JPS59110810A - Water level control device for steam turbine degasifier - Google Patents

Water level control device for steam turbine degasifier

Info

Publication number
JPS59110810A
JPS59110810A JP22162082A JP22162082A JPS59110810A JP S59110810 A JPS59110810 A JP S59110810A JP 22162082 A JP22162082 A JP 22162082A JP 22162082 A JP22162082 A JP 22162082A JP S59110810 A JPS59110810 A JP S59110810A
Authority
JP
Japan
Prior art keywords
water level
flow rate
condenser
water
condensate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22162082A
Other languages
Japanese (ja)
Inventor
Masashi Nakamoto
政志 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22162082A priority Critical patent/JPS59110810A/en
Publication of JPS59110810A publication Critical patent/JPS59110810A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/02Arrangements or modifications of condensate or air pumps
    • F01K9/023Control thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Non-Electrical Variables (AREA)

Abstract

PURPOSE:To prevent the water level of a condenser from being lowered by correcting a condensate flow rate command value, which is provided based on the water level of a degasifier and the feed-water flow rate, in accordance with the water level of said condenser. CONSTITUTION:In this device, the output signal of an adder-subtractor 13-a, which outputs a deviation between a water level signal from a degasifier water level gage 10 and a water level set value, is proportionately integrated 14-a before adding 15-a the feed water flow rate from a feedwater flow rate gage 8 as a feed forward signal to the above results, and the resultant output signal is made the command signal for the condensate flow rate. A deviation between this command signal and the condensate flow rate gage 9 is obtained by an adder- subtractor 13-b, and the opening of a degasifier water-level control valve 7 is controlled based on this deviation. In this case, further, a condenser water-level gage 17 is provided, its output is fed to an adder 15-b through a function generator 16-a, and added to the output which was proportionately integrated 14-a and the sum is fed to the adder 15-a.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は発電プラントに用いられる蒸気タービン用脱気
器の水位制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a water level control device for a steam turbine deaerator used in a power generation plant.

(発明の背景技術) この種水位制御装置は脱気器の水位を一定に保つだめに
設けられるもので、第1図に示すような系統構成が採ら
れる。脱気器1の水位制御は復水ポンプ4で昇圧した復
水器2の水を脱気器水位調節弁7を操作して復水流量を
加減することによって行われる。この調節弁7への操作
信号は脱気器1の水位とボイラへの給水流量、復水器2
から脱気器1に対する復水の流量に基き制御演算により
形成される。
(Background Art of the Invention) This type of water level control device is provided to maintain a constant water level in a deaerator, and has a system configuration as shown in FIG. The water level in the deaerator 1 is controlled by adjusting the flow rate of water in the condenser 2, which has been pressurized by the condensate pump 4, by operating the deaerator water level control valve 7. The operation signals to this control valve 7 are the water level of the deaerator 1, the water supply flow rate to the boiler, and the condenser 2.
It is formed by control calculation based on the flow rate of condensate from to the deaerator 1.

ここで発電プラントの運転方式としてタービン・バイパ
ス運転があり、これはボイラ出力に比較して発電出力が
少い場合に余剰蒸気をタービンにバイパスさせボイラか
ら復水器に直接流す方式である。この場合、ボイラから
の高温高圧蒸気が直接復水器に流入すると復水器本体を
損傷するおそれがあるため、蒸気を減温すべく復水器2
の入口に減温器3を設けて復水ポンプ4の出口から冷却
水スプレィ弁6を通して減温器3に冷却水を注入するよ
うにしている。
Here, there is a turbine bypass operation as an operating method of a power generation plant, and this is a method in which when the power generation output is small compared to the boiler output, surplus steam is bypassed to the turbine and flows directly from the boiler to the condenser. In this case, if high-temperature, high-pressure steam from the boiler flows directly into the condenser, there is a risk of damaging the condenser body, so in order to reduce the temperature of the steam, the condenser 2
A desuperheater 3 is provided at the inlet of the condensate pump 4, and cooling water is injected into the desuperheater 3 from the outlet of the condensate pump 4 through a cooling water spray valve 6.

このタービンバイパスの容量は、石炭燃焼ボイラのよう
に燃焼方法的にボイラ出力を急速に変更できないもので
はプラント100%出力時相当の蒸気を流すようにする
必要がある。これは電力系統事故等でプラントを停止さ
せることなく所内単独運転やボイラ単独運転に移行させ
るためであり、このような多量の蒸気を冷却するため、
それに応じた冷却水が必要になる。
The capacity of this turbine bypass needs to be such that, in a coal-fired boiler where the boiler output cannot be changed rapidly due to the combustion method, the capacity of the turbine bypass must be such that steam equivalent to 100% plant output can flow through the boiler. This is to allow the plant to switch to standalone operation or boiler standalone operation without shutting down the plant due to power system accidents, etc., and to cool such large amounts of steam.
Cooling water will be required accordingly.

