JPH0226122B2 - - Google Patents

Info

Publication number
JPH0226122B2
JPH0226122B2 JP58173704A JP17370483A JPH0226122B2 JP H0226122 B2 JPH0226122 B2 JP H0226122B2 JP 58173704 A JP58173704 A JP 58173704A JP 17370483 A JP17370483 A JP 17370483A JP H0226122 B2 JPH0226122 B2 JP H0226122B2
Authority
JP
Japan
Prior art keywords
boiler
amount
water supply
steam
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58173704A
Other languages
Japanese (ja)
Other versions
JPS6064101A (en
Inventor
Ryuichi Sagawa
Osamu Nagata
So Kashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP17370483A priority Critical patent/JPS6064101A/en
Publication of JPS6064101A publication Critical patent/JPS6064101A/en
Publication of JPH0226122B2 publication Critical patent/JPH0226122B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

【発明の詳細な説明】 本発明は貫流ボイラの制御装置、特にその給水
制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control device for a once-through boiler, and in particular to a water supply control device thereof.

通常貫流ボイラは給水入口から蒸気出口までの
間が管路により構成されており、例えばドラムボ
イラの如く蒸発部が循環回路とはなつていない。
即ち貫流ボイラにおいては節炭器で予熱された給
水が蒸発器に送られ給水ポンプの押込み圧力によ
り蒸発器出口まで貫流する。その間に給水は加熱
されて蒸発し発生蒸気は過熱器に導かれるという
構成になつている。この貫流ボイラは、大量の水
を保有するドラムなどがないので蓄熱容量が小さ
く始動に要する時間が短かくまた、負荷の追従性
に優れており、従つて小形、軽量化が可能であ
る、という特徴を有している。このために貫流ボ
イラの用途としては中間負荷火力発電用や排ガス
エネルギ回収プラントなどに多く用いられてい
る。この上記した排ガスエネルギ回収用としては
ごみ焼却炉やデイーゼルエンジンの如く、これま
で無駄に放出されていた排気ガスのエネルギを貫
流ボイラにより回収し、ここで得られる蒸気で例
えばタービン等を運転し動力または電力としてエ
ネルギ回収を図るといつた例がある。即ち蒸気タ
ービンにて発電機を駆動することにより電力が回
収され、また船舶などにおいて蒸気タービンによ
り推進主軸を駆動することにより動力が回収され
るものである。
Normally, a once-through boiler has a pipe line between the water supply inlet and the steam outlet, and the evaporation section does not form a circulation circuit, as in, for example, a drum boiler.
That is, in a once-through boiler, feed water preheated by an economizer is sent to an evaporator, and flows through to the evaporator outlet due to the pushing pressure of the feed water pump. During this time, the feed water is heated and evaporated, and the generated steam is led to a superheater. Since this once-through boiler does not have a drum that holds a large amount of water, it has a small heat storage capacity and takes a short time to start up. It also has excellent load followability, and can therefore be made smaller and lighter. It has characteristics. For this reason, once-through boilers are often used for intermediate load thermal power generation and exhaust gas energy recovery plants. For the above-mentioned exhaust gas energy recovery, the energy of exhaust gas that was previously wasted in waste incinerators and diesel engines is recovered by a once-through boiler, and the steam obtained here is used to drive, for example, a turbine and power There are also examples of attempts to recover energy as electricity. That is, electric power is recovered by driving a generator with a steam turbine, and power is recovered by driving a propulsion main shaft with a steam turbine in a ship or the like.

ガスタービンならびにこのガスタービンの排気
ガスを熱源とする貫流ボイラとを組合せこのボイ
ラからの発生蒸気で蒸気タービンを駆動して動力
または電力を回収する構成のいわゆるコンバイン
ドプラントがあるが、このプラントはガスタービ
ンの長所を生かしつつその欠点である熱効率の悪
さを改善するのに適したプラントとして最近特に
注目を集めている。
There is a so-called combined plant that combines a gas turbine and a once-through boiler that uses the gas turbine's exhaust gas as a heat source, and uses the steam generated from the boiler to drive a steam turbine to recover power or electric power. Recently, it has attracted particular attention as a plant suitable for making use of the advantages of turbines while improving their disadvantage of poor thermal efficiency.

また、ごみ焼却炉やデイーゼルエンジン、ガス
タービン等の排ガスをその熱源として利用するボ
イラは通常の専焼のボイラと異なり加熱の強さは
他の要因で定まるものであり自由に調節すること
はできない。これは通常の専焼ボイラなどではバ
ーナに送る燃料量を調節することにより加熱の度
合が加減できるが、しかし排ガスを熱源とするボ
イラ即ち排ガスボイラはデイーゼルエンジンやガ
スタービンの負荷もしくはごみ焼却炉に供給され
るごみの量とごみの質によりボイラの加熱の度合
が左右され自由に調節することができないもので
ある。従つて排ガスボイラの制御装置としては通
常の専焼ボイラの制御装置とは異なり、排出され
るガスの有するエネルギに応じてボイラの給水量
を制御することがその主たる役割をなすものであ
る。
Furthermore, unlike ordinary single-fire boilers, the heating intensity of boilers that use exhaust gas from waste incinerators, diesel engines, gas turbines, etc. as their heat source is determined by other factors and cannot be adjusted freely. This is because the degree of heating can be controlled by adjusting the amount of fuel sent to the burner in a normal dedicated boiler, but in a boiler that uses exhaust gas as a heat source, the exhaust gas boiler supplies the load to a diesel engine, gas turbine, or waste incinerator. The degree of heating of the boiler depends on the amount and quality of the waste, and cannot be freely adjusted. Therefore, the main role of a control device for an exhaust gas boiler is to control the amount of water supplied to the boiler in accordance with the energy of the exhaust gas, unlike a control device for a normal dedicated boiler.

しかし、一方貫流ボイラは給水量に比して加熱
が強過ぎると流動不安定現象を起し、ボイラが安
定した蒸気を発生しなくなるばかりでなくボイラ
の管路を焼損することもあり、このような流動不
安定現象は給水温度が低い場合に起り易いという
傾向がある。従来の貫流ボイラは上記の現象にた
いしては管路の途中に絞りを入れて管路における
圧力損失を大きくして流動不安定現象を防ぐ工夫
がなされている。しかし負荷が急変したり、また
給水加熱器の故障などにより給水温度が低くなつ
た場合など計画の条件から外れた場合には流動不
安定を起し易く特にボイラの負荷が高い場合にこ
の傾向は強くあらわれる。
However, in a once-through boiler, if the heating is too strong compared to the amount of water supplied, the flow becomes unstable, which not only prevents the boiler from producing stable steam but also burns out the boiler pipes. Flow instability tends to occur more easily when the feed water temperature is low. Conventional once-through boilers are designed to prevent the phenomenon of unstable flow by inserting a restriction in the middle of the pipe to increase pressure loss in the pipe. However, if the load changes suddenly or the feed water temperature drops due to a malfunction in the feed water heater, etc., and the flow deviates from the planned conditions, flow instability is likely to occur, especially when the boiler load is high. It appears strongly.

