JPH0387502A - Device for controlling feedwater for waste heat recovery boiler - Google Patents
Device for controlling feedwater for waste heat recovery boilerInfo
- Publication number
- JPH0387502A JPH0387502A JP22285689A JP22285689A JPH0387502A JP H0387502 A JPH0387502 A JP H0387502A JP 22285689 A JP22285689 A JP 22285689A JP 22285689 A JP22285689 A JP 22285689A JP H0387502 A JPH0387502 A JP H0387502A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- flow rate
- water supply
- regulating valve
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000011084 recovery Methods 0.000 title claims description 17
- 239000002918 waste heat Substances 0.000 title claims description 3
- 230000001105 regulatory effect Effects 0.000 claims abstract description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 91
- 239000007789 gas Substances 0.000 claims description 33
- 238000005260 corrosion Methods 0.000 claims description 7
- 230000007797 corrosion Effects 0.000 claims description 7
- 238000001514 detection method Methods 0.000 claims description 4
- 230000001276 controlling effect Effects 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 16
- 238000010248 power generation Methods 0.000 description 9
- 230000007423 decrease Effects 0.000 description 6
- 230000005611 electricity Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000003245 coal Substances 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
Landscapes
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、排熱回収ボイラの給水制御装置に係り、特に
ドラムへの給水を良好に行なうのに好適な給水制御装置
に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a water supply control device for an exhaust heat recovery boiler, and particularly to a water supply control device suitable for properly supplying water to a drum.
[従来の技術]
高効率発電の一環として、近年、複合発電プラントの建
設が進められている。この複合発電プラントは、ガスタ
ービンによって発電するとともに。[Background Art] In recent years, construction of combined power generation plants has been progressing as part of high-efficiency power generation. This combined power plant generates electricity using a gas turbine.
ガスタービンから排出された排ガスの保有熱を排熱回収
ボイラで回収し、その排熱回収ボイラで発生した蒸気に
より蒸気タービンを能動して発電させるシステムになっ
ている。The system uses an exhaust heat recovery boiler to recover the heat retained in the exhaust gas discharged from the gas turbine, and the steam generated by the exhaust heat recovery boiler activates a steam turbine to generate electricity.
この複合発電プラントは前述のような高効率発電に加え
、ガスタービンの特徴である急速起動の容易性、高い負
荷応答性などの特徴もあり、近年の電力需要形態に即し
た中間負荷運用に好適な発電プラントである。このよう
な排熱回収ボイラを図により説明する。In addition to the high-efficiency power generation mentioned above, this combined power generation plant also has features such as ease of rapid startup and high load response, which are characteristics of gas turbines, and is suitable for intermediate load operation in line with recent electricity demand patterns. It is a power generation plant. Such an exhaust heat recovery boiler will be explained with reference to the drawings.
第11図は、従来の複合発電プラントの概略系統図であ
る。第11図で、1はガスタービン、2はガスタービン
1により能動される発電機、3はガスタービン1の排ガ
スGを導入してその排熱を回収する排熱回収ボイラであ
る。FIG. 11 is a schematic diagram of a conventional combined cycle power plant. In FIG. 11, 1 is a gas turbine, 2 is a generator activated by the gas turbine 1, and 3 is an exhaust heat recovery boiler that introduces the exhaust gas G of the gas turbine 1 and recovers its exhaust heat.
排熱回収ボイラ3は、過熱器4.高圧蒸発器5゜高圧節
炭器6.低圧蒸発器7.低圧節炭器8.低圧ドラム9.
高圧ドラム10等で構成されている。The exhaust heat recovery boiler 3 includes a superheater 4. High pressure evaporator 5° High pressure economizer 6. Low pressure evaporator7. Low pressure energy saver8. Low pressure drum9.
It is composed of a high pressure drum 10 and the like.
12は過熱器4からの蒸気により能動される蒸気タービ
ンであり1発電機2に連結されている。13は蒸気ター
ビン12から排出される蒸気を復水する復水器、14は
復水器13の水Wを低圧節炭器8に給水する復水ポンプ
である。15は低圧節炭器8の出口の加熱された給水を
高圧節炭器6に導くとともに低圧節炭器8への給水に混
合する高圧給水ポンプ、16は温度調節弁、17は給水
調節弁、18は温度検出器、19は温度・流量制御器で
ある。12 is a steam turbine activated by steam from the superheater 4, and is connected to the generator 2. 13 is a condenser that condenses steam discharged from the steam turbine 12, and 14 is a condensate pump that supplies water W from the condenser 13 to the low-pressure economizer 8. 15 is a high-pressure water supply pump that guides the heated feed water at the outlet of the low-pressure economizer 8 to the high-pressure economizer 6 and mixes it with the water supplied to the low-pressure economizer 8; 16 is a temperature control valve; 17 is a water supply control valve; 18 is a temperature detector, and 19 is a temperature/flow rate controller.
