JP2680454B2 - Method and apparatus for controlling chemical injection of waste heat recovery heat exchanger - Google Patents

Method and apparatus for controlling chemical injection of waste heat recovery heat exchanger

Info

Publication number
JP2680454B2
JP2680454B2 JP1329676A JP32967689A JP2680454B2 JP 2680454 B2 JP2680454 B2 JP 2680454B2 JP 1329676 A JP1329676 A JP 1329676A JP 32967689 A JP32967689 A JP 32967689A JP 2680454 B2 JP2680454 B2 JP 2680454B2
Authority
JP
Japan
Prior art keywords
low
pressure steam
heat exchanger
heat recovery
steam drum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1329676A
Other languages
Japanese (ja)
Other versions
JPH03194301A (en
Inventor
孝幸 長嶋
肇 塩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1329676A priority Critical patent/JP2680454B2/en
Publication of JPH03194301A publication Critical patent/JPH03194301A/en
Application granted granted Critical
Publication of JP2680454B2 publication Critical patent/JP2680454B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D11/00Feed-water supply not provided for in other main groups
    • F22D11/006Arrangements of feedwater cleaning with a boiler

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、圧力の異なる複数の蒸気発生部から構成さ
れる排熱回収熱交換器の薬注制御方法および装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of use) The present invention relates to a chemical injection control method and apparatus for an exhaust heat recovery heat exchanger, which is composed of a plurality of steam generators having different pressures.

(従来の技術) 一般の火力発電で使用されている蒸気タービンにガス
タービンを一体に組み合わせて発電を行う複合サイクル
発電プラント(コンバインドサイクルプラント)の実用
化が進められている。この複合サイクル発電によればガ
スタービンが排出する高温ガスを排熱回収熱交換器に導
いて蒸気を発生せしめ、発生した蒸気により蒸気タービ
ンを駆動しているため、従来の蒸気タービン発電に比べ
発電効率が数ポイント上昇し、エネルギーの利用効率を
大幅に向上させることができる。
(Prior Art) A combined cycle power plant (combined cycle plant) for generating power by integrally combining a gas turbine with a steam turbine used in general thermal power generation is being put into practical use. According to this combined cycle power generation, high temperature gas discharged from a gas turbine is guided to an exhaust heat recovery heat exchanger to generate steam, and the steam turbine is driven by the generated steam, so compared to conventional steam turbine power generation. The efficiency can be increased by several points, and the energy utilization efficiency can be greatly improved.

このコンバインドサイクルプラントにおいては、通
常、熱効率をより向上させるために、低圧蒸気および高
圧蒸気を発生させるよう、操作圧力が異なる複数のボイ
ラを組み合わせて構成した排熱回収熱交換器が設けられ
ている。
In this combined cycle plant, an exhaust heat recovery heat exchanger configured by combining a plurality of boilers with different operating pressures is usually provided to generate low-pressure steam and high-pressure steam in order to further improve thermal efficiency. .

第3図は従来のコンバインドサイクルプラントの構成
を示す系統図である。排熱回収熱交換器は、ガスタービ
ンの燃焼排ガスが通る煙道1内に予熱器2、低圧蒸気ド
ラム3の低圧蒸発器4、高圧節炭器5、高圧蒸気ドラム
6の高圧蒸発器7および過熱器8を直列に配置して構成
される。
FIG. 3 is a system diagram showing the configuration of a conventional combined cycle plant. The exhaust heat recovery heat exchanger includes a preheater 2, a low pressure evaporator 4 of a low pressure steam drum 3, a high pressure economizer 5, a high pressure evaporator 7 of a high pressure steam drum 6 in a flue 1 through which combustion exhaust gas of a gas turbine passes. The superheater 8 is arranged in series.

復水器9で凝縮した復水は復水ポンプ10によってボイ
ラ給水として予熱器2に供給される。給水はここで予熱
されて低圧蒸気ドラム3へ供給される。供給された給水
は低圧蒸発器4で加熱されて低圧蒸気となり、この低圧
蒸気は蒸気配管11を通り蒸気タービン12の低圧側に供給
される。
Condensed water condensed in the condenser 9 is supplied to the preheater 2 as boiler feed water by the condensate pump 10. The feed water is here preheated and supplied to the low-pressure steam drum 3. The supplied feed water is heated in the low-pressure evaporator 4 to become low-pressure steam, and this low-pressure steam is supplied to the low-pressure side of the steam turbine 12 through the steam pipe 11.

一方低圧蒸気ドラム3から高圧給水ポンプ13により高
圧節炭器5を経て高圧蒸気ドラム6ヘ供給された給水は
高圧蒸発器11で高圧蒸気となる。発生した高圧蒸気は過
熱器8において過熱された後に蒸気配管14を通り、蒸気
タービン12の高圧側に供給される。
On the other hand, the feed water supplied from the low-pressure steam drum 3 to the high-pressure steam drum 6 by the high-pressure water supply pump 13 through the high-pressure economizer 5 becomes high-pressure steam in the high-pressure evaporator 11. The generated high-pressure steam is superheated in the superheater 8 and then passes through the steam pipe 14 to be supplied to the high-pressure side of the steam turbine 12.