一方、タービンプラントでは熱効率同士のため脱気器1
前後の給水、復水ラインに給水加熱器(図示せず)を設
けて復水器2から脱気器1を経てボイラに行く給水、復
水の温度を上昇させている。この給水加熱器の加熱源は
タービンの中間段落からの抽気蒸気である。給水、復水
の加熱に用いられた蒸気は凝縮してドレンとなり、脱気
器1に回収される。このため、通常運転時には、ボイラ
に送る給水流量QB、脱気器1に流れる給水加熱器から
のドレン流量Qd、復水器2から流出し復水ポンプ4、
脱気器水位調節弁7を通る復水流量Qcとの比は、 QB : Qd: Qc = 1: 0.4 : 0.
6となり、給水流量に比較して復水ポンプ4、脱気器水
位調節弁7を流れる復水流量は約60%程度である。こ
れに対し、所内単独運転やボイラ単独運転時などのター
ビンバイパス運転となる場合にはタービンを流れる蒸気
は殆んどないが、全くなく、何れにしても給水加熱器へ
の抽気は零となりボイラで発生した蒸気はほぼ全量が復
水器2に流入する。したがって復水器2、脱気器1での
出入の流量バランスを成立させるためには脱気器1がら
はボイラ発生蒸気量分の水がボイラに流れるから、これ
と同量の水を復水器2から復水ポンプ4、脱気器水位調
節弁2を通して脱気器1に流す必要がある。さらにバイ
パス蒸気の減温のために冷却水を復水ポンプ出口から抽
出するので、復水ポンプ4で流j量はこの冷却水分をさ
らに加えたものになる。冷却水流量は蒸気量の約50%
程度となるので前述の復水流量を復水ポンプ4を流れる
量をQc’、脱気器水位調節弁7を流れる量をQc“と
すると、タービン・バイパス時の各流量の比は、(3) Qn :Qd :Qc’:Qc’= 1  : O: 
 1.5 : 1となる。これにまり脱気器1、復水器
2での流入、流出のバランスを成立させるために通常運
転時とタービン・バイパス時の復水ポンプ4、脱気器水
位調節弁7を流す流量の比は、 復水ポンプ Qc  :  Qc’= 1:  2.5脱気器水位調
節弁 Qc  :  Q(’= 1:  1,7となる。この
ようにタービン・バイパス時には復水ラインを流す流量
は非常に大きく増加させる必要がある。
On the other hand, in a turbine plant, the deaerator 1
Feed water heaters (not shown) are provided in the front and rear feed water and condensate lines to raise the temperature of the feed water and condensate that go from the condenser 2 to the boiler via the deaerator 1. The heating source for this feedwater heater is bleed steam from the intermediate stage of the turbine. The steam used to heat the feed water and condensate is condensed and becomes drain, which is recovered in the deaerator 1. Therefore, during normal operation, the feed water flow rate QB sent to the boiler, the drain flow rate Qd from the feed water heater flowing into the deaerator 1, the condensate water flowing out from the condenser 2 and the condensate pump 4,
The ratio to the condensate flow rate Qc passing through the deaerator water level control valve 7 is QB:Qd:Qc=1:0.4:0.
6, and the flow rate of condensate flowing through the condensate pump 4 and deaerator water level control valve 7 is about 60% of the flow rate of water supply. On the other hand, when the turbine is in bypass operation, such as when the plant is operating independently or when the boiler is operating independently, there is little or no steam flowing through the turbine, and in either case, the air extracted to the feedwater heater becomes zero and the boiler Almost all of the steam generated flows into the condenser 2. Therefore, in order to establish a flow balance between the flow in and out of the condenser 2 and deaerator 1, since the water equivalent to the amount of steam generated by the boiler flows from the deaerator 1 to the boiler, the same amount of water must be condensed. It is necessary to flow the water from the container 2 to the deaerator 1 through the condensate pump 4 and the deaerator water level control valve 2. Furthermore, since cooling water is extracted from the condensate pump outlet in order to reduce the temperature of the bypass steam, the flow rate j in the condensate pump 4 is the sum of this cooling water. Cooling water flow rate is approximately 50% of steam volume
Therefore, the ratio of each flow rate at the time of turbine bypass is (3 ) Qn:Qd:Qc':Qc'=1:O:
1.5: 1. Accordingly, in order to maintain a balance between inflow and outflow in the deaerator 1 and condenser 2, the ratio of flow rates flowing through the condensate pump 4 and deaerator water level control valve 7 during normal operation and during turbine bypass is determined. is: Condensate pump Qc: Qc' = 1: 2.5 Deaerator water level control valve Qc: Q(' = 1: 1,7. In this way, during turbine bypass, the flow rate through the condensate line is extremely low. need to be significantly increased.