[発明が解決しようとする課題]
上記複合発電プラントは良く知られているのでその動作
の説明は省略し、低圧節炭器8の出口の給水WRを高圧
給水ポンプ15を用いて低圧節炭器8の入口の給水Wに
混合する理由について説明する。[Problems to be Solved by the Invention] Since the above-mentioned combined power generation plant is well known, a description of its operation will be omitted. The reason why it is mixed with the water supply W at the inlet of No. 8 will be explained.
最近の複合発電プラントにおいては、設置1費の低減、
系統の簡素化等の理由から脱気器を省き。Recent combined cycle power plants have reduced installation costs,
The deaerator is omitted for reasons such as system simplification.
復水器13に脱気機能をもたせた復水器脱気方式が採用
されている。この復水器脱気方式の場合、排熱回収ボイ
ラ3の低圧節炭器8の入口の給水温度T11は約30℃
と低温であるので、そのままの給水温度(約30℃)の
給水を低圧節炭器8へ給水すると低圧節炭器8で低温腐
食が生じる。A condenser deaeration method is adopted in which the condenser 13 has a deaeration function. In the case of this condenser deaeration method, the feed water temperature T11 at the inlet of the low pressure economizer 8 of the waste heat recovery boiler 3 is approximately 30°C.
Since the temperature is low, low-temperature corrosion occurs in the low-pressure economizer 8 when water at the same water supply temperature (approximately 30° C.) is supplied to the low-pressure economizer 8.
この対策として1図示のように低圧節炭器8の出口の加
熱された給水WRが高圧給水ポンプ15を介してボイラ
給水W(低圧節炭器8の入口の給水)と混合して低温腐
食が生じない温度まで昇温させる手段が採用されている
。そして、その給水温度は定格運転時に低温腐食が生じ
ない温度である約60℃に設定され、この給水温度は温
度検出器18で検出された検出温度に基づいて温度・流
量制御器19で温度調節弁16を制御することにより一
定に保持されている。As a countermeasure against this problem, as shown in Figure 1, the heated feed water WR at the outlet of the low-pressure economizer 8 mixes with the boiler feed water W (the water at the inlet of the low-pressure economizer 8) via the high-pressure water pump 15, causing low-temperature corrosion. Measures have been taken to raise the temperature to a temperature at which this does not occur. The water supply temperature is set to approximately 60°C, which is the temperature at which low-temperature corrosion does not occur during rated operation, and the temperature of this water supply is adjusted by the temperature/flow rate controller 19 based on the temperature detected by the temperature detector 18. It is kept constant by controlling valve 16.
ところで、従来、上記給水温度は全負荷にわたって一定
値(約60℃)に設定されていたので、冬場復水器13
での海水温度の低下に伴い、ボイラ給水Wの温度が低い
場合には、低圧節炭器8人口の給水温度T、□を設定温
度(60℃)まで昇温させるため、過大な流量を再循環
(以下、再循環流量WRと略す)させる必要がある。By the way, in the past, the above-mentioned water supply temperature was set at a constant value (approximately 60°C) over the entire load, so the condenser 13
If the temperature of the boiler feed water W is low due to the decrease in seawater temperature at It is necessary to circulate (hereinafter abbreviated as recirculation flow rate WR).
従って、高圧給水ポンプ15の容量としては、冬場の再
循環流量WRと、そのときの高圧蒸発量(即ち、高圧節
炭器6への給水流量)を合わせた高圧給水ポンプ流量Q
に、負荷変動、ガスタービン排ガス変動等を考慮して通
常10〜20%の余裕をとり、容量を決定するため、大
容量の高圧給水ポンプ15を使用しなければならず、補
機動力の増加をまねき、プラント効率が低下するという
欠点が生じていた。Therefore, the capacity of the high-pressure water supply pump 15 is the high-pressure water pump flow rate Q, which is the sum of the winter recirculation flow rate WR and the high-pressure evaporation amount at that time (i.e., the water supply flow rate to the high-pressure economizer 6).
In order to determine the capacity with a margin of usually 10 to 20% in consideration of load fluctuations, gas turbine exhaust gas fluctuations, etc., it is necessary to use a large-capacity high-pressure water supply pump 15, which increases the auxiliary power. This resulted in the disadvantage that plant efficiency decreased.