ところでこの種の排熱回収熱交換器においては腐食や
スケール生成を防止するためにボイラ給水の管理が極め
て重要である。特に効率を上昇させるために高温高圧で
運転する排熱回収熱交換器においてはボイラ給水の水質
に対する要求水準はより高くなっている。このボイラ給
水の水処理を行いその水質を適正に維持するために薬注
制御装置が装備されている。
By the way, in this type of exhaust heat recovery heat exchanger, management of boiler feed water is extremely important in order to prevent corrosion and scale formation. Especially, in the exhaust heat recovery heat exchanger operated at high temperature and high pressure in order to increase efficiency, the required level for the water quality of boiler feed water is higher. A chemical injection control device is equipped to perform water treatment of the boiler feed water and maintain the water quality appropriately.

薬注制御装置は一般にリン酸ソーダなどの低リン酸塩
を給水中に添加し、給水のPH(水素イオン濃度指数)を
9.5〜11程度に維持することにより、高温下におけるボ
イラ構成部材の腐食を防止するものである。
The chemical injection control device generally adds low phosphate such as sodium phosphate to the feed water to adjust the PH (hydrogen ion concentration index) of the feed water.
By maintaining the temperature at about 9.5 to 11, corrosion of the boiler components at high temperature is prevented.

ところが低圧蒸気ドラムおよび高圧蒸気ドラムなど複
数の蒸気発生部から構成される排熱回収熱交換器の場合
に、各蒸気発生部のドラムにそれぞれリン酸ソーダを間
欠的に注入するという薬注制御方式は不適当である。す
なわち第3図に示す排熱回収熱交換器の構成からも明ら
かなように復水器9からの復水がボイラ給水として復水
ポンプ10によって低圧蒸気ドラム3に連続的に供給さ
れ、さらに低圧蒸気ドラム3から高圧給水ポンプ13によ
り給水が高圧蒸気ドラム6へ連続的に供給される。その
ため低圧蒸気ドラム3では間欠注入されたリン酸ソーダ
は補給される給水によって次第に希釈されてしまう。そ
のため低圧蒸気ドラム3に対しては間欠注入方式よりも
むしろ連続注入方式を採用しなければ給水のPH値(水素
イオン濃度指数)を所定値以上に維持することが困難と
なる。
However, in the case of an exhaust heat recovery heat exchanger consisting of multiple steam generators such as a low-pressure steam drum and a high-pressure steam drum, a chemical injection control method in which sodium phosphate is intermittently injected into each steam generator drum. Is inappropriate. That is, as is clear from the structure of the exhaust heat recovery heat exchanger shown in FIG. 3, the condensate from the condenser 9 is continuously supplied to the low-pressure steam drum 3 as the boiler feed water by the condensate pump 10, and the low pressure is further reduced. Water is continuously supplied from the steam drum 3 to the high-pressure steam drum 6 by the high-pressure water supply pump 13. Therefore, in the low-pressure steam drum 3, the intermittently injected sodium phosphate is gradually diluted by the supplied water. Therefore, it is difficult to maintain the PH value (hydrogen ion concentration index) of the feed water at a predetermined value or more unless the continuous injection method is adopted for the low-pressure steam drum 3 rather than the intermittent injection method.

一方高圧蒸気ドラム6では、低圧蒸気発生部で注入さ
れたリン酸ソーダを含む給水がそのまま供給されるた
め、薬注処理を行う必要はなく、逆に高圧蒸発部では経
時的にリン酸ソーダが濃縮され、水質の基準値を越える
可能性が大きくなる。そのため高圧蒸発部系統の水質を
基準値内に保持するために、間欠的に高圧蒸気ドラム6
の缶水を系外に排出するブロー操作を実施することが余
儀なくされる。また上記のような現象を防止するために
は低圧蒸発部と高圧蒸発部でそれぞれ異なる水処理方法
を採用する必要がある。
On the other hand, in the high-pressure steam drum 6, the feed water containing the sodium phosphate injected in the low-pressure steam generator is supplied as it is, so that it is not necessary to carry out the chemical injection treatment. It is concentrated and there is a high possibility that it will exceed the standard value of water quality. Therefore, in order to keep the water quality of the high-pressure evaporation system within the standard value, the high-pressure steam drum 6 is intermittently operated.
It is inevitable to carry out a blow operation for discharging the can water of the above to the outside of the system. Further, in order to prevent the above phenomenon, it is necessary to adopt different water treatment methods for the low-pressure evaporator and the high-pressure evaporator.

上記の問題を解決する一手段として、高圧蒸気ドラム
と低圧蒸気ドラムとの間に減圧弁を介装した缶水戻り管
を設置し、高圧蒸気ドラム内で濃縮されたリン酸ソーダ
を低圧蒸気ドラムに戻し、両系統の水質を均一化する手
段が、特開昭60−122802号公報に開示されている。
As one means for solving the above problems, a can water return pipe having a pressure reducing valve interposed between the high-pressure steam drum and the low-pressure steam drum is installed, and sodium phosphate concentrated in the high-pressure steam drum is used for the low-pressure steam drum. Japanese Patent Application Laid-Open No. 60-122802 discloses a means for making the water quality of both systems uniform.

しかしながら上記方式を用いると、高温高圧の缶水が
部分的にも低温低圧側に還流されることとなるため、プ
ラントの熱効率の低下を招くとともに、減圧弁やオリフ
ィス等の構成材のエロージョンやコロージョンが頻発
し、設備の耐久性が低下する問題がある。
However, when the above method is used, the high-temperature high-pressure can water is partially recirculated to the low-temperature low-pressure side, which leads to a decrease in the thermal efficiency of the plant and also causes erosion and corrosion of components such as pressure reducing valves and orifices. Frequently occurs, and there is a problem that the durability of the equipment is reduced.