現在用いられている排ガスを熱源とする貫流ボ
イラの制御装置においては上記の流動不安定にた
いして充分に対応しうるものではなく従つてボイ
ラの負荷が急変したり、また高負荷の場合におい
て何らかの原因により給水温度が低下した場合に
おいては不安定流動現象を起す恐れがある。これ
を更に従来例について図面に従つて以下詳細に説
明する。
The control devices for once-through boilers that use exhaust gas as a heat source are not able to adequately deal with the above-mentioned flow instability. If the water supply temperature drops, there is a risk of unstable flow phenomena. This will be further explained in detail below with reference to the drawings regarding a conventional example.

第1図は前記のコンバインドプラントの管路系
統図の例示でありガスタービン1の排ガスはダク
ト2を通過して貫流ボイラ3に到りこれを加熱し
てスタツク4から系外に排出される。他方給水は
給水ポンプ5で加圧され給水弁6で流量調節され
たあと管路7aを通過して貫流ボイラ3に供給さ
れる。貫流ボイラ3内の水路は管路7bにより構
成されており給水はガスタービン1の排ガスによ
り加熱されて過熱蒸気となり管路7cを経て気水
分離器8に送られる。気水分離器8と蒸気タービ
ン9は管路7dおよび主蒸気弁10を介して接続
されており、過熱蒸気は蒸気タービン9に送られ
負荷(図示なし)を駆動する。蒸気タービン9を
通過した蒸気は復水器11で復水し、復水ポンプ
12により汲出されてドレンタンク13に送られ
給水加熱器14にて加熱されたのち給水ポンプ5
に送られ再び給水として利用される。
FIG. 1 is an example of a pipe system diagram of the above-mentioned combined plant. Exhaust gas from a gas turbine 1 passes through a duct 2 and reaches a once-through boiler 3, where it is heated and discharged from a stack 4 to the outside of the system. On the other hand, the feed water is pressurized by a water feed pump 5 and its flow rate is adjusted by a water feed valve 6, and then passed through a pipe 7a to be supplied to the once-through boiler 3. The water channel in the once-through boiler 3 is constituted by a pipe line 7b , and the feed water is heated by the exhaust gas of the gas turbine 1 and turned into superheated steam, which is sent to the steam-water separator 8 via the pipe line 7c . The steam separator 8 and the steam turbine 9 are connected via a pipe 7d and a main steam valve 10, and superheated steam is sent to the steam turbine 9 to drive a load (not shown). The steam that has passed through the steam turbine 9 is condensed in a condenser 11, pumped out by a condensate pump 12, sent to a drain tank 13, heated in a feed water heater 14, and then transferred to a feed water pump 5.
The water is sent to the water supply facility and used again as a water supply.

50は貫流ボイラ3の従来例の制御装置であ
り、ガスタービン1の回転数計(ガスタービンの
低圧圧縮機の回転数)20、ガスタービンの吸気
温度計21、ガスタービンの排ガス温度計22、
貫流ボイラの排ガス温度計23と貫流ボイラ出口
の蒸気温度計24の出力信号を夫々入力として給
水弁6に制御信号を出力するものである。即ち給
水ポンプ5は一定回転にて運転されているのでこ
こで給水弁6の開度を加減することにより貫流ボ
イラ3への給水量が調節されるという構成になつ
ている。
50 is a conventional control device for the once-through boiler 3, which includes a rotation speed meter (rotation speed of the low-pressure compressor of the gas turbine) 20 of the gas turbine 1, an intake air temperature meter 21 of the gas turbine, an exhaust gas temperature meter 22 of the gas turbine,
The control signal is outputted to the water supply valve 6 by inputting the output signals of the exhaust gas thermometer 23 of the once-through boiler and the steam thermometer 24 at the outlet of the once-through boiler, respectively. That is, since the water supply pump 5 is operated at a constant rotation, the amount of water supplied to the once-through boiler 3 is adjusted by adjusting the opening degree of the water supply valve 6.

ここで制御装置50について従来のブロツク接
続図の構成例を示す第2図に基づき詳しく説明す
ると、ガスタービン1の通過風量すなわち排ガス
量はガスタービンの低圧圧縮機の回転数から高い
精度で推測できることが知られている。ここで制
御装置50内の関数発生器101には低圧圧縮機
回転数計20よりの回転数N1と吸気温度計21
よりの温度出力T0が入力されており、予め定め
られたガスタービンの特性に基づき排ガス流量
Ggを推定し出力する。なおここで吸気温度計2
1の温度出力T0は排ガス流量Ggをより高い精度
で推定するためにパラメータとして用いられる。
他方ガスタービン1の排ガス温度計22の温度出
力T3とボイラの排ガス温度計23の温度出力T2
は減算器103に入力されてその差温△Tが計算
され出力される。排ガス流量信号Ggと差温△T
は乗算器102にて乗ぜられボイラ受熱量に比例
した即ちボイラ受熱量(予想)信号Gg・△Tが
出力され、この値が次の関数発生器104に入力
される。
Here, the control device 50 will be explained in detail based on FIG. 2 showing an example of the configuration of a conventional block connection diagram.The amount of air passing through the gas turbine 1, that is, the amount of exhaust gas can be estimated with high accuracy from the rotation speed of the low-pressure compressor of the gas turbine. It has been known. Here, the function generator 101 in the control device 50 receives the rotation speed N 1 from the low-pressure compressor rotation speed meter 20 and the intake air temperature meter 21.
The temperature output T 0 is input and the exhaust gas flow rate is determined based on the predetermined characteristics of the gas turbine.
Estimate and output G g . Note that the intake air temperature gauge 2
The temperature output T 0 of 1 is used as a parameter to estimate the exhaust gas flow rate G g with higher accuracy.
On the other hand, the temperature output T 3 of the exhaust gas thermometer 22 of the gas turbine 1 and the temperature output T 2 of the exhaust gas thermometer 23 of the boiler
is input to the subtractor 103, and its temperature difference ΔT is calculated and output. Exhaust gas flow signal G g and temperature difference △T
is multiplied by a multiplier 102 to output a boiler heat reception (expected) signal G g ·ΔT which is proportional to the boiler heat reception, and this value is input to the next function generator 104.

