JPH0933005A - Water feeding device for waste heat recovery boiler - Google Patents

Water feeding device for waste heat recovery boiler

Info

Publication number
JPH0933005A
JPH0933005A JP18396195A JP18396195A JPH0933005A JP H0933005 A JPH0933005 A JP H0933005A JP 18396195 A JP18396195 A JP 18396195A JP 18396195 A JP18396195 A JP 18396195A JP H0933005 A JPH0933005 A JP H0933005A
Authority
JP
Japan
Prior art keywords
economizer
water supply
drum
low pressure
recovery boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18396195A
Other languages
Japanese (ja)
Inventor
Madoka Saito
円 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18396195A priority Critical patent/JPH0933005A/en
Publication of JPH0933005A publication Critical patent/JPH0933005A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the occurrence of rusting due to a moisture content in exhaust gas by a method wherein delivery of a feed water pump is branched into a system passing through a heat-exchange part and a system not passing therethrough, which are joined together, and is fed to an economizer after regulation of temperature. SOLUTION: Exhaust gas from a gas turbine 4 is guided to a waste heat recovery boiler 6 and discharged through a chimney 12 after the exhaust gas is heat-exchanged with, in order, a superheater 7, a high pressure vaporizer 8, a high pressure economizer 9, a low pressure vaporizer 10, and a low pressure economizer 11. Further, generating high pressure steam is guided from a high pressure drum 13 to the high pressure side of a steam turbine 15 through the superheater 7 and a high pressure evaporation spill valve 14. Meanwhile, low pressure steam low pressure steam is guided from a low pressure drum 16 to a stem turbine 15 through a low pressure evaporation spill valve 17 and condensed by a condenser 18 and changed into condensate. After feed water from the condenser 18 is branched into a system wherein after the feed water is boosted by a low pressure water feed pump 19 and passes a heat-exchange part 16a arranged at the low pressure drum 16 and a system wherein the feed water does not pass the heatexchange part, which are joined together at a low pressure economizer inlet temperature regulating valve 24. A feed water temperature at the inlet of the economizer is stably controlled regardless of a difference in a season between a summer season and a winter season.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はコンバインドサイク
ル発電プラントにおける排熱回収ボイラ給水装置に係
り、特に排熱回収ボイラの節炭器給水ヘッダー部での外
面結露による腐食と、プラント起動時の排熱回収ボイラ
節炭器での給水蒸発による運転不安定現象を防止するた
めの排熱回収ボイラ給水装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust heat recovery boiler water supply system in a combined cycle power generation plant, and more particularly to corrosion due to external dew condensation on a header of a coal economizer feed water of an exhaust heat recovery boiler and exhaust heat at the time of plant startup. The present invention relates to a waste heat recovery boiler water supply device for preventing an unstable operation phenomenon due to evaporation of water supply in a recovery boiler economizer.

【0002】[0002]

【従来の技術】一般に、この種のコンバインドサイクル
発電プラントにおいては、プラント効率を向上させるた
め、排熱回収ボイラを複圧式とすることが多く、その最
下流部である節炭器付近を流れる排ガス温度は低くなる
傾向にある。
2. Description of the Related Art Generally, in this type of combined cycle power generation plant, in order to improve the plant efficiency, the exhaust heat recovery boiler is often of a double pressure type, and the exhaust gas flowing near the economizer, which is the most downstream part of the boiler. The temperature tends to be low.

【0003】また、蒸気タービンは比較的小容量である
ため、給水加熱器が設置されていない場合が多く、給水
は蒸気タービン復水器真空度で決定される飽和温度から
やや過冷却されて給水されるため、給水をその状態の温
度より15〜20℃程度加温しないと、節炭器入口ヘッ
ダー表面およびチューブ外表面温度は、結露点以下にな
る場合があり、排ガス中の湿分が節炭器入口ヘッダーや
チューブの外面メタル表面で結露して発錆が生じ、ひい
てはこの外表面腐食からチューブリークに至ってプラン
トの運転に支障をきたすことになる。
Further, since the steam turbine has a relatively small capacity, a feed water heater is often not installed, and the feed water is slightly supercooled from the saturation temperature determined by the degree of vacuum of the steam turbine condenser, and the feed water is supplied. Therefore, if the feed water is not heated by about 15 to 20 ° C from the temperature in that state, the surface temperature of the header of the economizer inlet and the outer surface of the tube may be below the dew point, and the moisture in the exhaust gas will Condensation is formed on the outer metal surface of the charcoal inlet header and tube, causing rusting, which eventually leads to tube leakage from the outer surface corrosion, which interferes with plant operation.

【0004】そのため、従来では排熱回収ボイラのドラ
ムと蒸発器との間を循環させる系統に設置されている循
環ポンプ吐出ラインから系統を分岐し、この分岐管を節
炭器入口に調節弁を介して接続し、ドラムで保有する高
温水の一部を給水に混合させて節炭器入口の温度を上昇
させ、節炭器外面メタル表面で排ガスの結露点以上にな
るように、給水温度を調整している。
Therefore, conventionally, the system is branched from the circulation pump discharge line installed in the system for circulating between the drum of the exhaust heat recovery boiler and the evaporator, and this branch pipe is provided with a control valve at the inlet of the economizer. The temperature of the feed water is adjusted so that the temperature of the inlet of the economizer is increased by mixing a part of the high-temperature water held in the drum with the feedwater, and the temperature of the outer metal surface of the economizer is higher than the dew point of the exhaust gas. I am adjusting.

【0005】図6は従来のコンバインドサイクル発電プ
ラントの一例を示す系統図である。図6に示すように、
起動装置1を起動させると、圧縮機2により圧縮された
空気は、燃焼器3で燃料とともに燃焼してガスタービン
4で仕事をして発電機5を駆動させ、発電を行うように
なっている。ガスタービン4の排ガスは排熱回収ボイラ
6に導かれ、この排熱回収ボイラ6内において、過熱器
7,高圧蒸発器8,高圧節炭器9,低圧蒸発器10およ
び低圧節炭器11の順に熱交換した後に煙突12から排
出される。
FIG. 6 is a system diagram showing an example of a conventional combined cycle power generation plant. As shown in FIG.
When the starter 1 is started, the air compressed by the compressor 2 burns with the fuel in the combustor 3 to work in the gas turbine 4 to drive the generator 5 to generate electric power. . Exhaust gas from the gas turbine 4 is guided to the exhaust heat recovery boiler 6, and inside the exhaust heat recovery boiler 6, the superheater 7, the high pressure evaporator 8, the high pressure economizer 9, the low pressure evaporator 10 and the low pressure economizer 11 are discharged. After exchanging heat in order, it is discharged from the stack 12.

