JPS6135441B2 - - Google Patents

Info

Publication number
JPS6135441B2
JPS6135441B2 JP2086279A JP2086279A JPS6135441B2 JP S6135441 B2 JPS6135441 B2 JP S6135441B2 JP 2086279 A JP2086279 A JP 2086279A JP 2086279 A JP2086279 A JP 2086279A JP S6135441 B2 JPS6135441 B2 JP S6135441B2
Authority
JP
Japan
Prior art keywords
water level
steam
drum
heat recovery
recovery boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2086279A
Other languages
Japanese (ja)
Other versions
JPS55112911A (en
Inventor
Yoshifumi Yamaguchi
Shozo Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2086279A priority Critical patent/JPS55112911A/en
Publication of JPS55112911A publication Critical patent/JPS55112911A/en
Publication of JPS6135441B2 publication Critical patent/JPS6135441B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Control Of Non-Electrical Variables (AREA)

Description

【発明の詳細な説明】 本発明は、ガスタービン装置と該ガスタービン
排ガスの熱を利用して蒸気を発生させる排熱回収
ボイラと該ボイラから出た蒸気で駆動される蒸気
タービン装置とで構成される複合サイクルプラン
トにおける排熱回収ボイラのドラム水位制御に係
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention comprises a gas turbine device, an exhaust heat recovery boiler that generates steam using the heat of the gas turbine exhaust gas, and a steam turbine device that is driven by the steam emitted from the boiler. This is related to drum water level control of an exhaust heat recovery boiler in a combined cycle plant.

まず複合サイクルプラントの一般的な構成を第
1図にて説明する。
First, the general configuration of a combined cycle plant will be explained with reference to FIG.

複合サイクルプラントは一般に1台あるいは複
数台のガスタービン装置1と、このガスタービン
装置と同数の排熱回収ボイラ11と、1台の蒸気
タービン装置40とにより構成されている。ガス
タービン装置1は、コンプレツサ2と該コンプレ
ツサ2で加圧された空気により燃料配管4から送
られて来る燃料を燃焼して高温高圧の燃焼ガスを
発生する燃焼器3と、燃焼ガスを発生する燃焼器
3と、燃焼ガスにて駆動されガスタービン発電機
6を回転させるガスタービン5とから構成されて
いる。このガスタービン装置1から排出される燃
焼ガスは排ガスダクト7を通じて排熱回収ボイラ
11に導かれる。またこの排ガスダクト7には排
熱回収ボイラ11をバイパスするバイパスダクト
10が設けられており、排ガスダクト7及びバイ
パスダクト10にはそれぞれ排ガスの流通を調節
するボイラ入口ダンパ8及びボイラバイパスダン
パ9が設けられている。排熱回収ボイラ11は、
ドラム式ボイラであつて、給水配管14を通して
導入される給水を加熱するエコノマイザ15と、
蒸気発生用のドラム16及び蒸発器17と、過熱
器18とから構成され、過熱器18から出る蒸気
は、蒸気管19、ボイラ弁20を通つて蒸気ヘツ
ダ21へ集められ、該蒸気ヘツダ21から加減弁
22を通じて蒸気タービン23内に送給されて発
電機24を駆動し、復水器32で復水される。復
〓〓〓
水された給水は給水ポンプ12により、給水調整
弁13を備えた給水配管14を通じて排熱回収ボ
イラ11に戻される。また、蒸気管19にはボイ
ラ出口弁20の上流側にタービンバイパス弁25
を備えたバイパス蒸気管26が分岐して設けられ
ており、減温器27を介して復水器32に連通し
ているが、排熱回収ボイラ起動時などに蒸気ヘツ
ダ21内の蒸気圧力と排熱回収ボイラ11の発生
蒸気圧力とのマツチングを図る場合に蒸気を復水
器32に導入するものであり、通常運転時には使
用されない。28は前記給水ポンプ12の下流の
給水配管より分岐し、前記減温器27に接続して
設けられたスプレー配管、29はスプレー調整弁
である。
A combined cycle plant generally includes one or more gas turbine devices 1, the same number of exhaust heat recovery boilers 11 as the gas turbine devices, and one steam turbine device 40. The gas turbine device 1 includes a compressor 2, a combustor 3 that generates high-temperature, high-pressure combustion gas by burning fuel sent from a fuel pipe 4 using air pressurized by the compressor 2, and a combustor 3 that generates combustion gas. It is composed of a combustor 3 and a gas turbine 5 that is driven by combustion gas and rotates a gas turbine generator 6. Combustion gas discharged from this gas turbine device 1 is led to an exhaust heat recovery boiler 11 through an exhaust gas duct 7. Further, the exhaust gas duct 7 is provided with a bypass duct 10 that bypasses the exhaust heat recovery boiler 11, and the exhaust gas duct 7 and the bypass duct 10 are provided with a boiler inlet damper 8 and a boiler bypass damper 9, respectively, that adjust the flow of exhaust gas. It is provided. The exhaust heat recovery boiler 11 is
an economizer 15 which is a drum boiler and heats the feed water introduced through the water supply pipe 14;
It is composed of a drum 16 for steam generation, an evaporator 17, and a superheater 18. Steam coming out of the superheater 18 passes through a steam pipe 19 and a boiler valve 20, and is collected into a steam header 21. The water is fed into the steam turbine 23 through the control valve 22 to drive the generator 24, and is condensed in the condenser 32. revenge〓〓〓
The supplied water is returned to the exhaust heat recovery boiler 11 by a water supply pump 12 through a water supply pipe 14 equipped with a water supply regulating valve 13 . The steam pipe 19 also includes a turbine bypass valve 25 on the upstream side of the boiler outlet valve 20.
A bypass steam pipe 26 equipped with Steam is introduced into the condenser 32 in order to match the steam pressure generated by the exhaust heat recovery boiler 11, and is not used during normal operation. 28 is a spray pipe branched from the water supply pipe downstream of the water supply pump 12 and connected to the desuperheater 27, and 29 is a spray adjustment valve.

