JPS60218585A - Control device for deaerated steam system in condenser - Google Patents

Control device for deaerated steam system in condenser

Info

Publication number
JPS60218585A
JPS60218585A JP7274084A JP7274084A JPS60218585A JP S60218585 A JPS60218585 A JP S60218585A JP 7274084 A JP7274084 A JP 7274084A JP 7274084 A JP7274084 A JP 7274084A JP S60218585 A JPS60218585 A JP S60218585A
Authority
JP
Japan
Prior art keywords
condenser
steam
amount
deaeration
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7274084A
Other languages
Japanese (ja)
Inventor
Tatsuo Imaizumi
今泉 辰雄
Akihiro Kawauchi
川内 章弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7274084A priority Critical patent/JPS60218585A/en
Publication of JPS60218585A publication Critical patent/JPS60218585A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/042Prevention of deposits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B11/00Controlling arrangements with features specially adapted for condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/10Auxiliary systems, arrangements, or devices for extracting, cooling, and removing non-condensable gases

Abstract

PURPOSE:To control the function of deaeration in the condenser effectively by a method wherein the optimum amount of deaerated air is obtained by operating it by the pressure signal of the condenser, the temperature signal of a hot well and the flow amount signal of feed water. CONSTITUTION:The signals of a pressure originator 31, detecting the pressure of the condenser, a temperature originator 32, detecting the temperature of hot well for the condensor, and a flow amount originator 33, detecting the flow amount of feed water, and taken into a control unit 34, the necessary amount of steam for deaeration in the condenser is operated and the amount of deaerated steam is controlled by the regulating valve 10 of the condenser deaerated steam system 9 based on the operation and the deaerated steam is supplied into condenser 4. In case of a plant, in which the amount of supplementing water is large, the supplementing water 15 for the condenser is detected by a flow amount originator 16, it is taken into the control unit 34, and the obtained necessary amount of steam for deaeration is controlled by somewhat larger value by adding a correcting factor upon increasing of the supplementing water. In case the amount of supplementing water is too much, a tendency to increase the solving oxygen in the condensed water of the hot well is generated, therefore, the amount of deaerated air is increased due to the increase of supplementing water in order to compensate it.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は・復水の過冷却対策に係り1%に、起動停止の
頻度が激しく、復水溶存酸素濃度基準(許容値)が厳し
く、かつ、補給水量の多い発電プラントに適する復水器
脱気蒸気系統の制御装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to countermeasures against supercooling of condensate. , relates to a control device for a condenser deaeration steam system suitable for power plants with a large amount of make-up water.

〔発明の背景〕[Background of the invention]

復水器脱気蒸葉系統は復水器の過冷却対策として設置さ
れるもので、復水器の熱負荷が減少する部分負荷時に、
空気抽出器の性能以上に復水が冷却され(すなわち・復
水がり水器の真空に対し過冷却の状態になる)、復水中
の溶存酸素が増加した時・この過冷却復水を復水器真空
度の飽和温度せで加温し、溶存酸素の低減を図る。
The condenser deaeration steam system is installed as a countermeasure against overcooling of the condenser, and during partial load when the heat load of the condenser decreases,
When the condensate is cooled beyond the performance of the air extractor (i.e., the condensate becomes supercooled relative to the vacuum of the condenser) and dissolved oxygen in the condensate increases, the supercooled condensate is condensed. Heat to the saturation temperature of the chamber vacuum to reduce dissolved oxygen.

復水器脱気蒸気系統は、ボイラへの給水中の溶存酸素を
低減するために、給水系統中に脱気器を設置したプラン
ト(例えば、火力発電プラント及びPWR型原子力発電
プラント)ではこれを設置する必要はなく、このため、
従来のプラントでは脱気器をもたないBWR型原子力発
電プラントで一部設置されたに留捷っている。しかし、
BWR型原子力発電プラントでは給水として高純度の純
水を使用しているため・炉側の防錆対策として酸素(0
2)を復水に注入しているため、前述の復水器脱気蒸気
系統は実際にはほとんど運用されていなかった。
A condenser deaerator steam system is used in plants that have a deaerator installed in the water supply system (for example, thermal power plants and PWR type nuclear power plants) to reduce dissolved oxygen in the water supplied to the boiler. There is no need to install it, so
In conventional plants, only some BWR type nuclear power plants have been installed, which do not have deaerators. but,
BWR type nuclear power plants use high-purity pure water as water supply, so oxygen (0%) is used as a rust prevention measure on the reactor side.
2) is injected into the condensate, so the condenser deaeration steam system described above was rarely used in practice.