【0006】排熱回収ボイラ6で発生した蒸気におい
て、高圧蒸気は高圧ドラム13から過熱器7、高圧蒸気
加減弁14を経て蒸気タービン15の高圧側へ導かれる
一方、低圧蒸気は低圧ドラム16から低圧蒸気加減弁1
7を経て蒸気タービン15の低圧側に導かれ、それぞれ
蒸気タービン15で仕事をした後、復水器18で凝縮液
化されて復水となり、この復水が低圧給水ポンプ19に
よって昇圧され、低圧給水流量調節弁20によって流量
調整されて排熱回収ボイラ6の低圧節炭器11入口に給
水される。
In the steam generated in the exhaust heat recovery boiler 6, the high-pressure steam is guided from the high-pressure drum 13 to the high-pressure side of the steam turbine 15 through the superheater 7 and the high-pressure steam control valve 14, while the low-pressure steam is discharged from the low-pressure drum 16. Low pressure steam control valve 1
After being guided to the low-pressure side of the steam turbine 15 via 7 and working in the steam turbine 15, they are condensed and liquefied in the condenser 18 to become condensed water, and this condensed water is boosted by the low-pressure water supply pump 19 to supply low-pressure water. The flow rate is adjusted by the flow rate control valve 20, and water is supplied to the inlet of the low pressure economizer 11 of the exhaust heat recovery boiler 6.

【0007】また、低圧給水ポンプ19の下流側は分岐
され、この分岐管に復水再循環弁21が設置され、この
復水再循環弁21を通して復水器18に復水が再循環さ
れるようになっている。そして、低圧給水流量調節弁2
0の開度はドラムレベル制御装置22の制御信号により
調節される。
Further, the downstream side of the low-pressure water supply pump 19 is branched, a condensate recirculation valve 21 is installed in this branch pipe, and the condensate is recirculated to the condenser 18 through the condensate recirculation valve 21. It is like this. And the low pressure feed water flow rate control valve 2
The opening degree of 0 is adjusted by the control signal of the drum level control device 22.

【0008】ここで、低圧節炭器11の入口部には、低
圧給水ポンプ19からの給水とともに、低圧循環ポンプ
23の吐出側から分岐して低圧節炭器入口温度調節弁2
4を介した系統も接続されており、これにより高温のド
ラム保有水の一部が給水に混合されて温度上昇が図られ
るようになっている。低圧節炭器入口温度調節弁24の
温度設定値は、通常45〜47℃程度と排ガス中の湿分
の結露温度を若干上まわるように設定されていることか
ら、低圧節炭器11の結露が防止され、結果的に外面腐
食防止効果が得られる。
Here, at the inlet of the low-pressure economizer 11, the low-pressure economizer inlet temperature control valve 2 is branched from the discharge side of the low-pressure circulation pump 23 together with the water supplied from the low-pressure feed pump 19.
The system via 4 is also connected, whereby a part of the high temperature drum-holding water is mixed with the feed water to raise the temperature. The temperature set value of the low-pressure economizer inlet temperature control valve 24 is usually set to about 45 to 47 ° C., which is slightly higher than the dew condensation temperature of the moisture in the exhaust gas. Is prevented, and as a result, the effect of preventing external corrosion is obtained.

【0009】すなわち、低圧節炭器11の入口部には、
温度検出器25が設置され、この温度検出器25の検出
信号が比較器26に出力され、比較器26で低圧節炭器
11の入口部の温度と設定値との温度が比較され、調節
器27を介して低圧節炭器入口温度調節弁24の開度が
調節される。
That is, at the inlet of the low pressure economizer 11,
The temperature detector 25 is installed, the detection signal of this temperature detector 25 is output to the comparator 26, and the comparator 26 compares the temperature of the inlet portion of the low pressure economizer 11 with the temperature of the set value. The opening degree of the low pressure economizer inlet temperature control valve 24 is adjusted via 27.

【0010】また、高圧節炭器9には、低圧ドラム16
から高圧給水ポンプ28により高圧給水調節弁29を経
て高温水が供給される。そして、高圧蒸発器8には、高
圧ドラム13から高圧循環ポンプ30により高温水が供
給される。
The high-pressure economizer 9 includes a low-pressure drum 16
From the high pressure water supply pump 28, high temperature water is supplied through the high pressure water supply control valve 29. Then, the high-pressure evaporator 8 is supplied with high-temperature water from the high-pressure drum 13 by the high-pressure circulation pump 30.

【0011】ところで、上記のような低温腐食の問題と
は別に、一般に上記のようなコンバインドサイクル発電
プラントの起動時には、排熱回収ボイラ6の発生蒸気量
が少ないため、給水流量も少ない運転状態となり、節炭
器内において流速が遅くなり、蒸発(スチーミング)現
象が発生し、ドラムの水位変動や給水配管のウォータハ
ンマ現象が誘発されて運転に支障をきたす可能性があ
る。
In addition to the problem of low temperature corrosion as described above, generally, when the combined cycle power plant as described above is started up, the amount of steam generated in the exhaust heat recovery boiler 6 is small, so that the operation state in which the feed water flow rate is also small. The flow velocity becomes slow in the economizer, and the evaporation (steaming) phenomenon occurs, which may cause the fluctuation of the water level of the drum and the water hammer phenomenon of the water supply pipe, which may hinder the operation.

【0012】しかし、図6に示すように構成された排熱
回収ボイラ給水装置では、ドラム保有水の温度が大気温
度に近い状態から起動するコールド起動時、低圧節炭器
入口温度調節弁24が温度設定値との偏差により最初開
状態となるから、起動時でも低圧ドラム16と低圧節炭
器11との間を循環する系統によって低圧節炭器11に
十分な給水が確保されることになり、コールド起動時の
運転不安定現象を回避している。
However, in the exhaust heat recovery boiler water supply system constructed as shown in FIG. 6, the low-pressure economizer inlet temperature control valve 24 is operated at the cold start time when the temperature of the water held in the drum is started from a state close to the atmospheric temperature. Due to the deviation from the temperature set value, the valve is initially opened, so that the system that circulates between the low-pressure drum 16 and the low-pressure economizer 11 ensures sufficient water supply to the low-pressure economizer 11 even at startup. , Avoiding the unstable operation phenomenon at cold start.

【0013】[0013]

【発明が解決しようとする課題】ところで、上記のよう
な排熱回収ボイラ節炭器への給水装置では、ドラム保有
水を分岐して給水に混合する系統に十分な流量が流れな
ければ、混合された給水の温度上昇は期待できず、この
流量は低圧節炭器入口温度調節弁24の差圧が十分確保
されるか否かで決定されることになり、すなわち低圧蒸
発器10の入口圧力が低圧節炭器11の入口圧力より十
分大きい必要がある。
In the water supply device for the waste heat recovery boiler economizer as described above, if a sufficient flow rate does not flow in the system for branching the drum holding water and mixing it with the feed water, the mixing is performed. The temperature rise of the supplied feed water cannot be expected, and this flow rate is determined by whether or not the differential pressure of the low pressure economizer inlet temperature control valve 24 is sufficiently secured, that is, the inlet pressure of the low pressure evaporator 10. Should be sufficiently higher than the inlet pressure of the low pressure economizer 11.

