JPS61108814A - Gas-steam turbine composite facility - Google Patents

Gas-steam turbine composite facility

Info

Publication number
JPS61108814A
JPS61108814A JP60241229A JP24122985A JPS61108814A JP S61108814 A JPS61108814 A JP S61108814A JP 60241229 A JP60241229 A JP 60241229A JP 24122985 A JP24122985 A JP 24122985A JP S61108814 A JPS61108814 A JP S61108814A
Authority
JP
Japan
Prior art keywords
water supply
feed water
pipe
heat exchanger
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60241229A
Other languages
Japanese (ja)
Inventor
ヘルマン、ブリユツクナー
ウインフリート、ガンツアー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kraftwerk Union AG
Original Assignee
Kraftwerk Union AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kraftwerk Union AG filed Critical Kraftwerk Union AG
Publication of JPS61108814A publication Critical patent/JPS61108814A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • F01K23/108Regulating means specially adapted therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Saccharide Compounds (AREA)
  • Lubricants (AREA)
  • Catalysts (AREA)

Abstract

1. Thermal power plant having a gas turbine (2), a heat recovery device (11, 13, 15, 17, 9, 12) connected to the gas turbine on its exhaust gas side, an energy transducer (3) associated with the heat recovery device, with associated condenser (34) and feed water container (30) for the heat recovery device, connected to the condenser on the outlet side by means of a condensate line (37), and also having an exhaust gas heat exchanger (14) connected to the heat recovery device on its exhaust gas side, which exchanger is connected to the feed water container (30) by means of a feed water supply line (38) and a feed water return line (39) forming a closed feed water circuit, characterized in that there is provided a bypass line (42) for condensate going from the condensate line (37) to the feed water inlet of the exhaust gas heat exchanger (14), and in that in the feed water supply line (38), in front of the connection point of the bypass line (42), seen in the direction of the feed water current, there is fitted a control valve (40) with a temperature sensor in the feed water supply line (38) behind the connection point of the bypass line (42), and with an associated regulator (46) which keeps the feed water inlet temperature for the exhaust gas heat exchanger (14) at a predetermined desired value by appropriate supply of feed water from the feed water container (30) into the feed water supply line (38).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガスタービン、このガスタービンのガス側に
後置接続された熱回収装置特に廃熱ボイラ、この熱回収
装置に付設されたエネルギー変換装置特に蒸気タービン
、およびこの熱回収装置のガス側に後置接続された廃ガ
ス熱交換器を有し、前記エネルギー変換装置が復水器と
これに復水管を介して後置接続された給水タンクとを有
し、前記廃ガス熱交換器が給水供給管および給水戻り管
を介して密閉給水回路を形成した状態において給水タン
クに接続されているようなガス−蒸気タービン複合設備
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a gas turbine, a heat recovery device connected downstream to the gas side of the gas turbine, particularly a waste heat boiler, and an energy recovery device attached to the heat recovery device. A conversion device, in particular a steam turbine, and a waste gas heat exchanger downstream connected to the gas side of the heat recovery device, to which the energy conversion device is connected downstream via a condenser pipe. The present invention relates to a gas-steam turbine complex facility having a water supply tank, and wherein the waste gas heat exchanger is connected to the water supply tank through a water supply pipe and a water return pipe to form a closed water supply circuit.

〔従来の技術〕[Conventional technology]

かかる複合設備は既に広〈実施されている。かかる普通
の複合設備の場合、復水を所定の給水温度に加熱し脱気
するために、水蒸気が蒸気タービンから成るエネルギー
変換装置から直接給水タンクに導かれる。即ち蒸気ター
ビンからエネルギーの変換に利用できない蒸気が抽出さ
れる。
Such complex facilities are already widely implemented. In such common complexes, steam is conducted from an energy conversion device consisting of a steam turbine directly into a feed water tank in order to heat the condensate to a predetermined feed water temperature and degas it. That is, steam that cannot be used for energy conversion is extracted from the steam turbine.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、冒頭に述べた形式の複合設備の総合効
率を向上することにある。
The aim of the invention is to increase the overall efficiency of complex installations of the type mentioned at the outset.

〔問題点の解決手段〕[Means for solving problems]

本発明によればこの目的は、特許請求の範囲第1項の特
徴部分記載の手段によって達成される。
According to the invention, this object is achieved by the measures described in the characterizing part of claim 1.

