explanatory diagram showing an outline of a configuration of a geothermal power generation system in which a heating fluid provided with the geothermal recovery device of the present invention is directly used for power generation. FIG. 5 is an explanatory diagram showing an outline of the configuration of a so-called binary type geothermal power generation system including the geothermal recovery device of the present invention.

図4に示すように、本発明の地熱発電システム100は、地熱回収装置10と、セパレータと、タービンと、発電機と、復水器と、貯水槽と、循環ポンプとを備えている。本発明の地熱発電システム100は、地熱回収装置10により回収される地熱により加熱された加熱用流体によりタービンを回転させて発電する。 As shown in FIG. 4, the geothermal power generation system 100 of the present invention includes a geothermal power recovery device 10, a separator, a turbine, a generator, a condenser, a water storage tank, and a circulation pump. The geothermal power generation system 100 of the present invention generates electricity by rotating a turbine with a heating fluid heated by the geothermal heat recovered by the geothermal recovery device 10.

図5に示すように、本発明の地熱発電システム200は、いわゆるバイナリー方式のシステムであり、地熱回収装置10の加熱用流体が循環する加熱用流体回路と、かかる加熱用流体により加熱され、タービンを回転させる作動用流体が循環する作動用流体回路備えている。本発明の地熱発電システム200においては、蒸発器により熱交換が行われ、例えば、加熱用流体よりも沸点の低い作動用流体を蒸気とし、タービンを回転させて発電を行う。 As shown in FIG. 5, the geothermal power generation system 200 of the present invention is a so-called binary system, and is heated by a heating fluid circuit in which the heating fluid of the geothermal recovery device 10 circulates and a turbine heated by the heating fluid. It is equipped with a working fluid circuit in which the working fluid that rotates is circulated. In the geothermal power generation system 200 of the present invention, heat exchange is performed by an evaporator. For example, an operating fluid having a boiling point lower than that of a heating fluid is used as steam, and a turbine is rotated to generate power.

次に、本発明の地熱回収装置を用いて、地熱回収試験を行った。
試験においては、本発明の装置として、断熱部(断熱二重管)の下方に、底部が閉塞した長さ18mの内管(鋼管)を、その下端が外管の内部底面から15cm程度離れるように配置し、内管の側部の下端から0.5〜5mの範囲内に連通開口を設けた装置を用いた。また、断熱部の下方に、底部が開放した長さ9mの内管(鋼管)を配置した同様の装置(内管の下端は、外管の底面から9mの高さに位置する)を用いた。
Next, a geothermal recovery test was conducted using the geothermal recovery device of the present invention.
In the test, as the device of the present invention, an inner pipe (steel pipe) having a length of 18 m with the bottom closed is placed below the heat insulating portion (heat insulating double pipe) so that the lower end thereof is separated from the inner bottom surface of the outer pipe by about 15 cm. A device was used in which a communication opening was provided within a range of 0.5 to 5 m from the lower end of the side portion of the inner pipe. In addition, a similar device (the lower end of the inner pipe is located at a height of 9 m from the bottom surface of the outer pipe) was used in which an inner pipe (steel pipe) having an open bottom and a length of 9 m was arranged below the heat insulating portion. ..

前者の地熱回収装置では、回収された加熱流体(水)の出口温度が87〜90℃であったのに対して、後者の装置では、回収された加熱流体(水)の出口温度は83〜84℃であり、両者とも高温の流体を回収できたものの、前者の装置の方が、回収効率は非常によかった。 In the former geothermal recovery device, the outlet temperature of the recovered heating fluid (water) was 87 to 90 ° C, whereas in the latter device, the outlet temperature of the recovered heating fluid (water) was 83 to Although the temperature was 84 ° C. and both were able to recover the high-temperature fluid, the recovery efficiency of the former device was much better.

本発明の地熱回収装置は、地熱発電の地熱回収に用いることができるから、産業上有用である。 Since the geothermal recovery device of the present invention can be used for geothermal recovery of geothermal power generation, it is industrially useful.

10 地熱回収装置
12 外管
14 内管
16 流入口
18 循環ポンプ
20 コンクリート材
22 断熱二重管(断熱部)
24 鋼管
26 内部底面
28 孔
30 流出口
32 発電機
34 地熱回収装置
36 内管
38 外管
40 鋼管
42 内部底面
44 地熱回収装置
46 外管
48 断熱二重管(断熱部)
50 鋼管
100 地熱発電システム
200 地熱発電システム

10 Geothermal recovery device 12 Outer pipe 14 Inner pipe 16 Inflow port 18 Circulation pump 20 Concrete material 22 Insulated double pipe (insulated part)
24 Steel pipe 26 Inner bottom surface 28 Hole 30 Outlet 32 Generator 34 Geothermal recovery device 36 Inner pipe 38 Outer pipe 40 Steel pipe 42 Inner bottom surface 44 Geothermal recovery device 46 Outer pipe 48 Insulated double pipe (insulation part)
50 Steel pipe 100 Geothermal power generation system 200 Geothermal power generation system

