JPH1182913A - Method and device for controlling feed water temperature of exhaust heat recovery boiler - Google Patents

Method and device for controlling feed water temperature of exhaust heat recovery boiler

Info

Publication number
JPH1182913A
JPH1182913A JP24554897A JP24554897A JPH1182913A JP H1182913 A JPH1182913 A JP H1182913A JP 24554897 A JP24554897 A JP 24554897A JP 24554897 A JP24554897 A JP 24554897A JP H1182913 A JPH1182913 A JP H1182913A
Authority
JP
Japan
Prior art keywords
low
pressure economizer
temperature
inlet
feedwater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24554897A
Other languages
Japanese (ja)
Other versions
JP4017712B2 (en
Inventor
Toshinori Shigenaka
利則 重中
Iwao Kusaka
巖 日下
Kaetsu Isoda
嘉悦 磯田
Hiroshi Yoshizaki
弘師 吉崎
Koichi Toyoshima
耕一 豊嶋
Atsuo Kawahara
淳夫 河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP24554897A priority Critical patent/JP4017712B2/en
Publication of JPH1182913A publication Critical patent/JPH1182913A/en
Application granted granted Critical
Publication of JP4017712B2 publication Critical patent/JP4017712B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the low-temperature corrosion of a low-pressure economizer by regulating the flow rate of feed water at a low-pressure economizer outlet to be re-circulated to a low-pressure economizer so that the feed water temperature at the low-pressure economizer inlet is kept at and above the temperature sufficient for evaporating the condensate for the prescribed time or over when a boiler is started. SOLUTION: A temperature/flow rate controller 18 set the inlet feed water temperature of a low-pressure economizer 8 to two kinds of temperature, i.e., the temperature on the relatively high temperature side and the temperature on the relatively low temperature side depending on the magnitude of the load. The feed water temperature at an inlet of the low-pressure economizer 8 is once raised to 80 deg.C by increasing the re-circulation volume of feed water to the low-pressure economizer 8 through opening regulation of a flow rate regulation valve 16 since an exhaust heat recovery boiler is started, the temperature is kept for at least 0.15 hour to complete evaporation of the condensate at 80 deg.C, and then, the control is returned so that the feed water temperature at the inlet of the low-pressure economizer 8 is kept at 50 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複合発電プラント
における排熱回収ボイラの給水温度制御方法と装置に関
する。
The present invention relates to a method and an apparatus for controlling a feedwater temperature of an exhaust heat recovery boiler in a combined cycle power plant.

【0002】[0002]

【従来の技術】高効率発電および中間負荷運用に最適な
プラントとして、複合発電プラントがある。このプラン
トは、ガスタービンにより発電を行うとともに、このガ
スタービンから排出される排ガスの熱を回収する排熱回
収ボイラを備え、排熱回収ボイラにおいて発生した蒸気
で蒸気タービンを駆動して発電するものである。このよ
うな排熱回収ボイラを図面により説明する。
2. Description of the Related Art As a plant most suitable for high-efficiency power generation and intermediate load operation, there is a combined power generation plant. This plant generates electricity by using a gas turbine, and has an exhaust heat recovery boiler that recovers the heat of the exhaust gas discharged from the gas turbine, and generates electricity by driving a steam turbine with the steam generated in the exhaust heat recovery boiler. It is. Such an exhaust heat recovery boiler will be described with reference to the drawings.

【0003】図7は従来の複合発電プラントの系統図で
ある。ガスタービン1により発電機2を駆動し、またガ
スタービン(GT)1の排ガスGは排熱回収ボイラ(H
RSG)3に導入されて、その熱は回収される。排熱回
収ボイラ3のガス流路内には高温側から低温側に順次、
過熱器4、高圧蒸発器5、高圧節炭器6、低圧蒸発器7
及び低圧節炭器8が配置され、また、ガス流路外には低
圧ドラム9、高圧ドラム10等が配置されている。そし
て排熱回収ボイラ3への給水は最終的に過熱器4から蒸
気として排出され、発電機2に連結されている蒸気ター
ビン12の駆動に利用される。
FIG. 7 is a system diagram of a conventional combined cycle power plant. The generator 2 is driven by the gas turbine 1, and the exhaust gas G of the gas turbine (GT) 1 is discharged from the exhaust heat recovery boiler (H
RSG) 3 and the heat is recovered. In the gas flow path of the exhaust heat recovery boiler 3, in order from a high temperature side to a low temperature side,
Superheater 4, high-pressure evaporator 5, high-pressure economizer 6, low-pressure evaporator 7
And a low-pressure economizer 8, and a low-pressure drum 9, a high-pressure drum 10 and the like are arranged outside the gas flow path. Then, water supplied to the exhaust heat recovery boiler 3 is finally discharged as steam from the superheater 4 and used for driving a steam turbine 12 connected to the generator 2.

【0004】蒸気タービン12で利用された蒸気は復水
器13で復水され、復水器13の水は復水ポンプ14に
より給水流路19から低圧節炭器8に給水される。低圧
節炭器8の出口の加熱された給水は高圧給水ポンプ15
により高圧節炭器6に導かれると共に循環給水流路20
を通って低圧節炭器8への給水Wに混合される。低圧節
炭器8の入口の給水温度TS1は温度検出器17で検出さ
れ、温度・流量制御器18により給水流路19に設けら
れた給水流量検出器21での給水流量に基づき低圧節炭
器8の出口の加熱された給水の低圧節炭器8への循環給
水流路20に設けられる流量調整弁16の開度を調整す
る。
[0004] The steam used in the steam turbine 12 is condensed in a condenser 13, and the water in the condenser 13 is supplied from a water supply passage 19 to a low-pressure economizer 8 by a condenser pump 14. The heated feed water at the outlet of the low-pressure economizer 8 is supplied to a high-pressure feed pump 15.
To the high pressure economizer 6 and the circulation water supply passage 20
And mixed with the feed water W to the low-pressure economizer 8. The feedwater temperature T S1 at the inlet of the low-pressure economizer 8 is detected by a temperature detector 17, and the temperature / flow controller 18 controls the low-pressure economizer based on the feedwater flow at a feedwater flow detector 21 provided in a feedwater flow path 19. The opening degree of the flow control valve 16 provided in the circulation water supply flow path 20 to the low-pressure economizer 8 of the heated water supply at the outlet of the water heater 8 is adjusted.