【0014】低圧蒸発器10の出口と低圧節炭器11の
出口は、低圧ドラム16に接続されているため、低圧蒸
発器10の入口圧力および低圧節炭器11の入口圧力
は、それぞれの圧力損失により決定され、低圧蒸発器1
0での圧力損失と低圧節炭器11での圧力損失との差は
最大でも1kg/ cm2 以下であり、低圧蒸発器10と低圧
節炭器11内部の流動状態によっては低圧節炭器入口温
度調節弁24の差圧が不十分となって、この温度調節弁
24が全開しても十分な流量が流れず、目標温度に制御
できないという可能性が生ずることになる。
Since the outlet of the low pressure evaporator 10 and the outlet of the low pressure economizer 11 are connected to the low pressure drum 16, the inlet pressure of the low pressure evaporator 10 and the inlet pressure of the low pressure economizer 11 are different from each other. Low pressure evaporator determined by loss 1
The difference between the pressure loss at 0 and the pressure loss at the low pressure economizer 11 is 1 kg / cm 2 or less at the maximum, and depending on the flow state inside the low pressure evaporator 10 and the low pressure economizer 11, the low pressure economizer inlet The differential pressure of the temperature control valve 24 becomes insufficient, and even if the temperature control valve 24 is fully opened, a sufficient flow rate does not flow, and there is a possibility that the temperature cannot be controlled to the target temperature.

【0015】また、低圧給水ポンプ19から給水される
温度は、夏場と冬場では復水器18の冷却水の温度差に
よる真空度の相違から、冬場においては夏場に比較して
7〜8℃程度も低下して目標温度との差が大きくなるか
ら、冬場に目標温度に制御するためには、ドラム保有水
を混合させる系統に、夏場に比べてより多くの流量を流
す必要がある。
Further, the temperature of water supplied from the low-pressure water supply pump 19 is about 7 to 8 ° C. in the winter season as compared with that in the summer season due to the difference in vacuum degree due to the temperature difference of the cooling water of the condenser 18 in the summer season and the winter season. Since it also decreases and the difference from the target temperature becomes large, in order to control the target temperature in the winter, it is necessary to flow a larger amount of flow in the system that mixes the water held in the drum than in the summer.

【0016】さらに、図6に示すように、窒素酸化物低
減対策としてガスタービンの燃焼器3に蒸気タービン1
5から蒸気噴射流量調節弁31を経て蒸気噴射を行って
いる場合には、この噴射蒸気量によって結露温度が最大
5℃程度変化する。この場合、噴射蒸気量が多いときに
は、結露温度が上昇するため、低圧節炭器入口温度調節
弁24の温度設定値は、最大噴射蒸気量でも結露しない
ような高めの値に設定する必要があり、これには結局、
ドラム保有水を混合させる側の系統の流量をさらに増加
させることが必要になる。
Further, as shown in FIG. 6, the steam turbine 1 is installed in the combustor 3 of the gas turbine as a nitrogen oxide reduction measure.
When steam injection is performed from No. 5 through the steam injection flow rate control valve 31, the dew condensation temperature changes by about 5 ° C. at maximum depending on the injected steam amount. In this case, when the amount of injected steam is large, the dew condensation temperature rises, so it is necessary to set the temperature setting value of the low-pressure economizer inlet temperature control valve 24 to a high value so that dew does not condense even at the maximum amount of injected steam. , In the end,
It is necessary to further increase the flow rate of the system that mixes the drum water.

【0017】結局、従来の系統で構成された排熱回収ボ
イラ6では、低圧蒸発器10と低圧節炭器11の圧力損
失によって決定される入口温度調節弁24の差圧に十分
な余裕を期待できないため、冬場でガスタービン燃焼器
への噴射蒸気量が多い運転状態では、低圧節炭器11の
入口温度が目標温度に制御できず、その結果、低圧節炭
器11の腐食防止効果が十分に得られないという問題点
があった。
After all, in the exhaust heat recovery boiler 6 constituted by the conventional system, a sufficient margin is expected for the differential pressure of the inlet temperature control valve 24 determined by the pressure loss of the low pressure evaporator 10 and the low pressure economizer 11. Therefore, the inlet temperature of the low pressure economizer 11 cannot be controlled to the target temperature in an operating state where the amount of steam injected to the gas turbine combustor is large in winter, and as a result, the corrosion prevention effect of the low pressure economizer 11 is sufficient. There was a problem that I could not get it.

【0018】また、プラントの前回停止からの停止間隔
が短く、ドラム保有水が残温を保持した状態から起動す
るホット起動時においては、その初期に低圧給水流量調
節弁20側が全閉付近で運用されるに伴って低圧節炭器
入口温度調節弁24も全閉付近で運用される点がコール
ド起動と異なるため、結果的に節炭器での蒸発現象が発
生して運転不安定現象に至るという問題点があった。
Further, when the plant has a short stop interval since the last stop and the hot start is started from the state where the drum-holding water retains the residual temperature, the low-pressure feed water flow rate control valve 20 side is operated near the full close at the initial stage. Accordingly, the low-pressure economizer inlet temperature control valve 24 is also operated near the fully closed state, which is different from the cold start. As a result, an evaporation phenomenon occurs in the economizer and the operation becomes unstable. There was a problem.

【0019】本発明は上述した事情を考慮してなされた
もので、夏場、冬場の季節の差やガスタービン燃焼器へ
の蒸気噴射量の変化などの影響に対しても安定な給水温
度制御を行って節炭器での腐食を防止し、かつプラント
起動時のように排熱回収ボイラへの給水流量が少ない運
転領域でもコールド/ホット起動の別に関わらず、運転
安定性を確保するための節炭器蒸発防止機能を備えた排
熱回収ボイラ給水装置を提供することを目的とする。
The present invention has been made in consideration of the above-mentioned circumstances, and it is possible to perform stable feed water temperature control against the influence of the difference in the seasons in the summer and winter and the change in the amount of steam injected to the gas turbine combustor. This is a section to prevent corrosion in the economizer and to ensure operational stability even in an operation area where the feed water flow rate to the exhaust heat recovery boiler is small, such as when starting the plant, regardless of cold / hot start. It is an object of the present invention to provide an exhaust heat recovery boiler water supply device having a charcoal evaporation prevention function.