特に石炭燃焼ボイラの場合にはボイラ出力の減少率が小
さいため、電力系統の事故等で発電プラントを所内単独
運転またはボイラ単独運転に移行した後、ボイラでの蒸
発量を減少させるには残炭燃焼のため長時間を要する。
In particular, in the case of coal-fired boilers, the rate of decrease in boiler output is small, so after the power plant is shifted to on-site isolated operation or boiler isolated operation due to an accident in the power system, remaining coal is used to reduce the amount of evaporation in the boiler. It takes a long time to burn.

そこで、上述の流量バランスを成立させるために長時間
に亘り上の比(5) (4) 例関係を成立させるべく通常運転時に比較して多量の復
水を流す必要がある。復水ポンプおよび復水ラインの設
計は10(1発電負荷時の流量、圧力にマージンを加え
た程度に行われるから最大復水流量は脱気器水位調節弁
7が全開になったとしても100チ負荷時の復水流量の
110〜130%程度であって、タービン・バイパス時
に流量バランスを成立させるための流量まで増加させる
ことはできない。
Therefore, in order to establish the above-mentioned flow rate balance, it is necessary to flow a larger amount of condensate over a long period of time than during normal operation in order to establish the above ratios (5) and (4). The design of the condensate pump and condensate line is 10 (the flow rate and pressure at one power generation load plus a margin), so the maximum condensate flow rate is 100 even if the deaerator water level control valve 7 is fully opened. The condensate flow rate is approximately 110 to 130% of the condensate flow rate when the engine is loaded, and cannot be increased to the level required to establish flow balance during turbine bypass.

復水器の水位は系外への復水の逃し、系外からの供給に
よって一定に保つよう制御されるが、それらの最大流量
は一般的にQcの10%〜20%程度と給水流量や復水
流量に比較して少量である。
The water level in the condenser is controlled to be kept constant by releasing condensate to the outside of the system and supplying it from outside the system, but the maximum flow rate is generally about 10% to 20% of Qc, and the water supply flow rate and This is a small amount compared to the condensate flow rate.

そしてこの復水系における流量制御は脱気器水位制御と
して行われ、これは第1図および第2図に示すように、
脱気器水位計10からの水位信号と給水流量計8からの
給水流量に基き水位調節計11から復水流量の指令信号
を発生し流量調節計12により復水流量を調整すること
によって行われる。
Flow rate control in this condensate system is performed as deaerator water level control, as shown in Figures 1 and 2.
This is done by generating a command signal for the condensate flow rate from the water level controller 11 based on the water level signal from the deaerator water level gauge 10 and the water supply flow rate from the water supply flow meter 8, and adjusting the condensate flow rate using the flow rate controller 12. .

水位調節計11は水位と水位設定値とを比較してその偏
差を出力する加減算器13−a、偏差から水位の修正信
号を発生する比例積分演算器14−a、給水流量計8か
らの給水流量をフィードフォワード信号として加え合わ
せる加算器15−aによって構成され、この出力が復水
流量の指令信号となる。
The water level controller 11 includes an adder/subtractor 13-a that compares the water level and the water level set value and outputs the deviation, a proportional integral calculator 14-a that generates a water level correction signal from the deviation, and a water supply from the water supply flow meter 8. It is constituted by an adder 15-a that adds the flow rate as a feedforward signal, and the output thereof becomes a command signal for the condensate flow rate.

流量調節計12は水位調節計11からの流量指令値と復
水流量計9からの復水流量信号の偏差を加減算器13−
bで求め、比例積分演算器14−bで調節弁への操作信
号を形成する。
The flow rate controller 12 adds and subtracts the deviation between the flow rate command value from the water level controller 11 and the condensate flow rate signal from the condensate flow meter 9.
b, and the proportional-integral calculator 14-b forms an operation signal to the control valve.

