JPH05118203A - Power generation control device in exhaust heat utilization system - Google Patents

Power generation control device in exhaust heat utilization system

Info

Publication number
JPH05118203A
JPH05118203A JP30376391A JP30376391A JPH05118203A JP H05118203 A JPH05118203 A JP H05118203A JP 30376391 A JP30376391 A JP 30376391A JP 30376391 A JP30376391 A JP 30376391A JP H05118203 A JPH05118203 A JP H05118203A
Authority
JP
Japan
Prior art keywords
signal
medium
temperature
evaporator
exhaust heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30376391A
Other languages
Japanese (ja)
Inventor
Junko Kanbe
純子 神戸
Akio Wakao
明男 若尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP30376391A priority Critical patent/JPH05118203A/en
Publication of JPH05118203A publication Critical patent/JPH05118203A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the compensation control for a secondary delay in advance in relation to a load change by detecting the temperature pressure and the like of respective parts in the respective systems of exhaust heat, medium and cooling and adjusting the respective flow rate after a comparative calculation with respective set values. CONSTITUTION:In relation to an electric power load setting, a flow rate adjust valve 16 is controlled by the result added/subtracted a bias signal (a) based on the exhaust heat temperature deviation between the entrance/exit of an evaporator 5 and a bias signal (b) based on the medium temperature deviation between the entrance of a hotwell tank 11/the exit of the evaporator 5 to/from the deviation signal between the set value and the exhaust heat flow rate. In relation to the gas pressure setting of a medium, a pressure adjust valve 24 is controlled by the result added/subtracted a bias signal (c) based on the exhaust heat flow rate deviation to/from the deviation signal between the set value and the medium pressure of the evaporator 5. In relation to a medium level setting, a level adjust valve 23 is controlled by the result added/subtracted the signal (c) to/from the deviation signal between the set value and the level of the evaporator 5. Further in relation to the medium temperature setting, a flow rate control valve 25 is controlled by the result added/subtracted the signal (c) to/from a bias signal (d) based on the deviation between a temperature in the tank 11 and an exhaust gas temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高温の熱水および排熱
と低沸点媒体を利用した排熱利用システム発電制御装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust heat utilization system power generation control device utilizing high temperature hot water and exhaust heat and a low boiling point medium.

【0002】[0002]

【従来の技術】一般に、排熱利用システム発電制御装置
は、産業の生産工程等で発生した排熱を利用し、この排
熱と熱交換させた低沸点媒体の蒸発器出口圧力を媒体タ
ービン発電機設定負荷に対して制御している。
2. Description of the Related Art Generally, an exhaust heat utilization system power generation control device utilizes exhaust heat generated in an industrial production process or the like, and uses the exhaust heat of the low boiling point medium exchanged with this exhaust heat to generate an outlet pressure of a medium turbine power generator. It controls for the machine set load.

【0003】この種の制御装置では、排熱温度変動に対
して、媒体流量を制御しており、また、媒体タービンの
入口圧力は媒体タービンバイパス配管系統の圧力調整弁
で制御している。次に、媒体タービン発電機の駆動に費
やした排ガスは、復水器で規定値になるように冷却水流
量を制御している。排熱利用発電プラントの電力負荷制
御では、基本的に最大電力で運転され、排熱流量、温度
変動および蒸発器の媒体の蒸発圧力等の変動により媒体
タービン発電機の出力が変動している。
In this type of control device, the medium flow rate is controlled with respect to the exhaust heat temperature fluctuation, and the inlet pressure of the medium turbine is controlled by the pressure adjusting valve of the medium turbine bypass piping system. Next, the flow rate of the cooling water is controlled so that the exhaust gas spent for driving the medium turbine generator has a specified value in the condenser. In the electric power load control of an exhaust heat utilization power plant, basically, the maximum power is operated, and the output of the medium turbine generator fluctuates due to fluctuations in the exhaust heat flow rate, temperature fluctuations, evaporation pressure of the medium in the evaporator, and the like.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
た従来の制御装置には次の問題がある。
However, the above-mentioned conventional control device has the following problems.

【0005】まず、第1に、電力負荷制御時に一次系の
排熱流量および排熱温度が変動する場合、タービン発電
機の出力は、予熱器の熱交換性能および蒸発器の性能に
大きく左右される。つまり、過渡的な排熱流量および温
度変動に対して蒸発器の媒体蒸発量のレベルが変動し、
これに伴って媒体の蒸発ガス圧力も大幅に変動する。そ
のため、媒体タービンの入口流量および圧力変動が生
じ、媒体タービン発電機の出力も大幅に変動するという
問題がある。
First, when the exhaust heat flow rate and exhaust heat temperature of the primary system fluctuate during power load control, the output of the turbine generator is greatly influenced by the heat exchange performance of the preheater and the performance of the evaporator. It In other words, the medium evaporation amount level of the evaporator fluctuates due to the transient exhaust heat flow rate and temperature fluctuation,
Along with this, the vaporized gas pressure of the medium also fluctuates significantly. Therefore, there is a problem that the inlet flow rate and pressure of the medium turbine fluctuate, and the output of the medium turbine generator fluctuates significantly.

【0006】第2に、媒体タービン発電機の負荷変動に
伴って、媒体タービンの駆動に費やした排ガスが過渡的
な流量および温度変動となり、凝縮器の2次遅れ原因に
よる媒体の冷却温度も変動する。このように、過渡的な
排熱温度および排ガス流量の変動に伴い、熱交換への媒
体流量の流量変動が生じ、予熱器、蒸発器で熱交換する
とき2次遅れ原因となって発電機の出力が変動し、制御
系が安定しないという問題がある。
Secondly, as the load of the medium turbine generator fluctuates, the exhaust gas spent for driving the medium turbine becomes a transient flow rate and temperature fluctuation, and the cooling temperature of the medium also fluctuates due to the secondary delay of the condenser. To do. In this way, with the transient changes in exhaust heat temperature and exhaust gas flow rate, the flow rate of the medium flow rate for heat exchange fluctuates, which causes a secondary delay when heat is exchanged in the preheater and the evaporator. There is a problem that the output fluctuates and the control system becomes unstable.