しかし、脱気器を設置しないコンバインド発電プラント
では、毎日起動停止を行なうプラント運用を行なう場合
、特に、この復水器脱気蒸気系統は重要な系統となって
来る。
However, in a combined power generation plant that does not have a deaerator installed, the condenser deaeration steam system becomes an important system, especially when the plant is operated by starting and stopping the plant every day.

最近計画されている大容量コンバインド発電プラントで
は、六〜七台のガスタービンを設置し、各ガスタービン
に対し、排カスボイラを設置し、それぞれに蒸気タービ
ンを設ける方式2すなわち六〜七台のカスタービン・蒸
気タービンコンバインドユニットヲ組合せ、一つの大容
量コンバイン)” 発成プラントとする方式がとられて
いる。この場合・夜間低負荷運転時には、一台のガスタ
ービン・蒸気タービンコンバインドユニットのみを運転
し・他ユニットは停止する運転方式が採用される0この
ため・夜間停止ユニットでは、実質上・毎日起動停止が
行なわれることになる。脱気器を設置しないプラントで
は、ボイラ(又は排ガスボイラ〕への給水は復水器ホッ
トウェルの貯水を送水するため、プラント起動時には、
ホットウェルの貯水の溶存酸素濃度を規定値以下に下げ
る必要がある。夜間停止時には復水器の真空は破壊され
るので、復水器内は大気圧となり、ホットウェルの貯水
には空気中の酸素が溶は込み溶存酸素濃度は高くなり、
当然この1まボイラへ給水として送水することは許され
ない。このため、プラント起動時には・ホットウェルの
貯水を給水再循環系統を用いて再循環し、復水器脱気蒸
気系統によって。
In the recently planned large-capacity combined power generation plant, six to seven gas turbines are installed, each gas turbine is equipped with an exhaust gas boiler, and each is equipped with a steam turbine. In this case, only one gas turbine/steam turbine combined unit is operated during low-load operation at night.・An operation method is adopted in which other units are stopped.For this reason, ・In units that are shut down at night, starting and stopping will be performed practically every day.In plants that do not install a deaerator, the boiler (or exhaust gas boiler) The water supply to the plant is carried out from the water stored in the condenser hotwell, so when the plant starts up,
It is necessary to lower the dissolved oxygen concentration of hot well water to below the specified value. When the system is shut down at night, the vacuum in the condenser is broken, so the pressure inside the condenser becomes atmospheric, and oxygen from the air dissolves into the water stored in the hot well, increasing the dissolved oxygen concentration.
Naturally, it is not allowed to send water to the boiler for this purpose. For this reason, when starting up the plant, the stored water in the hot well is recirculated using the feed water recirculation system, and then through the condenser deaeration steam system.

過冷却状態の復水を加熱し、脱気する。先に、復水器脱
気蒸気系統は復水器の過冷却対策として設置されるもの
で、部分負荷時に過冷却の復水の溶存酸素を低減するが
、毎日起動停止プラントでは部分負荷時よシ、むしろ、
この起動前の溶存酸素低減が重要な機能となっている。
Supercooled condensate is heated and degassed. First, the condenser deaeration steam system is installed as a countermeasure against supercooling of the condenser, and it reduces dissolved oxygen in the supercooled condensate during partial load. Shi, rather,
This reduction of dissolved oxygen before startup is an important function.

特願昭58−123363号では「海水温度とプラント
負荷信号を用いて脱気蒸気量ヲ変化させる」事を主眼と
したが、プラント起動前の給水再循環系統との組合せに
よる復水器脱気蒸気系統の運用に対しては・その制御方
式は十分な制御性をもつには到っていなかった。
Patent Application No. 58-123363 focused on ``changing the amount of degassed steam using seawater temperature and plant load signals'', but the focus was on ``changing the amount of degassed steam using seawater temperature and plant load signals'', but it was Regarding the operation of steam systems, the control system had not yet achieved sufficient controllability.