このような制御方式では、脱気器水位とその設定値とに
偏差が生じているときは積分演算により復水量の指令値
が飽和または出力信号の制限値となるまで増加または減
少を続ける。
In such a control system, when there is a deviation between the deaerator water level and its set value, the command value of the condensate amount continues to increase or decrease by integral calculation until it reaches saturation or reaches the limit value of the output signal.

(背景技術の問題点) 上記従来装置では次のような問題点がある。(Problems in background technology) The conventional device described above has the following problems.

プラントが100%出力のような高負荷運転中に系統事
故等でタービン単独運転または所内単独運転となりター
ビン・バイバヌ運転となった場合には、前述のように脱
気器水位制御装置の動きには関係なく復水器2から脱気
器1に流量バランスな成立させるために必要な量の水を
流すことができない。このため第4図に示すように脱気
器水位22は低下し、復水器水位21は上昇する。その
後ボイラ出力が減少するに伴って給水流量18が減少し
、復水流量19と流量の関係が逆転すると脱気器1の水
位は上昇し、復水器2の水位は低下する。復水流量は脱
気器水位と給水流量からその制御指令値が形成されるが
水位の低下している時間が長いため水位の偏差に対する
積分演算により脱水型水位がその設定値にまで回復する
間は復水流量の指令値は最大となる。この間、流量調節
計12でも指令値に対してそれに応じた流量を流すこと
ができないからその出力も調節弁7を全開させる値とな
る。
If the plant is operating under high load, such as at 100% output, due to a system accident, etc., and the turbine is in standalone operation or in-plant standalone operation, resulting in turbine-by-vanu operation, the operation of the deaerator water level control device will be affected as described above. Regardless, it is not possible to flow the necessary amount of water from the condenser 2 to the deaerator 1 to achieve a flow rate balance. Therefore, as shown in FIG. 4, the deaerator water level 22 falls and the condenser water level 21 rises. Thereafter, as the boiler output decreases, the feed water flow rate 18 decreases, and when the relationship between the condensate flow rate 19 and the flow rate is reversed, the water level in the deaerator 1 rises and the water level in the condenser 2 falls. The control command value for the condensate flow rate is formed from the deaerator water level and the water supply flow rate, but since the water level has been falling for a long time, the dehydration type water level will recover to the set value by integral calculation for the water level deviation. The command value of condensate flow rate is maximum. During this time, since the flow rate regulator 12 cannot flow a flow rate corresponding to the command value, its output also becomes a value that causes the control valve 7 to be fully opened.

このようにボイラ出力が減少した後も脱気器1の水位が
回復する間は脱気器1にはその系で流すことのできる最
大の量の復水を流すので復水器水位21は給水、復水流
量の逆転後から脱気器水位が回復するまで低下する。こ
の間には復水器水位制御による復水の逃し、供給による
復水器2の水位を一定に保つ動作が行われるが、逃し量
、供給量ともに復水流量に比べて少量のため、復水流量
の大きな変動による復水器水位の変化に対しては水位補
正にさほど寄与し得ない。
Even after the boiler output is reduced in this way, while the water level in the deaerator 1 recovers, the maximum amount of condensate that can flow in that system is allowed to flow through the deaerator 1, so the condenser water level 21 is maintained at the water supply level. , after the reversal of the condensate flow rate, the deaerator water level decreases until it recovers. During this period, condensate is released by controlling the condenser water level, and the water level of condenser 2 is kept constant by supply. However, since both the release amount and the supply amount are small compared to the condensate flow rate, It cannot contribute much to water level correction for changes in the condenser water level due to large fluctuations in flow rate.

脱気器1は大量の水を貯えるタンクを持っており水位の
低下に対しては許容範囲が大きい。また復水器2はその
構造上水位の上昇に対しては大きな許容値を持っている
。しかし水位の低下に対しては余裕は少い。そして復水
器の水位の制限値以下への低下は復水ポンプ4の停止、
プラント停止につながる。
The deaerator 1 has a tank that stores a large amount of water, and has a large tolerance for a drop in water level. Furthermore, the condenser 2 has a large tolerance against a rise in water level due to its structure. However, there is little margin for lower water levels. When the water level of the condenser drops below the limit value, the condensate pump 4 is stopped.
Leads to plant shutdown.