関数発生器104はボイラの特性に基づき予め
関数の形が設定されており、ボイラ受熱量信号か
ら発生蒸気量信号Gsを計算する機能を有してい
る。ガスタービン1の排ガス温度計22の温度出
力T3は減算器103の他に関数発生器105に
も入力され、ここでボイラ出口の蒸気温度の設定
値T^4が計算される。なお関数発生器105はプ
ラント効率が最大になるように予め関数の形が設
定されている。ボイラ出口の蒸気温度計24の出
力温度T4と関数発生器105の出力であるT^が
減算器106にて比較され、その偏差△T4が公
知の比例プラス積分形の増幅器により構成された
PIコントローラ107を介し補正蒸気量信号と
して加算器108に入力され、加算器108にお
いて発生蒸気量と補正蒸気量から給水量を計算
し、この給水量に見合つた給水を行うよう給水弁
6に給水制御信号Sc1を出力する。
The function generator 104 has a function shape set in advance based on the characteristics of the boiler, and has a function of calculating the generated steam amount signal G s from the boiler received heat amount signal. The temperature output T 3 of the exhaust gas thermometer 22 of the gas turbine 1 is input to the function generator 105 as well as the subtractor 103, where the set value T^ 4 of the steam temperature at the boiler outlet is calculated. Note that the function generator 105 has a function shape set in advance so that the plant efficiency is maximized. The output temperature T4 of the steam thermometer 24 at the boiler outlet and T^, which is the output of the function generator 105, are compared in a subtracter 106, and the difference ΔT4 is calculated using a known proportional plus integral type amplifier.
It is input to the adder 108 as a corrected steam amount signal via the PI controller 107, and the adder 108 calculates the water supply amount from the generated steam amount and the corrected steam amount, and supplies water to the water supply valve 6 so as to supply water commensurate with this water supply amount. Outputs control signal S c1 .

次に第2図に例示した制御装置50の作用につ
いて説明すると、ガスタービン1の負荷が変化す
ればそれに応じて排ガスの流量や貫流ボイラ3の
出入口の温度も変化し、貫流ボイラ3の加熱の程
度も影響をうける。このようなボイラの運転状態
の変化は制御装置50において検知され給水量が
調節されることになる。即ち関数発生器101に
より排ガス流量信号Ggが、また減算器103に
よりボイラの入口および出口のガス温度の差温△
Tが夫々出力され乗算器102の出力であるボイ
ラ受熱量(予想)信号Gg・△Tはボイラの新し
い運転状態における受熱量を示す。この新しい受
熱量に対応した給水量が関数発生器104で計算
されて発生蒸気量信号GsとPIコントローラ10
7からの補正蒸気量信号との合計に見合つた給水
をおこなうように加算器108を介して給水弁6
に給水制御信号Sc1が出力される。
Next, the operation of the control device 50 illustrated in FIG. 2 will be explained. When the load on the gas turbine 1 changes, the flow rate of exhaust gas and the temperature at the entrance and exit of the once-through boiler 3 change accordingly, and the heating of the once-through boiler 3 changes accordingly. The degree is also affected. Such a change in the operating state of the boiler is detected by the control device 50, and the amount of water supplied is adjusted. That is, the function generator 101 generates the exhaust gas flow rate signal G g , and the subtractor 103 generates the gas temperature difference △ at the inlet and outlet of the boiler.
The boiler received heat amount (expected) signal G g and ΔT, which is the output of the multiplier 102 where T is output, respectively, indicates the amount of heat received in the new operating state of the boiler. The amount of water to be supplied corresponding to this new amount of received heat is calculated by the function generator 104, and the generated steam amount signal G s and the PI controller 10
The water supply valve 6 is supplied via an adder 108 so as to supply water commensurate with the sum of the corrected steam amount signal from 7.
The water supply control signal S c1 is output.

ボイラの運転状態の変化により、ボイラ出口の
蒸気温度T4が変化するが関数発生器105によ
りガスタービン1の排ガス温度出力T3に応じて
蒸気温度の設定値も変わるので蒸気温度は最適な
蒸気条件となるように常に調節される。なお給水
弁6は給水制御信号Sc1に応じ給水量調節可能な
る公知の弁が使用されている。
Due to changes in the operating conditions of the boiler, the steam temperature T4 at the boiler outlet changes, but the function generator 105 also changes the set value of the steam temperature according to the exhaust gas temperature output T3 of the gas turbine 1, so the steam temperature remains at the optimum steam temperature. constantly adjusted to suit conditions. Note that the water supply valve 6 is a known valve that can adjust the amount of water supply according to the water supply control signal S c1 .

ここで給水ポンプ5の例えば回転数の変動によ
る出力変動や給水温度の変動などの外乱による変
動が小さい場合や、またガスタービンの負荷変動
が緩かなときは第2図に例示した制御装置50は
ボイラを安定にまた精度よく制御する。しかし、
上記外乱による変動やガスタービンの負荷の変動
が大きい場合は充分な制御をするとはいえない。
Here, when fluctuations in the feed water pump 5 due to external disturbances such as fluctuations in output due to fluctuations in rotational speed or fluctuations in feed water temperature are small, or when load fluctuations in the gas turbine are slow, the control device 50 illustrated in FIG. To control a boiler stably and accurately. but,
If the fluctuations due to the above-mentioned disturbances or the fluctuations in the load of the gas turbine are large, it cannot be said that sufficient control is achieved.

ガスタービンは始動停止が容易でかつ負荷追従
性に優れているという特性を有しておりこのため
に負荷が急変することは屡々あるが、このような
場合でも貫流ボイラとしては安定よく運転する必
要がある。この制御装置50においてはガスター
ビン1の負荷が例えば急増すると、乗算器102
の出力であるボイラの受熱量(予想)Gg・△T
が増加し、それに応じて給水制御信号Sc1も直ち
に増加するが、ボイラ自身の有する蓄熱容量など
のためにボイラ出口の蒸気の出力温度T4は即応
的には変化せず、また他方ガスタービン1の負荷
の上昇に伴ないガスタービンの排ガス温度出力
T3は直ちに増加するので減算器106の出力で
ある偏差△T4は負の大きな偏差をしめす。この
負の大きな偏差△T4は給水を絞る方向に作用す
るのでボイラ受熱量(予想)Gg・△Tに比べて
給水量が極端に小さくなりここで流動不安定を起
すことになる。
Gas turbines have the characteristics of being easy to start and stop and have excellent load followability, so the load often changes suddenly, but once-through boilers need to operate stably even in such cases. There is. In this control device 50, when the load on the gas turbine 1 suddenly increases, for example, the multiplier 102
The amount of heat received by the boiler (estimated) which is the output of G g・△T
increases, and the feedwater control signal S c1 also increases immediately, but the steam output temperature T 4 at the boiler outlet does not change immediately due to the heat storage capacity of the boiler itself, and on the other hand, the gas turbine Exhaust gas temperature output of gas turbine as load increases in 1.
Since T 3 increases immediately, the deviation ΔT 4 which is the output of the subtractor 106 shows a large negative deviation. This large negative deviation △T 4 acts in the direction of restricting the water supply, so the amount of water supply becomes extremely small compared to the boiler received heat amount (expected) G g · △T, causing flow instability.