【0005】上記構成からなる複合発電プラントの低圧
節炭器8の出口の給水をその入口の給水に混合する理由
について説明する。最近の複合発電プラントにおいて
は、設備費の低減、系統の簡素化等の理由から脱気器の
設置を省略し、復水器13に脱気機能を持たせた復水器
脱気方法が採用されている。この方式の場合、ボイラ3
の低圧節炭器8の入口の給水温度TS1は約30℃と低温
であるので、そのままの温度で低圧節炭器8へ給水され
ると低圧節炭器8で低温腐食が生じる。この対策とし
て、図示のように低圧節炭器8の出口の加熱された給水
を高圧給水ポンプ15を介してボイラ給水W(低圧節炭
器8の入口の給水)と混合して低温腐食が生じない温度
まで昇温させる手段が採用されている。そして、その温
度は定格運転時に低温腐食が生じない温度である約50
℃に設定され、この温度は温度検出器17で検出された
温度と循環給水流路20との合流部上流側の給水流路1
9に設けられた給水流量検出器21での給水流量に基づ
き温度・流量制御器18により流量調整弁16を制御す
ることにより一定に保持されている。
[0005] The reason for mixing the feedwater at the outlet of the low-pressure economizer 8 of the combined cycle power plant with the feedwater at the inlet will be described. In recent combined cycle power plants, the installation of a deaerator is omitted for reasons such as reduction of equipment costs and simplification of the system, and a condenser deaeration method in which the condenser 13 has a deaeration function is adopted. Have been. In this case, boiler 3
Since the feedwater temperature T S1 at the inlet of the low-pressure economizer 8 is as low as about 30 ° C., if water is supplied to the low-pressure economizer 8 at the same temperature, low-temperature corrosion occurs in the low-pressure economizer 8. As a countermeasure, as shown in the drawing, the heated feed water at the outlet of the low-pressure economizer 8 is mixed with the boiler feed water W (the feed water at the inlet of the low-pressure economizer 8) through the high-pressure feed pump 15 to cause low-temperature corrosion. Means for raising the temperature to a non-existent temperature are employed. And, the temperature is about 50 which is a temperature at which low temperature corrosion does not occur during rated operation.
° C, and this temperature is determined by the temperature detected by the temperature detector 17 and the circulating water supply flow path 20 at the upstream of the water supply flow path 1 at the junction.
The temperature / flow controller 18 controls the flow regulating valve 16 based on the flow rate of the water supplied by the flow rate detector 21 provided in the apparatus 9 to keep the flow rate constant.

【0006】[0006]

【発明が解決しようとする課題】従来、上記ボイラ給水
W(低圧節炭器8の入口の給水)を昇温させる低温腐食
防止温度は起動時から所定の負荷、例えば最低負荷であ
る20〜30%になるまでの間、一定値(約50℃)に
設定されている。
Conventionally, the low-temperature corrosion prevention temperature for raising the temperature of the boiler feed water W (the feed water at the inlet of the low-pressure economizer 8) is a predetermined load, for example, a minimum load of 20 to 30 from the start. The value is set to a constant value (about 50 ° C.) until the value reaches%.

【0007】ところが、ボイラ起動時には排熱回収ボイ
ラに導入される排ガス温度が低いために低圧節炭器8で
の熱回収量が少なく、低圧節炭器8出口の給水温度TS2
が低く、該温度が約50℃以下の場合には、低圧節炭器
8入口の給水温度TS1を設定温度(約50℃)まで昇温
させることは不可能であり、起動時に低圧節炭器8で排
ガス中の水蒸気が結露することは避けられず(水蒸気か
らの結露所要時間はボイラ起動時から約1時間であ
る)、この結露水は低圧節炭器8入口の給水温度TS1
約50℃に上昇した後も、蒸発完了するまでには長時間
(約3時間以上)を要することから、起動と停止を繰り
返す運用の多い排熱回収ボイラでは低圧節炭器8の伝熱
管が低温腐食するという欠点が生じていた。
However, when the boiler is started, the amount of heat recovery in the low-pressure economizer 8 is small because the temperature of the exhaust gas introduced into the exhaust heat recovery boiler is low, and the feedwater temperature T S2 at the outlet of the low-pressure economizer 8 is low.
When the temperature is low and the temperature is about 50 ° C. or less, it is impossible to raise the feedwater temperature T S1 at the inlet of the low-pressure economizer 8 to the set temperature (about 50 ° C.). It is unavoidable that the steam in the exhaust gas is dew-condensed in the steam generator 8 (the time required for dew condensation from the steam is about one hour from the start of the boiler), and this dew water has a supply water temperature T S1 at the inlet of the low-pressure economizer 8. Even after the temperature rises to about 50 ° C, it takes a long time (approximately 3 hours or more) to complete the evaporation. Therefore, in a waste heat recovery boiler that is frequently started and stopped repeatedly, the heat transfer tube of the low-pressure economizer 8 is used. The disadvantage of low-temperature corrosion has occurred.

【0008】本発明の課題は、上記従来技術の欠点を除
き、ボイラ起動時またはボイラ低負荷時において低圧節
炭器での結露水を短時間で蒸発させることにより低圧節
炭器の低温腐食を減少させることができる排熱回収ボイ
ラの給水温度制御方法と装置を提供することにある。
An object of the present invention is to eliminate low-temperature corrosion of a low-pressure economizer by evaporating dew condensation water in the low-pressure economizer in a short time when the boiler is started or when the boiler is under a low load. An object of the present invention is to provide a method and an apparatus for controlling a feedwater temperature of an exhaust heat recovery boiler that can be reduced.

【0009】[0009]

【課題を解決するための手段】本発明は、上記課題を解
決するために次のような構成を採用した。すなわち、低
圧節炭器で加熱された低圧節炭器出口給水の一部を低圧
節炭器入口へ再循環させる排熱回収ボイラにおいて、ボ
イラ起動時又はボイラ低負荷時に、前記低圧節炭器入口
の給水温度が低圧節炭器の結露水を蒸発させるのに十分
な温度(例えば80℃)以上に、少なくとも0.15時
間以上維持するように低圧節炭器入口へ再循環させる低
圧節炭器出口給水の流量を調整する排熱回収ボイラの給
水温度制御方法である。
The present invention employs the following configuration to solve the above-mentioned problems. That is, in the exhaust heat recovery boiler that recirculates a part of the low-pressure economizer outlet feedwater heated by the low-pressure economizer to the low-pressure economizer inlet, when the boiler is started or the boiler is under a low load, the low-pressure economizer inlet is Low pressure economizer recirculates to the low pressure economizer inlet such that the feedwater temperature of the low pressure economizer is maintained at a temperature (e.g., 80 [deg.] C.) sufficient to evaporate the dew water of the low pressure economizer for at least 0.15 hours or more. This is a method for controlling the feedwater temperature of the exhaust heat recovery boiler that adjusts the flow rate of the outlet feedwater.