【0007】そこで、本発明は、排熱系統の排熱温度お
よび流量変動、媒体系統の媒体温度および流量変動によ
る熱交換器の2次遅れ原因の低減と媒体タービンの排熱
と凝縮器に供給される冷却水と熱交換するときの凝縮器
の2次遅れ要因の低減により媒体タービン発電機の出力
変動の防止を図ることができる排熱利用システム発電制
御装置を提供することを目的とする。
Therefore, the present invention reduces the cause of the secondary delay of the heat exchanger due to the exhaust heat temperature and flow rate fluctuations of the exhaust heat system, the medium temperature and flow rate fluctuations of the medium system, and supplies the exhaust heat of the medium turbine and the condenser. It is an object of the present invention to provide an exhaust heat utilization system power generation control device capable of preventing the output fluctuation of the medium turbine generator by reducing the secondary delay factor of the condenser when exchanging heat with the generated cooling water.

【0008】[0008]

【課題を解決するための手段】本発明は、高温熱水およ
び排熱が排熱ポンプにより、蒸発器および予熱器に供給
され、媒体と熱交換される排熱系統と、蒸発器で熱交換
された媒体ガスが媒体タービンに供給され、この媒体タ
ービンの排ガスが凝縮器で冷却されてホットウェルタン
クに回収され、さらに、媒体が媒体ポンプにより予熱器
および蒸発器に供給されて循環する媒体系統と、凝縮器
で媒体タービンの排ガスを冷却水で冷却させる冷却水系
統からなる発電プラントを制御する排熱利用システム発
電制御装置において、排熱系統の排熱流量を検出する流
量検出器と、蒸発器の入口の排熱温度を検出する第1の
温度検出器と、蒸発器の出口の排熱温度を検出する第2
の温度検出器と、排熱流量を調節する第1の流量調節弁
とを排熱系統に配置し、ホットウェルタンクの器内温度
を検出する第3の温度検出器と、媒体系統の蒸発器の入
口温度を検出する第4の温度検出器と、蒸発器の出口の
圧力を検出する圧力検出器と、蒸発器の出口の圧力を調
節する圧力調節弁と、蒸発器のレベルを検出するレベル
検出器と、蒸発器のレベルを調節するレベル調節弁と、
媒体タービンの排ガス温度を検出する第5の温度検出器
とを媒体系統に配置し、さらに、第2の流量調節弁を前
記冷却水系統に配置し、媒体タービンの発電機電力設定
信号を出力し、この電力設定信号と流量検出器の検出信
号との偏差を演算し、偏差信号を出力する電力設定手段
と、第1の温度検出器の検出信号と第2の温度検出器の
検出信号との差を演算し、この演算信号に基づいて第1
のバイアス信号を出力する第1のバイアス設定手段と、
第3の温度検出器の検出信号と第4の温度検出器との差
を演算し、この演算値に基づいて第2のバイアス信号を
出力する第2のバイアス設定手段と、電力設定手段の偏
差信号と前記第1のバイアス信号と第2のバイアス信号
とを加減算する第1の加減算手段と、この第1の加減算
手段の出力信号を入力して、第1の流量調節弁を開閉動
作させ排熱流量を制御するための制御信号を出力する制
御演算手段とからなる第1の制御手段と、蒸発器の媒体
圧力設定信号を出力し、この媒体圧力設定信号と圧力検
出器の検出信号との偏差を演算し、偏差信号を出力する
圧力設定手段と、第1の加減算手段の出力信号に基づい
て第3のバイアス信号を出力する第3のバイアス設定手
段と、圧力設定手段の偏差信号と第3のバイアス信号と
を加減算する第2の加減算手段と、この第2の加減算手
段の出力信号を入力して圧力調節弁を開閉動作させ媒体
圧力を制御するための制御信号を出力する制御演算手段
とからなる第2の制御手段と、蒸発器の媒体レベル設定
信号を出力し、この媒体レベル設定信号とレベル検出器
の検出信号との偏差を演算し、偏差信号を出力するレベ
ル設定手段と、このレベル設定手段の偏差信号と第3の
バイアス信号とを加減算する第3の加減算手段と、この
第3の加減算手段の出力信号を入力してレベル調節弁を
開閉動作させレベル制御をするための制御信号を出力す
る制御演算手段とからなる第3の制御手段と、ホットウ
ェルの温度設定信号を出力し、この温度設定信号と前記
第3の温度検出器の検出信号との偏差を演算し、偏差信
号を出力する温度設定手段と、第3の温度検出器の検出
信号と第5の温度検出器の検出信号との差を演算し、こ
の演算信号に基づいて第4のバイアス信号を出力する第
4のバイアス設定手段と、温度設定手段の偏差信号と第
3のバイアス信号と第4のバイアス信号とを加減算する
第4の加減算手段と、この第4の加減算手段の出力信号
を入力して第2の流量調節弁を開閉させ温度制御するた
めの制御信号を出力する制御演算手段とからなる第4の
制御手段とを設けるようにしたものである。
According to the present invention, high-temperature hot water and exhaust heat are supplied to an evaporator and a preheater by an exhaust heat pump, and an exhaust heat system for exchanging heat with a medium and a heat exchange in the evaporator. The supplied medium gas is supplied to the medium turbine, the exhaust gas of the medium turbine is cooled by the condenser and collected in the hot well tank, and the medium is supplied to the preheater and the evaporator by the medium pump and circulates. In the exhaust heat utilization system power generation control device that controls the power generation plant consisting of the cooling water system that cools the exhaust gas of the medium turbine with the cooling water by the condenser, the flow rate detector that detects the exhaust heat flow rate of the exhaust heat system, and the evaporation A first temperature detector for detecting the exhaust heat temperature at the inlet of the evaporator and a second temperature detector for detecting the exhaust heat temperature at the outlet of the evaporator
Temperature detector and a first flow rate control valve for adjusting the exhaust heat flow rate are arranged in the exhaust heat system, and a third temperature detector for detecting the temperature inside the hot well tank and an evaporator for the medium system are arranged. Temperature detector for detecting the inlet temperature of the evaporator, a pressure detector for detecting the pressure at the outlet of the evaporator, a pressure control valve for adjusting the pressure at the outlet of the evaporator, and a level for detecting the level of the evaporator A detector and a level control valve to control the level of the evaporator,
A fifth temperature detector for detecting the exhaust gas temperature of the medium turbine is arranged in the medium system, and further, a second flow rate control valve is arranged in the cooling water system to output a generator power setting signal of the medium turbine. Of the power setting means for calculating the deviation between the power setting signal and the detection signal of the flow rate detector and outputting the deviation signal, and the detection signal of the first temperature detector and the detection signal of the second temperature detector. The difference is calculated, and the first signal is calculated based on the calculated signal.
First bias setting means for outputting the bias signal of
Deviation between the power setting means and the second bias setting means that calculates the difference between the detection signal of the third temperature detector and the fourth temperature detector and outputs the second bias signal based on this calculated value. A first addition / subtraction means for adding / subtracting the signal, the first bias signal, and the second bias signal, and an output signal of the first addition / subtraction means are input to open / close the first flow rate control valve to discharge the first flow control valve. A first control means including a control calculation means for outputting a control signal for controlling the heat flow rate; and a medium pressure setting signal for the evaporator, which outputs the medium pressure setting signal and the detection signal for the pressure detector. The pressure setting means for calculating the deviation and outputting the deviation signal, the third bias setting means for outputting the third bias signal based on the output signal of the first addition / subtraction means, the deviation signal of the pressure setting means and the third Second addition and subtraction with the bias signal of 3 Evaporation control means for inputting an output signal of the second addition / subtraction means and a control calculation means for opening / closing the pressure control valve to control the medium pressure; and evaporation. Output the medium level setting signal of the container, calculate the deviation between the medium level setting signal and the detection signal of the level detector, and output the deviation signal, and the deviation signal of the level setting means and the third signal. It comprises a third addition / subtraction means for adding / subtracting the bias signal, and a control calculation means for inputting the output signal of the third addition / subtraction means to open / close the level control valve and output a control signal for level control. A third control means, a temperature setting means for outputting a temperature setting signal of the hot well, calculating a deviation between the temperature setting signal and a detection signal of the third temperature detector, and outputting a deviation signal; Three Deviation between the temperature setting means and the fourth bias setting means for calculating the difference between the detection signal of the temperature detector and the detection signal of the fifth temperature detector and outputting the fourth bias signal based on the calculated signal. A fourth adding / subtracting means for adding / subtracting the signal, the third bias signal and the fourth bias signal, and an output signal of the fourth adding / subtracting means to open and close the second flow rate control valve to control the temperature. And a fourth control means composed of a control calculation means for outputting the control signal.