このように、従来の脱気器水位制御装置は脱気器の水位
と、給水流量とから復水流量を決定してイルタめ、ター
ビン・バイパス発生後脱気器1の水位が回復するまで大
きな復水流量をとるので復水器2の水位が低下し覆水ポ
ンプ4の停止、プラント停止という事態となる。
In this way, the conventional deaerator water level control device determines the condensate flow rate from the deaerator water level and the feed water flow rate, and increases the water level until the water level in the deaerator 1 recovers after the turbine bypass occurs. Since the flow rate of condensate is taken, the water level in the condenser 2 decreases, causing a situation in which the submerged water pump 4 and the plant are stopped.

(発明の目的) 本発明は上述の点を考慮してなされたもので、タービン
・バイパス時に復水器水位の低下による復水ポンプの停
止、プラント停止を生じない脱気器水位制御装置を提供
することを目的とする。
(Object of the Invention) The present invention has been made in consideration of the above points, and provides a deaerator water level control device that does not cause condensate pump stoppage or plant stoppage due to a drop in condenser water level during turbine bypass. The purpose is to

(発明の概要) この目的達成のため、本発明では、復水器の水位低下時
には復水流量調節計への指令値を減少させて復水流量を
減少させることにより復水器の水位低下を防止するよう
にした脱気器水位制御装置を構成したものである。
(Summary of the Invention) In order to achieve this objective, the present invention reduces the command value to the condensate flow rate controller to reduce the condensate flow rate when the water level of the condenser drops. This is a deaerator water level control device designed to prevent this.

(発明の実施例) 以下第3図乃至第5図を参照して本発明を実施例につき
説明する。
(Embodiments of the Invention) The present invention will be described below by way of embodiments with reference to FIGS. 3 to 5.

本発明は脱気器水位制御装置の流量制御部への流量指令
値を復水器の水位により補正するものである。
The present invention corrects the flow rate command value to the flow rate control section of the deaerator water level control device based on the water level of the condenser.

第3図(a)は本発明の一実施例を示したもので、復水
器2(第1図)に水位計17を設け、この水位計17の
出力を関数発生器16−aを介して加算器15−bに与
え、比例積分演算器14−aの出力と加わ合わせたもの
を加算器15−aに与える。関数発生器16−aは第3
図(b)に示すような特性を有する。
FIG. 3(a) shows an embodiment of the present invention, in which a water level gauge 17 is provided in the condenser 2 (FIG. 1), and the output of this water level gauge 17 is transmitted via a function generator 16-a. and the output of the proportional-integral calculator 14-a is added to the adder 15-a. The function generator 16-a is the third
It has the characteristics shown in Figure (b).

他の構成は第2図と同様である。The other configurations are the same as in FIG. 2.

このような構成により、復水器の水位が低下して第3図
(b)におけるA以下になると関数発生器16の出力は
負となり加算器15−bで比例積分演算器14−aの出
力を減じる動作が行われる。これにより復水流量の指令
値が減少して脱気器水位調節弁7による復水流量の減少
を行い、復水器2の水位低下を防ぐ。
With such a configuration, when the water level of the condenser decreases and becomes below A in FIG. An action is taken to reduce the . As a result, the command value of the condensate flow rate decreases, and the condensate flow rate is reduced by the deaerator water level control valve 7, thereby preventing the water level of the condenser 2 from falling.

復水器の水位が発電プラント通常運転中に変動しても関
数発生器16−aが出力を出さないように第3図(b)
のA−8間の不感帯が設定されている。
In order to prevent the function generator 16-a from outputting even if the water level of the condenser fluctuates during normal operation of the power generating plant, as shown in Fig. 3(b)
A dead zone between A and 8 is set.

また復水器水位がB以上となると関数発生器16−aは
正の出力を生じ比例積分演算器14aの出力を更に増す
ことになり、流量設定値を増加させて復水器から流出す
る復水流量を増し復水器の水位上昇を抑える。
Furthermore, when the condenser water level becomes equal to or higher than B, the function generator 16-a generates a positive output and further increases the output of the proportional-integral calculator 14a. Increase the water flow rate and suppress the rise in the water level of the condenser.

このような制御動作によりタービン・バイパス時にはま
す脱気器の水位が低下するためその水位設定値との偏差
によって比例積分演算器14−aはその出力制限値まで
信号を増加させる。積分演算によりこの信号は水位が設
定値近(になるまで制限値のままである。そして復水器
水位が低下してくると関数発生器16−aから負の信号
が出力されるので復水流量指令値は減少する。
Due to such a control operation, the water level of the deaerator further decreases during turbine bypass, so that the proportional-integral calculator 14-a increases the signal up to its output limit value due to the deviation from the water level set value. Through integral calculation, this signal remains at the limit value until the water level becomes close to the set value.When the condenser water level decreases, a negative signal is output from the function generator 16-a, so the condensate The flow rate command value decreases.