〔発明の作用効果〕[Function and effect of the invention]

バイパス管を介して給水供給管に導入される復  。 Rechargeable water is introduced into the water supply pipe via a bypass pipe.

水によって、廃ガス熱交換器への給水の入口温度が低下
でき、多量の廃ガス熱が給水回路に伝えられ、エネルギ
ー変換装置から給水タンクへの例えば水蒸気の供給は省
略できる。給水供給管における制御弁によって制御され
る給水温度の設定値はH2Oあるいは廃ガス内の酸(た
とえば502)の露点よりも高く決められ、それによっ
て廃ガス熱交換器の伝熱面における腐食が避けられる。
By means of water, the inlet temperature of the feed water to the waste gas heat exchanger can be reduced, a large amount of waste gas heat is transferred to the water supply circuit, and the supply of eg water vapor from the energy conversion device to the water tank can be omitted. The set point of the feed water temperature, controlled by the control valve in the feed water supply line, is determined to be higher than the dew point of H2O or the acid (e.g. 502) in the waste gas, thereby avoiding corrosion on the heat transfer surfaces of the waste gas heat exchanger. It will be done.

特許請求の範囲第2項記載の本発明に基づくを利な実施
態様によれば、給水タンク内の圧力が一定に保たれ、従
って給水タンク内の給水の温度が一定にされ、これによ
り給水タンク内の給水の脱気が常に、給水に解けている
ガスを分離するのに十分に高い圧力で行われる。
According to an advantageous embodiment of the invention according to claim 2, the pressure in the water supply tank is kept constant and the temperature of the supply water in the water supply tank is therefore constant, so that the water supply tank The degassing of the feed water within the feed water is always carried out at a pressure high enough to separate out the gases dissolved in the feed water.

特許請求の範囲第3項記載の別の有利な実施態様によれ
ば、ガスタービンの負荷変動およびそれに伴う廃ガス温
度の変動の際に、給水戻り管内の給水温度の設定値を、
所定の最大値と所定の最小値との間の範囲に維持できる
According to a further advantageous embodiment as claimed in claim 3, the set point of the feed water temperature in the feed water return line is adjusted during load fluctuations of the gas turbine and associated fluctuations in the exhaust gas temperature.
It can be maintained within a range between a predetermined maximum value and a predetermined minimum value.

〔実施例〕〔Example〕

以下図面に示す実施例に基づいて本発明の詳細な説明す
る。
The present invention will be described in detail below based on embodiments shown in the drawings.

図はガスタービンおよび高圧タービンと低圧タービンと
を持った蒸気タービンの複合設備を示している。
The figure shows a combined installation of a gas turbine and a steam turbine with a high-pressure turbine and a low-pressure turbine.

ガスタービン2の従動軸には燃焼用空気の圧縮機4およ
び発電機5の駆動軸が連結されている。
A driven shaft of the gas turbine 2 is connected to a drive shaft of a combustion air compressor 4 and a generator 5.

更に燃焼器8が設けられ、ここには圧縮機4の吐出管お
よびガスタービン2への燃焼ガスの供給管が接続されて
いる。蒸気タービン3の従動軸には発電機6の駆動軸が
連結されている。
Furthermore, a combustor 8 is provided, to which a discharge pipe of the compressor 4 and a supply pipe of combustion gas to the gas turbine 2 are connected. A drive shaft of a generator 6 is connected to a driven shaft of the steam turbine 3 .

ガスタービン2からの廃ガス排出管には廃熱ボイラ7が
接続され、この廃熱ボイラ7は廃ガス排出管に直接接続
された高圧蒸気過熱器11、および廃ガス流においてこ
れに直列接続された高圧蒸気発生器13、高圧エコノマ
イザ15、低圧蒸気過熱器I7、低圧蒸気発生器9およ
び低圧エコノマイザ12を有している。
A waste heat boiler 7 is connected to the waste gas discharge pipe from the gas turbine 2, which waste heat boiler 7 is connected to a high pressure steam superheater 11 directly connected to the waste gas discharge pipe and connected in series thereto in the waste gas flow. It has a high-pressure steam generator 13, a high-pressure economizer 15, a low-pressure steam superheater I7, a low-pressure steam generator 9, and a low-pressure economizer 12.