本発明の目的は、上記従来技術の欠点を除き、小容量の
高圧給水ポンプで、冬場の負荷変動、ガスタービン排ガ
ス変動等においても、高圧ドラムへの給水を良好に行な
うことができる排熱回収ボイラの給水制御装置を提供す
るにある。An object of the present invention is to eliminate the drawbacks of the prior art described above, and to provide a small-capacity, high-pressure water supply pump that can efficiently supply water to a high-pressure drum even under winter load fluctuations, gas turbine exhaust gas fluctuations, etc. To provide boiler water supply control equipment.
[課題を解決するための手段]
前記目的を達成するため1本発明は、低圧節炭器と、高
圧節炭器と、前記低圧節炭器と高圧節炭器の間に設けら
れて低圧節炭器から高圧節炭器へ給水する高圧給水ポン
プと、その高圧給水ポンプの出口側を一部分岐して低圧
節炭器入口側に接続する再循環系統と、その再循環系統
の途中に設けられて、低圧節炭器の入口給水温度が低温
腐食を生じない温度になるように関度:uiする流量調
整弁とを備えた排熱回収ボイラの給水制御装置において
、前記高圧節炭器以降の高圧系統への給水流量制御に支
障を与えない程度に、前記流量調整弁により流量を絞り
込むように構成されていることを特徴とするものである
。[Means for Solving the Problems] In order to achieve the above object, the present invention provides a low-pressure economizer, a high-pressure economizer, and a low-pressure economizer installed between the low-pressure economizer and the high-pressure economizer. A high-pressure water pump that supplies water from the coal generator to the high-pressure economizer, a recirculation system that partially branches the outlet side of the high-pressure water pump and connects it to the inlet side of the low-pressure economizer, and a recirculation system that is installed in the middle of the recirculation system. In a water supply control device for an exhaust heat recovery boiler, which is equipped with a flow rate regulating valve that controls the inlet water temperature of the low-pressure economizer to a temperature that does not cause low-temperature corrosion, The present invention is characterized in that the flow rate adjustment valve is configured to restrict the flow rate to an extent that does not interfere with water supply flow rate control to the high-pressure system.
[実施例] 以下、本発明を図示の実施例に基づいて説明する。[Example] Hereinafter, the present invention will be explained based on illustrated embodiments.
第1図は、本発明の第1の実施例に係る複合発電プラン
トの概略系統図である。第1図において、第11図に示
す部分と同一部分には同一符号を付して説明は省略する
。20は給水調節弁17の差圧検出器であり、その差圧
検出信号26で温度検出器18の温度検出信号27に優
先して温度調節弁16を制御するものである。FIG. 1 is a schematic system diagram of a combined power generation plant according to a first embodiment of the present invention. In FIG. 1, parts that are the same as those shown in FIG. 11 are given the same reference numerals, and explanations thereof will be omitted. Reference numeral 20 denotes a differential pressure detector of the water supply regulating valve 17, and its differential pressure detection signal 26 controls the temperature regulating valve 16 in priority to the temperature detection signal 27 of the temperature detector 18.
ここで、低圧節炭器8の低温腐食について考える。低温
腐食は排ガス中の水分(Hld)が結露することによっ
て生じる。そして、その結露の露点温度は排ガス中のH
20分圧に依存する。第2図にH,0分圧と露点温度の
関係を示すが、第2図からも明らかなように、H,0分
圧が小さくなると露点温度も低くなる。Here, low-temperature corrosion of the low-pressure economizer 8 will be considered. Low-temperature corrosion occurs when moisture (Hld) in exhaust gas condenses. The dew point temperature of the condensation is H in the exhaust gas.
20 Depends on partial pressure. FIG. 2 shows the relationship between H,0 partial pressure and dew point temperature, and as is clear from FIG. 2, as H,0 partial pressure decreases, dew point temperature also decreases.
ところで、大気温度と排ガス中のH,0分圧の関係は第
3図に示すような関係にある。第3図より、大気温度と
露点温度の関係は第4図のようになる。従って、大気温
度が低いと、露点温度も低い、一方、低圧節炭器8人口
の給水温度は、制御の簡素化を図って、大気温度の高い
時の露点温度に余裕をとって、給水温度を設定(例えば
60℃)し、大気温度に係わらず一定としている。By the way, the relationship between the atmospheric temperature and the partial pressure of H,0 in the exhaust gas is as shown in FIG. From FIG. 3, the relationship between atmospheric temperature and dew point temperature is as shown in FIG. 4. Therefore, when the atmospheric temperature is low, the dew point temperature is also low.On the other hand, the water supply temperature of the low pressure energy saver 8 is set by simplifying the control and taking a margin for the dew point temperature when the atmospheric temperature is high. (for example, 60°C), and is kept constant regardless of the atmospheric temperature.