一万・復水器脱気蒸葉を必要量を超えて過度に多量に注
入すると・牟に蒸気の無駄(熱の浪費)のみでなく、復
水器の構造によっては、部分的に過飽和の熱水が給水ポ
ンプ側に流れ込み、キャビテーションを発生し、この意
味でも、復水器脱気蒸気量を最適値に制御するのが望ま
しい。
10,000 Injecting an excessively large amount of degassed steam into the condenser beyond the required amount will not only result in a waste of steam (waste of heat), but also cause partial supersaturation depending on the structure of the condenser. Hot water flows into the water supply pump side and causes cavitation, so in this sense as well, it is desirable to control the amount of degassed steam in the condenser to an optimal value.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、脱気器を設置しない発電プラントで、
起動停止の頻度が高く、起動時及び部分負荷時の復水溶
存酸素基準(許容匝)が厳しく・補給水量の多い場合に
、投入する脱気蒸気量全復水器の圧力(真空度)信号と
ホットウェルの温度信号と給水流量信月とによシ演算し
2最適扇ヲ求めて制御し・経済性を高め・復水器脱気の
機能を最善にする制御装置を提供するにある。
The purpose of the present invention is to provide a power generation plant without installing a deaerator,
The amount of degassed steam to be input when the frequency of startup and shutdown is high, the condensate dissolved oxygen standard (allowable capacity) during startup and partial load is strict, and the amount of make-up water is large. The purpose of the present invention is to provide a control device that calculates and controls two optimum fans by calculating the hot well temperature signal and water supply flow rate signal, improves economic efficiency, and optimizes the function of condenser deaeration.

〔発明の概要〕[Summary of the invention]

脱気蒸気量の算出は、復水の過冷却分を復水器の圧力(
真空度)の飽和温度まで加温するに必要な蒸気量をめる
ことが必要である。
To calculate the amount of degassed steam, subcool the condensate by subtracting the condenser pressure (
It is necessary to determine the amount of steam necessary to heat the product to the saturation temperature (degree of vacuum).

Pc:復水器の圧力 (ata) Tsc : P c’ VC対する飽和温度 (′C)
T、、:復水器ホットウェルの加温前の復水温度(′C
) 里、l二TW1時の復水のエンタルピー(kc at/
′に9 )1w2:復水器ホットウェルの加温後の復水
温度(”C) 1 g 2 a T v 2時の復水のエンタルピー(
kca、4/4)GW:復水流暢−(給水流量) (K
7/H)(加温後の値) is e復水器脱気用蒸気のエンタルピー(kca)l
Kq) G8:復水器脱気用蒸気の必要蒸気量[K9/H)とす
ると、復水器脱気用蒸気の必要蒸気量Gsは加温前後の
熱量バランスによシ、 ここで、復水器ホットウェルの加温前後の復水温度は一
般に5〜40 ’c程度であるため、数値的にはそのエ
ンタルピー1直とはy等しくなり・! wl!;Twl
 ・・・・・・・旧・・・・・・・・・旧・・ (2+
1.2−Tw□ ・・・・・・・・・・・・・・・・・
・・・印・ +31また、復水器脱気の目的より、加温
後の復水温度Tw2は復水器の圧力Pc1C対する飽和
温度’1’ s cまで加温され、 Tw2=Tsc ・・・・・・・・・・・・・・・・・
・・・・・・・ (4)尚・飽和温度’I’scは直接
計測できないので、復水器の圧力PCを計測し、演算に
よりこれをめる。関数をfl(X)で表示すれば・ Tsc”= fr (Pc ) ・・・・・・・・・・
・・・・・・旧・・・・・ (5)(2)〜(5)式の
関係によシ、(1)式は、(6)式よりわかるように、
復水器脱気用蒸気の必要蒸気量Gqは復水器の圧力Pc
よ請求めた飽和温度(Tsc = f s (Pc) 
)とホットウェルの温度(加温前)T−1と給水流量G
wによ請求められる。
Pc: Condenser pressure (ata) Tsc: Pc' Saturation temperature for VC ('C)
T, ,: Condensate temperature before heating of condenser hotwell ('C
) Enthalpy of condensate (kc at/
' to 9) 1w2: Condensate temperature after heating of condenser hotwell ("C) 1 g 2 a T v Enthalpy of condensate at 2 o'clock ("C)
kca, 4/4) GW: Condensate flow rate - (water supply flow rate) (K
7/H) (value after heating) is e enthalpy of condenser deaeration steam (kca)l
Kq) G8: The required amount of steam for condenser deaeration [K9/H], the required amount of steam for condenser deaeration Gs depends on the heat balance before and after heating. Since the condensate temperature before and after heating in a water heater hotwell is generally about 5 to 40'C, numerically, its enthalpy is equal to y. wl! ;Twl
......Old...Old... (2+
1.2-Tw□・・・・・・・・・・・・・・・・・・
...Mark +31 Also, for the purpose of degassing the condenser, the condensate temperature Tw2 after heating is heated to the saturation temperature '1' s c with respect to the condenser pressure Pc1C, Tw2=Tsc...・・・・・・・・・・・・・・・
(4) Note: Since the saturation temperature 'I'sc cannot be measured directly, the pressure PC of the condenser is measured and calculated. If we express the function as fl(X), Tsc"= fr (Pc)...
...Old... (5) According to the relationship between equations (2) and (5), equation (1) is, as can be seen from equation (6),
The required amount of steam for degassing the condenser Gq is the condenser pressure Pc
The calculated saturation temperature (Tsc = f s (Pc)
), hot well temperature (before heating) T-1, and water supply flow rate G
Billed by w.