【0009】[0009]

【作用】上記構成により、まず、第1の制御手段が流量
調節弁を開閉動作させ電力設定値に排熱流量が追従して
制御される。この状態で、系統のプロセスに変動が生じ
ると、排熱系統の蒸発器入口の第1の温度検出器と蒸発
器出口の第2の温度検出器との偏差信号に基づく第1の
バイアス信号と、媒体系統のホットウェルタンク器内の
第3の温度検出器と蒸発器の入口の第4の温度検出器の
偏差信号とに基づく第2のバイアス信号とが先行的に第
1の加減算手段に加えられる。これにより、蒸発器、予
熱器で熱交換するときの2次遅れ分を補償し、蒸気ター
ビン発電機の設定電力に追従して、予熱器出口の第4の
排熱流量調節弁の開度が設定値になるよう制御される。
次に、第2の制御手段が圧力調節弁を開閉動作させ圧力
設定値になるように圧力が追従して制御される。この状
態で、系統のプロセスに変動が生じると、第1の加減算
手段の出力信号に基づく第3のバイアス信号が先行的に
第2の加減算手段に加えられる。従って、蒸発器、予熱
器でガス圧力の設定値に追従して、圧力調節弁の開度が
設定値になるよう制御される。次に、第3の制御手段が
レベル調節弁を開閉動作させ、蒸発器のレベルをレベル
設定値になるように制御する。系統のプロセスに変動が
生じると、第1加減算手段の出力信号に基づく第3のバ
イアス信号が先行的に第3の加減算手段に加えられる。
従って、蒸発器、予熱器で熱交換するときの2次遅れ分
を補償し、蒸発器の媒体レベルが設定値に追従して、予
熱器入口のレベル調節弁の開度を設定値になるよう制御
される。次に、第4の制御手段が第2の流量調節弁を開
閉動作させ、ホットウェルの温度を温度設定値になるよ
うに制御する。系統のプロセスに変動が生じると、排ガ
ス温度を検出する第5の温度検出器とホットウェルタン
ク器内温度を検出する第3の温度検出器との偏差信号と
に基づく第4のバイアス信号と第3のバイアス信号とが
先行的に第4の加減算手段に加えられる。従って、媒体
冷却温度を規定値に制御し、ホットウェルタンク器内温
度を設定値になるように凝縮器入口の第2の流量調節弁
の開度が制御される。よって媒体タービンの電力負荷設
定に追従して蒸発器、予熱器、凝縮器の熱交換時の2次
遅れ分を先行的に補償し、かつ、過渡的な排熱流量およ
び温度変動、低沸点媒体流量および温度変動、冷却水温
度、冷却水流量の変動に対し安定に制御が図れる。
With the above structure, first, the first control means opens and closes the flow rate control valve to control the exhaust heat flow rate by following the power set value. In this state, when the system process fluctuates, the first bias signal based on the deviation signal between the first temperature detector at the evaporator inlet and the second temperature detector at the evaporator outlet of the exhaust heat system A second bias signal based on a third temperature detector in the hot well tank device of the medium system and a deviation signal of the fourth temperature detector at the inlet of the evaporator is preceded by the first addition / subtraction means. Added. This compensates for the secondary delay when heat is exchanged in the evaporator and the preheater, follows the set power of the steam turbine generator, and the opening degree of the fourth exhaust heat flow control valve at the preheater outlet is adjusted. It is controlled to the set value.
Next, the second control means opens and closes the pressure control valve to control the pressure so as to reach the pressure set value. In this state, when the process of the system fluctuates, the third bias signal based on the output signal of the first addition / subtraction means is added to the second addition / subtraction means in advance. Therefore, the evaporator and the preheater follow the set value of the gas pressure to control the opening of the pressure control valve to the set value. Next, the third control means opens and closes the level control valve to control the level of the evaporator to the level set value. When a variation occurs in the process of the system, the third bias signal based on the output signal of the first addition / subtraction means is added to the third addition / subtraction means in advance.
Therefore, the secondary delay when heat is exchanged by the evaporator and the preheater is compensated, the medium level of the evaporator follows the set value, and the opening of the level control valve at the preheater inlet becomes the set value. Controlled. Next, the fourth control means opens and closes the second flow rate control valve to control the temperature of the hot well to the temperature set value. When the process of the system fluctuates, a fourth bias signal and a fourth bias signal based on a deviation signal between the fifth temperature detector detecting the exhaust gas temperature and the third temperature detector detecting the temperature inside the hot well tank device The bias signal of 3 is applied to the fourth adding / subtracting means in advance. Therefore, the medium cooling temperature is controlled to a specified value, and the opening of the second flow rate control valve at the condenser inlet is controlled so that the temperature inside the hot well tank device becomes the set value. Therefore, the secondary delay of heat exchange of the evaporator, preheater, and condenser is compensated in advance by following the power load setting of the medium turbine, and the transient exhaust heat flow rate and temperature fluctuation, low boiling point medium Stable control can be achieved against fluctuations in flow rate and temperature, cooling water temperature, and cooling water flow rate.