いま復水器水位が水位計17の検出範囲下限まで下った
とすると、このとき関数発生器16−aの出力は−D%
となる。そして復水流量の指令値は、(給水流量)+(
演算器14−aの出力上限値)−り となる。Dと演算器14−aの出力上限値を等しく設定
しておくと、復水流量は給水流量に追従するように制御
される。この場合、脱気器では流出する量と流入する量
が等しくなるため水位は変化しない。また復水器では、 復水流量−ボイラ発生蒸気量=復水器流入量(蒸気分) であるため復水流量−給水流量となれば水位の低下を防
ぐことができる。さらにこの場合には復水器の水位制御
により糸外より水が供給されるので復水器の水位は上昇
することになる。
Assuming that the condenser water level has now fallen to the lower limit of the detection range of the water level gauge 17, the output of the function generator 16-a is -D%.
becomes. The command value for the condensate flow rate is (water supply flow rate) + (
The output upper limit value of the arithmetic unit 14-a) is obtained. If D and the output upper limit value of the calculator 14-a are set equal, the condensate flow rate is controlled to follow the water supply flow rate. In this case, the water level does not change because the amount flowing out and flowing into the deaerator are equal. In addition, in the condenser, since the condensate flow rate - the amount of steam generated by the boiler = the condenser inflow rate (steam content), if the condensate flow rate - the feed water flow rate, a drop in the water level can be prevented. Furthermore, in this case, water is supplied from outside the line by controlling the water level of the condenser, so the water level of the condenser increases.

関数発生器16−aの特性におけるDの値を、系外から
復水器に供給される流量分を見込んで設定しておけば復
水流量は第4図の特性20のように応答し、給水流量特
性18に対応したものとなり、従来装置の特性19のよ
うな変動を伴わない。また復水器水位特性23も従来の
特性21のような落込みをみせず、脱気器水位特性24
も従来の特性22のような変動を示さずに円滑に設定値
に近付いていく。
If the value of D in the characteristic of the function generator 16-a is set in consideration of the flow rate supplied to the condenser from outside the system, the condensate flow rate will respond as shown in characteristic 20 in Fig. 4, This corresponds to the water supply flow rate characteristic 18, and does not involve fluctuations like the characteristic 19 of the conventional device. In addition, the condenser water level characteristic 23 does not show a drop like the conventional characteristic 21, and the deaerator water level characteristic 24
Also, the characteristic 22 smoothly approaches the set value without showing any fluctuations as in the conventional characteristic 22.

なお、関数発生器16−aの最大出力設定値を比例積分
演算器14−aの上、下限値以内としておけば脱気器の
水位に対しても常に制御が働くようにできる。
Note that if the maximum output setting value of the function generator 16-a is set within the upper and lower limit values of the proportional-integral calculator 14-a, the water level of the deaerator can always be controlled.

第5図(a) 、 (b) 、 (c)は本発明の他の
実施例の構成および特性を示したもので、復水器水位計
17の出力を2つの関数発生器16− b 、 16−
 cに与え、これら両開数発生器16− b 、 16
− cの出力により比例積分演算器14−aの出力の上
下限制御値を設定するように構成されている。上限値が
第5図(b)の特性により、下限値は第5図(clの特
性により定まる。
5(a), (b), and (c) show the configuration and characteristics of another embodiment of the present invention, in which the output of the condenser water level gauge 17 is connected to two function generators 16-b, 16-
c, and these double numerical value generators 16-b, 16
- The upper and lower limit control values of the output of the proportional-integral calculator 14-a are set by the output of the proportional-integral calculator 14-a. The upper limit value is determined by the characteristics shown in FIG. 5(b), and the lower limit value is determined by the characteristics shown in FIG. 5 (cl).

この構成により復水器の水位が低下して第5図(blの
A以下になると出力制限値の上限を100チより減少さ
せ復水流量指令値の給水流量への上乗せ分を制限し、復
水流量を取り過ぎないようにして水位の低下を防ぐ。逆
に水位が上昇して第5図(C)のA以上になると出力制
限値の下限を−Zoo 9gより増加させて復水流量指
令値の給水流量からの減算分を制限して復水流量の絞り
込みを制限し水位の上昇を防ぐ。
With this configuration, when the water level in the condenser decreases to below A in Figure 5 (bl), the upper limit of the output limit value is reduced below 100 inches, and the amount added to the condensate flow rate command value to the feed water flow rate is limited. Prevent the water level from dropping by not taking too much water flow.On the other hand, if the water level rises and exceeds A in Figure 5 (C), increase the lower limit of the output limit value from -Zoo 9g and set the condensate flow rate command. By limiting the subtraction of the value from the water supply flow rate, the condensate flow rate is restricted and the water level is prevented from rising.