尚・復水器脱気用蒸気のエンタルピー18は補助蒸気系
よシ蒸気が供給されるものとし、その値は既知数として
いる。
It is assumed that the enthalpy 18 of the steam for degassing the condenser is supplied from the auxiliary steam system, and its value is a known value.

本発明は(6)弐によシ、復水器脱気蒸気量を演算し、
その加熱蒸気量全最適に制御しようとするものである。
The present invention (6) calculates the amount of degassed steam in the condenser,
The aim is to optimally control the amount of heating steam.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図面によって説明する。第1
図はカスタービン1、排ガスボイラ2゜蒸気タービン3
・復水器4・発電機5、給水ポンプ6より構成されるコ
ンバインドプラントの概略系統を示す。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The diagram shows a cast turbine 1, an exhaust gas boiler 2, and a steam turbine 3.
・The schematic system of a combined plant consisting of a condenser 4, a generator 5, and a water supply pump 6 is shown.

本コンバインドプラントではカスタービン1の排ガスI
Aを排ガスボイラ2に送シ、給水8と熱交換し、蒸気7
を発生し・熱交換後の排カス2Aは大気に放出する。蒸
気7は蒸気タービン3で仕事をしたのち・復水器4で凝
縮し、復水となシ給水ポング6によシ昇圧され・給水8
として排カスボイラ2へ供給される閉サイクルを構成す
る。
In this combined plant, the exhaust gas I of the cast turbine 1 is
A is sent to exhaust gas boiler 2, heat exchanged with feed water 8, and steam 7
The waste residue 2A after heat exchange is released into the atmosphere. After the steam 7 does work in the steam turbine 3, it condenses in the condenser 4 and becomes condensate.The pressure is increased by the water supply pump 6 and the water supply 8.
This constitutes a closed cycle in which waste gas is supplied to the waste boiler 2.

第1図は1台のコンバインドユニット分を示すが・大容
量コンバインドプラントではこれが六〜七ユニット組合
わされて一つのプラントとして運用されることが多い。
Although FIG. 1 shows one combined unit, in large-capacity combined plants, six to seven units are often combined and operated as one plant.

この場合、?PJ1図に示すように補助蒸気ヘッダ23
は各ユニット共通として設置されることが多い。各ユニ
ットより補助蒸気供給系統21を共通の補助蒸気ヘッダ
23に接続し、必要蒸気量全調整弁22で制御して供給
するようにしている。第1図では、復水中の溶存酸素を
低減するため、補助蒸気ヘッダ23よシ復水器脱気蒸気
系統9を取出し、復水器4に導いtいる。
in this case,? Auxiliary steam header 23 as shown in PJ1 diagram
is often installed common to each unit. The auxiliary steam supply system 21 from each unit is connected to a common auxiliary steam header 23, and the required steam amount is controlled and supplied by a total adjustment valve 22. In FIG. 1, in order to reduce dissolved oxygen in the condensate, the condenser deaeration steam system 9 is taken out from the auxiliary steam header 23 and led to the condenser 4.