【0020】[0020]

【課題を解決するための手段】上述した課題を解決する
ために、本発明の請求項1は、ガスタービンの排ガスを
熱源とした排熱回収ボイラ内に蒸発器,ドラムおよび節
炭器を配設し、上記蒸発器に上記ドラムを連結するとと
もに、このドラムに上記節炭器を介して給水を供給する
排熱回収ボイラ給水装置において、上記節炭器に給水す
る給水ポンプの吐出系統を、上記ドラム内に設けた熱交
換部を通る系統と、この熱交換部を通さない系統とに分
岐し、これらの給水を節炭器入口給水温度調節手段に合
流させて温度調節し、上記節炭器に供給することを特徴
とする。
In order to solve the above-mentioned problems, the first aspect of the present invention is to arrange an evaporator, a drum and a economizer in an exhaust heat recovery boiler using the exhaust gas of a gas turbine as a heat source. In the waste heat recovery boiler water supply device for supplying water to the drum via the coal economizer, the discharge system of the water supply pump for supplying water to the economizer, A system that passes through the heat exchange section provided in the drum and a system that does not pass through this heat exchange section are branched, and the feed water is joined to the economizer inlet feed water temperature adjusting means to adjust the temperature, It is characterized by supplying to a container.

【0021】請求項2は、請求項1記載の排熱回収ボイ
ラ給水装置において、節炭器出口とドラムとの間に、ド
ラム側への給水流量を調節する給水流量調節手段を設置
するとともに、この給水流量調節手段から給水の一部を
給水ポンプ入口に戻す再循環系統を設け、給水流量要求
信号に基づいて再循環流量と上記ドラム側への給水流量
との割合を調節することを特徴とする。
According to a second aspect of the present invention, in the waste heat recovery boiler water supply device according to the first aspect, a water supply flow rate adjusting means for adjusting a water supply flow rate to the drum side is installed between the outlet of the economizer and the drum. A recirculation system for returning a part of the water supply from the water supply flow rate adjusting means to the water supply pump inlet is provided, and the ratio between the recirculation flow rate and the water supply flow rate to the drum side is adjusted based on the water supply flow rate request signal. To do.

【0022】請求項3は、請求項1記載の排熱回収ボイ
ラ給水装置において、燃焼器に蒸気噴射が行われている
場合、この噴射蒸気量を検出器にて検出し、この検出信
号を節炭器入口温度調節手段の温度制御設定値に加算す
ることを特徴とする。
According to a third aspect of the present invention, in the exhaust heat recovery boiler water supply apparatus according to the first aspect, when the combustor is injecting steam, the injected steam amount is detected by the detector, and the detected signal is detected. It is characterized in that it is added to the temperature control set value of the charcoal inlet temperature adjusting means.

【0023】[0023]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0024】図1は本発明に係る排熱回収ボイラ給水装
置の第1実施の形態を示す系統図である。なお、従来の
構成と同一または対応する部分には図6と同一の符号を
用いて説明する。
FIG. 1 is a system diagram showing a first embodiment of an exhaust heat recovery boiler water supply system according to the present invention. Parts that are the same as or correspond to those of the conventional configuration will be described using the same reference numerals as in FIG.

【0025】図1に示すように、起動装置1を起動させ
ると、圧縮機2により圧縮された空気は、燃焼器3で燃
料とともに燃焼してガスタービン4で仕事をして発電機
5を駆動させ、発電を行うようになっている。ガスター
ビン4の排ガスは排熱回収ボイラ6に導かれ、この排熱
回収ボイラ6内において、過熱器7,高圧蒸発器8,高
圧節炭器9,低圧蒸発器10および低圧節炭器11の順
に熱交換した後に煙突12から排出される。
As shown in FIG. 1, when the starter 1 is started, the air compressed by the compressor 2 burns with the fuel in the combustor 3 and works in the gas turbine 4 to drive the generator 5. To generate electricity. Exhaust gas from the gas turbine 4 is guided to the exhaust heat recovery boiler 6, and inside the exhaust heat recovery boiler 6, the superheater 7, the high pressure evaporator 8, the high pressure economizer 9, the low pressure evaporator 10 and the low pressure economizer 11 are discharged. After exchanging heat in order, it is discharged from the stack 12.

【0026】排熱回収ボイラ6で発生した蒸気におい
て、高圧蒸気は高圧ドラム13から過熱器7、高圧蒸気
加減弁14を経て蒸気タービン15の高圧側へ導かれる
一方、低圧蒸気は低圧ドラム16から低圧蒸気加減弁1
7を経て蒸気タービン15の低圧側に導かれ、それぞれ
蒸気タービン15で仕事をした後、復水器18で凝縮液
化されて復水となる。
In the steam generated in the exhaust heat recovery boiler 6, the high-pressure steam is guided from the high-pressure drum 13 to the high-pressure side of the steam turbine 15 through the superheater 7 and the high-pressure steam control valve 14, while the low-pressure steam is discharged from the low-pressure drum 16. Low pressure steam control valve 1
After being guided to the low-pressure side of the steam turbine 15 via 7 and working in the steam turbine 15, they are condensed and liquefied in the condenser 18 to be condensed water.

【0027】また、復水器18からの給水は、低圧給水
ポンプ19で昇圧された後、低圧ドラム16に設けられ
た熱交換部16aを通る系統と、低圧ドラム16を通ら
ない系統に分岐された後、三方調節弁構造である節炭器
入口給水温度調節手段としての低圧節炭器入口温度調節
弁24で合流され、ここで温度調節は、低圧ドラム16
側を通る系統と通らない系統との流量配分を、低圧節炭
器入口温度調節弁24の開度を図2に示すように制御す
ることにより行われる。
The water supplied from the condenser 18 is pressurized by the low-pressure water supply pump 19 and then branched into a system that passes through the heat exchange section 16a provided in the low-pressure drum 16 and a system that does not pass through the low-pressure drum 16. After that, they are joined by a low pressure economizer inlet temperature control valve 24 as a economizer inlet feed water temperature adjusting means having a three-way control valve structure.
Flow distribution between the system passing through the side and the system not passing is performed by controlling the opening degree of the low-pressure economizer inlet temperature control valve 24 as shown in FIG.

【0028】すなわち、低圧節炭器11の入口部には、
温度検出器25が設置され、この温度検出器25の検出
信号が比較器26に出力され、比較器26で低圧節炭器
11の入口部の温度と、低圧節炭器入口温度調節弁24
の温度設定値に加算器32で加算した温度とが比較さ
れ、調節器27を介して低圧節炭器入口温度調節弁24
の開度が調節される。
That is, at the inlet of the low pressure economizer 11,
A temperature detector 25 is installed, and a detection signal of the temperature detector 25 is output to a comparator 26. The comparator 26 outputs the temperature of the inlet portion of the low pressure economizer 11 and the low pressure economizer inlet temperature control valve 24.
The temperature set value of the low temperature economizer inlet temperature control valve 24 is compared via the controller 27 with the temperature added by the adder 32.
Is adjusted.