廃熱ボイラ7には更に高圧蒸気ドラム22および低圧蒸
気ドラム28がある。高圧蒸気ドラム22には高圧エコ
ノマイザ15の給水出口および高圧蒸気発生器13の出
口が接続されている。高圧蒸気ドラム22の給水出口は
循環ポンプ24を介して高圧蒸気発生器13の入口に接
続されている。
The waste heat boiler 7 further includes a high pressure steam drum 22 and a low pressure steam drum 28. A water supply outlet of the high-pressure economizer 15 and an outlet of the high-pressure steam generator 13 are connected to the high-pressure steam drum 22 . The water supply outlet of the high-pressure steam drum 22 is connected to the inlet of the high-pressure steam generator 13 via a circulation pump 24 .

高圧蒸気ドラム22の蒸気出口は高圧蒸気過熱器11の
蒸気入口に接続されている。
A steam outlet of the high pressure steam drum 22 is connected to a steam inlet of the high pressure steam superheater 11.

低圧エコノマイザ12の出口および低圧蒸気発生器9の
出口は低圧蒸気ドラム28に接続されている。低圧蒸気
ドラム28の給水出口は給水ポンプ26を介して高圧エ
コノマイザ15の給水入口に、並びに循環ポンプ10を
介して低圧蒸気発生器9の入口に接続されている。低圧
蒸気ドラム28の蒸気出口は低圧蒸気過熱器17の蒸気
入口に接続されている。
The outlet of the low pressure economizer 12 and the outlet of the low pressure steam generator 9 are connected to a low pressure steam drum 28. The feedwater outlet of the low-pressure steam drum 28 is connected to the feedwater inlet of the high-pressure economizer 15 via a feedwater pump 26 and to the inlet of the low-pressure steam generator 9 via a circulation pump 10 . The steam outlet of the low pressure steam drum 28 is connected to the steam inlet of the low pressure steam superheater 17.

高圧蒸気過熱器11の生蒸気出口は蒸気タービン3の高
圧タービン部の蒸気入口に接続され、低圧蒸気過熱器1
7の生蒸気出口は蒸気タービン3の低圧タービン部の蒸
気入口に接続されている。
The live steam outlet of the high pressure steam superheater 11 is connected to the steam inlet of the high pressure turbine section of the steam turbine 3, and
The live steam outlet 7 is connected to the steam inlet of the low pressure turbine section of the steam turbine 3.

給水ポンプ31を有する給水管32が給水タンク30か
ら低圧エコノマイザ12の給水入口に通じている。
A water supply pipe 32 with a water supply pump 31 leads from the water supply tank 30 to the water supply inlet of the low-pressure economizer 12 .

蒸気タービン3の排気管に排出蒸気管33を介して復水
器34が後置接続され、この復水器34は復水出口側に
ホットウェル(復水ため)35を有している。このホッ
トウェル35は復水ポンプ36付の復水管37を介して
給水タンク30に接続されている。この復水管37にお
いて復水ポンプ36の後方に制御弁43が接続されてい
る。廃ガス熱交換器14はそのガス側が低圧エコノマイ
ザ12のガス側に後置接続され、その水側には給水戻り
管39を介して給水タンク30に接続されている。制御
弁40およびそれに前置接続された循環ポンプ41を持
った給水供給管38は給水タンク30から同様に廃ガス
熱交換器14の水側に通じている。
A condenser 34 is connected downstream to the exhaust pipe of the steam turbine 3 via an exhaust steam pipe 33, and this condenser 34 has a hot well (for condensate) 35 on the condensate outlet side. This hot well 35 is connected to a water supply tank 30 via a condensate pipe 37 equipped with a condensate pump 36. A control valve 43 is connected to the rear of the condensate pump 36 in the condensate pipe 37 . The waste gas heat exchanger 14 is connected on its gas side downstream to the gas side of the low-pressure economizer 12 , and its water side is connected to a water supply tank 30 via a water supply return pipe 39 . A water supply line 38 with a control valve 40 and a circulation pump 41 connected upstream thereof likewise leads from the water tank 30 to the water side of the waste gas heat exchanger 14 .