本発明は、復水器脱気蒸気系統9に調整弁10を設置し
、復水器の圧力をイ灸出する圧力発信器31の信号と復
水器ホットウェルの温度を検出する温度発信器32の信
号と給水流量を検出する流量発信器33の信号を制御装
置34にとりこみ、復水器脱気に必要な蒸気量を演算し
、それに−&づいて・脱気蒸気量を調整弁10で制御し
・復水器4に供給する。
The present invention installs a regulating valve 10 in the condenser deaeration steam system 9, and a signal from a pressure transmitter 31 that outputs the pressure of the condenser and a temperature transmitter that detects the temperature of the condenser hot well. 32 and the signal from the flow rate transmitter 33 that detects the feed water flow rate are input to the control device 34, the amount of steam necessary for degassing the condenser is calculated, and then the amount of degassing steam is adjusted by the regulating valve 10. and supplies it to the condenser 4.

本実施例によれば、プラント起動待復水器ホットウェル
の貯水の溶存酸素濃度を低減するため、給水再循環系統
24を用いて、貯水を循環しく給水再循環の流量は再循
環系統24に設置された調整弁25によって制御される
)・復水器脱気蒸気系統9によって加熱し脱気運転を行
なう場合にも、常に最適(必要最小限)の脱気蒸気量を
供給できる。脱気運転中に復水器の圧力(真空度〕、ポ
ットウェルの復水温度・給水流量が変化した場合。
According to this embodiment, in order to reduce the dissolved oxygen concentration in the water stored in the hot well of the plant start-up water condenser, the feed water recirculation system 24 is used to circulate the stored water and the flow rate of the feed water recirculation is directed to the recirculation system 24. Even when heating and degassing operation is performed by the condenser degassing steam system 9 (controlled by the installed regulating valve 25), the optimum (minimum required) amount of degassing steam can always be supplied. If the condenser pressure (degree of vacuum), potwell condensate temperature, or water supply flow rate changes during deaeration operation.

常に、最適な脱気蒸気量に制衡することは前述の通シで
ある。
As mentioned above, it is always necessary to control the amount of degassed steam to the optimum amount.

第1図の制御装置34は必要蒸気量に相当する弁開度信
号’lt算でめ・フィードフォワード制御を行なう・そ
の詳細は第2崗のように表わされる。圧力発信号31で
検出した圧力信号Pcは関数演算器34.1(折れ線近
似、または、直線近似で代行することもあるンで飽和温
度Tscの信号に変換される。減算器34.2ではこの
Tsc信号よシ、温度発信器32(温度エレメントと信
号変換器に怨 よって構成されることが寿いンで検出した温度信号T−
+に減算し、(Tsc −T−+ )の信号を得る。
The control device 34 in FIG. 1 calculates a valve opening signal 'lt corresponding to the required amount of steam and performs feedforward control.The details are shown in the second diagram. The pressure signal Pc detected by the pressure generation signal 31 is converted into a signal of the saturation temperature Tsc by a function calculator 34.1 (which may be replaced by polygonal line approximation or linear approximation). In addition to the Tsc signal, the temperature signal T- detected by the temperature transmitter 32 (which is composed of a temperature element and a signal converter) is
+ to obtain a signal of (Tsc - T-+).

一方・減算器34.4では・脱気蒸気エンタルピー信号
(Is)34.3よシ、T911信号を減算し。
On the other hand, the subtractor 34.4 subtracts the T911 signal from the degassed steam enthalpy signal (Is) 34.3.

I’s Twr)の信号を得る。isに比べT w 1
は十分率さいので、減算器34.4を省略し、単に18
信号34.3を用いる場合もある・除算器34.5では
減算器34.2よりの信号へを減算器34.4よシの信
号Bで除算する。これによって 得られる。流量発信器33の信号は流量オリフィスの差
圧信号ΔPとして検出されるので、開平演算器34.6
1Cよシ開平演算し、給水流量相当信号G、”k得る。
I's Twr) signal. T w 1 compared to is
is sufficiently small, so we omit the subtractor 34.4 and simply write 18
The signal 34.3 may also be used. A divider 34.5 divides the signal from the subtracter 34.2 by the signal B from the subtracter 34.4. obtained by this. Since the signal from the flow rate transmitter 33 is detected as the differential pressure signal ΔP at the flow rate orifice, the square root calculator 34.6
A square root calculation is performed on 1C to obtain a signal G, "k" corresponding to the water supply flow rate.