上記の問題点を解決する手段として、例えば特開昭63
−91407号公報に開示されるような薬注制御方法が提案
されている。この薬注制御に使用される装置は第3図に
示すように、低圧蒸気ドラム3に復水を供給する配管系
に、通常運転時に薬注液として例えばアンモニアのよう
な揮発性アルカリ処理剤を注入するアンモニアポンプ15
およびアンモニアタンク16と、高圧蒸気ドラム6にリン
酸ソーダを供給するリン酸ソーダ注入弁17、リン酸ソー
ダポンプ18、リン酸ソーダタンク20とから成る。そして
低圧側の缶水のPH値をアンモニアによって上昇させる一
方、高圧側の缶水のPH値をリン酸ソーダによって上昇さ
せて、各系内機器の腐食を防止している。
As means for solving the above problems, for example, Japanese Patent Laid-Open No.
A drug injection control method disclosed in Japanese Patent Publication No. 91407 has been proposed. As shown in FIG. 3, the device used for this chemical injection control has a volatile alkali treatment agent such as ammonia as a chemical injection liquid in a pipe system for supplying condensate to the low-pressure steam drum 3 during normal operation. Ammonia pump to inject 15
And an ammonia tank 16 and a sodium phosphate injection valve 17 for supplying sodium phosphate to the high-pressure steam drum 6, a sodium phosphate pump 18, and a sodium phosphate tank 20. Then, while increasing the PH value of the can water on the low pressure side with ammonia, the PH value of the can water on the high pressure side is increased with sodium phosphate to prevent corrosion of equipment in each system.

(発明が解決しようとする課題) しかしながら上記のような低圧蒸気ドラムに揮発性ア
ルカリ処理剤を注入して缶水のPH値を制御する薬注制御
装置を、コンバインドサイクルプラントの排熱回収熱交
換器に装備した場合には、次のような問題を生じてい
た。
(Problems to be Solved by the Invention) However, a chemical injection control device for controlling a PH value of can water by injecting a volatile alkali treating agent into a low-pressure steam drum as described above is used as an exhaust heat recovery heat exchange for a combined cycle plant. When equipped on a vessel, the following problems occurred.

ところでコンバインドサイクルプラントは運転の立上
りが迅速で容易なため、負荷調整機能が大きく、一般に
電力需要の日変化に対応して毎日、起動と停止とを繰り
返すDSS(Daily Start and Stop)運転方式によって運
転される。
By the way, the combined cycle plant has a large load adjustment function because the start-up of the operation is quick and easy, and in general, it is operated by the DSS (Daily Start and Stop) operation method that starts and stops every day in response to daily changes in the power demand. To be done.

このDSS運転時における低圧蒸気ドラムの缶水のPH、
給水流量、温度、圧力および水位等の運転変数の経時変
化を第4図に示す。
PH of canned water in the low-pressure steam drum during this DSS operation,
Fig. 4 shows changes over time in operating variables such as the feed water flow rate, temperature, pressure and water level.

第4図から明らかなように、ガスタービンの負荷を下
げると徐々に低圧蒸気ドラムの圧力が低下し、さらにガ
スタービンが停止すると高圧側からの熱移動によって圧
力は一旦上昇するが、その後のバンキング中の放熱によ
りドラム圧力は低下する。このようにドラム圧力が低下
すると、第5図に示す関係から、薬注処理によって添加
されたアンモニアの気液分配率が上昇する。このとき低
圧蒸気ドラムの缶水中に溶解して、そのPH値を上昇させ
ていたアンモニアが缶水中から蒸気相中に放散してしま
うため、缶水のPH値が低下する。この傾向は、ガスター
ビンの停止からさらに時間が経過し、ドラム圧力が低下
するさらに顕著になる。そのためコンバインドサイクル
プラントを起動する翌日の運転再開時には缶水のPH値は
所定の下限値を下回ってしまうことが多い。
As is clear from FIG. 4, when the load on the gas turbine is reduced, the pressure in the low-pressure steam drum gradually decreases, and when the gas turbine stops, the pressure temporarily rises due to heat transfer from the high-pressure side. Due to the heat dissipation inside, the drum pressure drops. When the drum pressure decreases in this way, the gas-liquid distribution ratio of ammonia added by the chemical injection process increases from the relationship shown in FIG. At this time, since the ammonia that had been dissolved in the can water of the low-pressure steam drum and had increased its PH value is diffused from the can water into the vapor phase, the PH value of the can water decreases. This tendency becomes more remarkable as the drum pressure decreases as time passes after the gas turbine is stopped. Therefore, when the combined cycle plant is restarted the next day, the pH value of the can water often falls below the specified lower limit.