従来の給水系の制御装置は、排熱回収ボイラ1
1に備えたドラム16の水位を一定に保持するよ
うにドラム水位の信号を検出し伝送するドラム水
位検出器51と、ドラム発生蒸気量の信号を伝送
する蒸気流量計52と、給水流量の信号を伝送す
る給水流量計53の3つの測定器からの信号に従
つてドラム水位を一定に制御するために給水調整
弁13を調節する、いわゆる3要素制御による給
水制御装置54が設置されている。
The conventional water supply system control device is the exhaust heat recovery boiler 1.
a drum water level detector 51 that detects and transmits a drum water level signal so as to keep the water level of the drum 16 constant; a steam flow meter 52 that transmits a signal of the amount of steam generated in the drum; and a feed water flow rate signal. A water supply control device 54 using so-called three-element control is installed, which adjusts the water supply regulating valve 13 in order to control the drum water level to a constant level in accordance with signals from three measuring devices of the water supply flowmeter 53 that transmits the water.

この給水制御装置54により排熱回収ボイラへ
の熱供給量の変化などにもとづく水位の変動に対
して十分安定した制御を実現できる。
This water supply control device 54 can realize sufficiently stable control against fluctuations in water level due to changes in the amount of heat supplied to the exhaust heat recovery boiler.

しかしながら排熱回収ボイラ11の起動時の圧
力上昇過程に於てタービンバイパス弁25の制御
開始により排熱回収ボイラ11のドラム圧力が急
激に低下しドラム16内の飽和水が自己蒸発を起
こし、この発生蒸気泡によりドラム水位が過渡的
に盛り上がる、いわゆる逆応答特性を示す。この
ようにしてドラム水位が異常上昇すると、発生蒸
気中に水滴が混入して排熱回収ボイラ11内の過
熱器18や蒸気タービン23などにエロージヨン
を引き起こす原因となる。この現象を第2図によ
り説明する。第2図に於て71は排熱回収ボイラ
11の圧力上昇特性、72は排熱回収ボイラ11
により許容される蒸気温度変化率に見合つた飽和
蒸気圧力特性を示す。このカーブ72をタービン
バイパス弁の圧力設定として蒸気圧力上昇を行な
うとC点に於て制御設定以上に蒸気圧力が上昇す
ることにより、タービンバイパス弁25が開き蒸
気圧力を72の特性になるように制御する。ター
ビンバイパス弁25が開くことにより蒸気圧力は
A→B→C→Dの経過をたどり変化するがC点以
降で強制的に72の特性となるように制御される
ため蒸気圧力変化率が急激に減方向となる。蒸気
圧力変化率がマイナス側へ急変することによりド
ラム16内の飽和蒸気圧力が低下し飽和水が自己
蒸発を起こすためにドラム水位が逆応答現象を起
こすものである。
However, during the pressure increase process when starting up the exhaust heat recovery boiler 11, the drum pressure of the exhaust heat recovery boiler 11 suddenly decreases due to the start of control of the turbine bypass valve 25, and the saturated water in the drum 16 self-evaporates. It exhibits a so-called reverse response characteristic in which the drum water level rises transiently due to the generated steam bubbles. If the drum water level rises abnormally in this manner, water droplets will be mixed into the generated steam, causing erosion in the superheater 18, steam turbine 23, etc. in the exhaust heat recovery boiler 11. This phenomenon will be explained with reference to FIG. In FIG. 2, 71 is the pressure rise characteristic of the waste heat recovery boiler 11, and 72 is the pressure rise characteristic of the waste heat recovery boiler 11.
shows the saturated steam pressure characteristics commensurate with the steam temperature change rate allowed by When the steam pressure is increased using this curve 72 as the pressure setting of the turbine bypass valve, the steam pressure rises above the control setting at point C, and the turbine bypass valve 25 opens to adjust the steam pressure to the characteristic of 72. Control. When the turbine bypass valve 25 opens, the steam pressure changes following the course of A → B → C → D, but after point C, it is forcibly controlled to have the characteristic of 72, so the steam pressure change rate suddenly changes. It will be in a decreasing direction. When the rate of change in steam pressure suddenly changes to the negative side, the saturated steam pressure in the drum 16 decreases, causing self-evaporation of the saturated water, causing a reverse response phenomenon in the drum water level.