【0029】低圧節炭器入口温度調節弁24から排出さ
れた給水は、低圧節炭器11に供給され、この低圧節炭
器11を経て三方調節弁構造である給水流量調節手段と
しての低圧給水流量調節弁20で流量調節されて低圧ド
ラム16に至る。ここで、低圧給水流量調節弁20は低
圧給水ポンプ19入口側に再循環する系統にも連絡され
ており、低圧ドラム16のレベルを制御するための給水
流量要求信号が小さいときは、この再循環系統に主に給
水を流すことにより、低圧給水ポンプ19のミニマムフ
ローを確保すると同時に、低圧節炭器11の蒸発防止の
ための必要流量を確保する。
The feed water discharged from the low-pressure economizer inlet temperature control valve 24 is supplied to the low-pressure economizer 11, and the low-pressure feed water as a water supply flow rate adjusting means having a three-way control valve structure through the low-pressure economizer 11. The flow rate is adjusted by the flow rate control valve 20 to reach the low pressure drum 16. Here, the low-pressure feed water flow control valve 20 is also connected to a system for recirculation on the inlet side of the low-pressure feed pump 19, and when the feed water flow demand signal for controlling the level of the low-pressure drum 16 is small, this recirculation is performed. By mainly supplying water to the system, a minimum flow of the low-pressure water supply pump 19 is ensured, and at the same time, a necessary flow rate for preventing evaporation of the low-pressure economizer 11 is ensured.

【0030】一方、上記給水流量要求信号が大きくなっ
てきたら、この再循環系統に流す流量を減らすと同時
に、低圧ドラム16側に流れる流量を増加させるよう
に、低圧給水流量調節弁20の開度を調節して通常のド
ラムレベル制御に移行させる。そして、低圧給水流量調
節弁20の開度はドラムレベル制御装置22の制御信号
により調節される。以上の低圧給水流量調節弁20の開
度制御方法の一例を図3に示す。
On the other hand, when the feed water flow rate demand signal becomes large, the opening of the low pressure feed water flow rate control valve 20 is adjusted so that the flow rate of the recirculation system is reduced and the flow rate of the low pressure drum 16 is increased. To adjust to normal drum level control. Then, the opening degree of the low pressure feed water flow rate control valve 20 is adjusted by a control signal of the drum level control device 22. FIG. 3 shows an example of a method of controlling the opening degree of the low pressure feed water flow rate control valve 20 described above.

【0031】また、燃焼器3に蒸気噴射が行われている
場合は、噴射されている蒸気流量を検出器33で検出
し、この検出信号を低圧節炭器入口温度調節弁24の温
度設定値に加算器32を通して加算することにより、噴
射蒸気量の変動による結露温度変化の影響を先行的に打
ち消して低圧節炭器11での結露を防止することができ
る。
When steam is injected into the combustor 3, the flow rate of the injected steam is detected by the detector 33, and this detection signal is used as the temperature set value of the low pressure economizer inlet temperature control valve 24. By adding through the adder 32 to the above, it is possible to prevent the influence of the change in the condensation temperature due to the change in the amount of injected steam in advance and prevent the condensation in the low pressure economizer 11.

【0032】次に、上記第1実施の形態の作用を説明す
る。
Next, the operation of the first embodiment will be described.

【0033】第1実施の形態では、排熱回収ボイラ6の
低圧節炭器11の入口温度を制御するに際し、低圧給水
ポンプ19の吐出系統を高温のドラム保有水と熱交換さ
せた系統と、熱交換しない系統に分岐し、両者を流れる
割合を低圧節炭器入口温度調節弁24により調節した後
に混合させて温度調節を行う。
In the first embodiment, when controlling the inlet temperature of the low-pressure economizer 11 of the exhaust heat recovery boiler 6, a system in which the discharge system of the low-pressure feed pump 19 is heat-exchanged with the high-temperature drum-holding water, The temperature is adjusted by branching to a system where heat is not exchanged and adjusting the rate of flow through both by the low pressure economizer inlet temperature adjustment valve 24 and then mixing.

【0034】また、排熱回収ボイラ6への給水流量調節
手段としての低圧給水流量調節弁20を低圧節炭器11
出口と低圧ドラム16との間に設置するとともに、低圧
給水ポンプ19入口に戻す再循環系統とも接続し、低圧
ドラム16側への給水要求信号が小さい場合は、この再
循環系統に主に流すことにより、低圧給水ポンプ19の
過熱防止用再循環流量と低圧節炭器11の蒸発(スチー
ミング)防止のための節炭器必要最低流量が同時に確保
することができる。
Further, a low pressure feed water flow rate control valve 20 as a feed water flow rate control means for the exhaust heat recovery boiler 6 is provided in the low pressure economizer 11.
It is installed between the outlet and the low-pressure drum 16 and is also connected to a recirculation system that returns to the low-pressure feed pump 19 inlet, and if the water supply request signal to the low-pressure drum 16 side is small, flow mainly to this recirculation system. As a result, the recirculation flow rate for preventing overheating of the low-pressure feed pump 19 and the required minimum flow rate of the economizer for preventing evaporation (steaming) of the low-pressure economizer 11 can be secured at the same time.

【0035】さらに、ガスタービン燃焼器に蒸気噴射を
行っている場合には、この噴射蒸気量を検出器33によ
り検出し、このの検出信号を節炭器入口給水温度の制御
設定値に加算することにより、噴射蒸気量の変化によっ
て排ガスの結露温度が変化しても、この影響を先行的に
打ち消して節炭器入口ヘッダーやチューブの外表面に結
露させない温度に制御することができる。
Further, when the gas turbine combustor is injecting steam, the amount of injected steam is detected by the detector 33, and the detection signal of this is added to the control set value of the feed water temperature at the economizer inlet. As a result, even if the dew condensation temperature of the exhaust gas changes due to a change in the amount of injected steam, this effect can be canceled out in advance, and the temperature can be controlled to a temperature at which dew condensation does not occur on the outer surface of the economizer inlet header or the tube.

【0036】以上のように、上記第1実施の形態によれ
ば、排熱回収ボイラ6の低圧節炭器11の入口温度を調
節するに際し、高温給水を低温給水に混合する際の圧力
的な問題はなくなる。また、低圧節炭器11での蒸発防
止のための必要流量が常時確保されると同時に、プラン
ト起動時は給水ポンプのミニマムフローも兼用すること
ができる。さらに、燃焼器3に蒸気噴射が行われている
場合でも、この影響を先行的に打ち消して節炭器での結
露を防止することができる。
As described above, according to the first embodiment, when adjusting the inlet temperature of the low pressure economizer 11 of the exhaust heat recovery boiler 6, it is necessary to adjust the pressure when mixing the high temperature feed water with the low temperature feed water. The problem goes away. Further, the required flow rate for preventing evaporation in the low-pressure coal economizer 11 is always secured, and at the same time the minimum flow of the water supply pump can be used at the time of plant startup. Further, even when steam is being injected into the combustor 3, this effect can be canceled in advance to prevent dew condensation in the economizer.