この状態でコンバインドサイクルプラントを起動する
と、缶水のPH値が所定の下限値より低い状態で起動され
ることになる。この不都合を解決するためには起動時に
アンモニアを注入すればよい。しかしながら起動時にお
いては低圧蒸気ドラム内の缶水はスウェリングを起こし
ているためドラム水位は極めて高くなっており、この時
点で給水を低圧蒸気ドラムに給水することは不可能であ
る。そのため復水器の出口側の給水配管中に注入される
アンモニアも低圧蒸気ドラムに注入することは不可能で
ある。また起動時にドレン弁を開閉すると、缶水中から
蒸気側に移行したアンモニアが系外へ流出してしまう。
その結果低圧蒸気ドラム系内のアンモニア量が減少し、
さらに圧力の低下とが相乗して缶水のPH値は所定の下限
値を大きく下回った状態となる。
When the combined cycle plant is started in this state, the PH value of the can water is started below the predetermined lower limit value. To solve this inconvenience, ammonia may be injected at the time of starting. However, at the time of start-up, the can water in the low-pressure steam drum is swollen, and the drum water level is extremely high. At this point, it is impossible to supply water to the low-pressure steam drum. Therefore, it is impossible to inject ammonia into the low pressure steam drum into the water supply pipe on the outlet side of the condenser. If the drain valve is opened / closed at the time of startup, the ammonia that has moved from the can water to the steam side will flow out of the system.
As a result, the amount of ammonia in the low pressure steam drum system decreases,
Further, the decrease in pressure synergistically causes the PH value of the can water to be much lower than the predetermined lower limit value.

ところがガスタービンを起動すると、低圧蒸気ドラム
の圧力および温度は、缶水のPH値とは無関係に上昇する
ため、缶水のPH値が低く、かつ缶水温度が140〜200℃と
高くなり腐食が進行し易い状態が起動時に出現し易い。
その結果排熱回収熱交換器の構成機器にエロージョン、
コロージョンが発生し易くなり、ひいてはプラント全体
の寿命を縮めてしまう問題点がある。
However, when the gas turbine is started, the pressure and temperature of the low-pressure steam drum rise regardless of the PH value of the can water, so the PH value of the can water is low, and the can water temperature rises to 140 to 200 ° C, causing corrosion. Is likely to appear at the time of startup.
As a result, erosion in the components of the exhaust heat recovery heat exchanger,
Corrosion is likely to occur, which in turn shortens the life of the entire plant.

本発明は上記の問題点を解決するためになされたもの
であり、ガスタービン起動時における低圧蒸気ドラム内
のPH低下によるエロージョンやコロージョンの発生を防
止することが可能な、排熱回収熱交換器の薬注制御方法
および装置を提供することを目的とする。
The present invention has been made to solve the above problems, and is capable of preventing the occurrence of erosion and corrosion due to a decrease in PH in the low-pressure steam drum at gas turbine startup, an exhaust heat recovery heat exchanger. An object of the present invention is to provide a method and a device for controlling chemicals.

〔発明の構成〕[Configuration of the invention]

(課題を解決するための手段) 上記目的を達成するため本発明は低圧蒸気ドラムおよ
び高圧蒸気ドラムなど蒸気圧力が異なる複数の蒸気発生
部から構成される排熱回収熱交換器の薬注制御方法にお
いて、排熱回収熱交換器の起動時に、ガスタービンの回
転数が所定値以上で、かつ低圧蒸気ドラムの缶水のPH値
が所定の下限値未満の場合に、低圧蒸気ドラム内にリン
酸ソーダを直接注入することにより、起動直後における
低圧蒸気ドラム内の缶水のPH値を所定下限値以上に保持
することを特徴とする方法である。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a chemical injection control method for an exhaust heat recovery heat exchanger including a plurality of steam generators having different steam pressures such as a low pressure steam drum and a high pressure steam drum. At the time of starting the exhaust heat recovery heat exchanger, when the rotational speed of the gas turbine is equal to or higher than a predetermined value and the PH value of the can water of the low pressure steam drum is less than the predetermined lower limit value, phosphoric acid is stored in the low pressure steam drum. This is a method characterized in that by directly injecting soda, the PH value of the can water in the low-pressure steam drum immediately after starting is maintained at a predetermined lower limit value or more.

また本発明に係る排熱回収熱交換器の薬注制御装置は
ガスタービンが排出する高温ガスを排熱回収熱交換器に
導いて蒸気を発生させ、発生した蒸気で蒸気タービンを
駆動し発電する複合サイクル発電用の排熱回収熱交換器
の薬注制御装置において、排熱回収熱交換器の低圧蒸気
ドラムに注入弁を介してリン酸ソーダを注入するリン酸
ソーダ注入装置と、ガスタービンの回転数を計測する回
転数計と、低圧蒸気ドラムの缶水のPH値を測定するPH計
と、上記回転数計からのガスタービン回転信号およびPH
計からのPH低信号によって上記注入弁を開放する注入弁
駆動制御装置とを備えたことを特徴とする。
Further, the chemical injection control device of the exhaust heat recovery heat exchanger according to the present invention guides the high temperature gas discharged from the gas turbine to the exhaust heat recovery heat exchanger to generate steam, and the generated steam drives the steam turbine to generate electricity. In the chemical injection control device for the exhaust heat recovery heat exchanger for combined cycle power generation, the sodium phosphate injection device for injecting sodium phosphate through the injection valve into the low pressure steam drum of the exhaust heat recovery heat exchanger, and the gas turbine A tachometer that measures the number of revolutions, a PH meter that measures the PH value of the can water in the low-pressure steam drum, and a gas turbine rotation signal and PH from the above number of revolutions
An injection valve drive control device for opening the injection valve in response to a PH low signal from the meter is provided.