【0010】[0010]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】図1は、本発明の一実施例を示す排熱利用
システム発電制御装置の全体系統図である。本システム
は、排熱系統1と媒体系統2と冷却水系統3とから構成
されている。
FIG. 1 is an overall system diagram of an exhaust heat utilization system power generation control device showing an embodiment of the present invention. This system comprises an exhaust heat system 1, a medium system 2, and a cooling water system 3.

【0012】排熱系統1は、高温熱水および排熱が排熱
ポンプ4により供給され、蒸発器5で媒体と熱交換され
た後、予熱器6に流れ、さらに、熱交換される。媒体系
統2は、媒体が媒体ポンプ7により予熱器6に供給さ
れ、ここで、高温熱水および排熱と熱交換がされ、さら
に、蒸発器5に供給されて高温熱水および排熱と熱交換
された媒体ガスが媒体タービン8に供給されて発電機9
を駆動させ、その後媒体ガスは、凝縮器10に流れ、冷
却水と熱交換されて媒体となりホットウェルタンク11
に回収されて循環している。さらに、媒体ガスは、所定
の条件でタービンバイパス系統12をバイパスする。冷
却系統3は、凝縮器10に冷却水を流す。なお、媒体は
フロンなどの低沸点の物体を用いている。
In the exhaust heat system 1, high-temperature hot water and exhaust heat are supplied by the exhaust heat pump 4, heat-exchanged with the medium in the evaporator 5, and then flow to the preheater 6 for further heat exchange. In the medium system 2, the medium is supplied to the preheater 6 by the medium pump 7, where heat is exchanged with the high-temperature hot water and the exhaust heat, and further, the medium is supplied to the evaporator 5 and the high-temperature hot water and the exhaust heat and the heat are exchanged. The exchanged medium gas is supplied to the medium turbine 8 so that the generator 9
And then the medium gas flows into the condenser 10 and is heat-exchanged with the cooling water to become a medium to become the hot well tank 11
Are collected and circulated. Further, the medium gas bypasses the turbine bypass system 12 under a predetermined condition. The cooling system 3 causes cooling water to flow through the condenser 10. As the medium, a substance with a low boiling point such as CFC is used.

【0013】上記の排熱系統1には、流量検出器13、
温度検出器14、温度検出器15、流量調節弁16が配
置され、これらは図2に示す制御装置17に接続されて
いる。媒体系統2には、レベル検出器18、圧力検出器
19、温度検出器20、温度検出器21、温度検出器2
2、レベル調節弁23、圧力調節24が配置され、これ
らは制御装置17に接続されている。冷却系統3には、
調整弁25が配置され制御装置17に接続されている。
The exhaust heat system 1 includes a flow rate detector 13,
A temperature detector 14, a temperature detector 15, and a flow rate control valve 16 are arranged, and these are connected to the control device 17 shown in FIG. The medium system 2 includes a level detector 18, a pressure detector 19, a temperature detector 20, a temperature detector 21, and a temperature detector 2.
2. A level control valve 23 and a pressure control 24 are arranged, which are connected to the control device 17. In the cooling system 3,
A regulating valve 25 is arranged and connected to the control device 17.

【0014】本実施例は、まず、第1の制御手段として
発電機9の電力負荷設定に対して、排熱系統1の排熱流
量との偏差信号に、先行的に蒸発器5の入口/出口の排
熱温度偏差信号に基づく第1のバイアス信号aと、媒体
系統2のホットウェルタンク11の入口/蒸発器5出口
の媒体温度偏差信号に基づく第2のバイアス信号bとを
加減算し、これらの加減算された偏差信号を流量調節弁
16を開閉制御する排熱流量偏差信号としてPID調節
計29に入力するようにしている。
In the present embodiment, first, as a first control means, a deviation signal from the exhaust heat flow rate of the exhaust heat system 1 with respect to the setting of the electric power load of the generator 9 is preceded by the inlet / outlet of the evaporator 5. The first bias signal a based on the exhaust heat temperature deviation signal at the outlet and the second bias signal b based on the medium temperature deviation signal at the inlet / evaporator 5 outlet of the hot well tank 11 of the medium system 2 are added and subtracted, These addition / subtraction deviation signals are input to the PID controller 29 as exhaust heat flow rate deviation signals for controlling the opening / closing of the flow rate control valve 16.

【0015】第2の制御手段として蒸発器5の媒体の蒸
発ガス圧力設定に対して、蒸発器5の媒体圧力との偏差
信号に、先行的に前記第1の制御手段の排熱流量偏差信
号に基づく第3のバイアス信号cを加減算し、これらの
加減算された偏差信号を圧力調節弁24を開閉制御する
圧力偏差信号としてPID調節計42に入力するように
している。
As a second control means, the deviation signal from the medium pressure of the evaporator 5 with respect to the evaporative gas pressure setting of the medium of the evaporator 5 is preceded by the exhaust heat flow rate deviation signal of the first control means. The third bias signal c based on the above is added and subtracted, and these added and subtracted deviation signals are input to the PID controller 42 as pressure deviation signals for controlling the opening and closing of the pressure adjusting valve 24.

【0016】第3の制御手段として蒸発器5器内の媒体
レベルのレベル設定に対して、蒸発器5の媒体レベルと
の偏差信号に、先行的に前記第1の制御手段の排熱流量
偏差信号に基づく第3のバイアス信号cを加減算し、こ
れらの加減算された偏差信号をレベル調節弁23を開閉
制御するレベル偏差信号としてPID調節計46に入力
するようにしている。
As the third control means, the deviation signal from the medium level of the evaporator 5 with respect to the level setting of the medium level in the evaporator 5 is preceded by the exhaust heat flow deviation of the first control means. The third bias signal c based on the signal is added / subtracted, and the added / subtracted deviation signal is input to the PID controller 46 as a level deviation signal for controlling the opening / closing of the level adjusting valve 23.