本発明の目的は、上記したドラム水位の異常上
昇を先行如に防止できる安定したドラム水位制御
装置を提供することにある。
An object of the present invention is to provide a stable drum water level control device that can prevent the above-mentioned abnormal rise in drum water level in advance.

本発明の特徴とするところは、蒸気圧力変化率
が許容蒸気温度変化率に相当する蒸気圧力変化率
以上になつたことによりドラム水位設定値を予想
される水位上昇分だけ下げ、また蒸気圧力変化率
が規定値に戻るまで缶水低減弁を開くことにより
ドラム水位の異常上昇を防止することにある。
The feature of the present invention is that when the steam pressure change rate exceeds the steam pressure change rate corresponding to the allowable steam temperature change rate, the drum water level set value is lowered by the expected water level rise, and the steam pressure changes. The purpose is to prevent an abnormal rise in the drum water level by opening the can water reduction valve until the rate returns to the specified value.

以下本発明の一実施例を第3図により説明す
る。ドラム水位検出器51の信号は減算器42で
信号発生器41により設定されたドラム水位設定
値と比較されその偏差に応じて比例・積分動作コ
ントローラ45により給水調整弁13に対する流
量指令をだす。加算器46により蒸気流量計52
の信号と比例・積分コントローラ45の出力信号
との加算演算を行ない、その信号を給水流量設定
値として減算器47に与え、給水流量計53の信
号と比較しその偏差に応じて比例・積分コントロ
ーラ48より給水調整弁13に対する開度指令を
だし、ドラム水位が設定値と等しくなるように制
御を行なう。蒸気圧力検出器56の信号は微分演
算器82により蒸気圧力率として演算される。第
2図に於てタービンバイパス弁25の圧力設定値
72と排熱回収ボイラ11の蒸気圧力上昇特性7
1との交点Cでタービンバイパス弁25は開制御
を始めるが前記したように蒸気圧力上昇率が減少
することによりドラム水位の逆応答現象が発生す
るので、第2図B点に於てカーブ71の変化率が
カーブ72より大きくなつたことを減算器83で
信号発生器82により設定された許容圧力変化率
と微分演算器82により演算した蒸気圧力変化率
を比較することにより検出しその変化率の偏差に
応じて掛け算器44のゲインをかえ、信号発生器
43で設定されるドラム水位設定値のバイアス量
を可変し実質的にドラム水位が上昇した如く設定
〓〓〓
値をかえ先行的に給水調整弁13を絞る。一方減
算器83の信号はドラム水位が規定値以上である
ことを演算する比較警報器49の出力とタービン
バイパス弁25が開したという条件との論理和8
6により缶水位低減弁制御装置57により缶水位
低減弁31を開きドラム水位の異常上昇を防止す
る。缶水位低減弁31はドラム水位が規定値に下
がるまで開制御を行う。規定値まで下がると比較
警報器49の出力がオフし論理和86の条件がく
ずれ、缶水位低減弁31は閉する。
An embodiment of the present invention will be described below with reference to FIG. The signal from the drum water level detector 51 is compared with the drum water level setting value set by the signal generator 41 in a subtracter 42, and a flow rate command to the water supply regulating valve 13 is issued by a proportional/integral action controller 45 in accordance with the deviation. Steam flow meter 52 by adder 46
The signal is added to the output signal of the proportional/integral controller 45, and the signal is given to the subtractor 47 as the water supply flow rate setting value, and compared with the signal of the water supply flow meter 53, the proportional/integral controller is activated according to the deviation. An opening command is issued to the water supply regulating valve 13 from 48, and control is performed so that the drum water level becomes equal to the set value. The signal from the steam pressure detector 56 is calculated by a differential calculator 82 as a steam pressure rate. In FIG. 2, the pressure setting value 72 of the turbine bypass valve 25 and the steam pressure increase characteristic 7 of the exhaust heat recovery boiler 11 are shown.
The turbine bypass valve 25 starts opening control at the intersection point C with the curve 71 in FIG. The subtracter 83 detects that the rate of change of has become larger than the curve 72 by comparing the allowable rate of change in pressure set by the signal generator 82 with the rate of change in steam pressure calculated by the differential calculator 82, and calculates the rate of change. The gain of the multiplier 44 is changed according to the deviation of the drum water level, and the bias amount of the drum water level set value set by the signal generator 43 is varied, and the drum water level is set so as to substantially rise.
Change the value and throttle the water supply regulating valve 13 in advance. On the other hand, the signal of the subtractor 83 is the logical sum of the output of the comparison alarm 49 which calculates that the drum water level is above the specified value and the condition that the turbine bypass valve 25 is opened.
6, the can water level reducing valve control device 57 opens the can water level reducing valve 31 to prevent the drum water level from rising abnormally. The can water level reduction valve 31 is controlled to open until the drum water level falls to a specified value. When the water level falls to the specified value, the output of the comparison alarm 49 is turned off, the condition of the logical sum 86 is broken, and the can water level reduction valve 31 is closed.