(作用) 上記構成に係る排熱回収熱交換器の薬注制御方法およ
び装置によれば、ガスタービンおよび排熱回収熱交換器
が起動すると、回転数計から回転信号が出力される一
方、起動時における低圧蒸気ドラム中のPH値がPH調整計
にて計測され、その計測値が所定の下限値が低くPH低信
号が出力された場合に注入弁駆動制御装置が動作して注
入弁を開放し、リン酸ソーダ注入装置からリン酸ソーダ
が低圧蒸気ドラム中に注入される。そして低圧注入蒸気
ドラム中の缶水のPH値が上昇するとPH低信号は消失し、
注入弁が閉止する。
(Operation) According to the chemical injection control method and device for the exhaust heat recovery heat exchanger according to the above configuration, when the gas turbine and the exhaust heat recovery heat exchanger are activated, a rotation signal is output from the tachometer, while the activation is started. At that time, the PH value in the low-pressure steam drum is measured by the PH adjuster, and when the measured value is lower than the specified lower limit value and the PH low signal is output, the injection valve drive control device operates and opens the injection valve. Then, sodium phosphate is injected from the sodium phosphate injection device into the low-pressure steam drum. And when the PH value of the can water in the low-pressure injection steam drum rises, the PH low signal disappears,
The injection valve closes.

したがって本発明によればガスタービンおよび排熱回
収熱交換器の起動時における低圧蒸気ドラムの缶水のPH
値の低下が効果的に防止でき、排熱回収熱交換器の構成
機器のエロージョン、コロージョンによる劣化損傷を防
止できる。特に頻繁に起動停止を繰り返すDSS運転を行
うために、腐食環境が形成され易いプラントの排熱回収
熱交換器に有効であり、プラント全体の寿命を大幅に延
伸することができる。
Therefore, according to the present invention, the pH of the can water of the low-pressure steam drum at the time of starting the gas turbine and the exhaust heat recovery heat exchanger
The decrease in the value can be effectively prevented, and deterioration and damage due to erosion and corrosion of the components of the exhaust heat recovery heat exchanger can be prevented. In particular, since the DSS operation in which the start and stop are repeated frequently is performed, it is effective for the exhaust heat recovery heat exchanger of the plant where a corrosive environment is easily formed, and the life of the entire plant can be significantly extended.

(実施例) 次に本発明の一実施例についてコンバインドサイクル
プラントに設置された例をとり、添付図面を参照して説
明する。第1図は本発明に係る排熱回収熱交換器の薬注
制御方法を実施する装置の一実施例を示す系統図であ
る。なお第3図に示す従来例と同一要素には同一符号を
付して重複する説明は省略する。
(Embodiment) Next, one embodiment of the present invention will be described with reference to the accompanying drawings, using an example installed in a combined cycle plant. FIG. 1 is a system diagram showing an embodiment of an apparatus for carrying out a chemical injection control method for an exhaust heat recovery heat exchanger according to the present invention. The same elements as those of the conventional example shown in FIG. 3 are designated by the same reference numerals, and duplicate description will be omitted.

すなわち本実施例に係る排熱回収熱交換器の薬注制御
装置は、ガスタービン20が排出する高温ガスを排熱回収
熱交換器に導いて蒸気を発生させ、発生した蒸気で蒸気
タービン12を駆動し発電する複合サイクル発電用の排熱
回収熱交換器の薬注制御装置において、排熱回収熱交換
器の低圧蒸気ドラム3に注入弁21を介してリン酸ソーダ
を注入するリン酸ソーダ注入装置22と、ガスタービン20
の回転数を計測する回転数計23と、低圧蒸気ドラム3の
缶水のPH値を測定するPH計24と、上記回転数計23からの
ガスタービン回転信号およびPH計24からのPH低信号によ
って上記注入弁21を開放する注入弁駆動制御装置25とを
備えて構成される。
That is, the chemical injection control device of the exhaust heat recovery heat exchanger according to the present embodiment, the high temperature gas discharged from the gas turbine 20 is guided to the exhaust heat recovery heat exchanger to generate steam, and the steam turbine 12 is generated by the generated steam. In the chemical injection control device of the exhaust heat recovery heat exchanger for combined cycle power generation that drives and generates power, sodium phosphate injection for injecting sodium phosphate through the injection valve 21 into the low-pressure steam drum 3 of the exhaust heat recovery heat exchanger Device 22 and gas turbine 20
, A PH meter 24 for measuring the PH value of the can water of the low-pressure steam drum 3, a gas turbine rotation signal from the RPM meter 23, and a PH low signal from the PH meter 24. And an injection valve drive control device 25 for opening the injection valve 21.

またガスタービン20の回転軸の一端には圧縮機26が接
続され、他端には発電機27および蒸気タービン12が直列
に接続される。
Further, the compressor 26 is connected to one end of the rotating shaft of the gas turbine 20, and the generator 27 and the steam turbine 12 are connected in series to the other end.

さらに上記注入弁駆動制御装置25は、PH計24からのPH
計測信号が所定の下限値より低いときに1を出力し、下
限値を超えるときに0を出力する関数発生器28と、回転
数計23からの回転数信号が所定値以上のときに1を出力
し、所定値未満のときに0を出力する関数発生器29と、
上記関数発生器28,29からの出力を受けるAND回路30と、
AND回路30の2次側に配設され自動・手動操作に切換え
る自動・手動切換器31と、自動・手動切換器31が自動の
ときにAND回路からの1の出力信号によって注入弁21を
開動作させる駆動機構32とから構成される。
Further, the injection valve drive control device 25 uses the PH from the PH meter 24.
The function generator 28 that outputs 1 when the measurement signal is lower than the predetermined lower limit value and outputs 0 when the measurement signal exceeds the lower limit value, and outputs 1 when the rotation speed signal from the tachometer 23 is equal to or higher than the predetermined value. A function generator 29 that outputs and outputs 0 when it is less than a predetermined value,
AND circuit 30 that receives the outputs from the function generators 28 and 29,
An automatic / manual switch 31 arranged on the secondary side of the AND circuit 30 for switching to automatic / manual operation, and when the automatic / manual switch 31 is automatic, the injection valve 21 is opened by an output signal of 1 from the AND circuit. And a drive mechanism 32 for operating.