【0017】第4の制御手段としてホットウェルタンク
11の媒体温度設定に対して、ホットウェルタンク11
の媒体温度との偏差信号に、先行的にホットウェルタン
ク11の媒体温度信号と媒体タービン8の排ガス温度信
号との偏差信号とに基づく第4のバイアス信号dと、前
記第1の制御手段の排熱流量偏差信号とに基づく第3の
バイアス信号cとを加減算し、これら加減された偏差信
号を冷却水系統3の流量調節弁25を開閉制御する温度
偏差信号としてPID調節計53に入力するようにして
いる。
As a fourth control means, the hot well tank 11 is set for the medium temperature setting of the hot well tank 11.
A deviation signal from the medium temperature of the first bias signal based on the deviation signal of the medium temperature signal of the hot well tank 11 and the deviation signal of the exhaust gas temperature signal of the medium turbine 8 in advance, and the deviation signal of the first control means. A third bias signal c based on the exhaust heat flow rate deviation signal is added / subtracted, and the adjusted deviation signal is input to the PID controller 53 as a temperature deviation signal for controlling the opening / closing of the flow rate control valve 25 of the cooling water system 3. I am trying.

【0018】上記構成で、まず、排熱系統1の排熱流量
が制御装置17の第1の制御手段により次のように制御
される。
With the above structure, first, the exhaust heat flow rate of the exhaust heat system 1 is controlled by the first control means of the controller 17 as follows.

【0019】制御装置17では、流量検出器13の検出
信号が開平演算器26でリニア信号にされ、この信号が
電力設定器27で比較される。この偏差信号が加減演算
器28に加えられる。さらに、この加減演算器28は、
次の第1のバイアス信号と第2のバイアス信号とが入力
され、図示符号で加減算されてPID調節計29に入力
される。
In the control device 17, the detection signal of the flow rate detector 13 is converted into a linear signal by the square root calculator 26, and this signal is compared by the power setting device 27. This deviation signal is applied to the addition / subtraction calculator 28. Further, the addition / subtraction calculator 28 is
The following first bias signal and second bias signal are input, added / subtracted by the reference symbols, and input to the PID controller 29.

【0020】即ち、加減演算器32では、温度検出器1
4の検出信号を温度変換器30により電流信号に変換し
た信号と、温度検出器15の検出信号を温度変換器31
により電流信号に変換された信号とが加減算され、この
加減演算信号がバイアス器33で第1のバイアス信号a
として、この信号が加減演算器28に入力されている。
また、加減演算器34では、蒸発器5の入口の温度検出
器22の検出信号を温度変換器35により電流信号に変
換した信号と、ホットウェルタンク11の温度検出器2
0の検出信号を温度変換器36により電流信号に変換し
た信号とが加減演算され、この加減演算信号がバイアス
器37で第2のバイアス信号bとして加減演算器28に
入力される。
That is, in the addition / subtraction calculator 32, the temperature detector 1
A signal obtained by converting the detection signal of No. 4 into a current signal by the temperature converter 30 and the detection signal of the temperature detector 15 by the temperature converter 31.
The signal converted into the current signal is added / subtracted by this, and this addition / subtraction calculation signal is applied to the first bias signal a by the bias unit 33.
This signal is input to the addition / subtraction calculator 28.
Further, in the addition / subtraction calculator 34, a signal obtained by converting the detection signal of the temperature detector 22 at the inlet of the evaporator 5 into a current signal by the temperature converter 35 and the temperature detector 2 of the hot well tank 11
A signal obtained by converting the detection signal of 0 into a current signal by the temperature converter 36 is subjected to addition / subtraction calculation, and this addition / subtraction calculation signal is input to the addition / subtraction calculator 28 as the second bias signal b by the bias device 37.

【0021】そして、PID調節計29は電空変換器3
8で電流信号を空気信号に変換して予熱器6の出口の流
量調節弁16の開度を制御する。これにより排熱流量が
媒体タービン8の発電機9の電力設定値に追従して制御
される。
The PID controller 29 is the electropneumatic converter 3.
At 8, the current signal is converted into an air signal to control the opening of the flow rate control valve 16 at the outlet of the preheater 6. As a result, the exhaust heat flow rate is controlled by following the power set value of the generator 9 of the medium turbine 8.

【0022】次に、第2の制御手段では、媒体系統2の
蒸発器5の出口の圧力検出器19の検出信号が圧力設定
器39の圧力設定値と比較され、偏差信号が加減演算器
40に加えられる。さらに、加減演算器40には、バイ
アス設定器41からの第3のバイアス信号cが加えられ
る。この第3のバイアス信号cは加減演算器28の排熱
流量偏差信号に基づいてバイアス設定器41によりバイ
アス設定されたものである。
Next, in the second control means, the detection signal of the pressure detector 19 at the outlet of the evaporator 5 of the medium system 2 is compared with the pressure set value of the pressure setter 39, and the deviation signal is added / subtracted by the addition / subtraction calculator 40. Added to. Further, the third bias signal c from the bias setter 41 is applied to the addition / subtraction calculator 40. The third bias signal c is set by the bias setter 41 based on the exhaust heat flow rate deviation signal of the addition / subtraction calculator 28.

【0023】この加減演算器40の出力信号は、PID
調節計42に入力され、その制御信号が電空変換器43
で空気信号に変換されてタービンバイパス系統12の圧
力調節24の開閉制御して圧力調節がされる。
The output signal of the adder / subtractor 40 is the PID
The control signal is input to the controller 42 and the control signal is input to the electropneumatic converter 43.
Is converted into an air signal, and the pressure is adjusted by controlling the opening / closing of the pressure adjusting 24 of the turbine bypass system 12.

【0024】次に、第3の制御手段では、蒸発器5のレ
ベル検出器18の検出信号がレベル設定器44で蒸発器
5器内の媒体レベル設定値と比較され、その偏差信号が
加減演算器45に加えられる。さらに、加減演算器45
には上記第3のバイアス信号cが入力される。この加減
演算器45の出力信号はPID調節計46に入力され、
その制御信号が電空変換器47で空気信号に変換され、
レベル調節弁23の開度を増減させ蒸発器5のレベルが
制御される。
Next, in the third control means, the detection signal of the level detector 18 of the evaporator 5 is compared with the medium level set value in the evaporator 5 by the level setter 44, and the deviation signal thereof is adjusted. Is added to the container 45. Further, the addition / subtraction calculator 45
The third bias signal c is input to. The output signal of the adder / subtractor calculator 45 is input to the PID controller 46,
The control signal is converted into an air signal by the electropneumatic converter 47,
The level of the evaporator 5 is controlled by increasing or decreasing the opening degree of the level control valve 23.

【0025】次に、第4の制御手段では、ホットウェル
タンク11の媒体の温度検出器20の検出信号を温度変
換器36で変換した信号が温度設定器48のホットウェ
ルタンクの媒体温度設定値と比較され、温度偏差信号が
加減演算器49に加えられる。さらに、加減演算器49
には、前記第3のバイアス信号cと次の第4のバイアス
信号dとが入力される。
Next, in the fourth control means, the signal obtained by converting the detection signal of the temperature detector 20 of the medium of the hot well tank 11 by the temperature converter 36 is the medium temperature set value of the hot well tank of the temperature setter 48. The temperature deviation signal is added to the addition / subtraction calculator 49. Further, the addition / subtraction calculator 49
The third bias signal c and the next fourth bias signal d are input to the.

【0026】即ち、加減演算器50には、ホットウェル
タンク11の媒体の温度検出器20の検出信号を温度変
換器36により変換した電流信号と媒体タービン8の出
口の温度検出器21の検出信号を温度変換器51により
変換した電流信号とが加えられ、この加減演算信号がバ
イアス器52で第4のバイアス信号dとしている。
That is, the addition / subtraction calculator 50 has a current signal obtained by converting the detection signal of the medium temperature detector 20 of the hot well tank 11 by the temperature converter 36 and a detection signal of the temperature detector 21 at the outlet of the medium turbine 8. Is added to the current signal converted by the temperature converter 51, and this addition / subtraction calculation signal is used as the fourth bias signal d by the bias device 52.

【0027】この上記加減演算器49の出力信号は、P
ID調節計53に入力され、制御信号が電空変換器54
の空気信号に変換され、冷却水系統3の冷却水量が流量
調節弁25で開度の増減により制御される。
The output signal of the addition / subtraction calculator 49 is P
The control signal is input to the ID controller 53 and the control signal is sent to the electropneumatic converter 54.
Is converted into an air signal, and the amount of cooling water in the cooling water system 3 is controlled by the flow rate adjusting valve 25 by increasing or decreasing the opening degree.

【0028】このように、第1の制御手段では、排熱系
統の排熱流量を、電力負荷設定に追従させる制御で排水
系統の蒸発器入口の温度と蒸発器出口の温度との偏差に
基づく第1のバイアス信号と媒体系統のホットウェルタ
ンク器内温度と予熱器の出口の温度の偏差に基づく第2
のバイアス信号とが先行的にバイアス信号として各々付
加する。これにより、蒸発器、予熱器で熱交換されると
きの2次遅れ分を補償する。従って、過渡的に負荷変動
に対してタービン発電機の電力が追従して安定に制御さ
れる。
In this way, the first control means is based on the deviation between the temperature at the evaporator inlet and the temperature at the evaporator outlet of the drainage system in the control of making the exhaust heat flow rate of the exhaust heat system follow the power load setting. Second based on the first bias signal and the deviation between the temperature inside the hot well tank of the medium system and the temperature at the outlet of the preheater
And the bias signal of 1 are added as bias signals in advance. This compensates for the secondary delay when heat is exchanged in the evaporator and preheater. Therefore, the electric power of the turbine generator transiently follows the load change and is stably controlled.

【0029】媒体系統の媒体圧力を制御する第2の制御
手段では、排熱流量偏差信号に基づく第3のバイアス信
号を先行的に媒体圧力制御系の偏差に付加する。これに
より、蒸発器、予熱器で熱交換するときの2次遅れ分を
補償する。従って、蒸発器の蒸発ガス圧力の過渡的な変
動に追従し安定した制御ができる。
In the second control means for controlling the medium pressure of the medium system, the third bias signal based on the exhaust heat flow rate deviation signal is added in advance to the deviation of the medium pressure control system. This compensates for the secondary delay when heat is exchanged in the evaporator and preheater. Therefore, it is possible to perform stable control by following transient changes in the vaporized gas pressure of the evaporator.

【0030】蒸発器器内の媒体レベルを制御する第3の
制御手段では、排熱流量偏差信号に基づく第3のバイア
ス信号が先行的に上記媒体レベルの偏差に付加される。
これにより、蒸発器、予熱器で熱交換するときの2次遅
れ分を補償する。従って、蒸発器の媒体レベルが設定値
に追従して、安定に制御できる。
In the third control means for controlling the medium level in the evaporator, the third bias signal based on the exhaust heat flow rate deviation signal is added to the deviation of the medium level in advance.
This compensates for the secondary delay when heat is exchanged in the evaporator and preheater. Therefore, the medium level of the evaporator can follow the set value and be stably controlled.

【0031】冷却水系統の凝縮器入口の冷却水量を制御
する第4の制御手段では、排熱流量偏差信号に基づく第
3のバイアス信号と媒体タービン出口の排ガス温度とホ
ットウェルタンクの器内温度との偏差に基づく第4のバ
イアス信号とを先行的に冷却水系温度偏差に付加する。
これにより、媒体ガス量の過渡的変動に対して媒体冷却
水温度が追従できる。
In the fourth control means for controlling the amount of cooling water at the condenser inlet of the cooling water system, the third bias signal based on the exhaust heat flow rate deviation signal, the exhaust gas temperature at the medium turbine outlet, and the internal temperature of the hot well tank are used. And a fourth bias signal based on the deviation between and are added to the cooling water system temperature deviation in advance.
Thereby, the medium cooling water temperature can follow the transient fluctuation of the medium gas amount.

【0032】よって媒体タービンの電力負荷設定に追従
して蒸発器、予熱器、凝縮器の熱交換時の2次遅れ分を
先行的に補償し、かつ、過渡的な排熱流量および温度変
動、低沸点媒体流量および温度変動、冷却水温度、流量
の変動に対し安定に制御が図れる。
Therefore, by following the power load setting of the medium turbine, the secondary delay amount during heat exchange of the evaporator, preheater and condenser is compensated in advance, and the transient exhaust heat flow rate and temperature fluctuation, Stable control can be achieved against fluctuations in low boiling point medium flow rate and temperature, cooling water temperature, and flow rate.

【0033】[0033]

【発明の効果】以上説明したように本発明によれば、電
力設定負荷に対して排熱系統への蒸発器の排熱流量およ
び温度変動による蒸発器の媒体蒸発圧力の変動を防止す
る。さらに、予熱器での排熱と媒体の熱交換時の2次遅
れによる変動防止と、過渡的な負荷変動を防止するよう
に制御する。これにより、媒体タービン発電機の設定電
力に追従して制御が図れ、かつ、媒体タービンの入口圧
力の変動が極力小さくできる。このため排熱系統、媒体
系統、冷却水系統の凝縮器の各熱交換率を向上させるこ
とにより過渡的な負荷変動に対して安定に制御でき、か
つ、高効率に運用ができる。
As described above, according to the present invention, it is possible to prevent the medium evaporation pressure of the evaporator from fluctuating due to the exhaust heat flow rate of the evaporator to the exhaust heat system and the temperature change with respect to the power setting load. Further, control is performed so as to prevent fluctuation due to secondary delay at the time of exhaust heat in the preheater and heat exchange of the medium, and to prevent transient load fluctuation. As a result, control can be achieved by following the set power of the medium turbine generator, and fluctuations in the inlet pressure of the medium turbine can be minimized. Therefore, by improving the heat exchange rates of the condensers of the exhaust heat system, the medium system, and the cooling water system, it is possible to stably control transient load fluctuations and operate with high efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す排熱利用システム発電
制御装置の全体系統図である。
FIG. 1 is an overall system diagram of an exhaust heat utilization system power generation control device showing an embodiment of the present invention.

【図2】図1の制御装置のブロック構成図である。FIG. 2 is a block configuration diagram of the control device in FIG.

【符号の説明】[Explanation of symbols]

13 流量検出器 14 温度検出器 15 温度検出器 16 流量調節弁 17 制御装置 18 レベル検出器 19 圧力検出器 20 温度検出器 21 温度検出器 22 温度検出器 23 レベル調節弁 24 圧力調節弁 25 流量調節弁 27 電力設定器 28 加減演算器 39 圧力設定器 40 加減演算器 44 レベル設定器 45 加減演算器 48 温度設定器 49 加減演算器 13 Flow Rate Detector 14 Temperature Detector 15 Temperature Detector 16 Flow Rate Control Valve 17 Control Device 18 Level Detector 19 Pressure Detector 20 Temperature Detector 21 Temperature Detector 22 Temperature Detector 23 Level Control Valve 24 Pressure Control Valve 25 Flow Rate Control Valve 27 Electric power setting device 28 Adjusting / calculating device 39 Pressure setting device 40 Adjusting / calculating device 44 Level setting device 45 Adjusting / calculating device 48 Temperature setting device 49 Adjusting / calculating device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高温熱水および排熱が排熱ポンプにより
蒸発器および予熱器に供給され媒体と熱交換される排熱
系統と、前記蒸発器で熱交換された媒体ガスが媒体ター
ビンに供給され、この媒体タービンの排ガスが凝縮器で
冷却されてホットウェルタンクに回収され、さらに、媒
体が媒体ポンプにより前記予熱器および前記蒸発器に供
給されて循環する媒体系統と、前記凝縮器で前記媒体タ
ービンの排ガスを冷却水で冷却させる冷却水系統とから
なる発電プラントを制御する排熱利用システム発電制御
装置において、 前記排熱系統の排熱流量を検出する流量検出器と、前記
蒸発器の入口の排熱温度を検出する第1の温度検出器
と、前記蒸発器の出口の排熱温度を検出する第2の温度
検出器と、前記排熱流量を調節する第1の流量調節弁と
を前記排熱系統に配置し、 前記ホットウェルタンクの器内温度を検出する第3の温
度検出器と、前記媒体系統の前記蒸発器の入口温度を検
出する第4の温度検出器と、前記蒸発器の出口の圧力を
検出する圧力検出器と、前記蒸発器の出口の圧力を調節
する圧力調節弁と、前記蒸発器のレベルを検出するレベ
ル検出器と、前記蒸発器のレベルを調節するレベル調節
弁と、前記媒体タービンの排ガス温度を検出する第5の
温度検出器とを前記媒体系統に配置し、 さらに、第2の流量調節弁を前記冷却水系統に配置し、 前記媒体タービンの発電機電力設定信号を出力し、この
電力設定信号と前記流量検出器の検出信号との偏差を演
算し、偏差信号を出力する電力設定手段と、前記第1の
温度検出器の検出信号と前記第2の温度検出器の検出信
号との差を演算し、この演算信号に基づいて第1のバイ
アス信号を出力する第1のバイアス設定手段と、前記第
3の温度検出器の検出信号と前記第4の温度検出器との
差を演算し、この演算信号に基づいて第2のバイアス信
号を出力する第2のバイアス設定手段と、前記電力設定
手段の偏差信号と前記第1のバイアス信号と前記第2の
バイアス信号とを加減算する第1の加減算手段と、この
第1の加減算手段の出力信号を入力して、前記第1の流
量調節弁を開閉動作させ排熱流量を制御するための制御
信号を出力する制御演算手段とからなる第1の制御手段
と、前記蒸発器の媒体圧力設定信号を出力し、この媒体
圧力設定信号と前記圧力検出器の検出信号との偏差を演
算し、偏差信号を出力する圧力設定手段と、前記第1の
加減算手段の出力信号に基づいて第3のバイアス信号を
出力する第3のバイアス設定手段と、前記圧力設定手段
の偏差信号と前記第3のバイアス信号とを加減算する第
2の加減算手段と、この第2の加減算手段の出力信号を
入力して前記圧力調節弁を開閉動作させ媒体圧力を制御
するための制御信号を出力する制御演算手段とからなる
第2の制御手段と、 前記蒸発器の媒体レベル設定信号を出力し、この媒体レ
ベル設定信号と前記レベル検出器の検出信号との偏差を
演算し、偏差信号を出力するレベル設定手段と、このレ
ベル設定手段の偏差信号と前記第3のバイアス信号とを
加減算する第3の加減算手段と、この第3の加減算手段
の出力信号を入力して前記レベル調節弁を開閉動作させ
レベル制御をするための制御信号を出力する制御演算手
段とからなる第3の制御手段と、 前記ホットウェルの温度設定信号を出力し、この温度設
定信号と前記第3の温度検出器の検出信号との偏差を演
算し、偏差信号を出力する温度設定手段と、前記第3の
温度検出器の検出信号と前記第5の温度検出器の検出信
号との差を演算し、この演算信号に基づいて第4のバイ
アス信号を出力する第4のバイアス設定手段と、前記温
度設定手段の偏差信号と前記第3のバイアス信号と前記
第4のバイアス信号とを加減算する第4の加減算手段
と、この第4の加減算手段の出力信号を入力して前記第
2の流量調節弁を開閉させ温度制御するための制御信号
を出力する制御演算手段とからなる第4の制御手段とを
備えたことを特徴とする排熱利用システム発電制御装
置。
1. An exhaust heat system in which high-temperature hot water and exhaust heat are supplied to an evaporator and a preheater by an exhaust heat pump to exchange heat with a medium, and a medium gas heat-exchanged in the evaporator is supplied to a medium turbine. The exhaust gas of the medium turbine is cooled in the condenser and recovered in the hot well tank, and the medium is supplied to the preheater and the evaporator by the medium pump and circulates, and the condenser in the medium system. In the exhaust heat utilization system power generation control device for controlling a power plant comprising a cooling water system for cooling exhaust gas of a medium turbine with cooling water, a flow rate detector for detecting an exhaust heat flow rate of the exhaust heat system, and an evaporator A first temperature detector for detecting the exhaust heat temperature at the inlet, a second temperature detector for detecting the exhaust heat temperature at the outlet of the evaporator, and a first flow rate control valve for adjusting the exhaust heat flow rate In front A third temperature detector which is arranged in an exhaust heat system and detects an internal temperature of the hot well tank; a fourth temperature detector which detects an inlet temperature of the evaporator of the medium system; and an evaporator. Detector for detecting the pressure at the outlet of the evaporator, a pressure control valve for adjusting the pressure at the outlet of the evaporator, a level detector for detecting the level of the evaporator, and a level adjustment for adjusting the level of the evaporator A valve and a fifth temperature detector for detecting the exhaust gas temperature of the medium turbine are arranged in the medium system, and a second flow control valve is arranged in the cooling water system, and the generator of the medium turbine is arranged. A power setting signal that outputs a power setting signal, calculates a deviation between the power setting signal and the detection signal of the flow rate detector, and outputs a deviation signal, a detection signal of the first temperature detector, and the second temperature detector. The difference with the detection signal of the temperature detector of And calculating a difference between the first bias setting means for calculating and outputting the first bias signal based on the calculated signal, the detection signal of the third temperature detector and the fourth temperature detector, Second bias setting means for outputting a second bias signal based on the calculation signal, and a first bias signal for adding / subtracting the deviation signal of the power setting means, the first bias signal, and the second bias signal. A first addition / subtraction means, and a control calculation means for inputting an output signal of the first addition / subtraction means to output a control signal for opening / closing the first flow rate control valve to control the exhaust heat flow rate And a pressure setting means for outputting a medium pressure setting signal of the evaporator, calculating a deviation between the medium pressure setting signal and a detection signal of the pressure detector, and outputting a deviation signal. Based on the output signal of the adder / subtractor of And a third bias setting means for outputting a third bias signal, a second addition / subtraction means for adding / subtracting the deviation signal of the pressure setting means and the third bias signal, and an output of the second addition / subtraction means. A second control means comprising a control calculation means for inputting a signal to open and close the pressure control valve to control the medium pressure, and to output a medium level setting signal for the evaporator, A level setting means for calculating a deviation between the medium level setting signal and the detection signal of the level detector and outputting the deviation signal, and a third for adding / subtracting the deviation signal of the level setting means and the third bias signal. Of the third addition and subtraction means and a control calculation means for inputting an output signal of the third addition and subtraction means and outputting a control signal for opening and closing the level control valve to perform level control. And a temperature setting means for outputting a temperature setting signal of the hot well, calculating a deviation between the temperature setting signal and a detection signal of the third temperature detector, and outputting a deviation signal, and the third temperature. The fourth bias setting means for calculating the difference between the detection signal of the detector and the detection signal of the fifth temperature detector, and outputting the fourth bias signal based on the calculated signal, and the temperature setting means. Fourth addition / subtraction means for adding / subtracting the deviation signal, the third bias signal, and the fourth bias signal, and an output signal of the fourth addition / subtraction means are input to open / close the second flow rate control valve. An exhaust heat utilization system power generation control device comprising: a fourth control unit including a control calculation unit that outputs a control signal for temperature control.
JP30376391A 1991-10-24 1991-10-24 Power generation control device in exhaust heat utilization system Pending JPH05118203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30376391A JPH05118203A (en) 1991-10-24 1991-10-24 Power generation control device in exhaust heat utilization system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30376391A JPH05118203A (en) 1991-10-24 1991-10-24 Power generation control device in exhaust heat utilization system