Claims (11)

地中に埋設され下部において互いに連通する外管と内管とを備え、地上から流入する流体を外管及び内管を通過する間に地熱により加熱し、該加熱した流体を再び地上に流出させて地熱を回収する地熱回収装置であって、
前記内管が、その下部を除く部分に断熱部を有していることを特徴とする地熱回収装置。
It is equipped with an outer pipe and an inner pipe that are buried in the ground and communicate with each other at the bottom, and the fluid flowing in from the ground is heated by geothermal heat while passing through the outer pipe and the inner pipe, and the heated fluid is discharged to the ground again. It is a geothermal recovery device that recovers geothermal heat.
A geothermal recovery device characterized in that the inner pipe has a heat insulating portion in a portion other than the lower portion thereof.
内管が、地中温度が100℃以下の範囲に断熱部を有していることを特徴とする請求項1記載の地熱回収装置。 The geothermal recovery device according to claim 1, wherein the inner pipe has a heat insulating portion in a range where the underground temperature is 100 ° C. or lower. 内管が、その下部側部に、外管と連通する連通開口を有していることを特徴とする請求項1又は2記載の地熱回収装置。 The geothermal recovery device according to claim 1 or 2, wherein the inner pipe has a communication opening for communicating with the outer pipe on the lower side portion thereof. 内管の底部が閉塞されていることを特徴とする請求項3記載の地熱回収装置。 The geothermal recovery device according to claim 3, wherein the bottom of the inner pipe is closed. 下部側部の連通開口が、内管の下端から0.5〜5mの範囲内に設けられていることを特徴とする請求項3又は4記載の地熱回収装置。 The geothermal recovery device according to claim 3 or 4, wherein a communication opening on the lower side is provided within a range of 0.5 to 5 m from the lower end of the inner pipe. 内管の下端が、外管の内部底面から0〜10mの範囲に位置することを特徴とする請求項1〜5のいずれか記載の地熱回収装置。 The geothermal recovery device according to any one of claims 1 to 5, wherein the lower end of the inner pipe is located in a range of 0 to 10 m from the inner bottom surface of the outer pipe. 内管の下端が、外管の内部底面から0を超えて30cm以下の範囲に位置することを特徴とする請求項6記載の地熱回収装置。 The geothermal recovery device according to claim 6, wherein the lower end of the inner pipe is located in a range of more than 0 and 30 cm or less from the inner bottom surface of the outer pipe. 地上から流入する流体が内管を通って外管から地上に流出する地熱回収装置であって、
外管が、地中温度が100℃以下の範囲に断熱部を有していることを特徴とする請求項1〜7のいずれか記載の地熱回収装置。
A geothermal recovery device in which fluid flowing in from the ground flows out from the outer pipe to the ground through the inner pipe.
The geothermal recovery device according to any one of claims 1 to 7, wherein the outer pipe has a heat insulating portion in a range where the underground temperature is 100 ° C. or less.
請求項1〜8のいずれか記載の地熱回収装置と、
前記地熱回収装置から流出した流体を利用して発電する発電機と、
を備えたことを特徴とする地熱発電システム。
The geothermal recovery device according to any one of claims 1 to 8.
A generator that uses the fluid flowing out of the geothermal recovery device to generate electricity,
A geothermal power generation system characterized by being equipped with.
発電機が、地熱回収装置から流出した流体によりタービンを回転させて発電することを特徴とする請求項9に記載の地熱発電システム。 The geothermal power generation system according to claim 9, wherein the generator rotates a turbine with a fluid flowing out of the geothermal recovery device to generate electricity. 発電機が、地熱回収装置から流出した流体によって加熱された作動用流体によりタービンを回転させて発電することを特徴とする請求項9に記載の地熱発電システム。 The geothermal power generation system according to claim 9, wherein the generator rotates a turbine with an operating fluid heated by a fluid flowing out of the geothermal recovery device to generate electricity.
JP2019129202A 2019-03-07 2019-07-11 Geothermal recovery equipment Active JP7315952B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019041246 2019-03-07
JP2019041246A JP6587118B1 (en) 2019-03-07 2019-03-07 Geothermal recovery device

Publications (2)

Publication Number Publication Date
JP2020148200A true JP2020148200A (en) 2020-09-17
JP7315952B2 JP7315952B2 (en) 2023-07-27

Family

ID=68159691

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019041246A Active JP6587118B1 (en) 2019-03-07 2019-03-07 Geothermal recovery device
JP2019129202A Active JP7315952B2 (en) 2019-03-07 2019-07-11 Geothermal recovery equipment