またこのような傾向は給水温度T1によつても
影響をうけ例えば給水加熱器13の故障などによ
り給水温度T1が低くなつた場合には最適な蒸気
条件が得られないばかりでなくやはり流動不安定
を起す原因ともなる。
Furthermore, this tendency is also affected by the feed water temperature T 1 . For example, if the feed water temperature T 1 becomes low due to a failure of the feed water heater 13, not only will it not be possible to obtain optimal steam conditions, but the flow will also be affected. It can also cause instability.

また他方、ガスタービン1の負荷が急減した場
合は上記の急増した場合と逆の現象が生ずる。即
ちボイラの受熱量(予想)Gg・△Tの減少によ
りそれに応じて給水制御信号Sc1は減少するがボ
イラ自身の有する蓄熱容量などのためにボイラ出
口の蒸気の出力温度T4は即応的には変化せず一
方においてガスタービン1の負荷の減少に伴ない
ガスタービンの排ガス温度出力T3は直ちに減少
するので減算器106の出力である偏差△T4
正の大きな偏差をしめす。この正の大きな偏差△
T4は給水を増加させる方向に作用する。
On the other hand, if the load on the gas turbine 1 suddenly decreases, a phenomenon opposite to the above-mentioned case of a sudden increase will occur. In other words, as the amount of heat received by the boiler (expected) G g △T decreases, the feed water control signal S c1 decreases accordingly, but due to the heat storage capacity of the boiler itself, the output temperature of steam at the boiler outlet T 4 changes quickly. On the other hand, as the load on the gas turbine 1 decreases, the exhaust gas temperature output T3 of the gas turbine immediately decreases, so the deviation ΔT4 , which is the output of the subtractor 106, shows a large positive deviation. This large positive deviation △
T 4 acts in the direction of increasing water supply.

過渡的に必要以上の給水量を供給された貫流ボ
イラは過熱度の低い蒸気を蒸気タービンに供給す
ることになる。つまり給水温度が低い場合やガス
タービン1の負荷の減少の割合が過大な場合は湿
り蒸気を蒸気タービン9に供給する。過熱度の低
い蒸気や湿り蒸気は蒸気タービンの効率を悪化さ
せるばかりではなくドレンアタツクによりタービ
ン羽根を損傷することになる。そしてこの傾向は
排ガス温度が低く過熱度の小さいコンバインドプ
ラントにおいて著しくあらわれる。
The once-through boiler, which is temporarily supplied with more water than necessary, supplies steam with a low degree of superheat to the steam turbine. That is, when the feed water temperature is low or when the rate of decrease in the load on the gas turbine 1 is excessive, wet steam is supplied to the steam turbine 9. Steam with a low degree of superheat or wet steam not only deteriorates the efficiency of the steam turbine but also damages the turbine blades due to drain attack. This tendency is particularly noticeable in combined plants where the exhaust gas temperature is low and the degree of superheat is low.

本発明は貫流ボイラにおける上記の問題点を解
決するためになされたもので既存の設備にわずか
の部品を追加することによりボイラの加熱量が急
変した場合でも流動不安定を起すことなく、かつ
蒸気タービンにたいしてもドレンアタツクを生ぜ
しめない制御装置を提供するものであり即ちボイ
ラ加熱用の排ガス流量と、ボイラ入口と出口の排
ガスの温度差とからボイラの受熱量を計算する手
段と、ボイラの受熱量から発生蒸気量を計算する
手段と、ボイラ入口の排ガス温度から計算される
ボイラ出口の蒸気温度の設定値と、ボイラ出口の
蒸気温度の測定値との偏差から補正蒸気量を計算
する手段と、発生蒸気量と補正蒸気量とから給水
量を計算する手段とを有し給水量を調節する貫流
ボイラの制御装置において、前記ボイラの受熱量
から安定給水量を計算する手段と、安定給水量と
前記給水量とを比較してその値の大なる方を較正
給水量として選択する手段と、ボイラの受熱量と
給水温度とからボイラの最低給水量を計算する手
段と、最低給水量と前記較正給水量とを比較し、
最低給水量が大きくかつこの状態が一定時間以上
持続した場合に負荷に供給する蒸気通路を遮断可
能とする手段とを付設したことを特徴とする貫流
ボイラの制御装置であり以下本発明の実施例を図
面について説明する。
The present invention was made to solve the above-mentioned problems in once-through boilers, and by adding a few parts to existing equipment, it is possible to prevent flow instability even when the boiler heating amount suddenly changes, and to prevent steam The purpose is to provide a control device that does not cause drain attack on the turbine, that is, a means for calculating the amount of heat received by the boiler from the flow rate of exhaust gas for heating the boiler and the temperature difference between the exhaust gas at the inlet and outlet of the boiler, and a method for calculating the amount of heat received by the boiler. means for calculating the amount of steam generated from the steam temperature; and means for calculating the corrected steam amount from the deviation between the set value of the steam temperature at the boiler outlet calculated from the exhaust gas temperature at the boiler inlet and the measured value of the steam temperature at the boiler outlet; A control device for a once-through boiler that adjusts the amount of water supply and has means for calculating the amount of water supply from the amount of steam generated and the amount of corrected steam, comprising means for calculating the amount of stable water supply from the amount of heat received by the boiler, and a means for calculating the amount of water supply from the amount of heat received by the boiler; means for comparing the water supply amount and selecting the larger value as the calibrated water supply amount; means for calculating the minimum water supply amount of the boiler from the heat received by the boiler and the water supply temperature; and the minimum water supply amount and the calibration water amount. Compare the amount of water supplied,
This is a control device for a once-through boiler, characterized in that it is equipped with a means for shutting off a steam passage supplying a load when the minimum water supply amount is large and this state continues for a certain period of time or more, and the following is an embodiment of the present invention. will be explained with reference to the drawings.

第3図は本発明の制御装置の実施例51を示すブ
ロツク接続図であり第2図に示された従来の制御
装置の回路構成にたいして更に関数発生器110
および114、高位選択器111、比較器11
2、タイマ113、を付加し、管路7aに取付け
られた給水温度計25のボイラの給水温度T1
入力信号として加え、給水制御信号2段Sc2の他
にタービントリツプの給水系異常信号Esを出力す
る構成になつている。
FIG. 3 is a block connection diagram showing Embodiment 51 of the control device of the present invention. In addition to the circuit configuration of the conventional control device shown in FIG.
and 114, high-level selector 111, comparator 11
2. A timer 113 is added, and the boiler feed water temperature T1 of the feed water thermometer 25 attached to the pipe 7a is added as an input signal, and in addition to the feed water control signal 2nd stage S c2 , the turbine trip water supply system is It is configured to output an abnormal signal E s .