以上によりボイラ圧力変化率の上昇に伴ない先
行的にドラム水位設定値を下げ早く給水流量を絞
り、更に第2図A点に於てタービンバイパス弁2
5が開いて蒸気圧力変化率が急激に低下すると缶
水位低減弁31を開く、この2つの制御によりド
ラム水位の異常上昇を防止することができる。
As a result of the above, as the boiler pressure change rate increases, the drum water level set value is lowered and the water supply flow rate is quickly throttled, and furthermore, at point A in Figure 2, the turbine bypass valve 2 is
5 opens and the rate of change in steam pressure suddenly decreases, the can water level reduction valve 31 is opened. These two controls can prevent an abnormal rise in the drum water level.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は複合サイクルプラントの系統図、第2
図は蒸気圧力上昇特性、第3図は本発明によるド
ラム水位制御装置を示す図面である。 1……ガスタービン、11……排熱回収ボイ
ラ、17……ドラム、23……蒸気タービン装
置、31……缶水位低減弁、51……ドラム水位
検出器、52……蒸気流量計、53……給水流量
計、54……ドラム水位制御装置、56……蒸気
圧力検出器、57……缶水位低減弁制御装置、4
1……信号発生器、42……減算器、43……信
号発生器、44……掛け算器、45……比例・積
分コントローラ、46……加算器、47……減算
器、48……比例・積分コントローラ、49……
比較警報器、82……微分演算器、83……減算
器、84……信号発生器、86……論理和、13
……給水調整弁、31……缶水位低減弁。 〓〓〓
Figure 1 is a system diagram of a combined cycle plant, Figure 2
The figure shows steam pressure rise characteristics, and FIG. 3 is a diagram showing a drum water level control device according to the present invention. DESCRIPTION OF SYMBOLS 1...Gas turbine, 11...Exhaust heat recovery boiler, 17...Drum, 23...Steam turbine device, 31...Can water level reduction valve, 51...Drum water level detector, 52...Steam flow meter, 53 ... Water supply flow meter, 54 ... Drum water level control device, 56 ... Steam pressure detector, 57 ... Can water level reduction valve control device, 4
1... Signal generator, 42... Subtractor, 43... Signal generator, 44... Multiplier, 45... Proportional/integral controller, 46... Adder, 47... Subtractor, 48... Proportional・Integral controller, 49...
Comparison alarm, 82...Differentiator, 83...Subtractor, 84...Signal generator, 86...Order, 13
... Water supply adjustment valve, 31 ... Can water level reduction valve. 〓〓〓