第5図(a)に大気温度とボイラ給水Wの温度の関係を
示すが、大気温度の低い時が給水温度も低いため、低圧
節炭器8人口の給水温度を設定値(60℃)まで昇温す
るための再循環流量は最も多くなる。さらに、第5図(
b)に示すように高圧ドラム10への給水流量も大気温
度が低い時が最も多くなる。従って、第6図に示すよう
に、高圧給水ポンプ15の高圧給水ポンプ流量Qは大気
温度が低いときが最大となる。従来は高圧給水ポンプ1
5の容量は大気温度が低いときの流量に、負荷変動、ガ
スタービン排ガス変動等を考慮して、10〜20%の余
裕をとって決定するが、本発明では余裕ゼロとして、ポ
ンプ容量を小さく決定するものである。この場合、負荷
変動、ガスタービン排ガス変動等によって、高圧ドラム
10への給水流量が増加して、高圧給水ポンプ15容量
をオーバーし、高圧給水ポンプ15の吐出圧力低下によ
り、給水調節弁17の差圧が低下し、高圧ドラム10へ
の給水制御に支障をきたす恐れがある。Figure 5 (a) shows the relationship between the atmospheric temperature and the temperature of the boiler feed water W. When the atmospheric temperature is low, the water supply temperature is also low. The recirculation flow rate for heating is the highest. Furthermore, Figure 5 (
As shown in b), the flow rate of water supplied to the high-pressure drum 10 is also highest when the atmospheric temperature is low. Therefore, as shown in FIG. 6, the high-pressure water supply pump flow rate Q of the high-pressure water supply pump 15 is maximum when the atmospheric temperature is low. Conventionally, high pressure water supply pump 1
The capacity of No. 5 is determined by taking 10 to 20% of the flow rate when the atmospheric temperature is low, taking into account load fluctuations, gas turbine exhaust gas fluctuations, etc., but in the present invention, the pump capacity is reduced by setting the margin to zero. It is up to you to decide. In this case, due to load fluctuations, gas turbine exhaust gas fluctuations, etc., the water supply flow rate to the high-pressure drum 10 increases, exceeding the capacity of the high-pressure water supply pump 15, and the discharge pressure of the high-pressure water pump 15 decreases, causing the difference in the water supply control valve 17. There is a possibility that the pressure will decrease and the control of water supply to the high-pressure drum 10 will be hindered.
それに対して本発明では、差圧検出器20により給水調
節弁17の差圧を検出し、設定差圧より小さくなった場
合に、温度調節弁16により再循環流量を絞り、高圧給
水ポンプ15の流量を低減し、吐出圧力を高くして、給
水調節弁17の差圧を確保し、良好な給水制御を行なう
ものである。In contrast, in the present invention, the differential pressure across the water supply control valve 17 is detected by the differential pressure detector 20, and when the differential pressure becomes smaller than the set differential pressure, the recirculation flow rate is throttled by the temperature control valve 16, and the high-pressure water supply pump 15 is activated. The flow rate is reduced and the discharge pressure is increased to ensure a differential pressure across the water supply control valve 17, thereby achieving good water supply control.
この場合、再循環流量WRの絞る割合としては、20〜
40%であるが、これによって、低圧節炭器8人口の給
水温度は第4図に示すように60℃から55〜50℃に
低下する程度であり、露点温度(40℃)に対し十分余
裕あり問題は無い。In this case, the rate of reduction of the recirculation flow rate WR is 20~
40%, but as a result, the water supply temperature for the eight low-pressure economizers is reduced from 60℃ to 55-50℃ as shown in Figure 4, which is a sufficient margin for the dew point temperature (40℃). There is no problem.
ここで、温度調節弁16の具体的制御方法を説明すると
第12図のようになる。第12図中、制御信号Aとして
、給水調節弁17の差圧を用いるものである。Here, a specific method of controlling the temperature control valve 16 will be explained as shown in FIG. 12. In FIG. 12, the differential pressure of the water supply control valve 17 is used as the control signal A.