ここで関数発生器110には乗算器102の出
力信号であるボイラ受熱量(予想)Gg・△Tお
よびボイラの給水温度T1が入力せられる。関数
発生器110においてはボイラが不安定流動を起
す限界に若干の余裕を見込んだボイラ安定給水量
Gsnioを計算し高位選択器111に出力する。関
数発生器110の具体的な関数の値はボイラの形
式、寸法により異なり、夫々のボイラに応じて設
計計算されまたは工場試験運転の結果の値により
定められる。不安定流動現象はボイラの加熱が大
きくなる程、又給水温度T1が下る程、又給水量
が少なくなる程起り易くなるので一般的には、ボ
イラ受熱量(予想)Gg・△Tの増加に応じてボ
イラ安定給水量Gsnioも大きくなり、また給水温
度T1が下ればボイラ安定給水量Gsnioは大きくな
る。
Here, the boiler received heat amount (estimated) G g ·ΔT and the boiler feed water temperature T 1 which are the output signals of the multiplier 102 are input to the function generator 110 . The function generator 110 calculates a stable water supply amount to the boiler with a slight margin to the limit at which unstable flow occurs in the boiler.
G snio is calculated and output to the high-level selector 111. The specific value of the function of the function generator 110 varies depending on the type and size of the boiler, and is calculated based on the design of each boiler or determined based on the value obtained as a result of factory test operation. The unstable flow phenomenon becomes more likely to occur as the heating of the boiler increases, as the feed water temperature T 1 decreases, and as the water supply decreases, so generally speaking, the amount of heat received by the boiler (expected) G g The boiler stable water supply amount G snio also increases as the temperature increases, and if the water supply temperature T 1 decreases, the boiler stable water supply amount G snio increases.

高位選択器111には上記安定給水量Gsnio
他に加算器108の出力である給水制御信号Sc1
が接続され、この両者のうちの値の大きい方の信
号を較正給水量として選択して給水制御信号2段
Sc2として出力される。
In addition to the above-mentioned stable water supply amount G snio , the high-level selector 111 receives a water supply control signal S c1 which is the output of the adder 108.
is connected, and the signal with the larger value of these two is selected as the calibrated water supply amount, and the water supply control signal is sent to the second stage.
Output as S c2 .

関数発生器114にはボイラ受熱量(予想)
Gg・△Tおよび給水温度T1が入力せられこのT1
の値をパラメータとしてここでボイラの最低給水
量Gfnioを計算し、比較器112に出力される。
The function generator 114 contains the amount of heat received by the boiler (estimated)
G g・△T and feed water temperature T 1 are input, and this T 1
Here, the minimum water supply amount G fnio of the boiler is calculated using the value of as a parameter, and is output to the comparator 112.

ボイラ出口の蒸気の条件はボイラへの給水量と
ボイラの加熱量のヒートバランスによつて定ま
る。即ち Cp・Gg・△T=Gf(is−if) …(1)式 ここに Cpはガスの比熱 (Kcal/Kg℃) Ggは排ガス流量 (Kg/sec.) △Tはボイラ出入口のガスの差温 (℃) Gfは給水量 (Kg/sec.) isはボイラ出口エンタルピ (Kcal/Kg) ifは給水のエンタルピ (Kcal/Kg) (給水のエンタルピifは給水温度T1にほぼ等し
い。) ここでボイラ出口のエンタルピisが低下し過ぎ
ると、前述したごとく蒸気タービンにおいてドレ
ンアタツクを生じるので、ボイラ出口エンタルピ
isには許容下限値があり、その値をisnioとする。
ボイラ出口のエンタルピの許容下限値isnioは蒸気
タービンの形式、羽根の材質や形状等に依存した
蒸気タービン個有の値である。上記(1)式よりボイ
ラの最低給水量Gfnioは次の(2)式で定められる。
The steam conditions at the boiler outlet are determined by the heat balance between the amount of water supplied to the boiler and the amount of heating by the boiler. That is, C p・G g・△T=G f (is-if) ...Equation (1) where C p is the specific heat of gas (Kcal/Kg℃) G g is the exhaust gas flow rate (Kg/sec.) △T is Differential temperature of gas at boiler inlet and outlet (℃) G f is water supply amount (Kg/sec.) is is boiler outlet enthalpy (Kcal/Kg) if is feed water enthalpy (Kcal/Kg) (Feed water enthalpy if is feed water temperature T (approximately equal to 1 ) If the enthalpy at the boiler outlet falls too much, drain attack will occur in the steam turbine as described above, so the enthalpy at the boiler outlet will decrease.
is has a permissible lower limit value, and that value is defined as i snio .
The allowable lower limit value i snio of the enthalpy at the boiler outlet is a value unique to the steam turbine that depends on the type of steam turbine, the material and shape of the blades, etc. From the above equation (1), the minimum water supply amount G fnio of the boiler is determined by the following equation (2).

Gfnio=Cp・Gg・△T/isnio−T1 …(2)式 関数発生器114は減算器と除算器と係数器と
を組合せ、ボイラ受熱量(予想)Gg・△Tと給
水温度T1の2つの入力からT1の値をパラメータ
として最低給水量Gfnioを計算するように構成し
てもよい。また上記(2)式を用いて最低給水量
Gfnioとボイラ受熱量(予想)Gg・△Tと給水温
度T1の関係を予め計算し、複数のダイオードと
抵抗と増幅器を組合せる公知の関数発生器により
構成してもよい。
G fnio = C p・G g・△T/i snio −T 1 …(2) Formula The function generator 114 combines a subtracter, a divider, and a coefficient unit, and calculates the boiler heat received (expected) G g・△T The minimum water supply amount G fnio may be calculated from two inputs: and the water supply temperature T 1 using the value of T 1 as a parameter. Also, using equation (2) above, the minimum water supply amount is
The relationship between G fnio , boiler heat received (expected) G g ·ΔT, and feed water temperature T 1 may be calculated in advance, and a known function generator may be used in combination with a plurality of diodes, resistors, and amplifiers.

比較器112には高位選択器111の出力であ
る給水制御信号2段Sc2と関数発生器114の出
力であるボイラの最低給水量Gfnioが入力として
接続され、関数発生器114の出力Gfnioが大な
る場合に次段のタイマ113をセツトする。
The comparator 112 is connected as input to the water supply control signal 2-stage S c2 which is the output of the high-level selector 111 and the minimum water supply amount G fnio of the boiler which is the output of the function generator 114 . When the timer 113 is large, the timer 113 of the next stage is set.