乗算器34.7で除算器34.5の出力信号と開平演算
器34.6の出力信号を乗算し・復水器脱気蒸気の必要
蒸気量相当信号Gs’ を得る。すなわち、34.1〜
34.7の各演算器(全体音34′とする)により(6
)式の脱気用の必要蒸気量の演算を行なっている。関数
演算器34.8はこの必要蒸気掛金流すに必要な調整弁
10の弁制御信号(弁開度信号)を得る。
A multiplier 34.7 multiplies the output signal of the divider 34.5 and the output signal of the square root calculator 34.6 to obtain a signal Gs' corresponding to the required steam amount of the condenser deaerated steam. That is, 34.1~
34.7 calculation units (total sound 34') calculate
) is used to calculate the required amount of steam for deaeration. The function calculator 34.8 obtains a valve control signal (valve opening degree signal) for the regulating valve 10 necessary to flow the required steam latch.

本発明の他の実施例を第3図及び第4図に示す・第3図
は・補給水量の多い/ラントの場合、第1図に示す復水
器への補給水15全流量発信器16で検出し、制御装置
34にとりこみ、第2図でめた鋭気用必要蒸気量金、補
給水が増加した時に補正項を加え、これを若干大きめの
値で制御しようとするものである。復水器脱気は本来、
復水器での過冷却による溶存酸素増加を・再加熱し脱気
するものであるが、補給水が多い場合・補給水中の溶存
酸素量が多いため、復水器ホットウェル部の復水の溶存
酸素が増加する傾向を生じるので、これ全補償するため
、前述のように・補給水増加によシ、脱気蒸気量を増加
するものである0第3図では制御装置fl−35として
いるが・第2図の制御装置に35.1〜35.3を追加
したものである。流量発信器16の差圧信号ΔPMを開
平演算器35.11Cよυ開平演算し、補給水率相当信
号GM”k得る。このGM’ と給水流量相当信号Gy
’ を除算器35.2にとシこみ、補給水率相当信号R
(’=GM’/G−’ 請求める・第2図と同一回路で
ある34′によシ復水器脱気蒸気の必要蒸気量相当信号
Ga’にめ、几と共に関数演算器35.3によシ、装置
補正した必要蒸気量相当信号GSR’をめる。
Other embodiments of the present invention are shown in FIGS. 3 and 4. FIG. 3 shows the flow of makeup water 15 to the condenser shown in FIG. The system detects this and inputs it into the control device 34, and when the required amount of steam for sharp air and make-up water determined in FIG. Condenser deaeration is originally
The increase in dissolved oxygen due to supercooling in the condenser is reheated and degassed, but when there is a large amount of make-up water, the amount of dissolved oxygen in the make-up water is large, so the condensate in the hot well section of the condenser is Since dissolved oxygen tends to increase, in order to fully compensate for this, the amount of deaeration steam is increased due to the increase in make-up water, as described above.In Figure 3, the control device fl-35 is used.・This is the control device shown in FIG. 2 with 35.1 to 35.3 added. The differential pressure signal ΔPM of the flow rate transmitter 16 is subjected to square root calculation by the square root calculator 35.11C to obtain a signal GM''k corresponding to the make-up water rate.This GM' and a signal Gy corresponding to the feed water flow rate are obtained.
' into the divider 35.2, and the make-up water rate equivalent signal R
('=GM'/G-') 34', which is the same circuit as in FIG. Then, obtain the device-corrected required steam amount equivalent signal GSR'.

GsR’=Gs’X(1+KIR) −−−−(力ここ
で−Ks:脱気用蒸気量増加補正係数であり、補給水率
相当信号Rが最大の時に復水會数度加熱するに必要な蒸
気量を得るようにに1の値を定めることが多い。Gsn
’に関数演算器34.8にとりこみ、必要弁開度を演算
し、第2図と同様に調整弁10の制御信号を出力する。
GsR' = Gs' The value of 1 is often set to obtain a certain amount of steam.Gsn
' is input to the function calculator 34.8 to calculate the required valve opening and output a control signal for the regulating valve 10 in the same manner as in FIG.

第2図及び第3図はフィードフォワード制御の例である
が、第4図はこれ全フィードバック制御で行なう場合の
例であシ、復水器脱気蒸気系統9に脱気用蒸気量を検出
す゛るための流量発信器36を設置し、カスケード型調
節計の機能をもつ制御装置37にその信号をと9こみ、
制御演■、をして調整弁10を制御する。流量発信器3
6の差圧信号ΔPgvを開平演算器37.1で開平演算
し、脱気用蒸気量相当信号Gsv’を得るO第2図と同
様に34′の回路で必要蒸気量相当信号Gs”e得る。
Figures 2 and 3 are examples of feedforward control, but Figure 4 is an example of full feedback control, in which the amount of steam for deaeration is detected in the condenser deaeration steam system 9. A flow rate transmitter 36 is installed for controlling the flow rate, and the signal is inputted to a control device 37 having the function of a cascade type controller.
The control valve 10 is controlled by the control operation (1). Flow rate transmitter 3
The differential pressure signal ΔPgv of 6 is subjected to a square root calculation using a square root calculator 37.1 to obtain a signal Gsv' corresponding to the amount of steam for deaeration. Similarly to FIG. .