ここで設定するPHの下限値はボイラの運転圧力や温度
によって異なるが、通常のコンバインドサイクルプラン
トの排熱回収熱交換器の低圧蒸気ドラムにおいては9.5
程度に設定するとよい。
The lower limit of PH set here depends on the operating pressure and temperature of the boiler, but it is 9.5 for the low-pressure steam drum of the exhaust heat recovery heat exchanger of a normal combined cycle plant.
It is good to set it to about.

ガスタービン20および排熱回収熱交換器を起動する
と、ガスタービン20の回転数の上昇が回転数計23によっ
て測定され、その回転数が所定値以上になると、関数発
生器29から1の出力信号(ガスタービン回転信号)がAN
D回路30に入力される。一方起動時における低圧蒸気ド
ラム3の缶水のPH値がPH計24によって計測され、このPH
値が所定の下限値(PH=9.5)未満の場合に関数発生器2
8から1の出力信号(PH低信号)がAND回路30に入力され
る。すなわちガスタービン回転信号およびPH低信号が同
時にAND回路30に入力されると、AND回路30から注入弁開
操作信号が出力される。そしてこの注入弁開操作信号に
よって駆動機構32が動作し、注入弁21が開放され、リン
酸ソーダが低圧蒸気ドラム3内に注入される。そして注
入したリン酸ソーダによって缶水のPH値が9.5以上に上
昇した時点で関数発生器28からの出力信号がゼロとな
り、AND回路30からの出力信号もゼロとなるため注入弁2
1は閉止する。
When the gas turbine 20 and the exhaust heat recovery heat exchanger are started, the increase in the number of revolutions of the gas turbine 20 is measured by the tachometer 23. When the number of revolutions exceeds a predetermined value, the output signal of 1 from the function generator 29. (Gas turbine rotation signal) is AN
Input to the D circuit 30. On the other hand, the PH value of the water in the low-pressure steam drum 3 at the time of startup is measured by the PH meter 24.
Function generator 2 when the value is less than the specified lower limit (PH = 9.5)
The output signal from 8 to 1 (PH low signal) is input to the AND circuit 30. That is, when the gas turbine rotation signal and the PH low signal are simultaneously input to the AND circuit 30, the AND valve 30 outputs the injection valve opening operation signal. Then, the drive mechanism 32 is operated by the injection valve opening operation signal, the injection valve 21 is opened, and sodium phosphate is injected into the low-pressure steam drum 3. Then, when the PH value of the can water rises to 9.5 or more by the injected sodium phosphate, the output signal from the function generator 28 becomes zero and the output signal from the AND circuit 30 also becomes zero, so the injection valve 2
1 is closed.

以上は自動・手動切換器31を自動位置にして制御する
場合であるが、手動位置に切換えることにより手動にて
注入弁21を開閉してリン酸ソーダを適宜低圧蒸気ドラム
3内に注入することもできる。
The above is the case where the automatic / manual switch 31 is controlled to the automatic position, but by manually switching the switch to the manual position, the injection valve 21 is opened / closed and sodium phosphate is appropriately injected into the low-pressure steam drum 3. You can also

なお低圧蒸気ドラム3内に注入されたリン酸ソーダ
は、順次高圧蒸気ドラム側へ移行し、濃縮される。しか
し低圧蒸気ドラム3において要求されるPH値は9.5程度
であり、高圧側の10〜11と比較して低い。またリン酸ソ
ーダ濃度についても、低圧側で3ppm程度であり、高圧側
の10〜100ppmと比較して微少である。そのため高圧側に
おけるリン酸ソーダの濃縮によるPH値の異常な上昇も起
こりにくい。
The sodium phosphate injected into the low-pressure steam drum 3 sequentially moves to the high-pressure steam drum side and is concentrated. However, the PH value required for the low-pressure steam drum 3 is about 9.5, which is low compared to 10-11 on the high-pressure side. Also, the sodium phosphate concentration is about 3 ppm on the low pressure side, which is very small compared to 10 to 100 ppm on the high pressure side. Therefore, the abnormal increase in PH value due to the concentration of sodium phosphate on the high pressure side is unlikely to occur.

本実施例装置をコンバインドサイクルプラントに配置
し、ガスタービンの起動および停止を繰返して運転した
場合における低圧蒸気ドラムの運転変数の経時変化の測
定例を第2図に示す。
FIG. 2 shows an example of measurement of changes over time in the operating variables of the low-pressure steam drum when the apparatus of this example is arranged in a combined cycle plant and the gas turbine is repeatedly started and stopped.

第2図から明らかなように本実施例方法および装置に
よれば、ガスタービンの起動と同時にリン酸ソーダが注
入されるため、缶水のPH値は起動直後において、瞬時に
所定下限値以上に上昇する。そのため缶水温度が起動直
後から高温度まで急激に上昇しても腐食環境が形成され
ることがない。
As is clear from FIG. 2, according to the method and apparatus of this embodiment, since sodium phosphate is injected at the same time as the gas turbine is started, the PH value of the can water immediately exceeds the predetermined lower limit value immediately after the start. To rise. Therefore, a corrosive environment will not be formed even if the temperature of the can water rapidly rises to a high temperature immediately after startup.