タイマ113は例えば公知のオンデイレイのモ
ータタイマにより構成されており、セツト状態が
一定時間以上持続すると給水系異常信号Esを出力
する。給水系異常信号Esは別の駆動回路(図示な
し)を介して第1図における主蒸気弁10を全閉
としバイパス弁14を全開にするとともにブザー
等の警報を出力する。
The timer 113 is constituted by, for example, a known on-delay motor timer, and outputs a water supply system abnormality signal Es when the set state continues for a certain period of time or more. The water supply system abnormality signal Es is transmitted through another drive circuit (not shown) to fully close the main steam valve 10 in FIG. 1, fully open the bypass valve 14, and output an alarm such as a buzzer.

次に第3図の制御装置の作用について説明す
る。ボイラの負荷の整定状態においては加算器1
08の出力である給水制御信号Sc1は関数発生器
110の出力であるボイラ安定給水量Gsnioより
大きく給水制御信号2段Sc2として加算器108
の出力Sc1が選択されている。また給水制御信号
2段Sc2は関数発生器114の出力である最低給
水量Gfnioより大きいためにタイマ113はセツ
トされていない。ここでガスタービン1の負荷が
急増すると乗算器102の出力であるボイラ受熱
量(予想)Gg・△Tが増加し、それに応じて発
生蒸気量信号Gsが増加する。他方においてガス
タービン1の排ガス温度出力T3は急増するがボ
イラ出口蒸気温度T4は即応的には大きくならな
いためにPIコントローラ107の入力である温
度の偏差△T4は負の大きな値となり、給水量を
絞る方向に作用する。従つてボイラの加熱量に比
べて給水量が極端に少くなり給水制御信号Sc1
関数発生器110の出力であるボイラ安定給水量
Gsnioより小さくなる。ここで高位選択器111
の出力として関数発生器110の出力である安定
給水量Gsnioが較正給水量として選択され給水制
御信号2段Sc2として出力されるので貫流ボイラ
は流動不安定とはならずに安定して運転できる。
Next, the operation of the control device shown in FIG. 3 will be explained. In the boiler load settling state, adder 1
The water supply control signal S c1 , which is the output of the function generator 110, is larger than the boiler stable water supply amount G snio , which is the output of the function generator 110 .
The output S c1 of is selected. Further, since the second stage water supply control signal S c2 is larger than the minimum water supply amount G fnio which is the output of the function generator 114, the timer 113 is not set. Here, when the load on the gas turbine 1 increases rapidly, the boiler received heat amount (estimated) G g ·ΔT, which is the output of the multiplier 102, increases, and the generated steam amount signal G s increases accordingly. On the other hand, although the exhaust gas temperature output T3 of the gas turbine 1 increases rapidly, the boiler outlet steam temperature T4 does not increase immediately, so the temperature deviation ΔT4 , which is the input to the PI controller 107, becomes a large negative value. It acts in the direction of reducing the amount of water supplied. Therefore, the water supply amount is extremely small compared to the boiler heating amount, and the water supply control signal S c1 is the boiler stable water supply amount which is the output of the function generator 110.
G becomes smaller than snio . Here, the high-level selector 111
Since the stable water supply amount G snio , which is the output of the function generator 110, is selected as the calibrated water supply amount and output as the water supply control signal 2-stage S c2 , the once-through boiler operates stably without unstable flow. can.

時間が経過し、ボイラ出口蒸気温度T4が上昇
してくれば減算器106の出力の偏差△T4は小
さくなり加算器108の出力である給水制御信号
Sc1が増加し関数発生器110の出力のボイラ安
定給水量Gsnioより大きくなればボイラの整定運
転時と同じ状態となり加算器108の出力Sc1
選択され、この値が給水制御信号2段Sc2として
出力される。なお関数発生器110の出力である
ボイラ安定給水量Gsnioが関数発生器114の出
力である最低給水量Gfnioよりも小さいような場
合にて高位選択器111にて関数発生器110の
出力Gsnioの値が選ばれるときにはタイマ113
がセツトされ一定時間経過后給水系異常信号Es
出力されるのはいうまでもない。
As time passes and the boiler outlet steam temperature T 4 rises, the deviation ΔT 4 of the output of the subtractor 106 becomes smaller and the feed water control signal, which is the output of the adder 108, decreases.
When S c1 increases and becomes larger than the boiler stable water supply amount G snio of the output of the function generator 110, the state is the same as that during boiler settling operation, and the output S c1 of the adder 108 is selected, and this value is used as the water supply control signal in the second stage. Output as S c2 . In addition, in the case where the boiler stable water supply amount G snio , which is the output of the function generator 110, is smaller than the minimum water supply amount G fnio , which is the output of the function generator 114, the output G of the function generator 110 is determined by the high-level selector 111. When the value of snio is selected, timer 113
It goes without saying that the water supply system abnormality signal E s is output after a certain period of time has elapsed after the is set.

ガスタービン1の負荷が急減した場合には関数
発生器104の出力発生蒸気量信号Gsは小さく
なるが、減算器106の出力である温度の偏差△
T4は正の大きな値になるために加算器108の
出力である給水制御信号Sc1はあまり減少せずボ
イラへの給水量は加熱に比べて過剰となりボイラ
出口の蒸気の過熱度は低下し、場合によつては湿
り蒸気となる。このような状態では関数発生器1
14の出力Gfnioの値が給水制御信号Sc1よりも大
きいために比較器112によりタイマ113がセ
ツトされ一定時間経過後に給水系異常信号Esが出
力され第1図における主蒸気弁10が全閉にされ
るとともにバイパス弁15が全開にされ、余剰蒸
気は復水器11にダンプされるので蒸気タービン
9はドレンアタツクから保護される。なおこのタ
イマ113は給水系異常信号の誤操作防止用に設
けられたものであり、極く短時間内であれば関数
発生器114の出力Gfnioが大きくなつてもボイ
ラの自身の有する蓄熱容量によりボイラ出口の蒸
気の過熱度はあまり下らないので、タイマ113
にて作動に時限をもたせることにより給水系異常
信号の発信をおくらせ警報の確度をあげるように
したものである。
When the load on the gas turbine 1 suddenly decreases, the output generated steam amount signal G s of the function generator 104 becomes smaller, but the temperature deviation △ which is the output of the subtractor 106 decreases.
Since T4 becomes a large positive value, the feed water control signal S c1 , which is the output of the adder 108, does not decrease much, and the amount of water fed to the boiler becomes excessive compared to the heating, and the degree of superheating of the steam at the boiler outlet decreases. , in some cases becoming wet steam. In this situation, function generator 1
Since the value of the output G fnio of 14 is larger than the water supply control signal S c1 , the timer 113 is set by the comparator 112, and after a certain period of time, the water supply system abnormality signal E s is output, and the main steam valve 10 in FIG. At the same time, the bypass valve 15 is fully opened and surplus steam is dumped into the condenser 11, so that the steam turbine 9 is protected from drain attack. Note that this timer 113 is provided to prevent erroneous operation of the water supply system abnormal signal, and even if the output G fnio of the function generator 114 becomes large within a very short period of time, it will be stopped due to the heat storage capacity of the boiler itself. Since the degree of superheating of the steam at the boiler outlet does not decrease much, timer 113
By setting a time limit on the operation, the transmission of the water supply system abnormality signal is delayed and the accuracy of the alarm is increased.