これを比例演算器37.2で補正係数に2をかけ。This is multiplied by 2 by the correction coefficient using the proportional calculator 37.2.

Gsv’の信号レベルに補正した必要蒸気量相当信号G
ss”iff得・これを調節計(37,3と37.4の
組合せ)への設定値として与える。減算器37.3で設
定値Gs4’に対する入力信号Gsv’の偏差をめ、こ
れによってPI演算器(比例・積分演算6)37.4で
制御演算し、これを手動・自動切替器37.5を介して
調整弁10に与え、設定流量に等しくなるように制御す
る。第4図全適用すれば・第1図の補助蒸気へラダ23
の圧力が変動しても・復水器脱気に必要な蒸気量を投入
できる利点がある。第4図は第2図の制御方式をフィー
ドバック制御に変更した例であるが、第3図のもの全フ
ィードバック制御に変更できる事は明白である。
Required steam amount equivalent signal G corrected to the signal level of Gsv'
ss"iff is obtained. This is given as a set value to the controller (a combination of 37.3 and 37.4). The subtracter 37.3 calculates the deviation of the input signal Gsv' with respect to the set value Gs4', and thereby the PI The calculation unit (proportional/integral calculation 6) 37.4 performs control calculations, and this is applied to the regulating valve 10 via the manual/automatic switch 37.5 to control the flow rate to be equal to the set flow rate. If applied: Ladder 23 to the auxiliary steam in Figure 1
This has the advantage of being able to input the necessary amount of steam for degassing the condenser even if the pressure fluctuates. Although FIG. 4 shows an example in which the control method shown in FIG. 2 is changed to feedback control, it is obvious that the control method shown in FIG. 3 can be changed to full feedback control.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、給水流量(復水流量)と復水器ホント
ウェル部の過冷却度が変化した場合にも。
According to the present invention, even when the feed water flow rate (condensate flow rate) and the degree of supercooling of the condenser real well section change.

常に・最適な脱気用蒸気量を投入することができ7プラ
ント起動時のホットウェル貯水の脱気運転時に、その効
果が顕著である。
The optimum amount of steam for deaeration can be input at all times, and the effect is noticeable during deaeration of hot well stored water at plant start-up.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のカスタービン・蒸気タービ
ンコンバインドプラントの概略系統図。 第2図は本発明に関する復水器脱気蒸気系統の制御系統
図2第3図及び第4図は本発明の他の実施例の制御系統
図である。 31・・・圧力発信器、32・・・温度発信器・16.
33・・・流量発信器、34,35.37・・・制御装
置。 代理人 弁理士 筐橋明夫 第3霞
FIG. 1 is a schematic system diagram of a caster turbine/steam turbine combined plant according to an embodiment of the present invention. FIG. 2 is a control system diagram of a condenser deaeration steam system according to the present invention. FIGS. 3 and 4 are control system diagrams of other embodiments of the present invention. 31...Pressure transmitter, 32...Temperature transmitter・16.
33...Flow rate transmitter, 34, 35.37...Control device. Agent Patent Attorney Akio Kachihashi Daisan Kasumi

Claims (1)

【特許請求の範囲】 1、蒸気タービン発電プラントのボイラへの給水の溶存
酸素を低減するために復水器の脱気蒸気系統を備えたも
のにおいて・ 前記復水器の圧力信号とホットウェルの温度信号と給水
流量信号とにより復水器の脱気に必要な蒸気量を演算す
る手段と・それに基づいて脱気蒸気量を制御する手段と
からなること番特徴とする復水器脱気蒸気系統の制御装
置。 2、特許請求の範囲第1項において・ 補給水の流量信号により前記必要蒸気t=li=補正し
・前記補給水が増加した時に前記必要蒸気量を多くする
ように制御する手段を設けたことを特徴 ′とする復水
器脱気蒸気系統の制御装置。
[Claims] 1. In a steam turbine power plant equipped with a deaeration steam system for a condenser to reduce dissolved oxygen in water supplied to a boiler, the pressure signal of the condenser and the hot well A condenser deaeration steam system characterized by comprising means for calculating the amount of steam required for deaeration of the condenser based on a temperature signal and a feed water flow rate signal, and a means for controlling the amount of deaeration steam based on the calculation means. System control device. 2. In claim 1, there is provided means for correcting the required steam t=li= based on the makeup water flow rate signal and controlling the required steam amount to increase when the makeup water increases. A control device for a condenser deaeration steam system characterized by:
JP7274084A 1984-04-13 1984-04-13 Control device for deaerated steam system in condenser Pending JPS60218585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7274084A JPS60218585A (en) 1984-04-13 1984-04-13 Control device for deaerated steam system in condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7274084A JPS60218585A (en) 1984-04-13 1984-04-13 Control device for deaerated steam system in condenser

Publications (1)

Publication Number Publication Date
JPS60218585A true JPS60218585A (en) 1985-11-01

Family

ID=13498054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7274084A Pending JPS60218585A (en) 1984-04-13 1984-04-13 Control device for deaerated steam system in condenser

Country Status (1)

Country Link
JP (1) JPS60218585A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0444892A2 (en) * 1990-02-26 1991-09-04 Westinghouse Electric Corporation Power plant condenser control system
EP1162425A1 (en) * 2000-01-14 2001-12-12 T L V Co., Ltd. Steam heating device
EP1386057A4 (en) * 2001-05-07 2009-12-16 Joseph W C Harpster Condensers and their monitoring

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0444892A2 (en) * 1990-02-26 1991-09-04 Westinghouse Electric Corporation Power plant condenser control system
EP0444892A3 (en) * 1990-02-26 1992-03-11 Westinghouse Electric Corporation Power plant condenser control system
EP1162425A1 (en) * 2000-01-14 2001-12-12 T L V Co., Ltd. Steam heating device
EP1162425A4 (en) * 2000-01-14 2006-05-10 Tlv Co Ltd Steam heating device
EP1795844A2 (en) * 2000-01-14 2007-06-13 Tlv Co. Ltd. Steam-heating apparatus
EP1795845A2 (en) * 2000-01-14 2007-06-13 Tlv Co. Ltd. Steam-heating apparatus
EP1795844A3 (en) * 2000-01-14 2007-06-27 Tlv Co. Ltd. Steam-heating apparatus
EP1795845A3 (en) * 2000-01-14 2007-07-04 Tlv Co. Ltd. Steam-heating apparatus
EP1386057A4 (en) * 2001-05-07 2009-12-16 Joseph W C Harpster Condensers and their monitoring

Similar Documents

Publication Publication Date Title
US4425762A (en) Method and system for controlling boiler superheated steam temperature
JPS6239648B2 (en)
JPS60218585A (en) Control device for deaerated steam system in condenser
JPH05222906A (en) Controller for power plant utilizing exhaust heat
JP3285946B2 (en) Steam temperature controller for variable-pressure once-through boiler
JP2823342B2 (en) Steam temperature controller for superheater / reheater in combined cycle power plant
JPS6022241B2 (en) Main steam pressure control method
JPH03175103A (en) Steam turbine equipment, method for supplying steam thereto, power plant and combined plant
JPH05272306A (en) Exhaust heat utilizing power generation control device
JPH1054508A (en) Temperature control method and apparatus for main steam
JPH05118203A (en) Power generation control device in exhaust heat utilization system
JPH0146684B2 (en)
GB2083178A (en) Deaerator level control
JP2585406B2 (en) Condenser deaerator
JP2894118B2 (en) Boiler steam temperature control method
JP3221738B2 (en) Steam temperature controller for variable-pressure once-through boiler
JP2931141B2 (en) Control method and apparatus for variable-pressure Benson boiler
JPH09145004A (en) Emergency shutdown control of device pressurized fluidized bed boiler
JPH06241007A (en) Waste heat utilization system controller
JPH08178205A (en) Controller of boiler
JPH05296401A (en) Exhaust heat recoverying boiler system and its main steam temperature controller
JPS59110810A (en) Water level control device for steam turbine degasifier
JPS63682B2 (en)
JPH04155103A (en) Water level controller of supply water heater
SU1543186A1 (en) Method of controlling a thermal deaerator