【0037】図4は本発明に係る排熱回収ボイラ給水装
置の第2実施の形態を示す系統図である。なお、前記第
1実施の形態と同一または対応する部分には同一の符号
を付して説明する。以下の実施の形態も同様である。
FIG. 4 is a system diagram showing a second embodiment of the waste heat recovery boiler water supply system according to the present invention. It should be noted that the same or corresponding parts as those of the first embodiment are designated by the same reference numerals in the following description. The same applies to the following embodiments.

【0038】第2実施の形態では、排熱回収ボイラ6を
単圧式に構成したものであり、排熱回収ボイラ6内には
過熱器34,蒸発器35および節炭器36が排ガスの下
流側に向かって配設され、これら蒸発器35および節炭
器36がそれぞれ前記第1実施の形態における低圧蒸発
器10および低圧節炭器11に相当する。そして、排熱
回収ボイラ6で発生した蒸気は、ドラム37から過熱器
34、蒸気加減弁38を経て蒸気タービン15へ導かれ
る.この第2実施の形態でも前記第1実施の形態と同様
の効果が得られる。その他の構成および作用は前記第1
実施の形態と同様であるのでその説明を省略する。
In the second embodiment, the exhaust heat recovery boiler 6 is of a single pressure type, and the superheater 34, the evaporator 35 and the economizer 36 are provided in the exhaust heat recovery boiler 6 on the downstream side of the exhaust gas. And the evaporator 35 and the economizer 36 correspond to the low pressure evaporator 10 and the low pressure economizer 11 in the first embodiment, respectively. Then, the steam generated in the exhaust heat recovery boiler 6 is guided from the drum 37 to the steam turbine 15 via the superheater 34 and the steam control valve 38. Also in this second embodiment, the same effect as in the first embodiment can be obtained. Other configurations and operations are the same as those of the first aspect.
The description is omitted because it is similar to the embodiment.

【0039】図5は本発明に係る排熱回収ボイラ給水装
置の第3実施の形態を示す系統図である。この第3実施
の形態では、低圧節炭器11の入口温度調節のために給
水の一部を高圧ドラム13と熱交換させたものである。
すなわち、復水器18からの給水は、低圧給水ポンプ1
9で昇圧された後、高圧ドラム13に設けられた熱交換
部13aを通る系統と、高圧ドラム13を通らない系統
に分岐された後、三方調節弁構造である低圧節炭器入口
温度調節弁24で合流される。
FIG. 5 is a system diagram showing a third embodiment of the waste heat recovery boiler water supply system according to the present invention. In the third embodiment, a part of the feed water is heat-exchanged with the high-pressure drum 13 in order to adjust the inlet temperature of the low-pressure economizer 11.
That is, the water supplied from the condenser 18 is the low-pressure water supply pump 1
After the pressure is increased by 9, the system is branched into a system that passes through the heat exchange section 13a provided in the high-pressure drum 13 and a system that does not pass through the high-pressure drum 13, and then a low-pressure economizer inlet temperature control valve having a three-way control valve structure. Joined at 24.

【0040】この第3実施の形態でも前記第1実施の形
態と同様の効果が得られる。その他の構成および作用は
前記第1実施の形態と同様であるのでその説明を省略す
る。
The same effect as that of the first embodiment can be obtained in the third embodiment. Other configurations and operations are the same as those in the first embodiment, and therefore their explanations are omitted.

【0041】[0041]

【発明の効果】以上説明したように、本発明の請求項1
によれば、節炭器に給水する給水ポンプの吐出系統を、
ドラム内に設けた熱交換部を通る系統と、この熱交換部
を通さない系統とに分岐し、これらの給水を節炭器入口
給水温度調節手段に合流させて温度調節し、上記節炭器
に供給することにより、節炭器入口給水温度が夏場、冬
場の季節の差に関わらず、安定に制御され、節炭器での
排ガス中の湿分結露による発錆が防止される。その結
果、節炭器でのチューブリークの可能性を低減すること
ができる。
As described above, according to the first aspect of the present invention.
According to, according to the discharge system of the water supply pump that supplies water to the economizer,
A system that passes through the heat exchange section provided in the drum and a system that does not pass through this heat exchange section are branched, and the feed water is joined to the economizer inlet feed water temperature adjusting means to adjust the temperature, By supplying the water to the economizer, the inlet water temperature of the economizer can be stably controlled regardless of the difference of seasons in summer and winter, and rusting due to moisture condensation in the exhaust gas in the economizer can be prevented. As a result, the possibility of tube leak in the economizer can be reduced.

【0042】請求項2によれば、請求項1記載の排熱回
収ボイラ給水装置において、節炭器出口とドラムとの間
に、ドラム側への給水流量を調節する給水流量調節手段
を設置するとともに、この給水流量調節手段から給水の
一部を給水ポンプ入口に戻す再循環系統を設け、給水流
量要求信号に基づいて再循環流量と上記ドラム側への給
水流量との割合を調節することにより、プラントのコー
ルド/ホット起動の別に関係なく、節炭器での蒸発防止
に必要な流量が確保されると同時に、ミニマムフローも
確保され、節炭器での蒸発によるドラムレベル変動や給
水配管のウォータハンマ現象を未然に回避することがで
き、給水ポンプの過熱を防止することができる。
According to a second aspect of the present invention, in the exhaust heat recovery boiler water supply apparatus according to the first aspect, a water supply flow rate adjusting means for adjusting the water supply flow rate to the drum side is installed between the outlet of the economizer and the drum. At the same time, by providing a recirculation system for returning a part of the water supply from the water supply flow rate adjusting means to the water supply pump inlet, by adjusting the ratio between the recirculation flow rate and the water supply flow rate to the drum side based on the water supply flow rate request signal. Regardless of whether the plant is cold or hot started, the flow rate required to prevent evaporation in the economizer is secured, and at the same time, the minimum flow is also secured, which causes fluctuations in drum level due to evaporation in the economizer and in the water supply piping. It is possible to avoid the water hammer phenomenon and prevent overheating of the water supply pump.