以上の説明においてはガスタービン1の吸気温
度T0と低圧圧縮機回転数N1より排ガス流量信号
Ggの値を推定したものであるが、排ガスダクト
等の回路の途中に公知の風速計を設け、この風速
計の出力より直接に排ガス流量信号Ggを検出し
てもよい。
In the above explanation, the exhaust gas flow rate signal is determined from the intake air temperature T 0 of the gas turbine 1 and the low pressure compressor rotation speed N1.
Although the value of G g is estimated, a known anemometer may be provided in the middle of a circuit such as an exhaust gas duct, and the exhaust gas flow rate signal G g may be directly detected from the output of this anemometer.

またデイーゼルエンジンの排ガスを利用する場
合は、エンジンの吸気圧力、または過給機の回転
数、または燃料ラツク位置で排ガス流量信号Gg
を推定してもよい。
In addition, when using diesel engine exhaust gas, the exhaust gas flow rate signal G g is determined by the engine intake pressure, supercharger rotation speed, or fuel rack position.
may be estimated.

第4図は本発明の制御装置の他の実施例52を示
すものであり、本実施例と第3図において示され
た実施例と異なるところは関数発生器110にか
えて設けられた関数発生器110′の構成であり、
本実施例においてボイラの安定給水量Gsnioを計
算する関数発生器110′の入力として乗算器1
02の出力であるボイラ受熱量(予熱)Gg・△
Tの値のみを用い、給水温度T1は入力として用
いていない。これは流動不安定を起す点が給水温
度の値にあまり影響をうけないボイラにおいて有
利に利用しうる実施例であり関数発生器110′
の関数の形は給水温度T1の変動を予め見込み余
裕をもたせた値に設定されたものである。ここで
ガスタービン1の負荷が急増した場合に関数発生
器110′の出力は余裕がとられ大きくされてい
るので比較的早期に関数発生器110′の出力で
ある安定給水量Gsnioが高位選択器111の出力
である給水制御信号2段Sc2となるので効率は若
干おちるが関数発生器110′の構造が簡略化で
き従つて制御装置は安価になる。なおこの場合全
運転時間に比して関数発生器110′の出力であ
るボイラの安定給水量Gsnioの値が給水制御信号
2段Sc2として選択されている時間は僅かなので
効率の低下は無視出来る。
FIG. 4 shows another embodiment 52 of the control device of the present invention, and the difference between this embodiment and the embodiment shown in FIG. The configuration of the container 110' is
In this embodiment, the multiplier 1
Boiler heat received (preheating) G g・△ which is the output of 02
Only the value of T is used, and the feed water temperature T 1 is not used as an input. This is an embodiment that can be advantageously used in a boiler where the point at which flow instability occurs is not greatly affected by the value of the feed water temperature, and the function generator 110'
The form of the function is set to a value that allows a margin for the fluctuation of the supply water temperature T 1 in advance. Here, when the load of the gas turbine 1 suddenly increases, the output of the function generator 110' is increased with a margin, so the stable water supply amount G snio , which is the output of the function generator 110', is selected at a high level relatively early. Since the water supply control signal S c2 is the output of the function generator 111, the efficiency is slightly lowered, but the structure of the function generator 110' can be simplified and the control device can be made inexpensive. In this case, the time during which the stable water supply amount G snio of the boiler, which is the output of the function generator 110', is selected as the second stage water supply control signal S c2 is small compared to the total operating time, so the decrease in efficiency is ignored. I can do it.

以上の如く本発明による貫流ボイラの制御装置
によれば従来の制御装置に若干の改造を加えるの
みの安価な制御装置によりエンジンやガスタービ
ン等の急激な負荷変動による排ガス量の変動があ
つた場合においても貫流ボイラは流動不安定を起
すことなく安定した運転を継続できるとともに蒸
気タービンをドレンアタツクから保護することが
できる制御装置を提供するものである。
As described above, the once-through boiler control device according to the present invention is an inexpensive control device that requires only slight modifications to the conventional control device, even when there is a fluctuation in the amount of exhaust gas due to sudden load fluctuations of the engine, gas turbine, etc. Also, the once-through boiler provides a control device that can continue stable operation without causing flow instability and can protect the steam turbine from drain attack.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はコンバインドプラントの従来例の管路
系統図、第2図は貫流ボイラの従来例の制御装置
ブロツク接続図、第3図は本発明の貫流ボイラの
制御装置の実施例のブロツク接続図、第4図は本
発明の貫流ボイラの制御装置の他の実施例のブロ
ツク接続図である。 1……ガスタービン、2……ダクト、3……貫
流ボイラ、4……スタツク、5……給水ポンプ、
6……給水弁、7a,7b,7c,7d……管路、8
……気水分離器、9……蒸気タービン、10……
主蒸気弁、11……復水器、12……復水ポン
プ、13……ドレンタンク、14……給水加熱
器、15……バイパス弁、20……回転数計、2
1……ガスタービン吸気温度計、22……ガスタ
ービン排ガス温度計、23……貫流ボイラ排ガス
温度計、24……貫流ボイラ出口蒸気温度計、2
5……ボイラ給水温度計、50,51,52……
制御装置、101,104,105,110,1
10′,114……関数発生器、102……乗算
器、103,106……減算器、107……PI
コントローラ、108……加算器、111……高
位選択器、112……比較器、113……タイ
マ。
Fig. 1 is a piping system diagram of a conventional example of a combined plant, Fig. 2 is a block connection diagram of a control device of a conventional example of a once-through boiler, and Fig. 3 is a block connection diagram of an embodiment of the control device of a once-through boiler of the present invention. 4 is a block connection diagram of another embodiment of the once-through boiler control device of the present invention. 1...Gas turbine, 2...Duct, 3...Once-through boiler, 4...Stack, 5...Water pump,
6... Water supply valve, 7 a , 7 b , 7 c , 7 d ... Pipe line, 8
...Steam water separator, 9...Steam turbine, 10...
Main steam valve, 11... Condenser, 12... Condensate pump, 13... Drain tank, 14... Feed water heater, 15... Bypass valve, 20... Revolution meter, 2
DESCRIPTION OF SYMBOLS 1... Gas turbine intake air temperature meter, 22... Gas turbine exhaust gas thermometer, 23... Once-through boiler exhaust gas temperature gauge, 24... Once-through boiler outlet steam thermometer, 2
5... Boiler feed water temperature gauge, 50, 51, 52...
Control device, 101, 104, 105, 110, 1
10', 114...function generator, 102...multiplier, 103,106...subtractor, 107...PI
Controller, 108... Adder, 111... High level selector, 112... Comparator, 113... Timer.

Claims (1)

【特許請求の範囲】 1 ボイラ加熱用の排ガス流量と、ボイラ入口と
出口の排ガスの温度差とからボイラの受熱量を計
算する手段と、ボイラの受熱量から発生蒸気量を
計算する手段と、ボイラ入口の排ガス温度から計
算されるボイラ出口の蒸気温度の設定値と、ボイ
ラ出口の蒸気温度の測定値との偏差から補正蒸気
量を計算する手段と、発生蒸気量と補正蒸気量と
から給水量を計算する手段とを有し給水量を調節
する貫流ボイラの制御装置において、前記ボイラ
の受熱量から安定給水量を計算する手段と、安定
給水量と前記給水量とを比較してその値の大なる
方を較正給水量として選択する手段と、ボイラの
受熱量と給水温度とからボイラの最低給水量を計
算する手段と、最低給水量と前記較正給水量とを
比較し、最低給水量が大きくかつこの状態が一定
時間以上持続した場合に負荷に供給する蒸気通路
を遮断可能とする手段とを付設したことを特徴と
する貫流ボイラの制御装置。 2 安定給水量を計算する手段は、給水温度をパ
ラメータとして用いている特許請求の範囲第1項
記載の貫流ボイラの制御装置。
[Scope of Claims] 1. Means for calculating the amount of heat received by the boiler from the flow rate of exhaust gas for heating the boiler and the temperature difference between the exhaust gas at the inlet and outlet of the boiler, and means for calculating the amount of generated steam from the amount of heat received by the boiler; Means for calculating the corrected steam amount from the deviation between the set value of the steam temperature at the boiler outlet calculated from the exhaust gas temperature at the boiler inlet and the measured value of the steam temperature at the boiler outlet, and the method for calculating the corrected steam amount from the generated steam amount and the corrected steam amount In a control device for a once-through boiler that adjusts the amount of water supplied, the control device includes a means for calculating a stable water supply amount from the amount of heat received by the boiler, and a value obtained by comparing the stable water supply amount and the water supply amount. means to select the larger of the above as the calibrated water supply amount; a means to calculate the minimum water supply amount of the boiler from the heat received by the boiler and the water supply temperature; and a means to calculate the minimum water supply amount by comparing the minimum water supply amount and the calibrated water supply amount. 1. A control device for a once-through boiler, characterized in that it is provided with means for shutting off a steam passage supplying a load when the amount of steam is large and this state continues for a certain period of time or more. 2. The once-through boiler control device according to claim 1, wherein the means for calculating the stable water supply amount uses the supply water temperature as a parameter.
JP17370483A 1983-09-20 1983-09-20 Controller for once-through boiler Granted JPS6064101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17370483A JPS6064101A (en) 1983-09-20 1983-09-20 Controller for once-through boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17370483A JPS6064101A (en) 1983-09-20 1983-09-20 Controller for once-through boiler

Publications (2)

Publication Number Publication Date
JPS6064101A JPS6064101A (en) 1985-04-12
JPH0226122B2 true JPH0226122B2 (en) 1990-06-07

Family

ID=15965576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17370483A Granted JPS6064101A (en) 1983-09-20 1983-09-20 Controller for once-through boiler

Country Status (1)

Country Link
JP (1) JPS6064101A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05126309A (en) * 1991-10-31 1993-05-21 Miura Co Ltd Method of controlling water level of once-through type waste heat boiler and its device
JP3872655B2 (en) * 2001-03-14 2007-01-24 本田技研工業株式会社 Labyrinth seal structure for constant velocity joints
JPWO2003029619A1 (en) 2001-09-28 2005-01-20 本田技研工業株式会社 Evaporator temperature control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS459442Y1 (en) * 1968-10-30 1970-05-04
JPS5112001A (en) * 1974-07-19 1976-01-30 Hitachi Ltd Teiryuryontenno keizokunitomonatsuteshojiruhenryuo boshisurutameno sochi
JPS5646904A (en) * 1979-09-26 1981-04-28 Tokyo Shibaura Electric Co Minimum flow controller for boilers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS459442Y1 (en) * 1968-10-30 1970-05-04
JPS5112001A (en) * 1974-07-19 1976-01-30 Hitachi Ltd Teiryuryontenno keizokunitomonatsuteshojiruhenryuo boshisurutameno sochi
JPS5646904A (en) * 1979-09-26 1981-04-28 Tokyo Shibaura Electric Co Minimum flow controller for boilers

Also Published As

Publication number Publication date
JPS6064101A (en) 1985-04-12

Similar Documents

Publication Publication Date Title
KR890001172B1 (en) Hrsg damper control
JP5450642B2 (en) Operation method of exhaust heat recovery boiler
CA1068492A (en) Combined gas turbine and steam turbine power plant
US6339926B1 (en) Steam-cooled gas turbine combined power plant
US4578944A (en) Heat recovery steam generator outlet temperature control system for a combined cycle power plant
US6301895B1 (en) Method for closed-loop output control of a steam power plant, and steam power plant
JP4854422B2 (en) Control method for once-through exhaust heat recovery boiler
US4576124A (en) Apparatus and method for fluidly connecting a boiler into pressurized steam feed line and combined-cycle steam generator power plant embodying the same
US4854121A (en) Combined cycle power plant capable of controlling water level in boiler drum of power plant
US9528396B2 (en) Heat recovery steam generator and power plant
JPH0226122B2 (en)
JP4905941B2 (en) Waste heat recovery boiler and its steam pressure control method
JP3857350B2 (en) Control device for combined cycle power plant
JP2823342B2 (en) Steam temperature controller for superheater / reheater in combined cycle power plant
JP2008292119A (en) Power generator
JPS61108814A (en) Gas-steam turbine composite facility
JP2511400B2 (en) Steam temperature control method for once-through boiler
JP2007285220A (en) Combined cycle power generation facility
US20240218813A1 (en) Improved thermal power plant
JPH04246244A (en) Pressurizing fluidized bed combined plant and partial load operation control and device therefor
JPH05296401A (en) Exhaust heat recoverying boiler system and its main steam temperature controller
JPS6135441B2 (en)
JPS6239658B2 (en)
JPS6211283Y2 (en)
JPS6154123B2 (en)