Claims (1)

【特許請求の範囲】[Claims] 1 1台あるいは複数台のガスタービン装置と、
該ガスタービン装置の排ガスを熱源として蒸気を
発生する排熱回収ボイラ装置と、該排熱回収ボイ
ラで発生した蒸気により仕事を行なう蒸気タービ
ン装置とを含み、主蒸気圧力が上昇したとき発生
蒸気をバイパスするタービンバイパス弁を備えた
複合サイクルプラントにおいて、前記排熱回収ボ
イラのドラム水を逃す缶水低減弁を設け、かつド
ラム水位が規定値をこえ、かつ蒸気圧力信号の変
化率が設定値を越え、更に前記タービンバイパス
弁が開いた時に前記缶水位低減弁を開く第1の制
御系と、排熱回収ボイラから流出する蒸気流量、
流入給水量及びドラム水位にもとづいて給水流量
を制御するとともに蒸気圧力変化率が所定の値を
越えたとき該給水流量の制御におけるドラム水位
の設定値を該蒸気圧力変化率の大きさに見合つた
値だけ下げる第2の制御系とを設けたことを特徴
とするドラム水位制御装置。
1 one or more gas turbine devices,
It includes an exhaust heat recovery boiler device that generates steam using the exhaust gas of the gas turbine device as a heat source, and a steam turbine device that performs work using the steam generated by the exhaust heat recovery boiler. In a combined cycle plant equipped with a turbine bypass valve that bypasses, a can water reduction valve is provided to release drum water of the waste heat recovery boiler, and the drum water level exceeds a specified value and the rate of change of the steam pressure signal exceeds the set value. a first control system that opens the can water level reduction valve when the turbine bypass valve opens; and a steam flow rate flowing out from the heat recovery boiler.
The feed water flow rate is controlled based on the inflow feed water amount and the drum water level, and when the steam pressure change rate exceeds a predetermined value, the set value of the drum water level in controlling the feed water flow rate is adjusted to match the magnitude of the steam pressure change rate. A drum water level control device comprising: a second control system that lowers the water level by a certain amount;
JP2086279A 1979-02-26 1979-02-26 Drum water level controller Granted JPS55112911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2086279A JPS55112911A (en) 1979-02-26 1979-02-26 Drum water level controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2086279A JPS55112911A (en) 1979-02-26 1979-02-26 Drum water level controller

Publications (2)

Publication Number Publication Date
JPS55112911A JPS55112911A (en) 1980-09-01
JPS6135441B2 true JPS6135441B2 (en) 1986-08-13

Family

ID=12038934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2086279A Granted JPS55112911A (en) 1979-02-26 1979-02-26 Drum water level controller

Country Status (1)

Country Link
JP (1) JPS55112911A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154310U (en) * 1982-04-06 1983-10-15 バブコツク日立株式会社 Exhaust heat boiler drum water level control device
JPH0776604B2 (en) * 1984-06-15 1995-08-16 バブコツク日立株式会社 Drum level control device
US7053341B2 (en) * 2004-02-12 2006-05-30 General Electric Company Method and apparatus for drum level control for drum-type boilers

Also Published As

Publication number Publication date
JPS55112911A (en) 1980-09-01

Similar Documents

Publication Publication Date Title
JP5450642B2 (en) Operation method of exhaust heat recovery boiler
JPS6135441B2 (en)
JP3500710B2 (en) Fuel heating gas turbine plant
JPS6149487B2 (en)
JP2511400B2 (en) Steam temperature control method for once-through boiler
JPS6154123B2 (en)
JPS6211167B2 (en)
JPH06159603A (en) Control device for waste heat steam generator
JPH05296402A (en) Steam cycle control device
JPH0932508A (en) Combined cycle plant
JP2692978B2 (en) Start-up operation method of combined cycle plant
JPS5870007A (en) Apparatus for controlling combined cycle power plant
JPS58200012A (en) Drum water level control device
JPH0722563Y2 (en) Boiler equipment
JPS59138705A (en) Controller for temperature of supplied water
JPH0226122B2 (en)
JPS6242123B2 (en)
JPH08178205A (en) Controller of boiler
JPH0335562B2 (en)
JPS6211283Y2 (en)
JPS5812445B2 (en) Steam turbine control device
JPS6239657B2 (en)
JPS6235002B2 (en)
JPS5845566B2 (en) combined cycle power plant
JPS59110810A (en) Water level control device for steam turbine degasifier