【0043】請求項3によれば、請求項1記載の排熱回
収ボイラ給水装置において、燃焼器に蒸気噴射が行われ
ている場合、この噴射蒸気量を検出器にて検出し、この
検出信号を節炭器入口温度調節手段の温度制御設定値に
加算することにより、節炭器入口給水温度が燃焼器への
噴射蒸気量の差に関係なく、安定に制御されることとな
り、請求項1と同様の効果が得られる。
According to the third aspect, in the exhaust heat recovery boiler water supply apparatus according to the first aspect, when steam is injected into the combustor, the amount of injected steam is detected by the detector, and this detection signal is detected. Is added to the temperature control set value of the economizer inlet temperature adjusting means, the economizer inlet feed water temperature is controlled stably regardless of the difference in the amount of steam injected to the combustor. The same effect as can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る排熱回収ボイラ給水装置の第1実
施の形態を示す系統図。
FIG. 1 is a system diagram showing a first embodiment of an exhaust heat recovery boiler water supply apparatus according to the present invention.

【図2】図1の低圧節炭器入口温度調節弁の開度制御方
法の一例を示す図。
FIG. 2 is a diagram showing an example of a method for controlling the opening degree of the low-pressure economizer inlet temperature control valve of FIG.

【図3】図1の低圧給水流量調節弁の開度制御方法の一
例を示す図。
FIG. 3 is a diagram showing an example of an opening control method of the low-pressure feed water flow rate control valve of FIG. 1.

【図4】本発明に係る排熱回収ボイラ給水装置の第2実
施の形態を示す系統図。
FIG. 4 is a system diagram showing a second embodiment of an exhaust heat recovery boiler water supply apparatus according to the present invention.

【図5】本発明に係る排熱回収ボイラ給水装置の第3実
施の形態を示す系統図。
FIG. 5 is a system diagram showing a third embodiment of an exhaust heat recovery boiler water supply system according to the present invention.

【図6】従来のコンバインドサイクル発電プラントの一
例を示す系統図。
FIG. 6 is a system diagram showing an example of a conventional combined cycle power generation plant.

【符号の説明】[Explanation of symbols]

1 起動装置 2 圧縮機 3 燃焼器 4 ガスタービン 5 発電機 6 排熱回収ボイラ 7 過熱器 8 高圧蒸発器 9 高圧節炭器 10 低圧蒸発器 11 低圧節炭器 12 煙突 13 高圧ドラム 13a 熱交換部 14 高圧蒸気加減弁 15 蒸気タービン 16 低圧ドラム 16a 熱交換部 17 低圧蒸気加減弁 18 復水器 19 低圧給水ポンプ 20 低圧給水流量調節弁(給水流量調節手段) 21 復水再循環弁 22 ドラムレベル制御装置 23 低圧循環ポンプ 24 低圧節炭器入口温度調節弁(節炭器入口給水温度
調節手段) 25 温度検出器 26 比較器 27 調節器 28 高圧給水ポンプ 29 高圧給水調節弁 30 高圧循環ポンプ 31 蒸気噴射流量調節弁 32 加算器 33 検出器
1 Starter 2 Compressor 3 Combustor 4 Gas turbine 5 Generator 6 Exhaust heat recovery boiler 7 Superheater 8 High pressure evaporator 9 High pressure economizer 10 Low pressure evaporator 11 Low pressure economizer 12 Chimney 13 High pressure drum 13a Heat exchange section 14 High Pressure Steam Control Valve 15 Steam Turbine 16 Low Pressure Drum 16a Heat Exchange Section 17 Low Pressure Steam Control Valve 18 Condenser 19 Low Pressure Water Supply Pump 20 Low Pressure Water Supply Flow Rate Control Valve (Supply Water Flow Rate Controlling Device) 21 Condensate Recirculation Valve 22 Drum Level Control Device 23 Low pressure circulation pump 24 Low pressure economizer inlet temperature control valve (coefficient economizer inlet feed water temperature adjusting means) 25 Temperature detector 26 Comparator 27 Regulator 28 High pressure water supply pump 29 High pressure water supply control valve 30 High pressure circulation pump 31 Steam injection Flow control valve 32 Adder 33 Detector

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ガスタービンの排ガスを熱源とした排熱
回収ボイラ内に蒸発器,ドラムおよび節炭器を配設し、
上記蒸発器に上記ドラムを連結するとともに、このドラ
ムに上記節炭器を介して給水を供給する排熱回収ボイラ
給水装置において、上記節炭器に給水する給水ポンプの
吐出系統を、上記ドラム内に設けた熱交換部を通る系統
と、この熱交換部を通さない系統とに分岐し、これらの
給水を節炭器入口給水温度調節手段に合流させて温度調
節し、上記節炭器に供給することを特徴とする排熱回収
ボイラ給水装置。
1. An evaporator, a drum, and a economizer are provided in an exhaust heat recovery boiler that uses the exhaust gas of a gas turbine as a heat source.
In the waste heat recovery boiler water supply device that connects the drum to the evaporator and supplies water to the drum through the economizer, the discharge system of the water supply pump that supplies water to the economizer is provided in the drum. The system is divided into a system that passes through the heat exchange section and a system that does not pass through this heat exchange section, and these feed waters are joined to the economizer inlet feed water temperature adjusting means to adjust the temperature and then supplied to the economizer. Exhaust heat recovery boiler water supply device characterized by:
【請求項2】 請求項1記載の排熱回収ボイラ給水装置
において、節炭器出口とドラムとの間に、ドラム側への
給水流量を調節する給水流量調節手段を設置するととも
に、この給水流量調節手段から給水の一部を給水ポンプ
入口に戻す再循環系統を設け、給水流量要求信号に基づ
いて再循環流量と上記ドラム側への給水流量との割合を
調節することを特徴とする排熱回収ボイラ給水装置。
2. The exhaust heat recovery boiler water supply apparatus according to claim 1, wherein a water supply flow rate adjusting means for adjusting a water supply flow rate to the drum side is installed between the economizer outlet and the drum, and the water supply flow rate is provided. Exhaust heat characterized by providing a recirculation system for returning a part of the water supply from the adjusting means to the inlet of the water supply pump, and adjusting the ratio between the recirculation flow rate and the water supply rate to the drum side based on the water supply rate request signal. Recovery boiler water supply device.
【請求項3】 請求項1記載の排熱回収ボイラ給水装置
において、燃焼器に蒸気噴射が行われている場合、この
噴射蒸気量を検出器にて検出し、この検出信号を節炭器
入口温度調節手段の温度制御設定値に加算することを特
徴とする排熱回収ボイラ給水装置。
3. The exhaust heat recovery boiler water supply system according to claim 1, wherein when steam is injected into the combustor, the amount of injected steam is detected by a detector, and the detection signal is input to the economizer inlet. An exhaust heat recovery boiler water supply device characterized by adding to a temperature control set value of a temperature adjusting means.
JP18396195A 1995-07-20 1995-07-20 Water feeding device for waste heat recovery boiler Pending JPH0933005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18396195A JPH0933005A (en) 1995-07-20 1995-07-20 Water feeding device for waste heat recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18396195A JPH0933005A (en) 1995-07-20 1995-07-20 Water feeding device for waste heat recovery boiler

Publications (1)