【0010】また、前記低圧節炭器入口の給水温度に代
えて、この給水温度に対応したボイラ負荷信号、負荷信
号と相関関係のある物理量または低圧節炭器入口の給水
量のいずれかの所定値を基準にして前記低圧節炭器入口
の給水温度が低圧節炭器の結露水を蒸発させるのに十分
な温度(例えば80℃)以上に、少なくとも0.15時
間以上維持するように低圧節炭器入口へ再循環させる低
圧節炭器出口給水の流量を調整しても良い。
Further, instead of the feedwater temperature at the low-pressure economizer inlet, any one of a boiler load signal corresponding to the feedwater temperature, a physical quantity correlated with the load signal, or a feedwater quantity at the low-pressure economizer inlet is used. The low-pressure economizer is set so that the feedwater temperature at the low-pressure economizer inlet is maintained at a temperature (for example, 80 ° C.) or more sufficient to evaporate the dew condensation water of the low-pressure economizer for at least 0.15 hours based on the value. The flow rate of the low-pressure coal economizer outlet feedwater recirculated to the charcoal inlet may be adjusted.

【0011】また、本発明の上記課題は次の構成によっ
ても解決される。すなわち、低圧節炭器で加熱された低
圧節炭器出口給水の一部を低圧節炭器入口へ再循環させ
る排熱回収ボイラにおいて、ボイラ起動時又はボイラ低
負荷時に、ボイラ負荷信号、ボイラ負荷信号と相関関係
のある物理量または低圧節炭器入口の給水量が所定値に
なるまで、前記低圧節炭器入口の給水温度が低圧節炭器
の結露水を蒸発させるのに十分な温度(例えば80℃)
以上になるように低圧節炭器入口へ再循環させる低圧節
炭器出口給水の流量を調整し、ボイラ負荷信号、負荷信
号と相関関係のある物理量または低圧節炭器入口の給水
量のいずれかが前記所定値になると低圧節炭器低温腐食
防止温度(例えば50℃)以上の温度になるように低圧
節炭器入口へ再循環させる低圧節炭器出口給水の流量を
調整する排熱回収ボイラの給水温度制御方法である。
The above-mentioned object of the present invention is also solved by the following constitution. That is, in a waste heat recovery boiler that recirculates a part of the low-pressure economizer outlet feedwater heated by the low-pressure economizer to the low-pressure economizer inlet, a boiler load signal and a boiler load Until the physical quantity correlated with the signal or the amount of water supplied to the low-pressure economizer inlet reaches a predetermined value, the temperature of the water supply at the low-pressure economizer is sufficient to evaporate the dew water of the low-pressure economizer (e.g., 80 ° C)
Adjust the flow rate of the low-pressure economizer outlet feedwater to be recirculated to the low-pressure economizer inlet so that the boiler load signal, a physical quantity correlated with the load signal, or the low-pressure economizer inlet waterfeed rate The exhaust heat recovery boiler for adjusting the flow rate of the low-pressure economizer outlet feedwater to be recirculated to the low-pressure economizer inlet so that the temperature of the low-pressure economizer becomes equal to or higher than the low-pressure economizer low-temperature corrosion prevention temperature (for example, 50 ° C.) This is a method for controlling the feedwater temperature.

【0012】また、本発明の課題は次の構成によっても
解決できる。すなわち、低圧節炭器入口に給水する給水
系統と、低圧節炭器を通過した給水を低圧節炭器入口へ
再循環させる給水系統を設け、低圧節炭器を通過した給
水の低圧節炭器入口への再循環流量を調整する再循環流
量調整手段とを備えた排熱回収ボイラにおいて、低圧節
炭器入口の給水温度検出手段と、低圧節炭器入口の給水
流量検出手段と、ボイラ起動時または低負荷時に、前記
2つの検出手段の所定の検出値に基づき低圧節炭器入口
の給水温度が低圧節炭器の結露水を蒸発させるのに十分
な温度(例えば80℃)以上になり、当該温度を少なく
とも0.15時間以上維持するために再循環流量調整手
段による低圧節炭器を通過した給水の低圧節炭器入口へ
の再循環流量を調整する再循環流量制御装置を備えた排
熱回収ボイラの給水温度制御装置、または、
The object of the present invention can also be solved by the following configuration. That is, a water supply system that feeds water to the low-pressure economizer inlet and a water supply system that recirculates feedwater that has passed through the low-pressure economizer to the low-pressure economizer inlet are provided. In an exhaust heat recovery boiler provided with recirculation flow rate adjusting means for adjusting a recirculation flow rate to an inlet, a feedwater temperature detecting means at a low-pressure economizer inlet, a feedwater flow detecting means at a low-pressure economizer inlet, and boiler start-up When the load is low or the load is low, the feedwater temperature at the low-pressure economizer inlet becomes higher than the temperature (for example, 80 ° C.) sufficient to evaporate the dew condensation water of the low-pressure economizer based on the predetermined detection values of the two detection means. And a recirculation flow control device for adjusting the recirculation flow rate of the feedwater passed through the low-pressure economizer to the low-pressure economizer inlet by the recirculation flow adjusting means to maintain the temperature for at least 0.15 hours or more. Feedwater temperature control equipment for waste heat recovery boiler , Or,

【0013】上記排熱回収ボイラの給水温度制御装置に
はボイラ負荷値、ボイラ負荷値と相関関係のある物理量
または低圧節炭器入口の給水量のいずれかの検出手段を
設け、ボイラ起動時または低負荷時に再循環流量制御装
置は、前記いずれかの検出手段が所定の検出値を検出す
るまでは低圧節炭器入口の給水温度が低圧節炭器の結露
水を蒸発させるのに十分な温度(例えば80℃)以上に
なるように再循環流量調整手段による低圧節炭器を通過
した給水の低圧節炭器入口への再循環流量を調整し、さ
らに前記ボイラ負荷値、ボイラ負荷値と相関関係のある
物理量または低圧節炭器入口の給水量のいずれかの検出
手段が所定の検出値を検出すると、前記低圧節炭器入口
への再循環流量を低圧節炭器低温腐食防止温度(50
℃)以上の温度になるように再循環流量調整手段を制御
する構成にしても良い。本発明は脱気器の設置を省略し
ていない方式の排熱回収ボイラにも適用できる。
[0013] The feedwater temperature control device for the exhaust heat recovery boiler is provided with a means for detecting either a boiler load value, a physical quantity correlated with the boiler load value, or a feedwater quantity at the low-pressure economizer inlet, at the time of boiler startup or When the load is low, the recirculation flow control device determines that the feedwater temperature at the low-pressure economizer inlet is high enough to evaporate the dew condensation water of the low-pressure economizer until any of the detection means detects a predetermined detection value. (For example, 80 ° C.), the recirculation flow rate is adjusted by the recirculation flow rate adjusting means so that the recirculation flow rate of the feedwater passed through the low pressure economizer to the low pressure economizer inlet is further correlated with the boiler load value and the boiler load value. When either the relevant physical quantity or the water supply amount at the low-pressure economizer detects a predetermined detection value, the recirculation flow rate to the low-pressure economizer inlet is changed to the low-pressure economizer low-temperature corrosion prevention temperature (50 ° C).
(° C.) or more. The present invention can also be applied to an exhaust heat recovery boiler of a type in which installation of a deaerator is not omitted.

【0014】[0014]

【発明の実施の形態】本発明を以下の実施の形態に基づ
いて説明する。本発明が適用される複合発電プラントの
系統図は図7に示すものと同一であるが、温度・流量制
御器18の構成は従来技術のそれとは異なり、図1に本
発明の温度・流量制御器18の構成を従来技術のそれと
共に示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described based on the following embodiments. The system diagram of the combined cycle power plant to which the present invention is applied is the same as that shown in FIG. 7, but the configuration of the temperature / flow controller 18 is different from that of the prior art, and FIG. The configuration of the vessel 18 is shown together with that of the prior art.

【0015】従来技術における温度・流量制御器18の
構成は、高圧給水ポンプ15の起動と共に低圧節炭器8
の入口給水温度が50℃になるように流量調整弁16の
開度を制御する構成であったが、本発明では負荷の大き
さにより低圧節炭器8の入口給水温度を比較的高温側の
温度と比較的低温側の温度の2種類に設定するものであ
る。
The configuration of the temperature / flow rate controller 18 in the prior art is the same as that of the low pressure
Although the opening degree of the flow control valve 16 is controlled so that the inlet water supply temperature of the fuel cell becomes 50 ° C., in the present invention, the inlet water supply temperature of the low-pressure economizer 8 is set to a relatively high temperature side depending on the size of the load. The temperature and the temperature on the relatively low temperature side are set to two types.

【0016】図1〜図4に示す例では、比較的高温側の
給水温度を80℃とし、比較的低温側の温度を50℃に
設定している。前記高温側の給水温度を80℃に設定し
た理由は図3に示すように、80℃以上であれば、低圧
節炭器8の伝熱管への排ガス中の水分の結露水の蒸発完
了時間の差異が小さいためであり、また90〜100℃
に設定すると、それだけ低圧節炭器8入口への循環給水
流路20からの再循環流量が増加し、高圧給水ポンプ1
5の容量をオーバーするか、容量の大きい高圧給水ポン
プ15を用いる必要がある。 また、低圧節炭器8入口
給水温度を80℃に設定することで、一旦、結露した水
分の気化熱も十分供給できる。
In the examples shown in FIGS. 1 to 4, the supply water temperature on the relatively high temperature side is set to 80 ° C., and the temperature on the relatively low temperature side is set to 50 ° C. As shown in FIG. 3, the reason for setting the high-temperature side feedwater temperature to 80 ° C. is that if the temperature is 80 ° C. or more, the evaporation time of the dew condensation water of the moisture in the exhaust gas to the heat transfer tube of the low-pressure economizer 8 is reduced. Because the difference is small, and 90-100 ° C
, The recirculation flow rate from the circulating water supply channel 20 to the inlet of the low pressure economizer 8 increases, and the high pressure water pump 1
It is necessary to use a high-pressure water supply pump 15 having a capacity larger than 5 or a large capacity. In addition, by setting the supply water temperature at the low-pressure economizer 8 at 80 ° C., the heat of vaporization of water that has once condensed can be sufficiently supplied.

【0017】また、低圧節炭器8の入口給水温度を50
℃に設定した理由はガスタービン1の負荷が100%負
荷であっても排ガス中の水分の露点温度が約45℃であ
るので、露点温度以上の50℃に設定することで節炭器
8の低温腐食が生じないためである。
The inlet feed water temperature of the low-pressure economizer 8 is set to 50.
Because the dew point temperature of the moisture in the exhaust gas is about 45 ° C. even when the load on the gas turbine 1 is 100%, the setting of the economizer 8 is performed by setting the dew point temperature to 50 ° C. or higher. This is because low-temperature corrosion does not occur.

【0018】ボイラ3の起動時、すなわちガスタービン
(GT)1の起動時の以降の低圧節炭器8出口給水温度
と入口給水温度の時間変化特性をそれぞれそ図2(a)
と図2(b)に示す。また、図2(c)にはボイラ負荷
とガスタービン回転数とボイラに導入されるガス量及び
ボイラ出口ガス温度の時間変化を示す。
FIG. 2 (a) shows the time change characteristics of the outlet feedwater temperature and the inlet feedwater temperature of the low-pressure economizer 8 after the start of the boiler 3, that is, the start of the gas turbine (GT) 1.
And FIG. 2 (b). FIG. 2 (c) shows changes over time in the boiler load, the number of revolutions of the gas turbine, the amount of gas introduced into the boiler, and the gas temperature at the boiler outlet.

【0019】ボイラ起動初期においては、排ガス温度が
低いので、節炭器8での熱回収量が少なく、低圧節炭器
8出口の給水温度は50℃以下の温度となっており、当
然のことながら、低圧節炭器8入口の給水温度も50℃
以下である。従って、この場合は図2に示す露点温度以
下となっていることから、低圧節炭器8で排ガス中の水
分が結露することになる。従来は、低圧節炭器8出口給
水温度が上昇するに伴って低圧節炭器8入口への再循環
流量を流量調整弁16により調整しながら、低圧節炭器
8入口給水温度を50℃に制御していた。
In the early stage of the boiler start-up, since the exhaust gas temperature is low, the amount of heat recovered in the economizer 8 is small, and the feedwater temperature at the outlet of the low-pressure economizer 8 is 50 ° C. or less. Meanwhile, the water supply temperature at the inlet of the low-pressure economizer 8 is also 50 ° C.
It is as follows. Therefore, in this case, since the temperature is equal to or lower than the dew point temperature shown in FIG. 2, moisture in the exhaust gas is condensed in the low-pressure economizer 8. Conventionally, while the recirculation flow rate to the low-pressure economizer 8 inlet is adjusted by the flow control valve 16 with the rise of the low-pressure economizer 8 outlet feedwater temperature, the low-pressure economizer 8 inlet feedwater temperature is set to 50 ° C. Had control.

【0020】なお、図2(b)において、ボイラ負荷を
上げて行くと露点温度も上昇しているが、これはボイラ
負荷を上げて行くことによりガスタービンの燃料燃焼量
が増加し、燃料燃焼量が増加すると排ガス中の水分量も
増加し、その露点温度も上昇するためである。
In FIG. 2 (b), as the boiler load increases, the dew point temperature also increases. This is because the fuel consumption of the gas turbine increases as the boiler load increases. This is because when the amount increases, the amount of water in the exhaust gas also increases, and the dew point temperature also increases.

【0021】また、図2によると、従来技術では低圧節
炭器8出口給水温度が150℃になってしばらく経過し
た後に、始めて結露した水分が蒸発完了することになっ
ているが、これは、この間に温度の低い節炭器8の給水
入口部付近の局所的な部分に存在する結露水が蒸発する
ためである。
According to FIG. 2, according to the prior art, after a short time has passed since the water supply temperature at the outlet of the low-pressure economizer 8 became 150 ° C., the dew condensation was completed to evaporate for the first time. During this time, the dew condensation present in a local portion near the water supply inlet of the economizer 8 having a low temperature evaporates.

【0022】図3は給水温度と結露水の蒸発完了時間の
関係を示すが、従来技術のように給水温度を50℃に設
定したままだと、起動時に生成した結露水が蒸発完了す
るまで約3時間を要することが分かるが、本発明のよう
にボイラ起動時から低圧節炭器8入口の給水温度を一旦
80℃まで上昇させておくと、80℃における結露水の
蒸発完了時間は0.15時間で良いことがわかる。
FIG. 3 shows the relationship between the feed water temperature and the evaporation completion time of the condensed water. If the supply water temperature is set at 50.degree. It can be seen that it takes three hours, but once the feedwater temperature at the inlet of the low-pressure economizer 8 is raised to 80 ° C. from the start of the boiler as in the present invention, the evaporation completion time at 80 ° C. for the condensed water is 0. It turns out that 15 hours is good.

【0023】本発明の一実施の形態では図2に示すよう
に、ボイラ起動時から流量調整弁16の開度調整により
低圧節炭器8への給水の再循環流量を増加させることに
よって、低圧節炭器8入口の給水温度を一旦80℃まで
上昇させ、80℃における結露水の蒸発完了のために、
この温度を0.15時間以上維持し、その後、低圧節炭
器8入口の給水温度を所定の50℃に維持する制御に戻
すものである。
In one embodiment of the present invention, as shown in FIG. 2, the recirculation flow rate of water supplied to the low-pressure economizer 8 is increased by adjusting the opening of the flow control valve 16 from the start of the boiler, thereby reducing the low pressure. The water supply temperature at the inlet of the economizer 8 is once raised to 80 ° C, and in order to complete the evaporation of dew condensation water at 80 ° C,
This temperature is maintained for 0.15 hours or more, and thereafter, the control is returned to the control for maintaining the feedwater temperature at the inlet of the low-pressure economizer 8 at a predetermined 50 ° C.

【0024】ここで、低圧節炭器8入口の給水温度が8
0℃になる時のボイラ負荷(ガスタービン1の負荷信号
による)の値はβに対応するので、ボイラ起動時から流
量調整弁16の開度調整により低圧節炭器8への給水の
再循環流量を増加させて、ボイラ負荷βに達してから
0.15時間以上にわたり前記給水の再循環流量を維持
することで、前記結露水の蒸発を完了させることもでき
る。また、ボイラ負荷βの代わりに、低圧節炭器8入口
へ給水量Wまたはボイラ負荷βと相関関係のある高圧ま
たは低圧の蒸気流量または高圧主蒸気温度を用いること
も可能である。
Here, the feed water temperature at the inlet of the low-pressure economizer 8 is 8
Since the value of the boiler load at 0 ° C. (according to the load signal of the gas turbine 1) corresponds to β, the recirculation of the water supply to the low-pressure economizer 8 by adjusting the opening of the flow control valve 16 from the start of the boiler. By increasing the flow rate and maintaining the recirculation flow rate of the feedwater for 0.15 hours or more after reaching the boiler load β, the evaporation of the condensed water can be completed. Further, instead of the boiler load β, it is also possible to use a high-pressure or low-pressure steam flow rate or a high-pressure main steam temperature correlated with the water supply amount W or the boiler load β to the low-pressure economizer 8.

【0025】本発明と従来技術を結露水の生成とその蒸
発完了までの節炭器8の湿潤時間(結露時間+その蒸発
完了時間)で比較すると、本発明の場合は湿潤時間は結
露時間1時間とその蒸発完了時間0.15時間の合計
1.15時間であるのに対して従来技術の場合は湿潤時
間は結露時間1時間とその蒸発完了時間3時間の合計4
時間である。
A comparison between the present invention and the prior art in terms of the wetting time of the economizer 8 until the completion of the formation and evaporation of the condensed water (condensation time + the completion time of the evaporation), in the case of the present invention, the wetting time is 1 In the case of the prior art, the wetting time is 1 hour of dew condensation time and 3 hours of evaporation completion time, which is 1.15 hours, which is the sum of the time and the evaporation completion time of 0.15 hours.
Time.

【0026】したがって、本発明は従来技術に比べて約
30%の湿潤時間の短縮になり、これにより低温腐食に
対する低圧節炭器8の寿命が約3倍になる。これは腐食
代として従来は3mmの鋼材を使用していたものを本発
明では1mmのものを使用でき、節炭器8の伝熱管の肉
厚を薄くすることができる効果もある。
Thus, the present invention reduces the wetting time by about 30% compared to the prior art, thereby about three times the life of the low pressure economizer 8 against cold corrosion. This has the effect that the thickness of the heat transfer tube of the economizer 8 can be reduced by using a steel material having a thickness of 1 mm in the present invention instead of using a steel material of 3 mm as a corrosion allowance.

【0027】また、排ガス条件や複合発電プラントの違
いにより前記蒸発完了時間0.15時間は一義的には決
定できないが、排熱回収ボイラ3の排ガス温度が100
℃程度であれば、給水温度50℃の低圧節炭器8の伝熱
管の表面に付着した結露水が0.15時間で蒸発完了す
るので、ガス温度が100℃以上であれば、前記蒸発完
了時間は0.15時間より短くなる。
Although the evaporation completion time 0.15 hours cannot be uniquely determined due to the difference in exhaust gas conditions and the combined cycle power plant, the exhaust gas temperature of the exhaust heat recovery boiler 3 is 100%.
If the gas temperature is 100 ° C. or more, the condensation is completed when the gas temperature is 100 ° C. or more, since the condensation water attached to the surface of the heat transfer tube of the low-pressure economizer 8 at the feed water temperature of 50 ° C. The time is shorter than 0.15 hours.

【0028】ここで、低圧節炭器8入口側への再循環流
量を増加させて所定温度(80℃)にした後、所定温度
(50℃)の通常の制御に戻すタイミングとしては、温
度・流量制御器18を図4に示すようにボイラ負荷αま
たは低圧節炭器8入口の給水量Wによって低圧節炭器8
入口の給水温度の設定値を変化させる方法を用いること
ができる。
Here, after the recirculation flow rate to the low-pressure economizer 8 inlet side is increased to a predetermined temperature (80 ° C.), the timing for returning to the normal control of the predetermined temperature (50 ° C.) is as follows. As shown in FIG. 4, the flow rate controller 18 is controlled by the boiler load α or the water supply amount W at the inlet of the low-pressure economizer 8.
A method of changing the set value of the inlet feedwater temperature can be used.

【0029】図2(b)、図2(c)から分かるよう
に、この場合のボイラ負荷が起動時から所定値α(α>
β)になるまでの間は、低圧節炭器8入口部における結
露水の蒸発は完了している。
As can be seen from FIGS. 2B and 2C, the boiler load in this case has a predetermined value α (α>
Until β), the evaporation of the condensed water at the inlet of the low-pressure economizer 8 has been completed.

【0030】また、図5に示すようにボイラ負荷αまた
は低圧節炭器8入口の給水量Wによって流量調整弁16
の開度を2種類に分けて低圧節炭器8入口への給水再循
環流量を調整する方法がある。図5に示す方法はボイラ
起動時からボイラ負荷が所定値α以下の間は、流量調整
弁16には低圧節炭器8の入口給水温度が所定温度(8
0℃)になるように所定の開度を維持させ、その後は低
圧節炭器8入口の給水温度が所定の値(50℃)になる
ように通常の流量調整弁16の開度制御に戻すものであ
る。
As shown in FIG. 5, the flow control valve 16 is controlled by the boiler load α or the water supply amount W at the inlet of the low-pressure economizer 8.
There is a method of dividing the opening degree into two types and adjusting the feedwater recirculation flow rate to the low-pressure economizer 8 inlet. In the method shown in FIG. 5, when the boiler load is equal to or less than the predetermined value α from the start of the boiler, the water supply temperature at the inlet of the low-pressure economizer 8 is set to the predetermined temperature (8
0 ° C.), and then return to normal opening degree control of the flow control valve 16 so that the feedwater temperature at the inlet of the low-pressure economizer 8 becomes a predetermined value (50 ° C.). Things.

【0031】また、図4および図5のボイラ負荷αまた
は低圧節炭器8入口へ給水量Wの代わりに、ボイラ負荷
αと相関関係のある高圧または低圧の蒸気流量または高
圧主蒸気温度を用いることも可能である。
In place of the water supply amount W to the inlet of the boiler load α or the low-pressure economizer 8 shown in FIGS. 4 and 5, a high-pressure or low-pressure steam flow rate or a high-pressure main steam temperature correlated with the boiler load α is used. It is also possible.

【0032】上記各例ではボイラ起動時からの制御につ
いて述べたが、本発明はボイラ起動時に限らず、ボイラ
負荷が低下して低圧節炭器8の排ガス入口部分が低温腐
食のおそれがある場合にも適用できる。なお、図1は高
圧と低圧ドラムを有する二重圧の排熱回収ボイラを例に
とって説明したが、当然のことながら、一重圧または三
重圧の場合にも適用可能である。
In each of the above examples, the control from the start of the boiler has been described. However, the present invention is not limited to the start of the boiler, and the boiler load is reduced and the exhaust gas inlet portion of the low-pressure economizer 8 may be corroded at low temperature. Also applicable to Although FIG. 1 illustrates an example of a double-pressure exhaust heat recovery boiler having a high-pressure drum and a low-pressure drum, it is needless to say that the present invention is also applicable to a single pressure or triple pressure.

【0033】また、流量調整弁16の開度により低圧節
炭器8入口への給水再循環流量を調整する方法に代えて
図6に示すように可変流量ポンプ22を用いて低圧節炭
器8入口への給水再循環流量を調整する制御を行っても
良い。
In addition, instead of adjusting the flow rate of recirculating water to the inlet of the low-pressure economizer 8 by the opening degree of the flow control valve 16, a variable-pressure pump 22 is used as shown in FIG. Control for adjusting the feedwater recirculation flow rate to the inlet may be performed.

【0034】[0034]

【発明の効果】本発明によれば、ボイラ起動時などにお
いて低圧節炭器が結露水にさらされる時間が、従来の約
3時間(50℃の場合)から、約0.15時間(80℃
の場合)に短縮(1/20)されるので、低圧節炭器の
伝熱管の低温腐食を大幅に抑制することができる。
According to the present invention, the time during which the low-pressure economizer is exposed to the condensed water when the boiler is started up is reduced from about 3 hours (at 50 ° C.) to about 0.15 hours (80 ° C.).
) Is reduced to (1/20), so that low-temperature corrosion of the heat transfer tube of the low-pressure economizer can be significantly suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明と従来技術が適用される排熱回収ボイ
ラの起動時の以降の低圧節炭器入口の温度・流量制御器
の操作を説明する図である。
FIG. 1 is a diagram illustrating the operation of a temperature / flow rate controller at the inlet of a low-pressure economizer after the start-up of an exhaust heat recovery boiler to which the present invention and the prior art are applied.

【図2】 本発明が適用される排熱回収ボイラの起動時
の以降の低圧節炭器出口給水温度の時間変化特性(図2
(a))と低圧節炭器入口給水温度の時間変化特性(図
2(b))であり、図2(c)はボイラ負荷とガスター
ビン回転数とボイラに導入されるガス量、ボイラ出口ガ
ス温度の時間変化を示す図である。
FIG. 2 is a time change characteristic of a low-pressure economizer outlet water supply temperature after the start of the exhaust heat recovery boiler to which the present invention is applied (FIG. 2)
(A)) and the time change characteristics of the low-pressure economizer inlet feedwater temperature (FIG. 2 (b)). FIG. 2 (c) shows the boiler load, the gas turbine speed, the amount of gas introduced into the boiler, and the boiler outlet. FIG. 4 is a diagram showing a change in gas temperature over time.

【図3】 本発明が適用される排熱回収ボイラの節炭器
への給水温度と結露水の蒸発完了時間の関係を示す図で
ある。
FIG. 3 is a diagram showing the relationship between the temperature of feed water to the economizer of the waste heat recovery boiler to which the present invention is applied and the completion time of condensation water evaporation.

【図4】 本発明が適用される排熱回収ボイラの負荷ま
たは給水量によって低圧節炭器入口の給水温度の設定値
を変化させる方法を示す図である。
FIG. 4 is a diagram illustrating a method of changing a set value of a feedwater temperature at a low-pressure economizer according to a load or a feedwater quantity of an exhaust heat recovery boiler to which the present invention is applied.

【図5】 本発明が適用される排熱回収ボイラの負荷ま
たは給水量によって流量調整弁の開度を規定する方法を
示す図である。
FIG. 5 is a diagram showing a method of defining the opening of the flow control valve according to the load or the amount of supplied water of the exhaust heat recovery boiler to which the present invention is applied.

【図6】 本発明が適用される複合発電プラントの系統
図である。
FIG. 6 is a system diagram of a combined cycle power plant to which the present invention is applied.

【図7】 本発明が適用される複合発電プラントの系統
図である。
FIG. 7 is a system diagram of a combined cycle power plant to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1 ガスタービン 2 発電機 3 排熱回収ボイラ 4 過熱器 5 高圧蒸発器 6 高圧節炭器 7 低圧蒸発器 8 低圧節炭器 9 低圧ドラム 10 高圧ドラム 12 蒸気タービン 13 復水器 14 復水ポンプ 15 高圧給水ポ
ンプ 16 流量調整弁 17 低圧節炭器
入口給水温度検出器 18 温度・流量制御器 19 給水流路 20 循環給水流路 21 給水流量検
出器 22 可変流量ポンプ
DESCRIPTION OF SYMBOLS 1 Gas turbine 2 Generator 3 Waste heat recovery boiler 4 Superheater 5 High pressure evaporator 6 High pressure economizer 7 Low pressure evaporator 8 Low pressure economizer 9 Low pressure drum 10 High pressure drum 12 Steam turbine 13 Condenser 14 Condenser pump 15 High pressure feed water pump 16 Flow rate control valve 17 Low pressure economizer inlet feed water temperature detector 18 Temperature / flow rate controller 19 Feed water flow path 20 Circulating feed water flow path 21 Feed water flow rate detector 22 Variable flow rate pump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉崎 弘師 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 (72)発明者 豊嶋 耕一 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 (72)発明者 河原 淳夫 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Hiroshi Yoshizaki, Inventor 6-9 Takaracho, Kure-shi, Hiroshima Pref. Inside the Kure Plant (72) Inventor Koichi Toyoshima 6-9 Takaracho, Kure-shi, Hiroshima Babcock-Hitachi, Ltd. Inside the Kure Factory (72) Inventor Atsushi Kawahara 6-9 Takaracho, Kure City, Hiroshima Pref. Babcock Hitachi Kure Factory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 低圧節炭器で加熱された低圧節炭器出口
給水の一部を低圧節炭器入口へ再循環させる排熱回収ボ
イラにおいて、 ボイラ起動時又はボイラ低負荷時に、前記低圧節炭器入
口の給水温度が低圧節炭器の結露水を蒸発させるのに十
分な温度以上に、少なくとも0.15時間以上維持する
ように低圧節炭器入口へ再循環させる低圧節炭器出口給
水の流量を調整することを特徴とする排熱回収ボイラの
給水温度制御方法。
1. A waste heat recovery boiler for recirculating a part of a low-pressure economizer outlet feedwater heated by a low-pressure economizer to an inlet of the low-pressure economizer, wherein the low-pressure economizer is activated when the boiler is started or when the boiler is under a low load. Low pressure economizer outlet feedwater recirculated to the low pressure economizer inlet so that the feedwater temperature at the coal appliance inlet is maintained above a temperature sufficient to evaporate the dew water of the low pressure economizer for at least 0.15 hours. A method for controlling the temperature of feed water of an exhaust heat recovery boiler, comprising adjusting a flow rate of water.
【請求項2】 低圧節炭器入口給水温度をボイラ負荷信
号、負荷信号と相関関係のある物理量または低圧節炭器
入口の給水量のいずれかが所定値になるまで前記低圧節
炭器入口の給水温度が低圧節炭器の結露水を蒸発させる
のに十分な温度以上に、少なくとも0.15時間以上維
持するように低圧節炭器入口へ再循環させる低圧節炭器
出口給水の流量を調整すること特徴とする請求項1記載
の排熱回収ボイラの給水温度制御方法。
2. The low-pressure economizer inlet feedwater temperature is measured until the boiler load signal, the physical quantity correlated with the load signal or the low-pressure economizer inlet feedwater reaches a predetermined value. Adjust the flow rate of the low-pressure economizer outlet feedwater to be recirculated to the low-pressure economizer inlet so that the feedwater temperature is maintained above the temperature sufficient to evaporate the dew water from the low-pressure economizer for at least 0.15 hours The method for controlling the temperature of feed water of an exhaust heat recovery boiler according to claim 1, wherein:
【請求項3】 低圧節炭器で加熱された低圧節炭器出口
給水の一部を低圧節炭器入口へ再循環させる排熱回収ボ
イラにおいて、 ボイラ起動時又はボイラ低負荷時に、ボイラ負荷信号、
ボイラ負荷信号と相関関係のある物理量または低圧節炭
器入口の給水量が所定値になるまで、前記低圧節炭器入
口の給水温度が低圧節炭器の結露水を蒸発させるのに十
分な温度以上になるように低圧節炭器入口へ再循環させ
る低圧節炭器出口給水の流量を調整し、ボイラ負荷信
号、負荷信号と相関関係のある物理量または低圧節炭器
入口の給水量のいずれかが前記所定値になると低圧節炭
器低温腐食防止温度以上の温度になるように低圧節炭器
入口へ再循環させる低圧節炭器出口給水の流量を調整す
ることをことを特徴とする排熱回収ボイラの給水温度制
御方法。
3. A waste heat recovery boiler for recirculating a part of the low-pressure economizer outlet feed water heated by the low-pressure economizer to the low-pressure economizer inlet. ,
Until the physical quantity correlated with the boiler load signal or the water supply amount at the low-pressure economizer inlet reaches a predetermined value, the water supply temperature at the low-pressure economizer inlet is a temperature sufficient to evaporate the dew water of the low-pressure economizer. Adjust the flow rate of the low-pressure economizer outlet feedwater to be recirculated to the low-pressure economizer inlet so that the boiler load signal, a physical quantity correlated with the load signal, or the low-pressure economizer inlet waterfeed rate Adjusting the flow rate of the low-pressure economizer outlet feedwater to be recirculated to the low-pressure economizer inlet so that the temperature becomes equal to or higher than the low-pressure economizer low-temperature corrosion prevention temperature when the predetermined value is reached. Water supply temperature control method for recovery boiler.
【請求項4】 低圧節炭器入口に給水する給水系統と、
低圧節炭器を通過した給水を低圧節炭器入口へ再循環さ
せる給水系統を設け、低圧節炭器を通過した給水の低圧
節炭器入口への再循環流量を調整する再循環流量調整手
段とを備えた排熱回収ボイラにおいて、 低圧節炭器入口の給水温度検出手段と、 低圧節炭器入口の給水流量検出手段と、 ボイラ起動時または低負荷時に、前記2つの検出手段の
所定の検出値に基づき低圧節炭器入口の給水温度が低圧
節炭器の結露水を蒸発させるのに十分な温度以上にな
り、当該温度を少なくとも0.15時間以上維持するた
めに再循環流量調整手段による低圧節炭器を通過した給
水の低圧節炭器入口への再循環流量を調整する再循環流
量制御装置を備えたことを特徴とする排熱回収ボイラの
給水温度制御装置。
4. A water supply system for supplying water to an inlet of the low-pressure economizer,
Recirculation flow adjusting means for providing a water supply system that recirculates feedwater that has passed through the low-pressure economizer to the low-pressure economizer inlet, and adjusts the recirculation flow rate of the feedwater that has passed through the low-pressure economizer to the low-pressure economizer inlet A wastewater heat recovery boiler comprising: a feedwater temperature detecting means at a low-pressure economizer inlet; a feedwater flow rate detecting means at a low-pressure economizer inlet; Based on the detected value, the feed water temperature at the low-pressure economizer inlet becomes higher than the temperature sufficient to evaporate the dew condensation water of the low-pressure economizer, and the recirculation flow rate adjusting means for maintaining the temperature for at least 0.15 hours or more. A recirculation flow rate control device for adjusting a recirculation flow rate of feedwater passing through the low-pressure economizer to the low-pressure economizer inlet.
【請求項5】 ボイラ負荷値、ボイラ負荷値と相関関係
のある物理量または低圧節炭器入口の給水量のいずれか
の検出手段を設け、ボイラ起動時または低負荷時に、再
循環流量制御装置は、前記いずれかの検出手段が所定の
検出値を検出するまでは低圧節炭器入口の給水温度が低
圧節炭器の結露水を蒸発させるのに十分な温度以上にな
るように再循環流量調整手段による低圧節炭器を通過し
た給水の低圧節炭器入口への再循環流量を調整し、さら
に前記ボイラ負荷値、ボイラ負荷値と相関関係のある物
理量または低圧節炭器入口の給水量のいずれかの検出手
段が前記所定の検出値を検出すると、前記低圧節炭器入
口への再循環流量を低圧節炭器低温腐食防止温度以上の
温度になるように再循環流量調整手段を制御することを
特徴とする請求項4記載の排熱回収ボイラの給水温度制
御装置。
5. A recirculation flow control device comprising: a boiler load value; a physical quantity correlated with the boiler load value; or a water supply amount at a low-pressure economizer inlet. The recirculation flow rate is adjusted so that the feedwater temperature at the low-pressure economizer inlet is higher than the temperature sufficient to evaporate the dew condensation water of the low-pressure economizer until any of the detection means detects a predetermined detection value. Means for controlling the recirculation flow rate of the feedwater passed through the low-pressure economizer to the low-pressure economizer inlet, and further controlling the boiler load value, a physical quantity correlated with the boiler load value, or the feedwater volume at the low-pressure economizer inlet. When any of the detection means detects the predetermined detection value, the control means controls the recirculation flow rate adjusting means so that the recirculation flow rate to the low-pressure economizer low temperature is equal to or higher than the low-pressure economizer low-temperature corrosion prevention temperature. 5. The method according to claim 4, wherein A feedwater temperature control device for an exhaust heat recovery boiler as described above.
JP24554897A 1997-09-10 1997-09-10 Method and apparatus for controlling temperature of feed water in exhaust heat recovery boiler Expired - Lifetime JP4017712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24554897A JP4017712B2 (en) 1997-09-10 1997-09-10 Method and apparatus for controlling temperature of feed water in exhaust heat recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24554897A JP4017712B2 (en) 1997-09-10 1997-09-10 Method and apparatus for controlling temperature of feed water in exhaust heat recovery boiler

Publications (2)

Publication Number Publication Date
JPH1182913A true JPH1182913A (en) 1999-03-26
JP4017712B2 JP4017712B2 (en) 2007-12-05

Family

ID=17135346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24554897A Expired - Lifetime JP4017712B2 (en) 1997-09-10 1997-09-10 Method and apparatus for controlling temperature of feed water in exhaust heat recovery boiler

Country Status (1)

Country Link
JP (1) JP4017712B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012117703A (en) * 2010-11-29 2012-06-21 Babcock Hitachi Kk Exhaust heat recovery boiler, and method for preventing corrosion during stopping of the same
CN112567110A (en) * 2018-10-15 2021-03-26 三菱动力株式会社 Control device for power generation facility, control method and control program for power generation facility, and power generation facility

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012117703A (en) * 2010-11-29 2012-06-21 Babcock Hitachi Kk Exhaust heat recovery boiler, and method for preventing corrosion during stopping of the same
CN112567110A (en) * 2018-10-15 2021-03-26 三菱动力株式会社 Control device for power generation facility, control method and control program for power generation facility, and power generation facility
CN112567110B (en) * 2018-10-15 2023-06-20 三菱重工业株式会社 Control device for power generation facility, control method for power generation facility, control program for power generation facility, and power generation facility

Also Published As

Publication number Publication date
JP4017712B2 (en) 2007-12-05

Similar Documents

Publication Publication Date Title
JP4540472B2 (en) Waste heat steam generator
US4274256A (en) Turbine power plant with back pressure turbine
JP7111525B2 (en) Once-through heat recovery boiler and control system for once-through heat recovery boiler
JP2003161164A (en) Combined-cycle power generation plant
JPH0933005A (en) Water feeding device for waste heat recovery boiler
KR860002042B1 (en) Control method of absorption type cold and warm water system
JP4507098B2 (en) Fluid circulation operation equipment and operation method for supercritical constant pressure once-through boiler
JP2001108201A (en) Multiple pressure waste heat boiler
JPH1182913A (en) Method and device for controlling feed water temperature of exhaust heat recovery boiler
JPS5925853B2 (en) Power plant operation control method and device for implementing this method
JPH10292902A (en) Main steam temperature controller
JP2839195B2 (en) Waste heat recovery boiler water supply control device
JP2512728B2 (en) Boiler water quality adjustment device
JP2680454B2 (en) Method and apparatus for controlling chemical injection of waste heat recovery heat exchanger
JPH0758121B2 (en) Recycling controller for economizer
JP2531801B2 (en) Exhaust heat recovery heat exchanger controller
JP2971629B2 (en) Waste heat recovery boiler
JP2005313116A (en) Apparatus and method for treating water of combined cycle electric power plant, and combined cycle electric power plant
JPS6326801B2 (en)
JP2604117B2 (en) Double pressure type waste heat boiler water supply system
JPH05322105A (en) Device for heating feedwater for boiler
JP2716442B2 (en) Waste heat recovery boiler device
JPH11325408A (en) Operation control method of boiler
JPH1122421A (en) Refuse incinerating power plant
JPH0949606A (en) Variable pressure once-through boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070802

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term