Publications (1)

Publication Number Publication Date
JPH05118203A true JPH05118203A (en) 1993-05-14

Family

ID=17924985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30376391A Pending JPH05118203A (en) 1991-10-24 1991-10-24 Power generation control device in exhaust heat utilization system

Country Status (1)

Country Link
JP (1) JPH05118203A (en)

Similar Documents

Publication Publication Date Title
US4425762A (en) Method and system for controlling boiler superheated steam temperature
JPWO2010074173A1 (en) Control device for exhaust heat recovery system
KR20130115281A (en) Method for operating a combined gas and steam turbine system, gas and steam turbine system for carrying out said method, and corresponding control device
EP0933505B1 (en) Steam cooled system in combined cycle power plant
JPH05222906A (en) Controller for power plant utilizing exhaust heat
JPH0629035A (en) Co-operative control device of fuel cell power-generation plant and waste heat collection system
JPH1136818A (en) Controller for cogeneration plant utilizing waste heat
JPH10292902A (en) Main steam temperature controller
JPH05118203A (en) Power generation control device in exhaust heat utilization system
JPH05272306A (en) Exhaust heat utilizing power generation control device
JPS61152916A (en) Binary cycle power generation plant
JPH06241007A (en) Waste heat utilization system controller
JP2823342B2 (en) Steam temperature controller for superheater / reheater in combined cycle power plant
JPH07180979A (en) Power generating control device utilizing waste heat
JP2960607B2 (en) Cogeneration system
JPH0749005A (en) Exhaust heat recovery power generation control device
JPH07130388A (en) Fuel cell generation plant
JPH08135411A (en) Control device of exhaust heat using power plant
JPH10184316A (en) Power generation control device utilizing exhaust heat
JPS60218585A (en) Control device for deaerated steam system in condenser
CN111794820B (en) Organic Rankine cycle system
JPS61187503A (en) Temperature decreasing controller of turbine gland sealing steam
JPH05340205A (en) Controller for combined power generation plant
JPH0454204A (en) Control device for gas-extraction and condensation type turbine
JPS62237012A (en) Heated steam pressure controller of heater for steam turbine