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019041246A Active JP6587118B1 (en) 2019-03-07 2019-03-07 Geothermal recovery device

Country Status (1)

Country Link
JP (2) JP6587118B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114876414B (en) * 2022-04-20 2024-07-09 中国地质科学院水文地质环境地质研究所 Efficient extraction equipment for deep geothermal exploitation well

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5452349A (en) * 1977-09-30 1979-04-24 Ushio Nagase Natural steam power application system
DE202004007567U1 (en) * 2004-04-26 2004-09-30 Amann, Armin, Ing. Geothermal sonde of pipe and inside tube uses roll-up corrugated pipe or plastics forming annulus with metal inner tube with enclosed temperature compensator for heat exchange technology.
JP2007139370A (en) * 2005-11-22 2007-06-07 Mitsui Eng & Shipbuild Co Ltd Underground heat exchanger
US20130192816A1 (en) * 2012-01-27 2013-08-01 Deep Well Power, LLC Single Well, Self-Flowing, Geothermal System for Energy Extraction
JP2014084857A (en) * 2012-10-28 2014-05-12 Yasuharu Kawabata Binary power generation system
JP2015180825A (en) * 2012-01-10 2015-10-15 ジャパン・ニュー・エナジー株式会社 Ground heat exchanger and geothermal power generator
KR101691189B1 (en) * 2016-09-22 2016-12-30 이은석 Heating and cooling system using geothermal pipe

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5791836B1 (en) * 2015-02-16 2015-10-07 俊一 田原 Boiling water type geothermal exchanger and boiling water type geothermal power generator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5452349A (en) * 1977-09-30 1979-04-24 Ushio Nagase Natural steam power application system
DE202004007567U1 (en) * 2004-04-26 2004-09-30 Amann, Armin, Ing. Geothermal sonde of pipe and inside tube uses roll-up corrugated pipe or plastics forming annulus with metal inner tube with enclosed temperature compensator for heat exchange technology.
JP2007139370A (en) * 2005-11-22 2007-06-07 Mitsui Eng & Shipbuild Co Ltd Underground heat exchanger
JP2015180825A (en) * 2012-01-10 2015-10-15 ジャパン・ニュー・エナジー株式会社 Ground heat exchanger and geothermal power generator
US20130192816A1 (en) * 2012-01-27 2013-08-01 Deep Well Power, LLC Single Well, Self-Flowing, Geothermal System for Energy Extraction
JP2014084857A (en) * 2012-10-28 2014-05-12 Yasuharu Kawabata Binary power generation system
KR101691189B1 (en) * 2016-09-22 2016-12-30 이은석 Heating and cooling system using geothermal pipe

Also Published As

Publication number Publication date
JP6587118B1 (en) 2019-10-09
JP7315952B2 (en) 2023-07-27

Similar Documents

Publication Publication Date Title
ES2955239T3 (en) Geothermal energy recovery system with ladder structure using gravity assisted heat conduit without liquid pool effect
JP2012500925A (en) Built-in underground geothermal generator
KR101239773B1 (en) Geothermal power generation system and method using heat exchange of working gas and molten salt
JP2011524484A (en) System and method for acquiring geothermal heat for generating electricity from a drilled well
KR101061494B1 (en) Heat exchange system using an earth heat
KR101322470B1 (en) Geothermal heat exchanger and heat exchange system using the same
JP6831655B2 (en) Geothermal power generation system with triple pipes
KR20200001038A (en) Semi open type geothemal system
KR101431193B1 (en) Heat exchange device using geothermal
JP2020148200A (en) Geothermal heat recovery device
CN106813411B (en) Waste geothermal well recycling system and construction method thereof
JP2014098541A (en) Solar heat collection rod
KR20100028893A (en) Greenhouse heating apparatus using the waste heat
KR101239777B1 (en) Geothermal power generation system using heat exchange of exhaust gas and molten salt
KR101861092B1 (en) Heat pump system having underground heat reservoir pipes
JP2017227130A (en) Independence arrangement type geothermal recovery device and geothermal power generation system with the same
KR101614349B1 (en) Cooling and heating system using ground source
KR101691189B1 (en) Heating and cooling system using geothermal pipe
JP2018189348A (en) Heat exchange device using exhaust gas
KR101696822B1 (en) Binary rankine cycle system
JP5388131B2 (en) Solar thermal underground thermal storage device using solar heat
KR102314799B1 (en) Coaxial type geothermal heat exchanging system
JP2013032764A (en) Method and apparatus for obtaining steam by injecting water into underground heat source
KR101514673B1 (en) Closed cycle geothermal power plant using the flow
KR101105161B1 (en) Solar heat collecting device using heat pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230707

R150 Certificate of patent or registration of utility model

Ref document number: 7315952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150