即ち、給水調節弁17の差圧が設定値より大きい場合に
は、低圧節炭器入口給水温度発信器33からの信号は6
となる。このとき6としては1例えば、高圧給水ポンプ
15の仕様点を超えない再循環量として60 T/H程
度にしておく、そして、給水調節弁17の差圧が設定値
より小さくなったら低圧節炭器入口給水温度発信器33
からの信号はaとなる。aとしては約40T/H程度と
しておき、再循環量を60T/Hから40T/Hまで絞
り込み、給水調節弁17の差圧を確保するものである。That is, when the differential pressure of the feed water control valve 17 is larger than the set value, the signal from the low pressure economizer inlet feed water temperature transmitter 33 is 6.
becomes. At this time, 6 is 1. For example, set the recirculation amount to about 60 T/H as the recirculation amount that does not exceed the specification point of the high pressure water supply pump 15, and when the differential pressure of the water supply control valve 17 becomes smaller than the set value, the low pressure saving Inlet water supply temperature transmitter 33
The signal from is a. A is set to about 40 T/H, and the recirculation amount is narrowed down from 60 T/H to 40 T/H to ensure the differential pressure of the water supply control valve 17.
なお、図中において28は比例積分回路、29は高信号
制限器、30は減算器、3工は切替リレー、32は信号
発生器、33は発信器、34は制御信号、35は温度設
定器である。In the figure, 28 is a proportional-integral circuit, 29 is a high signal limiter, 30 is a subtracter, 3 is a switching relay, 32 is a signal generator, 33 is an oscillator, 34 is a control signal, and 35 is a temperature setting device. It is.
第7図は、本発明の第2の実施例に係る温度調節弁16
の制御装置に関するものである。第7図は、前記実施例
の給水調節弁17の差圧検出器20の代わりに、給水!
li節弁17の開度を検出する開度検出器21を設置し
たものである。そして、第12図の制御信号34として
給水調節弁17の開度としたものである。即ち、高圧ド
ラム10への給水流量が増加し、給水調節弁170開度
が設定開度より大きくなった場合に、温度検出器上8の
信号に優先して温度調節弁16を制御して、再循環流量
WRを絞るようにしたものである。FIG. 7 shows a temperature control valve 16 according to a second embodiment of the present invention.
The present invention relates to a control device. FIG. 7 shows a water supply system in place of the differential pressure detector 20 of the water supply control valve 17 of the above embodiment.
An opening degree detector 21 for detecting the opening degree of the Li moderation valve 17 is installed. The control signal 34 in FIG. 12 is the opening degree of the water supply control valve 17. That is, when the water supply flow rate to the high-pressure drum 10 increases and the opening degree of the water supply regulating valve 170 becomes larger than the set opening degree, the temperature regulating valve 16 is controlled with priority over the signal from the temperature sensor upper 8, This is to restrict the recirculation flow rate WR.
第8図は、本発明の第3の実施例に係る温度調節弁16
の制御装置に関するものである。第8図は、ガスタービ
ン1の運転状態、即ち負荷、燃料量、排ガス温度、排ガ
ス量のいずれか、もしくはその組合せの信号を検知する
ガスタービン運転状態検出器22によって、温度調節弁
16を制御して、再循環流量WRを絞るようにしたもの
であり、第12図の制御信号34として、ガスタービン
運転状態検出器22の信号としたものである。FIG. 8 shows a temperature control valve 16 according to a third embodiment of the present invention.
The present invention relates to a control device. FIG. 8 shows that the temperature control valve 16 is controlled by a gas turbine operating state detector 22 that detects a signal of the operating state of the gas turbine 1, that is, load, fuel amount, exhaust gas temperature, exhaust gas amount, or a combination thereof. Thus, the recirculation flow rate WR is throttled, and the control signal 34 in FIG. 12 is the signal from the gas turbine operating state detector 22.
第9図は、本発明の第4の実施例に係る温度調節弁16
の制御装置に関するものである。第9図は、蒸気タービ
ン12の運転状態、即ち負荷、加減弁開度、タービンバ
イパス弁開度のいずれかもしくは、その組合せの信号を
検知する蒸気タービン運転状態検出器23によって、温
度検出器18の信号に優先して温度調節弁16を制御し
て、再循環流量WRを絞るようにしたものであり、第1
2図の制御信号34として、蒸気タービン運転状態検出
器23の信号としたものである。FIG. 9 shows a temperature control valve 16 according to a fourth embodiment of the present invention.
The present invention relates to a control device. FIG. 9 shows that the temperature detector 18 is detected by the steam turbine operating state detector 23 which detects the operating state of the steam turbine 12, that is, the load, the opening of the control valve, the opening of the turbine bypass valve, or a combination thereof. The temperature control valve 16 is controlled with priority over the first signal to reduce the recirculation flow rate WR.
The control signal 34 in FIG. 2 is a signal from the steam turbine operating state detector 23.