このように本実施例によれば、ガスタービン起動時に
低圧蒸気ドラム3内に揮発性が少ないリン酸ソーダを注
入して缶水のPH値を確実に上昇させることができ、起動
時における排熱回収熱交換器内に腐食環境が形成される
恐れがなく、構成部材のエロージョン、コロージョンを
効果的に防止することができる。
As described above, according to the present embodiment, when the gas turbine is started up, sodium phosphate having low volatility can be injected into the low-pressure steam drum 3 to reliably raise the PH value of the can water, and the exhaust heat at start-up There is no risk of forming a corrosive environment in the recovery heat exchanger, and erosion and corrosion of the constituent members can be effectively prevented.

〔発明の効果〕〔The invention's effect〕

以上説明の通り本発明によればガスタービンおよび排
熱回収熱交換器の起動時における低圧蒸気ドラムの缶水
のPH値低下を迅速かつ効果的に防止でき、排熱回収熱交
換器内に腐蝕環境が形成されるのを未然にしかも確実に
防ぎ、排熱回収熱交換器の構成機器のエロージョン、コ
ロージョンによる劣化損傷を防止できる。特に頻繁に起
動停止を繰り返すDSS運転を行うために、腐食環境が形
成され易いプラントの排熱回収熱交換器に有効であり、
プラント全体の寿命を大幅に延伸することができる。
As described above, according to the present invention, it is possible to quickly and effectively prevent a decrease in the PH value of the can water of the low-pressure steam drum at the time of starting the gas turbine and the exhaust heat recovery heat exchanger, and to corrode the exhaust heat recovery heat exchanger. It is possible to prevent the environment from being formed in advance and to prevent deterioration and damage due to erosion and corrosion of the components of the exhaust heat recovery heat exchanger. In particular, it is effective for a waste heat recovery heat exchanger in a plant where a corrosive environment is likely to be formed in order to perform DSS operation in which start and stop are frequently repeated.
The life of the entire plant can be significantly extended.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す系統図、第2図は本発
明に係る薬注制御装置を使用した場合の各運転変数の経
時的変化を示すグラフ、第3図は従来のコンバインドサ
イクルプラントの構成例を示す系統図、第4図は従来の
排熱回収熱交換器の薬注制御装置を起動した場合の各運
転変数の経時的変化を示すグラフ、第5図は圧力に対す
るアンモニアの気液分配率の変化を示すグラフである。 1……煙道、2……予熱器、3……低圧蒸気ドラム、4
……低圧蒸発器、5……高圧節炭器、6……高圧蒸気ド
ラム、7……高圧蒸発器、8……過熱器、9……復水
器、10……復水ポンプ、11……蒸気配管、12……蒸気タ
ービン、13……高圧給水ポンプ、14……蒸気配管、15…
…アンモニアポンプ、16……アンモニアタンク、17……
リン酸ソーダ注入弁、18……リン酸ソーダポンプ、19…
…リン酸ソーダタンク、20……ガスタービン、21……注
入弁、22……リン酸ソーダ注入装置、23……回転数計、
24……PH計、25……注入弁駆動制御装置、26……圧縮
機、27……発電機、28,29……関数発生器、30……AND回
路、31……自動・手動切換器、32……駆動機構。
FIG. 1 is a system diagram showing an embodiment of the present invention, FIG. 2 is a graph showing changes with time of operating variables when the chemical injection control device according to the present invention is used, and FIG. FIG. 4 is a system diagram showing a configuration example of a cycle plant, FIG. 4 is a graph showing changes with time of operating variables when a chemical injection control device of a conventional exhaust heat recovery heat exchanger is started, and FIG. 5 is a graph showing changes in the gas-liquid distribution rate of 1 ... Flue, 2 ... Preheater, 3 ... Low-pressure steam drum, 4
...... Low pressure evaporator, 5 ...... High pressure economizer, 6 ...... High pressure steam drum, 7 ...... High pressure evaporator, 8 ...... Superheater, 9 ...... Condenser, 10 ...... Condensation pump, 11 ... … Steam piping, 12 …… Steam turbine, 13 …… High-pressure water supply pump, 14 …… Steam piping, 15…
… Ammonia pump, 16 …… Ammonia tank, 17 ……
Sodium phosphate injection valve, 18 ... Sodium phosphate pump, 19 ...
… Sodium phosphate tank, 20… Gas turbine, 21… Injection valve, 22… Sodium phosphate injection device, 23… Tachometer,
24 …… PH meter, 25 …… Injection valve drive controller, 26 …… Compressor, 27 …… Generator, 28,29 …… Function generator, 30 …… AND circuit, 31 …… Automatic / manual selector , 32 …… Drive mechanism.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】低圧蒸気ドラムおよび高圧蒸気ドラムなど
蒸気圧力が異なる複数の蒸気発生部から構成される排熱
回収熱交換器の薬注制御方法において、排熱回収熱交換
器の起動時に、ガスタービンの回転数が所定値以上で、
かつ低圧蒸気ドラムの缶水のpH値が所定の下限値未満の
場合に、低圧蒸気ドラム内にリン酸ソーダを直接注入す
ることにより、起動直後における低圧蒸気ドラム内の缶
水のPH値を所定下限値以上に保持することを特徴とする
排熱回収熱交換器の薬注制御方法。
1. A chemical injection control method for an exhaust heat recovery heat exchanger comprising a plurality of steam generators having different steam pressures such as a low pressure steam drum and a high pressure steam drum. If the turbine speed is above a certain value,
In addition, if the pH value of the can water in the low-pressure steam drum is less than the specified lower limit, by directly injecting sodium phosphate into the low-pressure steam drum, the PH value of the can water in the low-pressure steam drum immediately after startup can be specified. A chemical injection control method for an exhaust heat recovery heat exchanger, which is characterized by holding at least a lower limit value.
【請求項2】ガスタービンが排出する高温ガスを排熱回
収熱交換器に導いて蒸気を発生させ、発生した蒸気で蒸
気タービンを駆動し発電する複合サイクル発電用の排熱
回収熱交換器の薬注制御装置において、排熱回収熱交換
器の低圧蒸気ドラムに注入弁を介してリン酸ソーダを注
入するリン酸ソーダ注入装置と、ガスタービンの回転数
を計測する回転数計と、低圧蒸気ドラムの缶水のPH値を
測定するPH計と、上記回転数計からのガスタービン回転
信号およびPH計からのPH低信号によって上記注入弁を開
放する注入弁駆動制御装置とを備えたことを特徴とする
排熱回収熱交換器の薬注制御装置。
2. A waste heat recovery heat exchanger for combined cycle power generation, in which high-temperature gas discharged from a gas turbine is guided to an exhaust heat recovery heat exchanger to generate steam, and the generated steam drives a steam turbine to generate electric power. In the chemical injection control device, a sodium phosphate injection device that injects sodium phosphate through the injection valve into the low pressure steam drum of the exhaust heat recovery heat exchanger, a tachometer that measures the number of revolutions of the gas turbine, and a low pressure steam A PH meter for measuring the PH value of the can water of the drum, and an injection valve drive control device for opening the injection valve by the gas turbine rotation signal from the tachometer and the PH low signal from the PH meter are provided. A chemical injection control device for the heat recovery heat exchanger.
JP1329676A 1989-12-21 1989-12-21 Method and apparatus for controlling chemical injection of waste heat recovery heat exchanger Expired - Fee Related JP2680454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1329676A JP2680454B2 (en) 1989-12-21 1989-12-21 Method and apparatus for controlling chemical injection of waste heat recovery heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1329676A JP2680454B2 (en) 1989-12-21 1989-12-21 Method and apparatus for controlling chemical injection of waste heat recovery heat exchanger