このように復水流量の流量制限指令値を復水器の水位に
応じて補正することによって脱気器水位と復水器水位と
の協調のとれた復水流量制御ができる。
In this way, by correcting the flow rate restriction command value of the condensate flow rate according to the water level of the condenser, it is possible to control the condensate flow rate in a manner that coordinates the deaerator water level and the condenser water level.

本発明は上記各実施例における関数発生器に代えて復水
器水位によって出力を階段状に切替える手段を用いても
よい。
In the present invention, instead of the function generator in each of the above embodiments, a means for switching the output stepwise depending on the condenser water level may be used.

本発明は上述のように、復水器の水位に応じて復水流量
指令値を補正するようにしたため、タービン・バイパス
時のように一時的に制御不能状態となって給水、復水流
量のバランスが崩れ低下した脱気器水位を回復する場合
に、復水器、脱気器それぞれの水位に応じて徐々にその
設定水位に回復させるので復水器水位の落込みを防止で
きる。
As described above, the present invention corrects the condensate flow rate command value according to the water level of the condenser, so that the water supply and condensate flow rates may be temporarily uncontrollable as in the case of turbine bypass. When restoring a deaerator water level that has fallen due to loss of balance, it is possible to prevent the condenser water level from dropping because it is gradually restored to its set water level according to the respective water levels of the condenser and deaerator.

また、通常運転時には復水器水位が設定値より大きくず
れた場合、復水流量を調整して早(その水位を設定値に
回復させることができる。
Additionally, if the condenser water level deviates significantly from the set value during normal operation, the condensate flow rate can be adjusted to quickly restore the water level to the set value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は蒸気タービン復水系の概略系統図、第2図はそ
の従来の脱気器水位制御系統図、第3図(a) 、 (
b>は本発明の一実施例の構成およびその主要要素の特
性を示す図、第4図は第3図の実施例の動作説明用特性
図、第5図(a) 、 (b) 、 (c)は本発明の
他の実施例の構成およびその要素の特性を示す図である
。 1・・・脱気器      13− a 、 13− 
b・・・加減算2・・・複水器        器 3・・・減温器      14−8,14−b・・・
比例項4・・・復水ポンプ      公演算器5・・
・タービン・バイパ 15− a 、 15− b・・
・加算器ス弁        16−a 、16−b 
、16−c6・・・冷却水スペレイ弁  ・・・関数発
生器7・・・脱気器水位調節弁 17・・・復水器水位
計8・・・給水流量計    18・・・給水流量9・
・・復水流量計    19・・・復水流l・10・・
・脱気器水位計   20・・・復水流量(本発明11
・・・(脱気器)水     による)位調節計   
  21・・・復水器水位12・・・流量調節計   
 22・・・脱気器水位23・・・復水器水位(本発 明によるもの) 24・・・脱気器水位(本発 明によるもの) 出願人代理人  猪  股    清 第1図 / 47 第4図 1’l:!7] →復水器水イΩ □復水器水但
Figure 1 is a schematic system diagram of a steam turbine condensate system, Figure 2 is a diagram of its conventional deaerator water level control system, and Figures 3 (a), (
b> is a diagram showing the configuration of an embodiment of the present invention and the characteristics of its main elements, FIG. 4 is a characteristic diagram for explaining the operation of the embodiment of FIG. 3, and FIGS. 5(a), (b), ( c) is a diagram showing the structure of another embodiment of the present invention and the characteristics of its elements; 1... Deaerator 13-a, 13-
b...Addition/subtraction 2...Double water vessel 3...Desuperheater 14-8, 14-b...
Proportional term 4... Condensate pump Common unit 5...
・Turbine bypass 15-a, 15-b...
・Adder valves 16-a, 16-b
, 16-c6...Cooling water spray valve...Function generator 7...Deaerator water level control valve 17...Condenser water level gauge 8...Water supply flow meter 18...Water supply flow rate 9・
...Condensate flow meter 19...Condensate flow l・10...
・Deaerator water level gauge 20...Condensate flow rate (present invention 11
... (deaerator) water position controller
21... Condenser water level 12... Flow rate controller
22... Deaerator water level 23... Condenser water level (according to the present invention) 24... Deaerator water level (according to the present invention) Applicant's representative Kiyoshi Inomata Figure 1 / 47 No. 4 Figure 1'l:! 7] →Condenser water Ω □Condenser water Ω