第10図は、本発明の第5の実施例に係る温度調節弁1
6の制御装置に関するものである。第10図は、高圧給
水ポンプ15の流量を検知する流量検出器24によって
、流量が設定流量を超える場合に、流量制御器25の信
号が温度流量制御!l器19の信号に優先して温度調節
弁16を制御して、再循環流量WRを絞るようにしたも
のであり、第12図の制御信号34として、高圧給水ポ
ンプ15の流量検出器24の信号としたものである。FIG. 10 shows a temperature control valve 1 according to a fifth embodiment of the present invention.
This relates to the control device No. 6. FIG. 10 shows that when the flow rate exceeds the set flow rate by the flow rate detector 24 that detects the flow rate of the high-pressure water supply pump 15, the signal from the flow rate controller 25 controls the temperature and flow rate. The temperature control valve 16 is controlled with priority over the signal from the water supply pump 19 to reduce the recirculation flow rate WR, and the control signal 34 in FIG. It was used as a signal.
[発明の効果]
以上述べたように、本発明によれば、冬場の最大給水流
量時の負荷変動、ガスタービン排ガス変動等においても
、小容量の高圧給水ポンプで、良好な高圧ドラム給水制
御が可能となり、ひいては補機動力の増加を抑制し、プ
ラント効率の低下を防止することができる。[Effects of the Invention] As described above, according to the present invention, a small-capacity high-pressure water supply pump can perform good high-pressure drum water supply control even under load fluctuations during the maximum water supply flow rate in winter, gas turbine exhaust gas fluctuations, etc. This makes it possible to suppress an increase in auxiliary machine power and prevent a decrease in plant efficiency.
補機動力の年間の低減効果を試算すると下記の通りとな
る。A trial calculation of the annual reduction effect on auxiliary machine power is as follows.
従来の高圧給水ポンプ動カニ54OKW本発明の場合の
高圧給水ポンプ動カニ 470KV利用率60%9発電
単価10円/KW)Iとすると、(540−470)K
V X 24hr X 365日X O,6X 10円
/)IH= 367.9万円/年の節約となる。Conventional high-pressure water supply pump movable crab 54OKW High-pressure water feed pump movable crab in case of the present invention 470KV Utilization rate 60%9 Power generation unit cost 10 yen/KW)I, (540-470)K
V x 24hr x 365 days x O, 6 x 10 yen/) IH = Savings of 3.679 million yen/year.
第1図は、本発明の第1の実施例に係る複合発電プラン
トの系統図、第2図は、H20分圧と露点温度の関係を
示す特性図、第3図は、大気温度とガスタービン排ガス
中のH,0分圧の関係を示す特性図、第4図は、大気温
度と露点温度の関係を示す特性図、第5図(a)は、大
気温度とボイラ給水Wの温度の関係を示す特性図、同図
(b)は大気温度と高圧ドラムへの給水量の関係を示す
特性図、第6図は、大気温度と高圧給水ポンプ流量の関
係を示す特性図、第7図は、本発明の第2の実施例に係
る複合発電プラントの系統図、第8図は、本発明の第3
の実施例に係る複合発電プラントの系統図、第9図は、
本発明の第4の実施例に係る複合発電プラントの系統図
、第10図は、本発明の第5の実施例に係る複合発電プ
ラントの系統図、第11図は、従来の複合発電プラント
の系統図、第12図(a) 、 (b)は、本発明の温
度調節弁の制御系統図を示したものである。
1・・・・・・ガスタービン、2・・・・・・排熱回収
ボイラ。
6・・・・・・高圧節炭器、8・・・・・・低圧節炭器
、10・・・・・・高圧ドラム、12・・・・・・蒸気
タービン、15・・・・・・高圧給水ポンプ、16・・
・・・・温度調節弁、18・・・・・・温度検出器、1
9・・・・・・温度、流量制御器、2o・・・・・・差
圧検出器、21・・・・・・開度検出器、22・・・・
・・ガスタービン運転状態検出器、23・・・・・・蒸
気タービン運転状態検出器、24・・団・流量検出器、
WR・・・・・・再循環流量。
第
2図
范
3図
第4図
第9図
第
12図
(a)Fig. 1 is a system diagram of a combined cycle power plant according to the first embodiment of the present invention, Fig. 2 is a characteristic diagram showing the relationship between H20 partial pressure and dew point temperature, and Fig. 3 is a diagram showing the relationship between atmospheric temperature and gas turbine A characteristic diagram showing the relationship between H,0 partial pressure in exhaust gas, Figure 4 is a characteristic diagram showing the relationship between atmospheric temperature and dew point temperature, and Figure 5 (a) is a characteristic diagram showing the relationship between atmospheric temperature and boiler feed water temperature. Figure 6 is a characteristic diagram showing the relationship between atmospheric temperature and the amount of water supplied to the high-pressure drum. Figure 6 is a characteristic diagram showing the relationship between atmospheric temperature and high-pressure water pump flow rate. , a system diagram of a combined power plant according to the second embodiment of the present invention, FIG.
The system diagram of the combined power generation plant according to the example of FIG. 9 is as follows.
FIG. 10 is a system diagram of a combined cycle plant according to the fourth embodiment of the present invention, and FIG. 11 is a system diagram of a conventional combined cycle plant according to the fifth embodiment of the present invention. System diagrams FIGS. 12(a) and 12(b) show control system diagrams of the temperature control valve of the present invention. 1...Gas turbine, 2...Exhaust heat recovery boiler. 6...High pressure economizer, 8...Low pressure economizer, 10...High pressure drum, 12...Steam turbine, 15...・High pressure water pump, 16...
... Temperature control valve, 18 ... Temperature detector, 1
9...Temperature, flow rate controller, 2o...Differential pressure detector, 21...Opening degree detector, 22...
... Gas turbine operating state detector, 23... Steam turbine operating state detector, 24... Group flow rate detector,
WR...Recirculation flow rate. Figure 2 Figure 3 Figure 4 Figure 9 Figure 12 (a)
Claims (6)
高圧節炭器の間に設けられて低圧節炭器から高圧節炭器
へ給水する高圧給水ポンプと、その高圧給水ポンプの出
口側を一部分岐して低圧節炭器入口側へ接続する再循環
系統と、その再循環系統の途中に設けられて、低圧節炭
器の入口給水温度が低温腐食を生じない温度になるよう
に開度調整する流量調整弁とを備えた排熱回収ボイラの
給水制御装置において、 前記高圧節炭器以降の高圧系統への給水流量制御に支障
を与えない程度に、前記流量調整弁により流量を絞り込
むように構成されていることを特徴とする排熱回収ボイ
ラの給水制御装置。(1) A low-pressure economizer, a high-pressure economizer, a high-pressure water supply pump that is installed between the low-pressure economizer and the high-pressure economizer and supplies water from the low-pressure economizer to the high-pressure economizer, and its high-pressure A recirculation system that partially branches the outlet side of the water pump and connects it to the inlet side of the low-pressure economizer, and a recirculation system that is installed in the middle of the recirculation system to ensure that the inlet water temperature of the low-pressure economizer does not cause low-temperature corrosion. In a water supply control device for an exhaust heat recovery boiler, the flow rate adjustment valve is provided with a flow rate adjustment valve that adjusts the opening so that A water supply control device for an exhaust heat recovery boiler, characterized by being configured to restrict the flow rate using a valve.
圧ドラムとの間に給水調節弁と、その給水調節弁の差圧
を検出する差圧検出器が設けられ、その差圧検出器によ
つて検出された実測差圧が予め設定されている設定差圧
より小さくなると、前記流量調整弁により再循環流量を
絞り込むように構成されていることを特徴とする排熱回
収ボイラの給水制御装置。(2) In claim (1), a water supply regulating valve and a differential pressure detector for detecting a differential pressure of the water supply regulating valve are provided between the high pressure economizer and the high pressure drum, and the differential pressure is detected. The water supply for a waste heat recovery boiler is characterized in that the flow rate regulating valve is configured to throttle the recirculation flow rate when the actual differential pressure detected by the device becomes smaller than a preset set differential pressure. Control device.
圧ドラムとの間に給水調整弁と、その給水調整弁の開度
を検出する開度検出器が設けられ、その開度検出器によ
つて検出された給水調整弁の実測開度が予め設定されて
いる設定開度より大きくなると、前記流量調整弁により
再循環流量を絞り込むように構成されていることを特徴
とする排熱回収ボイラの給水制御装置。(3) In claim (1), a water supply regulating valve and an opening degree detector for detecting the opening degree of the water supply regulating valve are provided between the high-pressure energy saver and the high-pressure drum, and detecting the opening degree. When the actual opening degree of the water supply regulating valve detected by the device is larger than the preset opening degree, the flow rate regulating valve is configured to throttle the recirculation flow rate. Recovery boiler water supply control device.
高圧系統側にガスタービンと、そのガスタービンの運転
状態を検出するガスタービン運転状態検出器が設けられ
、この検出器からの検出信号に基づいて前記流量調整弁
により再循環流量を絞り込むように構成されていること
を特徴とする排熱回収ボイラの給水制御装置。(4) In claim (1), a gas turbine and a gas turbine operating state detector for detecting the operating state of the gas turbine are provided on the high-pressure system side of the high-pressure energy saver, and the detection from this detector is provided. A water supply control device for an exhaust heat recovery boiler, characterized in that the flow rate regulating valve is configured to throttle the recirculation flow rate based on a signal.
高圧系統側に蒸気タービンと、その蒸気タービンの運転
状態を検出する蒸気タービン運転状態検出器が設けられ
、この検出器からの検出信号に基づいて前記流量調整弁
により再循環流量を絞り込むように構成されていること
を特徴とする排熱回収ボイラの給水制御装置。(5) In claim (1), a steam turbine and a steam turbine operating state detector for detecting the operating state of the steam turbine are provided on the high-pressure system side of the high-pressure economizer, and the detection from this detector is provided. A water supply control device for an exhaust heat recovery boiler, characterized in that the flow rate regulating valve is configured to throttle the recirculation flow rate based on a signal.
に流量検出器を設け、その流量検出器によつて検出され
た高圧給水ポンプの実測流量が予め設定されている設定
流量を超えると、前記流量調整弁により再循環流量を絞
り込むように構成されていることを特徴とする排熱回収
ボイラの給水制御装置。(6) In claim (1), when the high-pressure water supply pump is provided with a flow rate detector, and the measured flow rate of the high-pressure water supply pump detected by the flow rate detector exceeds a preset set flow rate, A water supply control device for an exhaust heat recovery boiler, characterized in that the flow rate adjustment valve is configured to throttle the recirculation flow rate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22285689A JP2839195B2 (en) | 1989-08-31 | 1989-08-31 | Waste heat recovery boiler water supply control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22285689A JP2839195B2 (en) | 1989-08-31 | 1989-08-31 | Waste heat recovery boiler water supply control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0387502A true JPH0387502A (en) | 1991-04-12 |
JP2839195B2 JP2839195B2 (en) | 1998-12-16 |
Family
ID=16788969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22285689A Expired - Fee Related JP2839195B2 (en) | 1989-08-31 | 1989-08-31 | Waste heat recovery boiler water supply control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2839195B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010038488A (en) * | 2008-08-07 | 2010-02-18 | Babcock Hitachi Kk | Once-through exhaust heat recovery boiler and its control method |
CN106461206A (en) * | 2014-04-28 | 2017-02-22 | 通用电器技术有限公司 | System and method for fluid medium preheating |
-
1989
- 1989-08-31 JP JP22285689A patent/JP2839195B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010038488A (en) * | 2008-08-07 | 2010-02-18 | Babcock Hitachi Kk | Once-through exhaust heat recovery boiler and its control method |
CN106461206A (en) * | 2014-04-28 | 2017-02-22 | 通用电器技术有限公司 | System and method for fluid medium preheating |
JP2017514097A (en) * | 2014-04-28 | 2017-06-01 | ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH | Fluid medium preheating system |
Also Published As
Publication number | Publication date |
---|---|
JP2839195B2 (en) | 1998-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1218701A (en) | Deaerator pressure control system for a combined cycle steam generator power plant | |
JP2001108201A (en) | Multiple pressure waste heat boiler | |
JPH0387502A (en) | Device for controlling feedwater for waste heat recovery boiler | |
JPH112105A (en) | Combined cycle power generation plant | |
JP2578328B2 (en) | Output control method for back pressure turbine generator | |
JP2918743B2 (en) | Steam cycle controller | |
JP3285946B2 (en) | Steam temperature controller for variable-pressure once-through boiler | |
JPS61118508A (en) | Control device for recirculating flow of feed pump | |
JPS61213401A (en) | Waste-heat recovery boiler | |
JPH11148603A (en) | Controller for coal/residual oil gassifying combined power generation plant | |
JPH03241204A (en) | Coal saving device recirculation control apparatus | |
JP2971629B2 (en) | Waste heat recovery boiler | |
JP4017712B2 (en) | Method and apparatus for controlling temperature of feed water in exhaust heat recovery boiler | |
JPS6152361B2 (en) | ||
JPH01308A (en) | How to operate a combined cycle power plant | |
JPS613992A (en) | Method and device for regulating condensed water temperature | |
JPS6326801B2 (en) | ||
JPH0454204A (en) | Control device for gas-extraction and condensation type turbine | |
JPS59110810A (en) | Water level control device for steam turbine degasifier | |
JPS6211283Y2 (en) | ||
JPS62162808A (en) | Fuel-economizer steaming preventive device for thermal powerboiler system | |
JP2927860B2 (en) | Feed water heater for reactor | |
JPH04191405A (en) | Water supply control device for repowering system | |
JPH04103902A (en) | Method and device for controlling feedwater to boiler | |
JPH04278101A (en) | Exhaust heat recovery boiler |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |