JP4017712B2 - Method and apparatus for controlling temperature of feed water in exhaust heat recovery boiler - Google Patents

Method and apparatus for controlling temperature of feed water in exhaust heat recovery boiler Download PDF

Info

Publication number
JP4017712B2
JP4017712B2 JP24554897A JP24554897A JP4017712B2 JP 4017712 B2 JP4017712 B2 JP 4017712B2 JP 24554897 A JP24554897 A JP 24554897A JP 24554897 A JP24554897 A JP 24554897A JP 4017712 B2 JP4017712 B2 JP 4017712B2
Authority
JP
Japan
Prior art keywords
low
temperature
pressure economizer
inlet
feed water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24554897A
Other languages
Japanese (ja)
Other versions
JPH1182913A (en
Inventor
利則 重中
巖 日下
嘉悦 磯田
弘師 吉崎
耕一 豊嶋
淳夫 河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP24554897A priority Critical patent/JP4017712B2/en
Publication of JPH1182913A publication Critical patent/JPH1182913A/en
Application granted granted Critical
Publication of JP4017712B2 publication Critical patent/JP4017712B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複合発電プラントにおける排熱回収ボイラの給水温度制御方法と装置に関する。
【0002】
【従来の技術】
高効率発電および中間負荷運用に最適なプラントとして、複合発電プラントがある。このプラントは、ガスタービンにより発電を行うとともに、このガスタービンから排出される排ガスの熱を回収する排熱回収ボイラを備え、排熱回収ボイラにおいて発生した蒸気で蒸気タービンを駆動して発電するものである。このような排熱回収ボイラを図面により説明する。
【0003】
図7は従来の複合発電プラントの系統図である。ガスタービン1により発電機2を駆動し、またガスタービン(GT)1の排ガスGは排熱回収ボイラ(HRSG)3に導入されて、その熱は回収される。排熱回収ボイラ3のガス流路内には高温側から低温側に順次、過熱器4、高圧蒸発器5、高圧節炭器6、低圧蒸発器7及び低圧節炭器8が配置され、また、ガス流路外には低圧ドラム9、高圧ドラム10等が配置されている。そして排熱回収ボイラ3への給水は最終的に過熱器4から蒸気として排出され、発電機2に連結されている蒸気タービン12の駆動に利用される。
【0004】
蒸気タービン12で利用された蒸気は復水器13で復水され、復水器13の水は復水ポンプ14により給水流路19から低圧節炭器8に給水される。低圧節炭器8の出口の加熱された給水は高圧給水ポンプ15により高圧節炭器6に導かれると共に循環給水流路20を通って低圧節炭器8への給水Wに混合される。低圧節炭器8の入口の給水温度TS1は温度検出器17で検出され、温度・流量制御器18により給水流路19に設けられた給水流量検出器21での給水流量に基づき低圧節炭器8の出口の加熱された給水の低圧節炭器8への循環給水流路20に設けられる流量調整弁16の開度を調整する。
【0005】
上記構成からなる複合発電プラントの低圧節炭器8の出口の給水をその入口の給水に混合する理由について説明する。
最近の複合発電プラントにおいては、設備費の低減、系統の簡素化等の理由から脱気器の設置を省略し、復水器13に脱気機能を持たせた復水器脱気方法が採用されている。この方式の場合、ボイラ3の低圧節炭器8の入口の給水温度TS1は約30℃と低温であるので、そのままの温度で低圧節炭器8へ給水されると低圧節炭器8で低温腐食が生じる。この対策として、図示のように低圧節炭器8の出口の加熱された給水を高圧給水ポンプ15を介してボイラ給水W(低圧節炭器8の入口の給水)と混合して低温腐食が生じない温度まで昇温させる手段が採用されている。そして、その温度は定格運転時に低温腐食が生じない温度である約50℃に設定され、この温度は温度検出器17で検出された温度と循環給水流路20との合流部上流側の給水流路19に設けられた給水流量検出器21での給水流量に基づき温度・流量制御器18により流量調整弁16を制御することにより一定に保持されている。
【0006】
【発明が解決しようとする課題】
従来、上記ボイラ給水W(低圧節炭器8の入口の給水)を昇温させる低温腐食防止温度は起動時から所定の負荷、例えば最低負荷である20〜30%になるまでの間、一定値(約50℃)に設定されている。
【0007】
ところが、ボイラ起動時には排熱回収ボイラに導入される排ガス温度が低いために低圧節炭器8での熱回収量が少なく、低圧節炭器8出口の給水温度TS2が低く、該温度が約50℃以下の場合には、低圧節炭器8入口の給水温度TS1を設定温度(約50℃)まで昇温させることは不可能であり、起動時に低圧節炭器8で排ガス中の水蒸気が結露することは避けられず(水蒸気からの結露所要時間はボイラ起動時から約1時間である)、この結露水は低圧節炭器8入口の給水温度TS1が約50℃に上昇した後も、蒸発完了するまでには長時間(約3時間以上)を要することから、起動と停止を繰り返す運用の多い排熱回収ボイラでは低圧節炭器8の伝熱管が低温腐食するという欠点が生じていた。
【0008】
本発明の課題は、上記従来技術の欠点を除き、ボイラ起動時において低圧節炭器での結露水を短時間で蒸発させることにより低圧節炭器の低温腐食を減少させることができる排熱回収ボイラの給水温度制御方法と装置を提供することにある。
【0009】
【課題を解決するための手段】
本発明は、上記課題を解決するために次のような構成を採用した。
すなわち、請求項1記載の発明は、ガスタービン(1)からの排ガスが導入されるガス流路(3)内に設けた低圧節炭器(8)の入口に蒸気タービン(12)で利用された蒸気を復水器(13)で復水した後に給水として供給し、前記排ガスからの熱回収により前記低圧節炭器(8)で加熱された給水の一部を低圧節炭器(8)の出口から循環給水流路(20)を経由して低圧節炭器(8)の入口にのみ再循環させて、低圧節炭器(8)の入口給水と混合させることにより低圧節炭器(8)の入口給水温度を制御する排熱回収ボイラの給水温度制御方法であって、前記低圧節炭器(8)の入口給水温度の制御温度を低圧節炭器(8)の低温腐食防止温度および結露水を蒸発させるのに十分な温度である所定の高温側と低圧節炭器(8)の低温腐食防止温度である所定の低温側に設定し、ガスタービン(1)を起動した後のボイラ起動初期に、ボイラ負荷信号、ボイラ負荷信号と相関関係のある物理量または低圧節炭器(8)の入口の給水量が所定値になるまで、前記低圧節炭器(8)の入口へ再循環させる給水の流量を増加させることにより低圧節炭器(8)の入口の給水の所定温度を前記高温側温度に制御して低圧節炭器(8)の結露水を蒸発させ、その後、ボイラ負荷信号、ボイラ負荷信号と相関関係のある物理量または低圧節炭器(8)の入口の給水量が所定値になると、低圧節炭器(8)の入口へ再循環させる給水の流量を減少させて低圧節炭器(8)の入口の給水の所定温度を前記低温側温度に制御する排熱回収ボイラの給水温度制御方法である。
【0010】
請求項2記載の発明は、 ガスタービン(1)からの排ガスが導入されるガス流路(3)内に設けた低圧節炭器(8)の入口に蒸気タービン(12)で利用された蒸気を復水器(13)で復水した後に給水として供給する給水系統(19)と、前記排ガスからの熱回収により前記低圧節炭器(8)で加熱された給水の一部を低圧節炭器(8)の出口から低圧節炭器(8)の入口にのみ再循環させる循環給水系統(20)と、該再循環水系統(20)への再循環水流量を調整する再循環流量調整手段(16)とを備えた排熱回収ボイラであって
低圧節炭器(8)の入口の給水温度検出手段(17)と、低圧節炭器(8)の入口の給水流量検出手段(21)と、ボイラ負荷値またはボイラ負荷値と相関関係のある物理量の検出手段と、前記低圧節炭器(8)の入口給水温度の制御温度を低圧節炭器(8)の低温腐食防止温度および結露水を蒸発させるのに十分な温度である所定の高温側と低圧節炭器(8)の低温腐食防止温度である所定の低温側に設定し、ガスタービン(1)を起動した後のボイラ起動初期に、前記ボイラ負荷値またはボイラ負荷値と相関関係のある物理量の検出手段または低圧節炭器(8)の入口の給水流量検出手段(21)の検出値が所定値になるまで、再循環流量調整手段(16)により前記低圧節炭器(8)の入口へ再循環させる給水の流量を増加させることにより、低圧節炭器(8)の入口の給水の所定温度を前記高温側温度に制御して低圧節炭器(8)の結露水を蒸発させ、その後、ボイラ負荷信号、ボイラ負荷信号と相関関係のある物理量または低圧節炭器(8)の入口の給水量が所定値になると、低圧節炭器(8)の入口へ再循環させる給水の流量を減少させて低圧節炭器(8)の入口の給水の所定温度を前記低温側温度に制御する再循環流量制御装置(18)とを備えた排熱回収ボイラの給水温度制御装置である。
【0013】
発明は脱気器の設置を省略していない方式の排熱回収ボイラにも適用できる。
【0014】
【発明の実施の形態】
本発明を以下の実施の形態に基づいて説明する。
本発明が適用される複合発電プラントの系統図は図7に示すものと同一であるが、温度・流量制御器18の構成は従来技術のそれとは異なり、図1に本発明の温度・流量制御器18の構成を従来技術のそれと共に示す。
【0015】
従来技術における温度・流量制御器18の構成は、高圧給水ポンプ15の起動と共に低圧節炭器8の入口給水温度が50℃になるように流量調整弁16の開度を制御する構成であったが、本発明では負荷の大きさにより低圧節炭器8の入口給水温度を比較的高温側の温度と比較的低温側の温度の2種類に設定するものである。
【0016】
図1〜図4に示す例では、比較的高温側の給水温度を80℃とし、比較的低温側の温度を50℃に設定している。前記高温側の給水温度を80℃に設定した理由は図3に示すように、80℃以上であれば、低圧節炭器8の伝熱管への排ガス中の水分の結露水の蒸発完了時間の差異が小さいためであり、また90〜100℃に設定すると、それだけ低圧節炭器8入口への循環給水流路20からの再循環流量が増加し、高圧給水ポンプ15の容量をオーバーするか、容量の大きい高圧給水ポンプ15を用いる必要がある。 また、低圧節炭器8入口給水温度を80℃に設定することで、一旦、結露した水分の気化熱も十分供給できる。
【0017】
また、低圧節炭器8の入口給水温度を50℃に設定した理由はガスタービン1の負荷が100%負荷であっても排ガス中の水分の露点温度が約45℃であるので、露点温度以上の50℃に設定することで節炭器8の低温腐食が生じないためである。
【0018】
ボイラ3の起動時、すなわちガスタービン(GT)1の起動時の以降の低圧節炭器8出口給水温度と入口給水温度の時間変化特性をそれぞれそ図2(a)と図2(b)に示す。また、図2(c)にはボイラ負荷とガスタービン回転数とボイラに導入されるガス量及びボイラ出口ガス温度の時間変化を示す。
【0019】
ボイラ起動初期においては、排ガス温度が低いので、節炭器8での熱回収量が少なく、低圧節炭器8出口の給水温度は50℃以下の温度となっており、当然のことながら、低圧節炭器8入口の給水温度も50℃以下である。従って、この場合は図2に示す露点温度以下となっていることから、低圧節炭器8で排ガス中の水分が結露することになる。従来は、低圧節炭器8出口給水温度が上昇するに伴って低圧節炭器8入口への再循環流量を流量調整弁16により調整しながら、低圧節炭器8入口給水温度を50℃に制御していた。
【0020】
なお、図2(b)において、ボイラ負荷を上げて行くと露点温度も上昇しているが、これはボイラ負荷を上げて行くことによりガスタービンの燃料燃焼量が増加し、燃料燃焼量が増加すると排ガス中の水分量も増加し、その露点温度も上昇するためである。
【0021】
また、図2によると、従来技術では低圧節炭器8出口給水温度が150℃になってしばらく経過した後に、始めて結露した水分が蒸発完了することになっているが、これは、この間に温度の低い節炭器8の給水入口部付近の局所的な部分に存在する結露水が蒸発するためである。
【0022】
図3は給水温度と結露水の蒸発完了時間の関係を示すが、従来技術のように給水温度を50℃に設定したままだと、起動時に生成した結露水が蒸発完了するまで約3時間を要することが分かるが、本発明のようにボイラ起動時から低圧節炭器8入口の給水温度を一旦80℃まで上昇させておくと、80℃における結露水の蒸発完了時間は0.15時間で良いことがわかる。
【0023】
本発明の一実施の形態では図2に示すように、ボイラ起動時から流量調整弁16の開度調整により低圧節炭器8への給水の再循環流量を増加させることによって、低圧節炭器8入口の給水温度を一旦80℃まで上昇させ、80℃における結露水の蒸発完了のために、この温度を0.15時間以上維持し、その後、低圧節炭器8入口の給水温度を所定の50℃に維持する制御に戻すものである。
【0024】
ここで、低圧節炭器8入口の給水温度が80℃になる時のボイラ負荷(ガスタービン1の負荷信号による)の値はβに対応するので、ボイラ起動時から流量調整弁16の開度調整により低圧節炭器8への給水の再循環流量を増加させて、ボイラ負荷βに達してから0.15時間以上にわたり前記給水の再循環流量を維持することで、前記結露水の蒸発を完了させることもできる。
また、ボイラ負荷βの代わりに、低圧節炭器8入口へ給水量Wまたはボイラ負荷βと相関関係のある高圧または低圧の蒸気流量または高圧主蒸気温度を用いることも可能である。
【0025】
本発明と従来技術を結露水の生成とその蒸発完了までの節炭器8の湿潤時間(結露時間+その蒸発完了時間)で比較すると、本発明の場合は湿潤時間は結露時間1時間とその蒸発完了時間0.15時間の合計1.15時間であるのに対して従来技術の場合は湿潤時間は結露時間1時間とその蒸発完了時間3時間の合計4時間である。
【0026】
したがって、本発明は従来技術に比べて約30%の湿潤時間の短縮になり、これにより低温腐食に対する低圧節炭器8の寿命が約3倍になる。これは腐食代として従来は3mmの鋼材を使用していたものを本発明では1mmのものを使用でき、節炭器8の伝熱管の肉厚を薄くすることができる効果もある。
【0027】
また、排ガス条件や複合発電プラントの違いにより前記蒸発完了時間0.15時間は一義的には決定できないが、排熱回収ボイラ3の排ガス温度が100℃程度であれば、給水温度50℃の低圧節炭器8の伝熱管の表面に付着した結露水が0.15時間で蒸発完了するので、ガス温度が100℃以上であれば、前記蒸発完了時間は0.15時間より短くなる。
【0028】
ここで、低圧節炭器8入口側への再循環流量を増加させて所定温度(80℃)にした後、所定温度(50℃)の通常の制御に戻すタイミングとしては、温度・流量制御器18を図4に示すようにボイラ負荷αまたは低圧節炭器8入口の給水量Wによって低圧節炭器8入口の給水温度の設定値を変化させる方法を用いることができる。
【0029】
図2(b)、図2(c)から分かるように、この場合のボイラ負荷が起動時から所定値α(α>β)になるまでの間は、低圧節炭器8入口部における結露水の蒸発は完了している。
【0030】
また、図5に示すようにボイラ負荷αまたは低圧節炭器8入口の給水量Wによって流量調整弁16の開度を2種類に分けて低圧節炭器8入口への給水再循環流量を調整する方法がある。
図5に示す方法はボイラ起動時からボイラ負荷が所定値α以下の間は、流量調整弁16には低圧節炭器8の入口給水温度が所定温度(80℃)になるように所定の開度を維持させ、その後は低圧節炭器8入口の給水温度が所定の値(50℃)になるように通常の流量調整弁16の開度制御に戻すものである。
【0031】
また、図4および図5のボイラ負荷αまたは低圧節炭器8入口へ給水量Wの代わりに、ボイラ負荷αと相関関係のある高圧または低圧の蒸気流量または高圧主蒸気温度を用いることも可能である。
【0032】
上記各例ではボイラ起動時からの制御について述べたが、本発明はボイラ起動時に限らず、ボイラ負荷が低下して低圧節炭器8の排ガス入口部分が低温腐食のおそれがある場合にも適用できる。
なお、図1は高圧と低圧ドラムを有する二重圧の排熱回収ボイラを例にとって説明したが、当然のことながら、一重圧または三重圧の場合にも適用可能である。
【0033】
また、流量調整弁16の開度により低圧節炭器8入口への給水再循環流量を調整する方法に代えて図6に示すように可変流量ポンプ22を用いて低圧節炭器8入口への給水再循環流量を調整する制御を行っても良い。
【0034】
【発明の効果】
本発明は通常のボイラへの給水状態において行うものであり、ガスタービンを起動後に、急角度で立ち上げることができ、かつ低圧節炭器の伝熱管の低温腐蝕を大幅に抑制することができる。
【図面の簡単な説明】
【図1】 本発明と従来技術が適用される排熱回収ボイラの起動時の以降の低圧節炭器入口の温度・流量制御器の操作を説明する図である。
【図2】 本発明が適用される排熱回収ボイラの起動時の以降の低圧節炭器出口給水温度の時間変化特性(図2(a))と低圧節炭器入口給水温度の時間変化特性(図2(b))であり、図2(c)はボイラ負荷とガスタービン回転数とボイラに導入されるガス量、ボイラ出口ガス温度の時間変化を示す図である。
【図3】 本発明が適用される排熱回収ボイラの節炭器への給水温度と結露水の蒸発完了時間の関係を示す図である。
【図4】 本発明が適用される排熱回収ボイラの負荷または給水量によって低圧節炭器入口の給水温度の設定値を変化させる方法を示す図である。
【図5】 本発明が適用される排熱回収ボイラの負荷または給水量によって流量調整弁の開度を規定する方法を示す図である。
【図6】 本発明が適用される複合発電プラントの系統図である。
【図7】 本発明が適用される複合発電プラントの系統図である。
【符号の説明】
1 ガスタービン 2 発電機
3 排熱回収ボイラ 4 過熱器
5 高圧蒸発器 6 高圧節炭器
7 低圧蒸発器 8 低圧節炭器
9 低圧ドラム 10 高圧ドラム
12 蒸気タービン 13 復水器
14 復水ポンプ 15 高圧給水ポンプ
16 流量調整弁 17 低圧節炭器入口給水温度検出器
18 温度・流量制御器 19 給水流路
20 循環給水流路 21 給水流量検出器
22 可変流量ポンプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and an apparatus for controlling a feed water temperature of an exhaust heat recovery boiler in a combined power plant.
[0002]
[Prior art]
There is a combined power plant as a plant optimal for high-efficiency power generation and intermediate load operation. This plant generates power by a gas turbine and includes a heat recovery steam generator that recovers the heat of exhaust gas discharged from the gas turbine, and generates power by driving the steam turbine with steam generated in the heat recovery steam generator. It is. Such an exhaust heat recovery boiler will be described with reference to the drawings.
[0003]
FIG. 7 is a system diagram of a conventional combined power plant. The generator 2 is driven by the gas turbine 1, and the exhaust gas G of the gas turbine (GT) 1 is introduced into the exhaust heat recovery boiler (HRSG) 3, and the heat is recovered. A superheater 4, a high-pressure evaporator 5, a high-pressure economizer 6, a low-pressure evaporator 7 and a low-pressure economizer 8 are arranged in the gas flow path of the exhaust heat recovery boiler 3 in order from the high temperature side to the low temperature side. A low-pressure drum 9 and a high-pressure drum 10 are disposed outside the gas flow path. The water supply to the exhaust heat recovery boiler 3 is finally discharged as steam from the superheater 4 and used to drive the steam turbine 12 connected to the generator 2.
[0004]
The steam used in the steam turbine 12 is condensed in the condenser 13, and the water in the condenser 13 is supplied to the low-pressure economizer 8 from the water supply channel 19 by the condensate pump 14. The heated feed water at the outlet of the low-pressure economizer 8 is guided to the high-pressure economizer 6 by the high-pressure feed pump 15 and mixed with the feed water W to the low-pressure economizer 8 through the circulation feed water channel 20. The feed water temperature T S1 at the inlet of the low pressure economizer 8 is detected by the temperature detector 17, and the low pressure economizer is based on the feed water flow rate at the feed water flow rate detector 21 provided in the feed water flow channel 19 by the temperature / flow rate controller 18. The opening degree of the flow rate adjustment valve 16 provided in the circulation water supply flow path 20 to the low pressure economizer 8 of the heated water supply at the outlet of the vessel 8 is adjusted.
[0005]
The reason why the feed water at the outlet of the low-pressure economizer 8 of the combined power plant configured as described above is mixed with the feed water at the inlet will be described.
In recent combined power plants, a condenser deaeration method is adopted in which the installation of a deaerator is omitted and the condenser 13 has a deaeration function for reasons such as reducing equipment costs and simplifying the system. Has been. In the case of this method, the feed water temperature T S1 at the inlet of the low pressure economizer 8 of the boiler 3 is as low as about 30 ° C. Therefore, when the water is fed to the low pressure economizer 8 at the same temperature, the low pressure economizer 8 Cold corrosion occurs. As a countermeasure, as shown in the drawing, the heated feed water at the outlet of the low pressure economizer 8 is mixed with the boiler feed water W (the feed water at the inlet of the low pressure economizer 8) via the high pressure feed pump 15 to cause low temperature corrosion. Means for raising the temperature to a non-temperature is adopted. The temperature is set to about 50 ° C., which is a temperature at which low-temperature corrosion does not occur during rated operation, and this temperature is the feed water flow upstream of the junction between the temperature detected by the temperature detector 17 and the circulating feed water flow path 20. The flow rate adjusting valve 16 is controlled by the temperature / flow rate controller 18 based on the feed water flow rate at the feed water flow rate detector 21 provided in the passage 19 and is kept constant.
[0006]
[Problems to be solved by the invention]
Conventionally, the low temperature corrosion prevention temperature for raising the temperature of the boiler feed water W (feed water at the inlet of the low pressure economizer 8) is a constant value from the time of start-up to a predetermined load, for example, 20-30% which is the minimum load. (About 50 ° C.).
[0007]
However, since the exhaust gas temperature introduced into the exhaust heat recovery boiler is low when the boiler is started, the amount of heat recovered in the low pressure economizer 8 is small, the feed water temperature T S2 at the outlet of the low pressure economizer 8 is low, and the temperature is about When the temperature is 50 ° C. or lower, it is impossible to raise the feed water temperature T S1 at the inlet of the low pressure economizer 8 to the set temperature (about 50 ° C.). Condensation is inevitable (condensation time from water vapor is about 1 hour from the start of the boiler), and this dew condensation water is after the feed water temperature T S1 at the low pressure economizer 8 inlet rises to about 50 ° C. However, since it takes a long time (about 3 hours or more) to complete evaporation, the heat transfer boiler of the low-pressure economizer 8 that has many operations that are repeatedly started and stopped has the disadvantage of low-temperature corrosion. It was.
[0008]
An object of the present invention, except for the disadvantages of the prior art, waste heat can reduce the low-temperature corrosion of the low pressure economizer by evaporation in a short time dew condensation water in the boiler during start-up Oite low pressure economizer The object is to provide a method and an apparatus for controlling the feed water temperature of a recovery boiler.
[0009]
[Means for Solving the Problems]
The present invention employs the following configuration in order to solve the above problems.
That is, the invention described in claim 1 is used in the steam turbine (12) at the inlet of the low pressure economizer (8) provided in the gas flow path (3) into which the exhaust gas from the gas turbine (1) is introduced. steam was supplied as feed water after condensed in condenser (13), a low-pressure economizer part of the heated feed water in the heat recovery by the low-pressure economizer (8) from the exhaust gas (8 from the outlet of) via the circulation water supply path (20) and only recycled to the inlet of the low pressure economizer (8), a low-pressure economizer by mixing with inlet feed water of low pressure economizer (8) A method for controlling the feed water temperature of the exhaust heat recovery boiler for controlling the inlet feed water temperature of (8) , wherein the control temperature of the inlet feed water temperature of the low pressure economizer (8) is prevented from low temperature corrosion of the low pressure economizer (8). The predetermined high temperature side that is sufficient to evaporate the temperature and condensation water and the low temperature of the low pressure economizer (8) Set to a predetermined low temperature side is a food-out prevention temperature, the boiler start early after starting the gas turbine (1), the boiler load signal, the physical quantity or low intermediate pressure economizer that correlate with boiler load signal (8 water supply inlet) until the predetermined value, the predetermined temperature at the inlet of the feed water of the low-pressure economizer (8) by increasing the flow rate of water to be recycled to the inlet of the low pressure economizer (8) Controlled to the high temperature side temperature to evaporate the condensed water of the low pressure economizer (8), and then the boiler load signal, the physical quantity correlated with the boiler load signal, or the amount of water supplied to the inlet of the low pressure economizer (8) When the value reaches a predetermined value, the flow rate of the feed water to be recirculated to the inlet of the low pressure economizer (8) is reduced to control the predetermined temperature of the feed water at the inlet of the low pressure economizer (8) to the low temperature side temperature. It is the feed water temperature control method of a recovery boiler.
[0010]
The invention described in claim 2 is the steam utilized in the steam turbine (12) at the inlet of the low pressure economizer (8) provided in the gas flow path (3) into which the exhaust gas from the gas turbine (1) is introduced. the condenser and the water supply system to supply a feed water after condensed in (13) (19), the low pressure economizer part of the feed water heated in the low-pressure economizer (8) by heat recovery from the flue gas A circulating water supply system (20) for recirculation only from the outlet of the vessel (8) to the inlet of the low pressure economizer (8), and a recirculation flow rate adjustment for adjusting the recirculation water flow rate to the recirculation water system (20) a heat recovery boiler and means (16),
There is a correlation between the feed water temperature detecting means (17) at the inlet of the low pressure economizer (8), the feed water flow rate detecting means (21) at the inlet of the low pressure economizer (8), and the boiler load value or the boiler load value. The physical quantity detection means and the control temperature of the inlet water supply temperature of the low-pressure economizer (8) are the low temperature corrosion prevention temperature of the low-pressure economizer (8) and a predetermined high temperature that is sufficient to evaporate the condensed water. And the boiler load value or the correlation with the boiler load value at the initial stage of the boiler start after the gas turbine (1) is started. Until the detected value of the feed water flow rate detection means (21) at the entrance of the physical quantity or the low pressure economizer (8) reaches a predetermined value, the low pressure economizer (8 ) Increase the flow rate of the feed water recirculated to the inlet Thus, the predetermined temperature of the feed water at the inlet of the low pressure economizer (8) is controlled to the high temperature side to evaporate the condensed water of the low pressure economizer (8), and then correlated with the boiler load signal and the boiler load signal. When the relevant physical quantity or the amount of feed water at the inlet of the low pressure economizer (8) reaches a predetermined value, the flow rate of the feed water recirculated to the inlet of the low pressure economizer (8) is reduced to reduce the low pressure economizer (8). A recirculation flow rate control device (18) for controlling a predetermined temperature of the feed water at the inlet to the low temperature side temperature .
[0013]
The present invention can also be applied to an exhaust heat recovery boiler that does not omit the installation of a deaerator.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described based on the following embodiments.
Although the system diagram of the combined power plant to which the present invention is applied is the same as that shown in FIG. 7, the configuration of the temperature / flow rate controller 18 is different from that of the prior art, and FIG. The configuration of the vessel 18 is shown along with that of the prior art.
[0015]
The configuration of the temperature / flow rate controller 18 in the prior art is a configuration in which the opening degree of the flow rate adjustment valve 16 is controlled so that the inlet feed water temperature of the low pressure economizer 8 becomes 50 ° C. when the high pressure feed pump 15 is started. However, in the present invention, the inlet water supply temperature of the low-pressure economizer 8 is set to two types, a relatively high temperature side temperature and a relatively low temperature side temperature, depending on the load.
[0016]
In the example shown in FIGS. 1 to 4, the relatively high temperature side water supply temperature is set to 80 ° C., and the relatively low temperature side temperature is set to 50 ° C. The reason for setting the high-temperature side water supply temperature to 80 ° C. is that, as shown in FIG. 3, if the temperature is 80 ° C. or higher, the condensation completion time of the condensed water in the exhaust gas to the heat transfer pipe of the low-pressure economizer 8 This is because the difference is small, and if the temperature is set to 90 to 100 ° C., the recirculation flow rate from the circulation feed water flow path 20 to the inlet of the low pressure economizer 8 increases accordingly, and the capacity of the high pressure feed pump 15 is exceeded. It is necessary to use a high-pressure feed pump 15 having a large capacity. Moreover, by setting the feed water temperature at the low pressure economizer 8 at 80 ° C., the heat of vaporization of the moisture once condensed can be sufficiently supplied.
[0017]
The reason why the inlet water supply temperature of the low-pressure economizer 8 is set to 50 ° C. is that the dew point temperature of water in the exhaust gas is about 45 ° C. even if the load of the gas turbine 1 is 100% load. This is because the low temperature corrosion of the economizer 8 does not occur when the temperature is set to 50 ° C.
[0018]
The time change characteristics of the low pressure economizer 8 outlet water supply temperature and the inlet water supply temperature after the boiler 3 is started, that is, after the gas turbine (GT) 1 is started, are shown in FIGS. 2 (a) and 2 (b), respectively. Show. FIG. 2C shows changes over time in the boiler load, the gas turbine rotational speed, the amount of gas introduced into the boiler, and the boiler outlet gas temperature.
[0019]
Since the exhaust gas temperature is low at the initial stage of boiler activation, the amount of heat recovered in the economizer 8 is small, and the feed water temperature at the outlet of the low-pressure economizer 8 is 50 ° C. or lower. The feed water temperature at the entrance of the economizer 8 is also 50 ° C. or less. Therefore, in this case, since the dew point temperature is not more than that shown in FIG. 2, moisture in the exhaust gas is condensed in the low pressure economizer 8. Conventionally, as the low-pressure economizer 8 outlet feed water temperature rises, the recirculation flow rate to the low-pressure economizer 8 inlet is adjusted by the flow rate adjusting valve 16, while the low-pressure economizer 8 inlet feed water temperature is 50 ° C. I was in control.
[0020]
In FIG. 2 (b), the dew point temperature increases as the boiler load increases, but this increases the fuel combustion amount of the gas turbine and increases the fuel combustion amount as the boiler load increases. This is because the amount of water in the exhaust gas increases and the dew point temperature also rises.
[0021]
In addition, according to FIG. 2, in the prior art, after the low-pressure economizer 8 outlet water supply temperature has reached 150 ° C. and has passed for a while, the dew condensation is completed for the first time. This is because condensed water present in a local portion near the feed water inlet of the low economizer 8 evaporates.
[0022]
FIG. 3 shows the relationship between the feed water temperature and the condensation completion time of the condensed water. If the feed water temperature is set to 50 ° C. as in the prior art, it takes about 3 hours until the condensation water generated at the start of the evaporation is completed. Although it turns out that it is necessary, if the feed water temperature at the inlet of the low pressure economizer 8 is once raised to 80 ° C. from the start of the boiler as in the present invention, the evaporation completion time of condensed water at 80 ° C. is 0.15 hours. I know it ’s good.
[0023]
In one embodiment of the present invention, as shown in FIG. 2, the low-pressure economizer is increased by increasing the recirculation flow rate of feed water to the low-pressure economizer 8 by adjusting the opening degree of the flow rate adjustment valve 16 from the start of the boiler. The feed water temperature at the 8 inlet is once raised to 80 ° C., and this temperature is maintained for 0.15 hours or more in order to complete the evaporation of condensed water at 80 ° C., and then the feed water temperature at the low pressure economizer 8 entrance is set to a predetermined value. It returns to control maintained at 50 degreeC.
[0024]
Here, since the value of the boiler load (according to the load signal of the gas turbine 1) when the feed water temperature at the inlet of the low pressure economizer 8 reaches 80 ° C. corresponds to β, the opening degree of the flow rate adjustment valve 16 from the time of boiler startup. By increasing the recirculation flow rate of the feed water to the low pressure economizer 8 by adjustment and maintaining the recirculation flow rate of the feed water for 0.15 hours or more after reaching the boiler load β, the condensation water is evaporated. It can also be completed.
Further, instead of the boiler load β, it is also possible to use a high-pressure or low-pressure steam flow rate or a high-pressure main steam temperature having a correlation with the water supply amount W or the boiler load β at the inlet of the low-pressure economizer 8.
[0025]
When the present invention and the prior art are compared in terms of the generation time of condensed water and the wet time of the economizer 8 until the completion of evaporation (condensation time + completion time of evaporation), the wet time is 1 hour in the case of the present invention. The total time of evaporation is 0.15 hours, which is 1.15 hours, whereas in the case of the prior art, the wetting time is 4 hours, which is a condensation time of 1 hour and an evaporation completion time of 3 hours.
[0026]
Therefore, the present invention reduces the wetting time by about 30% compared to the prior art, thereby extending the life of the low pressure economizer 8 to low temperature corrosion by about three times. In the present invention, a steel sheet having a thickness of 3 mm as a corrosion allowance can be used in the present invention, and the thickness of the heat transfer tube of the economizer 8 can be reduced.
[0027]
Further, the evaporation completion time of 0.15 hours cannot be uniquely determined due to the difference in exhaust gas conditions and the combined power plant, but if the exhaust gas temperature of the exhaust heat recovery boiler 3 is about 100 ° C., the low pressure of the feed water temperature of 50 ° C. Since the condensed water adhering to the surface of the heat transfer tube of the economizer 8 is completed in 0.15 hours, if the gas temperature is 100 ° C. or higher, the evaporation completion time is shorter than 0.15 hours.
[0028]
Here, after increasing the recirculation flow rate to the inlet side of the low pressure economizer 8 to a predetermined temperature (80 ° C.), the timing for returning to the normal control of the predetermined temperature (50 ° C.) is as follows. As shown in FIG. 4, a method of changing the set value of the feed water temperature at the low pressure economizer 8 inlet according to the boiler load α or the feed water amount W at the low pressure economizer 8 inlet can be used.
[0029]
As can be seen from FIGS. 2 (b) and 2 (c), the dew condensation water at the inlet of the low pressure economizer 8 until the boiler load in this case becomes a predetermined value α (α> β) from the start-up. The evaporation of is complete.
[0030]
Further, as shown in FIG. 5, the feed water recirculation flow rate to the low pressure economizer 8 inlet is adjusted by dividing the opening of the flow rate adjustment valve 16 into two types according to the boiler load α or the water supply amount W at the low pressure economizer 8 inlet. There is a way to do it.
In the method shown in FIG. 5, when the boiler load is equal to or less than a predetermined value α from the time of starting the boiler, the flow rate adjusting valve 16 is opened to a predetermined temperature so that the inlet water supply temperature of the low pressure economizer 8 becomes a predetermined temperature (80 ° C.). After that, the normal flow rate control valve 16 is returned to the opening control so that the feed water temperature at the inlet of the low pressure economizer 8 becomes a predetermined value (50 ° C.).
[0031]
Further, instead of the feed water amount W to the boiler load α or the low-pressure economizer 8 inlet of FIGS. 4 and 5, it is possible to use a high-pressure or low-pressure steam flow rate or a high-pressure main steam temperature correlated with the boiler load α. It is.
[0032]
In each of the above examples, the control from the start of the boiler has been described. However, the present invention is not limited to the start of the boiler, but is also applied to a case where the boiler load decreases and the exhaust gas inlet portion of the low-pressure economizer 8 may be subject to low-temperature corrosion. it can.
Although FIG. 1 has been described by taking a double pressure exhaust heat recovery boiler having a high pressure and a low pressure drum as an example, it can be applied to a single pressure or triple pressure as a matter of course.
[0033]
Further, instead of the method of adjusting the feed water recirculation flow rate to the inlet of the low pressure economizer 8 by the opening of the flow rate adjusting valve 16, the variable flow pump 22 is used as shown in FIG. Control for adjusting the feed water recirculation flow rate may be performed.
[0034]
【The invention's effect】
The present invention is performed in a state of supplying water to a normal boiler, can start up at a steep angle after starting the gas turbine, and can greatly suppress low-temperature corrosion of the heat transfer tubes of the low-pressure economizer. .
[Brief description of the drawings]
FIG. 1 is a diagram for explaining the operation of a temperature / flow rate controller at the inlet of a low-pressure economizer after starting an exhaust heat recovery boiler to which the present invention and the prior art are applied.
[Fig. 2] Time-varying characteristics of the low-pressure economizer outlet feed water temperature after the start-up of the exhaust heat recovery boiler to which the present invention is applied (Fig. 2 (a)) and low-pressure economizer inlet feed water temperature varying characteristics FIG. 2 (c) is a diagram showing temporal changes in the boiler load, the gas turbine rotational speed, the amount of gas introduced into the boiler, and the boiler outlet gas temperature.
FIG. 3 is a diagram showing the relationship between the temperature of water supplied to the economizer of the exhaust heat recovery boiler to which the present invention is applied and the completion time of evaporation of condensed water.
FIG. 4 is a diagram showing a method of changing a set value of the feed water temperature at the inlet of the low-pressure economizer according to the load of the exhaust heat recovery boiler to which the present invention is applied or the amount of feed water.
FIG. 5 is a diagram showing a method for defining the opening of the flow rate adjustment valve according to the load of the exhaust heat recovery boiler to which the present invention is applied or the amount of water supply.
FIG. 6 is a system diagram of a combined power plant to which the present invention is applied.
FIG. 7 is a system diagram of a combined power plant to which the present invention is applied.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Gas turbine 2 Generator 3 Waste heat recovery boiler 4 Superheater 5 High pressure evaporator 6 High pressure economizer 7 Low pressure evaporator 8 Low pressure economizer 9 Low pressure drum 10 High pressure drum 12 Steam turbine 13 Condenser 14 Condensate pump 15 High-pressure feed pump 16 Flow rate adjustment valve 17 Low-pressure economizer inlet feed water temperature detector 18 Temperature / flow rate controller 19 Feed water passage 20 Circulating feed water passage 21 Feed water flow detector 22 Variable flow pump

Claims (2)

ガスタービン(1)からの排ガスが導入されるガス流路(3)内に設けた低圧節炭器(8)の入口に蒸気タービン(12)で利用された蒸気を復水器(13)で復水した後に給水として供給し、前記排ガスからの熱回収により前記低圧節炭器(8)で加熱された給水の一部を低圧節炭器(8)の出口から循環給水流路(20)を経由して低圧節炭器(8)の入口にのみ再循環させて、低圧節炭器(8)の入口給水と混合させることにより低圧節炭器(8)の入口給水温度を制御する排熱回収ボイラの給水温度制御方法であって、
前記低圧節炭器(8)の入口給水温度の制御温度を低圧節炭器(8)の低温腐食防止温度および結露水を蒸発させるのに十分な温度である所定の高温側と低圧節炭器(8)の低温腐食防止温度である所定の低温側に設定し、
ガスタービン(1)を起動した後のボイラ起動初期に、ボイラ負荷信号、ボイラ負荷信号と相関関係のある物理量または低圧節炭器(8)の入口の給水量が所定値になるまで、前記低圧節炭器(8)の入口へ再循環させる給水の流量を増加させることにより低圧節炭器(8)の入口の給水の所定温度を前記高温側温度に制御して低圧節炭器(8)の結露水を蒸発させ、その後、ボイラ負荷信号、ボイラ負荷信号と相関関係のある物理量または低圧節炭器(8)の入口の給水量が所定値になると、低圧節炭器(8)の入口へ再循環させる給水の流量を減少させて低圧節炭器(8)の入口の給水の所定温度を前記低温側温度に制御する
ことを特徴とする排熱回収ボイラの給水温度制御方法。
The steam exhaust is utilized in a steam turbine (12) to the inlet of the gas flow path to be introduced (3) low-pressure economizer provided in the (8) from the gas turbine (1) with condenser (13) It supplied as feed water after condensate, circulating water flow path from the outlet of the low pressure economizer part of the heated feed water in the low pressure economizer by heat recovery (8) from the exhaust gas (8) (20 ) via only recycled to the inlet of the low pressure economizer (8), to control the inlet feedwater temperature of the low-pressure economizer (8) by mixing with an inlet feed water of the low-pressure economizer (8) A method for controlling a feed water temperature of an exhaust heat recovery boiler ,
The control temperature of the inlet water supply temperature of the low-pressure economizer (8) is a predetermined high-temperature side and a low-pressure economizer that is a low-temperature corrosion prevention temperature of the low-pressure economizer and a temperature sufficient to evaporate condensed water. Set to the predetermined low temperature side which is the low temperature corrosion prevention temperature of (8),
The boiler start early after starting the gas turbine (1), until the boiler load signal, or a physical quantity that correlate with the boiler load signal is water supply inlet of the low-intermediate pressure economizer (8) reaches a predetermined value, the low pressure economizer (8) of the low pressure economizer by increasing the flow rate of water to be recycled to the inlet (8) of the predetermined temperature of the feed water inlet to control the upper temperature low-pressure economizer ( When the condensed water of 8) evaporates, and then the boiler load signal, the physical quantity correlated with the boiler load signal or the amount of water supplied to the inlet of the low pressure economizer (8) reaches a predetermined value, the low pressure economizer (8) A method for controlling a feed water temperature of an exhaust heat recovery boiler, wherein a predetermined temperature of feed water at an inlet of a low-pressure economizer (8) is controlled to the low temperature side temperature by reducing a flow rate of feed water recirculated to the inlet of the exhaust gas.
ガスタービン(1)からの排ガスが導入されるガス流路(3)内に設けた低圧節炭器(8)の入口に蒸気タービン(12)で利用された蒸気を復水器(13)で復水した後に給水として供給する給水系統(19)と、前記排ガスからの熱回収により前記低圧節炭器(8)で加熱された給水の一部を低圧節炭器(8)の出口から低圧節炭器(8)の入口にのみ再循環させる循環給水系統(20)と、該再循環水系統(20)への再循環水流量を調整する再循環流量調整手段(16)とを備えた排熱回収ボイラであって
低圧節炭器(8)の入口の給水温度検出手段(17)と、
低圧節炭器(8)の入口の給水流量検出手段(21)と、
ボイラ負荷値またはボイラ負荷値と相関関係のある物理量の検出手段と、
前記低圧節炭器(8)の入口給水温度の制御温度を低圧節炭器(8)の低温腐食防止温度および結露水を蒸発させるのに十分な温度である所定の高温側と低圧節炭器(8)の低温腐食防止温度である所定の低温側に設定し、ガスタービン(1)を起動した後のボイラ起動初期に、前記ボイラ負荷値またはボイラ負荷値と相関関係のある物理量の検出手段または低圧節炭器(8)の入口の給水流量検出手段(21)の検出値が所定値になるまで、再循環流量調整手段(16)により前記低圧節炭器(8)の入口へ再循環させる給水の流量を増加させることにより、低圧節炭器(8)の入口の給水の所定温度を前記高温側温度に制御して低圧節炭器(8)の結露水を蒸発させ、その後、ボイラ負荷信号、ボイラ負荷信号と相関関係のある物理量または低圧節炭器(8)の入口の給水量が所定値になると、低圧節炭器(8)の入口へ再循環させる給水の流量を減少させて低圧節炭器(8)の入口の給水の所定温度を前記低温側温度に制御する再循環流量制御装置(18)
を備えたことを特徴とする排熱回収ボイラの給水温度制御装置。
Steam used in the steam turbine (12) is fed into the condenser (13) at the inlet of the low-pressure economizer (8) provided in the gas flow path (3) into which the exhaust gas from the gas turbine (1) is introduced. a water supply system to supply a feed water after condensate (19), the low pressure part of the water supply to the heated low-pressure economizer (8) by heat recovery from the flue gas from the outlet of the low pressure economizer (8) A circulation water supply system (20) for recirculation only at the inlet of the economizer (8) and a recirculation flow rate adjusting means (16) for adjusting the recirculation water flow rate to the recirculation water system (20) are provided. a heat recovery steam generator,
Feed water temperature detection means (17) at the inlet of the low pressure economizer (8);
Feed water flow rate detecting means (21) at the inlet of the low pressure economizer (8);
Boiler load value or physical quantity detection means correlated with boiler load value;
The control temperature of the inlet water supply temperature of the low-pressure economizer (8) is a predetermined high-temperature side and a low-pressure economizer that is a low-temperature corrosion prevention temperature of the low-pressure economizer and a temperature sufficient to evaporate condensed water. (8) The low temperature corrosion prevention temperature is set to a predetermined low temperature side, and the boiler load value or the physical quantity detecting means correlated with the boiler load value at the initial stage of boiler startup after starting the gas turbine (1) Alternatively, the recirculation flow rate adjusting means (16) recirculates to the low pressure economizer (8) inlet until the detected value of the feed water flow rate detecting means (21) at the inlet of the low pressure economizer (8) reaches a predetermined value. By increasing the flow rate of the feed water to be supplied, the predetermined temperature of the feed water at the inlet of the low pressure economizer (8) is controlled to the high temperature side temperature to evaporate the condensed water of the low pressure economizer (8), and then the boiler Physical quantity correlated with load signal and boiler load signal When the water supply amount at the inlet of the low-pressure economizer (8) reaches a predetermined value, the flow rate of the water to be recirculated to the inlet of the low-pressure economizer (8) is decreased to supply water at the inlet of the low-pressure economizer (8). And a recirculation flow rate control device (18) for controlling the predetermined temperature to the low temperature side temperature, a feed water temperature control device for an exhaust heat recovery boiler.
JP24554897A 1997-09-10 1997-09-10 Method and apparatus for controlling temperature of feed water in exhaust heat recovery boiler Expired - Lifetime JP4017712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24554897A JP4017712B2 (en) 1997-09-10 1997-09-10 Method and apparatus for controlling temperature of feed water in exhaust heat recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24554897A JP4017712B2 (en) 1997-09-10 1997-09-10 Method and apparatus for controlling temperature of feed water in exhaust heat recovery boiler

Publications (2)

Publication Number Publication Date
JPH1182913A JPH1182913A (en) 1999-03-26
JP4017712B2 true JP4017712B2 (en) 2007-12-05

Family

ID=17135346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24554897A Expired - Lifetime JP4017712B2 (en) 1997-09-10 1997-09-10 Method and apparatus for controlling temperature of feed water in exhaust heat recovery boiler

Country Status (1)

Country Link
JP (1) JP4017712B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5613921B2 (en) * 2010-11-29 2014-10-29 バブコック日立株式会社 Exhaust heat recovery boiler and method for preventing corrosion in the can
JP6553271B1 (en) * 2018-10-15 2019-07-31 三菱日立パワーシステムズ株式会社 CONTROL DEVICE FOR POWER PLANT, CONTROL METHOD THEREOF, CONTROL PROGRAM, AND POWER PLANT

Also Published As

Publication number Publication date
JPH1182913A (en) 1999-03-26

Similar Documents

Publication Publication Date Title
US6742336B2 (en) Steam turbine power plant
JP2849140B2 (en) Waste heat steam generation method and equipment
WO2011111450A1 (en) Coal-fired power plant, and method for operating coal-fired power plant
JP2005534883A (en) Waste heat steam generator
JP2003161164A (en) Combined-cycle power generation plant
JP7111525B2 (en) Once-through heat recovery boiler and control system for once-through heat recovery boiler
US6405520B1 (en) Gas and steam turbine plant and method for cooling a coolant of a gas turbine of such a plant
JP4017712B2 (en) Method and apparatus for controlling temperature of feed water in exhaust heat recovery boiler
JPH0933005A (en) Water feeding device for waste heat recovery boiler
JP2001329806A (en) Combined cycle plant
JPH112105A (en) Combined cycle power generation plant
JP2005009792A (en) Waste heat recovery boiler
US6152085A (en) Method for operating a boiler with forced circulation and boiler for its implementation
JP3759065B2 (en) Start-up method of exhaust heat recovery boiler
JP3222035B2 (en) Double pressure type waste heat recovery boiler feeder
JP2908085B2 (en) Waste heat recovery boiler
JP2949287B2 (en) Auxiliary steam extraction method for waste heat recovery boiler
JP2839195B2 (en) Waste heat recovery boiler water supply control device
JP2531801B2 (en) Exhaust heat recovery heat exchanger controller
JP3068972B2 (en) Combined cycle power plant
JP3745419B2 (en) Waste heat recovery boiler
JP2604117B2 (en) Double pressure type waste heat boiler water supply system
JP2971629B2 (en) Waste heat recovery boiler
JP3820636B2 (en) Method and apparatus for controlling feed water temperature in exhaust recombustion combined cycle plant
JP2708406B2 (en) Startup control method for thermal power plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070802

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term