Claims (1)

【特許請求の範囲】[Claims] 蒸気タービン用脱気器の水位と給水流量とに基き復水器
から前記脱気器に流出する復水流量指令値を形成し、こ
の指令値にしたがって復水流量の制御を行うようにした
装置において、前記復水器の水位を検出し、この検出信
号によって前記復水流量指令値を補正するようにしたこ
とを特徴とする蒸気タービン用脱気器の水位制御装置。
A device that forms a command value for the flow rate of condensate flowing out from a condenser to the deaerator based on the water level of a steam turbine deaerator and the flow rate of water supply, and controls the flow rate of condensate according to this command value. A water level control device for a steam turbine deaerator, characterized in that the water level of the condenser is detected, and the condensate flow rate command value is corrected based on this detection signal.
JP22162082A 1982-12-17 1982-12-17 Water level control device for steam turbine degasifier Pending JPS59110810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22162082A JPS59110810A (en) 1982-12-17 1982-12-17 Water level control device for steam turbine degasifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22162082A JPS59110810A (en) 1982-12-17 1982-12-17 Water level control device for steam turbine degasifier

Publications (1)

Publication Number Publication Date
JPS59110810A true JPS59110810A (en) 1984-06-26

Family

ID=16769605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22162082A Pending JPS59110810A (en) 1982-12-17 1982-12-17 Water level control device for steam turbine degasifier

Country Status (1)

Country Link
JP (1) JPS59110810A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016142211A (en) * 2015-02-03 2016-08-08 三菱日立パワーシステムズ株式会社 Piping system cleaning method, piping system, and steam turbine plant
CN112041628A (en) * 2018-02-23 2020-12-04 三菱重工船用机械株式会社 Method for controlling condensing system, and ship provided with condensing system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016142211A (en) * 2015-02-03 2016-08-08 三菱日立パワーシステムズ株式会社 Piping system cleaning method, piping system, and steam turbine plant
WO2016125345A1 (en) * 2015-02-03 2016-08-11 三菱日立パワーシステムズ株式会社 Piping system cleaning method, piping system, and steam turbine plant
CN107250489A (en) * 2015-02-03 2017-10-13 三菱日立电力系统株式会社 Cleaning method, piping system and the steam turbine installation of piping system
CN107250489B (en) * 2015-02-03 2019-09-03 三菱日立电力系统株式会社 Cleaning method, piping system and the steam turbine installation of piping system
US10487685B2 (en) 2015-02-03 2019-11-26 Mitsubishi Hitachi Power Systems, Ltd. Piping system cleaning method, piping system, and steam turbine plant
CN112041628A (en) * 2018-02-23 2020-12-04 三菱重工船用机械株式会社 Method for controlling condensing system, and ship provided with condensing system
CN112041628B (en) * 2018-02-23 2022-07-05 三菱重工船用机械株式会社 Method for controlling condensing system, and ship provided with condensing system

Similar Documents

Publication Publication Date Title
KR890001172B1 (en) Hrsg damper control
US4819436A (en) Deaerator pressure control system
US4345438A (en) Deaerator level control
JPS59110810A (en) Water level control device for steam turbine degasifier
JP3285946B2 (en) Steam temperature controller for variable-pressure once-through boiler
JP2519282B2 (en) Deaerator water level control system
JPS6135441B2 (en)
GB2083178A (en) Deaerator level control
JP3221738B2 (en) Steam temperature controller for variable-pressure once-through boiler
JPH0226122B2 (en)
JPH0387502A (en) Device for controlling feedwater for waste heat recovery boiler
JPS6154121B2 (en)
JPS63682B2 (en)
JP2965607B2 (en) Steam turbine controller
JPS59110811A (en) Steam turbine plant
JPS60219404A (en) Stabilizing device of deaerator output
JPS62162808A (en) Fuel-economizer steaming preventive device for thermal powerboiler system
JPH0330763B2 (en)
JPS6383802A (en) Process controller
JPS5843303A (en) Mixed pressure type waste heat recovery boiler
JPS6246104A (en) Control system of temperature of steam of once-through boiler
JP2001004790A (en) Water level controller of steam generating plant
JPS61276601A (en) Exhaust-heat recovery boiler
JPH1073205A (en) Controller for once-through boiler
JPS58117305A (en) Controller for pressure change of turbine plant