更に復水のバイパス管42が復水管37の復水ポンプ3
6と制御弁43との間の接続個所から、給水供給管38
の制御弁40と廃ガス熱交換器14の給水入口との間の
接続個所に通じている。制御弁′43は給水タンク30
内に圧力センサを持った制御器45を有し、制御弁40
は給水戻り管39内および廃ガス熱交換器14への給水
入口とバイパス管42の接続個所との間における給水供
給管38内にそれぞれ温度センサを持った制御器46を
有している。
Furthermore, the condensate bypass pipe 42 is connected to the condensate pump 3 of the condensate pipe 37.
6 and the control valve 43, the water supply pipe 38
control valve 40 and the water inlet of the waste gas heat exchanger 14. The control valve '43 is connected to the water tank 30
It has a controller 45 with a pressure sensor inside, and a control valve 40
has a controller 46 with a temperature sensor in the feedwater return pipe 39 and in the water supply pipe 38 between the water supply inlet to the waste gas heat exchanger 14 and the connection point of the bypass pipe 42.

復水はホットウェル35から復水管37、バイパス管4
2および給水供給管38を通って廃ガス熱交換器14に
通じ、給水戻り管39を介して給水タンク30に流れる
。給水供給管38へのバイパス管42の接続個所におい
て遣水は、給水タンク30からの制御弁40を通して導
かれる加熱された給水と混合され、廃ガス熱交換器14
への復水の入口温度は、廃ガス熱交換器14の廃ガス側
においてH2Oおよび廃ガス内の少量の302成分が露
点を下回ることがなく、それによって廃ガス熱交換器1
4の伝熱面の腐食が避けられるような設定値例えば70
℃にされる。
Condensate flows from the hot well 35 to the condensate pipe 37 and the bypass pipe 4
2 and the feed water supply pipe 38 to the waste gas heat exchanger 14 and flows via the feed water return pipe 39 to the water tank 30. At the connection of the bypass pipe 42 to the feed water supply pipe 38 the feed water is mixed with the heated feed water led through the control valve 40 from the water tank 30 and the waste gas heat exchanger 14
The inlet temperature of the condensate to the waste gas heat exchanger 14 is such that on the waste gas side of the waste gas heat exchanger 14 H2O and the small amount of 302 components in the waste gas do not fall below the dew point.
For example, set value 70 to avoid corrosion of the heat transfer surface in step 4.
℃.

給水タンク30における圧力が制御弁43で例えば、2
バールの設定圧力に制御され、この圧力で低温の復水は
復水管37から直接給水タンク30に導かれる。
The pressure in the water supply tank 30 is controlled by the control valve 43, for example,
The pressure is controlled to a set pressure of bar, and at this pressure, low-temperature condensate is led directly from the condensate pipe 37 to the water supply tank 30.

給水戻り管39における廃ガス熱交換器14からの復水
の出口温度が例えばガスタービン2あるいは蒸気タービ
ン3の出力変動によって所定の最大値を越えるか、所定
の最小値を下回った場合、廃ガス熱交換器14への復水
の入口温度の制御が切り離され、制御弁40を介して給
水供給管38へ導入される給水流量は、廃ガス熱交換器
14からの給水の出口温度が例えば110℃の設定値を
有し、給水タンク30における圧力が制御弁43を介し
て設定値に制御し続けられるように調整される。
If the outlet temperature of the condensate from the waste gas heat exchanger 14 in the feed water return pipe 39 exceeds a predetermined maximum value or falls below a predetermined minimum value due to output fluctuations of the gas turbine 2 or the steam turbine 3, for example, the waste gas Control of the inlet temperature of the condensate to the heat exchanger 14 is separated, and the flow rate of the feed water introduced into the feed water supply pipe 38 via the control valve 40 is such that the outlet temperature of the feed water from the waste gas heat exchanger 14 is 110, for example. ℃ and is regulated so that the pressure in the water tank 30 remains controlled to the set value via the control valve 43.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明に基づくガス−蒸気タービン複合設備の系統
図である。 2ニガスタービン、3:蒸気タービン、7:廃熱ボイラ
、14:廃ガス熱交換器、30:給水りンク、34:復
水器、37:復水管、38:給水供給管、40:制御弁
、42:バイパス管、43:制御弁、45.467制御
器。
The figure is a system diagram of a gas-steam turbine complex based on the present invention. 2 gas turbine, 3: steam turbine, 7: waste heat boiler, 14: waste gas heat exchanger, 30: water supply link, 34: condenser, 37: condensate pipe, 38: water supply pipe, 40: control Valve, 42: Bypass pipe, 43: Control valve, 45.467 Controller.

Claims (1)

【特許請求の範囲】 1)ガスタービン、このガスタービンのガス側に後置接
続された熱回収装置、この熱回収装置に付設されたエネ
ルギー変換装置、およびこの熱回収装置のガス側に後置
接続された廃ガス熱交換器を有し、前記エネルギー変換
装置が復水器とこれに復水管を介して後置接続された給
水タンクとを有し、前記廃ガス熱交換器が給水供給管お
よび給水戻り管を介して密閉給水回路を形成した状態に
おいて給水タンクに接続されているようなガス−蒸気タ
ービン複合設備において、復水管(37)から出て廃ガ
ス熱交換器(14)の給水入口に向けて復水のバイパス
管(42)が設けられ、給水供給管(38)において給
水の流れ方向に見てバイパス管(42)の接続個所の手
前に制御弁(40)が設けられ、この制御弁(40)が
バイパス管(42)の接続個所の後方における給水供給
管(38)内の温度センサおよびそれに対応した制御器
(46)を有し、この制御器(46)が廃ガス熱交換器
(14)の給水入口温度を給水タンク(30)から給水
供給管(38)への流量によって所定の設定値に制御す
ることを特徴とするガス−蒸気タービン複合設備。 2)復水管(37)内に復水の流れ方向に見てバイパス
管(42)の分岐個所の後方に制御弁(43)が設けら
れ、この制御弁(43)が給水タンク(30)内の圧力
センサおよび制御器(45)を有し、この制御器(45
)が給水タンク(30)内の圧力を給水タンク(30)
への復水の流量によって所定の設定値に制御することを
特徴とする特許請求の範囲第1項記載の複合設備。 3)給水戻り管(39)に温度センサが設けられ、給水
供給管(38)における制御弁(40)の制御器(46
)に接続され、この制御器(46)が給水戻り管(39
)内の給水温度が所定の最大値を越えた場合および所定
の最小値を下回った場合、廃ガス熱交換器(14)から
の給水出口温度を給水の流量によって所定の設定値に制
御することを特徴とする特許請求の範囲第1項記載の複
合設備。
[Claims] 1) A gas turbine, a heat recovery device connected downstream to the gas side of the gas turbine, an energy conversion device attached to the heat recovery device, and a device connected downstream to the gas side of the heat recovery device. a waste gas heat exchanger connected thereto, the energy conversion device having a condenser and a water supply tank downstream connected to the condenser via a condensate pipe, the waste gas heat exchanger having a water supply pipe connected to the energy conversion device; In such gas-steam turbine complexes, the water supply to the waste gas heat exchanger (14) exits from the condensate pipe (37) and is connected to the water supply tank in a sealed water supply circuit via the supply water return pipe. A condensate bypass pipe (42) is provided toward the inlet, and a control valve (40) is provided in the water supply pipe (38) before the connection point of the bypass pipe (42) when viewed in the flow direction of the water supply, This control valve (40) has a temperature sensor in the water supply pipe (38) behind the connection point of the bypass pipe (42) and a corresponding controller (46), which controller (46) A gas-steam turbine complex facility characterized in that the temperature of the water supply inlet of the heat exchanger (14) is controlled to a predetermined set value by the flow rate from the water supply tank (30) to the water supply pipe (38). 2) A control valve (43) is provided in the condensate pipe (37) at the rear of the branch point of the bypass pipe (42) when viewed in the flow direction of condensate, and this control valve (43) is installed in the water supply tank (30). pressure sensor and controller (45), and this controller (45
) adjusts the pressure in the water tank (30) to the water tank (30).
2. The complex equipment according to claim 1, wherein the complex equipment is controlled to a predetermined set value depending on the flow rate of condensed water. 3) A temperature sensor is provided in the water supply return pipe (39), and a controller (46) of the control valve (40) in the water supply pipe (38) is provided.
), and this controller (46) is connected to the water supply return pipe (39
), when the temperature of the feed water in the waste gas heat exchanger (14) exceeds a predetermined maximum value and falls below a predetermined minimum value, the temperature of the feed water outlet from the waste gas heat exchanger (14) is controlled to a predetermined set value by the flow rate of the feed water. The complex facility according to claim 1, characterized in that:
JP60241229A 1984-10-29 1985-10-28 Gas-steam turbine composite facility Pending JPS61108814A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3439567.9 1984-10-29
DE3439567 1984-10-29

Publications (1)

Publication Number Publication Date
JPS61108814A true JPS61108814A (en) 1986-05-27

Family

ID=6249023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60241229A Pending JPS61108814A (en) 1984-10-29 1985-10-28 Gas-steam turbine composite facility

Country Status (5)

Country Link
EP (1) EP0180093B1 (en)
JP (1) JPS61108814A (en)
AT (1) ATE34802T1 (en)
DE (1) DE3563088D1 (en)
IN (1) IN161926B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4971166A (en) * 1988-02-08 1990-11-20 Sango Co., Ltd. Muffler

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4976100A (en) * 1989-06-01 1990-12-11 Westinghouse Electric Corp. System and method for heat recovery in a combined cycle power plant
DE102009010020B4 (en) * 2009-02-21 2016-07-07 Flagsol Gmbh Feedwater degasser of a solar thermal power plant
DE102010054963B4 (en) * 2010-12-17 2017-06-01 Jumag Dampferzeuger Gmbh Pressure control for full degassing in feedwater vessels by means of controllable valve
DE102013204396A1 (en) * 2013-03-13 2014-09-18 Siemens Aktiengesellschaft Condensate preheater for a heat recovery steam generator
CN107697494B (en) * 2017-09-14 2019-02-22 江苏航天惠利特环保科技有限公司 A kind of coupled method device for recovering oil and gas

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1626151A1 (en) * 1967-02-22 1971-01-14 Aeg Kanis Turbinen Thermal power plant with a steam turbine with reheater and with a gas turbine
CH613255A5 (en) * 1976-11-25 1979-09-14 Sulzer Ag System for the utilisation of waste heat from a gas flow to drive electrical generators
DE3002615A1 (en) * 1979-12-05 1981-06-11 BBC AG Brown, Boveri & Cie., Baden, Aargau Combined gas and steam turbine power plant - uses gas turbine waste heat to generate steam, preheats air-to-gas turbine compressor
CH655548B (en) * 1982-03-31 1986-04-30

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4971166A (en) * 1988-02-08 1990-11-20 Sango Co., Ltd. Muffler

Also Published As

Publication number Publication date
EP0180093B1 (en) 1988-06-01
DE3563088D1 (en) 1988-07-07
EP0180093A1 (en) 1986-05-07
ATE34802T1 (en) 1988-06-15
IN161926B (en) 1988-02-27

Similar Documents

Publication Publication Date Title
US4572110A (en) Combined heat recovery and emission control system
US5799481A (en) Method of operating a gas-turbine group combined with a waste-heat steam generator and a steam consumer
US5293842A (en) Method for operating a system for steam generation, and steam generator system
US4207842A (en) Mixed-flow feedwater heater having a regulating device
JP3032005B2 (en) Gas / steam turbine combined facility
US4961311A (en) Deaerator heat exchanger for combined cycle power plant
JPS6388227A (en) Method of operating gas turbine unit
SU1521284A3 (en) Power plant
US4745757A (en) Combined heat recovery and make-up water heating system
US5727377A (en) Method of operating a gas turbine power plant with steam injection
GB2099558A (en) Heat recovery steam generator
JPS61108814A (en) Gas-steam turbine composite facility
JPH03221702A (en) Duplex type heat exchanger for waste heat recovery
GB1601832A (en) Internal combustion engine plant
JPS628606B2 (en)
US3913330A (en) Vapor generator heat recovery system
RU2144994C1 (en) Combined-cycle plant
RU2107826C1 (en) Steam-gas plant with deaerator-evaporator
JPH0440524B2 (en)
JPS5820914A (en) Power generating plant using blast furnace gas as fuel
JPS6017210A (en) Dual-cycle power plant
JPS59147907A (en) Feedwater heating system of steam turbine plant
SU1557340A1 (en) Peak-load steam-and-gas plant
JPH0874516A (en) Method for controlling feeding water and method for controlling gas for exhaust gas after burning-type combined cycle
RU2160369C2 (en) High-efficiency power unit