Publication Number Publication Date
JPH0933005A true JPH0933005A (en) 1997-02-07

Family

ID=16144855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18396195A Pending JPH0933005A (en) 1995-07-20 1995-07-20 Water feeding device for waste heat recovery boiler

Country Status (1)

Country Link
JP (1) JPH0933005A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102042583A (en) * 2010-10-11 2011-05-04 无锡华光锅炉股份有限公司 Feed water heater of boiler
JP2011196646A (en) * 2010-03-23 2011-10-06 Shin Kurushima Dockyard Co Ltd Exhaust gas economizer circulating water system
CN103353102A (en) * 2013-07-22 2013-10-16 清华大学 Device capable of exchanging heat with high-temperature high-pressure gas
CN104132325A (en) * 2014-01-06 2014-11-05 衡水超越节能工程有限公司 Low temperature economizer having glass-lined heat tubes and applicable to deep recovery of waste heat in station boiler exhaust
CN104315496A (en) * 2014-10-02 2015-01-28 大唐(北京)能源管理有限公司 Equal temperature difference principle-based boiler exhaust smoke waste heat recovery system
CN104390200A (en) * 2014-11-21 2015-03-04 张家港格林沙洲锅炉有限公司 Marine exhaust gas waste heat boiler
WO2016129432A1 (en) * 2015-02-10 2016-08-18 三菱重工業株式会社 Boiler feed-water system, boiler provided with said system, and control method for boiler feed-water system
CN107036069A (en) * 2017-05-18 2017-08-11 杭州江东富丽达热电有限公司 Boiler steam and water circuit
CN108224392A (en) * 2017-12-11 2018-06-29 鞍钢股份有限公司 Converter residual neat recovering system storage heater steam energy saving method
CN110553245A (en) * 2018-06-01 2019-12-10 中国电力工程顾问集团华北电力设计院有限公司 System for improving wide-load operation thermal efficiency of coal-fired unit
CN111256506A (en) * 2020-03-30 2020-06-09 西安热工研究院有限公司 Maintenance-free heat pipe type low-temperature economizer system convenient to assemble and disassemble and working method thereof
CN114001348A (en) * 2021-11-24 2022-02-01 三河发电有限责任公司 Thermodynamic system

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196646A (en) * 2010-03-23 2011-10-06 Shin Kurushima Dockyard Co Ltd Exhaust gas economizer circulating water system
CN102042583A (en) * 2010-10-11 2011-05-04 无锡华光锅炉股份有限公司 Feed water heater of boiler
CN103353102A (en) * 2013-07-22 2013-10-16 清华大学 Device capable of exchanging heat with high-temperature high-pressure gas
CN104132325A (en) * 2014-01-06 2014-11-05 衡水超越节能工程有限公司 Low temperature economizer having glass-lined heat tubes and applicable to deep recovery of waste heat in station boiler exhaust
CN104132325B (en) * 2014-01-06 2016-03-30 衡水超越节能工程有限公司 The degree of depth reclaims the enamel heat pipe low-level (stack-gas) economizer of heat of smoke discharged from boiler of power station
CN104315496A (en) * 2014-10-02 2015-01-28 大唐(北京)能源管理有限公司 Equal temperature difference principle-based boiler exhaust smoke waste heat recovery system
CN104315496B (en) * 2014-10-02 2018-06-12 大唐(北京)能源管理有限公司 Based on etc. temperature difference principle boiler exhaust gas residual neat recovering system
CN104390200A (en) * 2014-11-21 2015-03-04 张家港格林沙洲锅炉有限公司 Marine exhaust gas waste heat boiler
JP2016148467A (en) * 2015-02-10 2016-08-18 三菱重工業株式会社 Boiler water supply system, boiler including the same, and control method of boiler water supply system
CN107208876A (en) * 2015-02-10 2017-09-26 三菱重工业株式会社 The feed water system of boiler and possess the boiler of the feed water system of boiler and the control method of the feed water system of boiler
WO2016129432A1 (en) * 2015-02-10 2016-08-18 三菱重工業株式会社 Boiler feed-water system, boiler provided with said system, and control method for boiler feed-water system
CN107036069A (en) * 2017-05-18 2017-08-11 杭州江东富丽达热电有限公司 Boiler steam and water circuit
CN108224392A (en) * 2017-12-11 2018-06-29 鞍钢股份有限公司 Converter residual neat recovering system storage heater steam energy saving method
CN110553245A (en) * 2018-06-01 2019-12-10 中国电力工程顾问集团华北电力设计院有限公司 System for improving wide-load operation thermal efficiency of coal-fired unit
CN111256506A (en) * 2020-03-30 2020-06-09 西安热工研究院有限公司 Maintenance-free heat pipe type low-temperature economizer system convenient to assemble and disassemble and working method thereof
CN114001348A (en) * 2021-11-24 2022-02-01 三河发电有限责任公司 Thermodynamic system
CN114001348B (en) * 2021-11-24 2023-08-25 三河发电有限责任公司 Thermodynamic system

Similar Documents

Publication Publication Date Title
US4207842A (en) Mixed-flow feedwater heater having a regulating device
JP4540472B2 (en) Waste heat steam generator
US20070113562A1 (en) Methods and apparatus for starting up combined cycle power systems
US9416686B2 (en) Heat recovery steam generator and power plant
US6427636B1 (en) Method and plant for heating a liquid medium
US4274256A (en) Turbine power plant with back pressure turbine
JPH0933005A (en) Water feeding device for waste heat recovery boiler
US9528396B2 (en) Heat recovery steam generator and power plant
US11326471B2 (en) System and method to improve boiler and steam turbine start-up times
JP2012102711A (en) Temperature reducing device steam heat recovery facilities
JP2003161164A (en) Combined-cycle power generation plant
CN113874603B (en) System and method for improving boiler and steam turbine start-up time
JP2007187352A (en) Starting method of boiler
JPS5925853B2 (en) Power plant operation control method and device for implementing this method
JP2592061B2 (en) Waste heat recovery boiler
JP2002021508A (en) Condensate supply system
JP2007285220A (en) Combined cycle power generation facility
JP7308719B2 (en) Exhaust heat recovery system
JP3820636B2 (en) Method and apparatus for controlling feed water temperature in exhaust recombustion combined cycle plant
JP7150670B2 (en) BOILER, POWER PLANT INCLUDING THE SAME, AND BOILER CONTROL METHOD
JPH07167401A (en) Double pressure type waste heat recovery boiler water supplying apparatus
JPS58217709A (en) Composite cycle power generating plant
JP4017712B2 (en) Method and apparatus for controlling temperature of feed water in exhaust heat recovery boiler
JPH05296401A (en) Exhaust heat recoverying boiler system and its main steam temperature controller
JPH04246244A (en) Pressurizing fluidized bed combined plant and partial load operation control and device therefor