Publications (2)

Publication Number Publication Date
JPH03194301A JPH03194301A (en) 1991-08-26
JP2680454B2 true JP2680454B2 (en) 1997-11-19

Family

ID=18224025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1329676A Expired - Fee Related JP2680454B2 (en) 1989-12-21 1989-12-21 Method and apparatus for controlling chemical injection of waste heat recovery heat exchanger

Country Status (1)

Country Link
JP (1) JP2680454B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130220238A1 (en) * 2012-02-28 2013-08-29 Hrst, Inc. Dual Chemistry Steam Drum
JP6242951B2 (en) * 2016-06-21 2017-12-06 三菱日立パワーシステムズ株式会社 Boiler operation method and boiler

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105302A (en) * 1986-10-22 1988-05-10 バブコツク日立株式会社 Feedwater treating method in power plant

Also Published As

Publication number Publication date
JPH03194301A (en) 1991-08-26

Similar Documents

Publication Publication Date Title
US4207842A (en) Mixed-flow feedwater heater having a regulating device
JP3935232B2 (en) Cleaning method for water-steam circuit of combined gas-steam-power plant
US5906178A (en) Degree of separation of steam impurities in a steam/water separator
JP2680454B2 (en) Method and apparatus for controlling chemical injection of waste heat recovery heat exchanger
RU2276813C1 (en) Nuclear power plant and steam turbine
JPH0933005A (en) Water feeding device for waste heat recovery boiler
JP7387360B2 (en) Boiler plants, power plants, and boiler plant control methods
CN110056849B (en) Water supply method for waste heat recovery boiler and waste heat recovery boiler
JPS5925853B2 (en) Power plant operation control method and device for implementing this method
JP5613921B2 (en) Exhaust heat recovery boiler and method for preventing corrosion in the can
JP2002021508A (en) Condensate supply system
JP3568650B2 (en) Hydrazine injection method and hydrazine injection device for waste heat recovery boiler
JP3697291B2 (en) Fluidized bed boiler power plant
JP3604886B2 (en) Pressurized fluidized bed combined cycle power plant and power plant
JP4017712B2 (en) Method and apparatus for controlling temperature of feed water in exhaust heat recovery boiler
JP2001317704A (en) Combined plant and method for supplying water in exhaust heat recovery boiler
JPS6136122B2 (en)
JPS63105302A (en) Feedwater treating method in power plant
JP2010113885A (en) Fuel cell power generation system and its operation method
JP2531801B2 (en) Exhaust heat recovery heat exchanger controller
SU1344918A1 (en) Steam heat-utilising circuit of combination power plant
JPH1122421A (en) Refuse incinerating power plant
JP2003240205A (en) Method and device for preventing corrosion in evaporator tube and superheater tube
JPH0949606A (en) Variable pressure once-through boiler
JPS6124906A (en) Steam generator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070801

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees