JP2007187352A - Starting method of boiler - Google Patents

Starting method of boiler Download PDF

Info

Publication number
JP2007187352A
JP2007187352A JP2006004308A JP2006004308A JP2007187352A JP 2007187352 A JP2007187352 A JP 2007187352A JP 2006004308 A JP2006004308 A JP 2006004308A JP 2006004308 A JP2006004308 A JP 2006004308A JP 2007187352 A JP2007187352 A JP 2007187352A
Authority
JP
Japan
Prior art keywords
boiler
steam
air preheater
furnace
startup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006004308A
Other languages
Japanese (ja)
Inventor
Yuji Matsuda
勇次 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2006004308A priority Critical patent/JP2007187352A/en
Publication of JP2007187352A publication Critical patent/JP2007187352A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for starting a boiler without reduction in generation efficiency of another boiler unit. <P>SOLUTION: When it is ensured that the exhaust gas temperature of a boiler is an acid-dew point or higher at the time of starting of the boiler such as midnight shutdown starting (DSS) operation or weekly shutdown starting (WSS) of thermal power generation, a forcing blower 12 is operated to start the boiler without supply of auxiliary steam from a steam drum 31 of another furnace 2B to a vapor air preheater 25, and when the pressure of a vapor drum 21 of its own furnace 2A rises to a predetermined value, supply of auxiliary steam AS from the steam drum 21 of the own furnace 2A to the steam air preheater 25 is started. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ボイラの起動方法、特に火力発電の深夜停止起動(DSS)運転や週末停止起動(WSS)運転に適したボイラの起動方法に関するものである。   TECHNICAL FIELD The present invention relates to a boiler startup method, and more particularly to a boiler startup method suitable for thermal power generation midnight stop startup (DSS) operation and weekend stop startup (WSS) operation.

最近の電力需要は負荷の最大と最小の差が増大しており、火力発電所においても、これに対応して負荷調整を行うことが要請されている。つまり、火力発電のボイラは、ボイラ負荷を常に全負荷で運転させるケースは少なく、ボイラ負荷を、75%負荷、50%負荷あるいは25%負荷へと、負荷を上げ下げして運転したり、またボイラの運転を停止(休止)するなど、いわゆる深夜停止起動(Daily Start Stop:以下単にDSSと言う)運転や、週末停止起動(Weekly Start Stop:以下単にWSSという)運転を行って中間負荷を担い、発電効率を向上させる運転が行われている。   Recently, the difference between the maximum and minimum load of electric power is increasing, and thermal power plants are also required to adjust the load accordingly. In other words, there are few cases where a boiler for thermal power generation always operates the boiler load at the full load, and the boiler load is operated by raising or lowering the load to 75% load, 50% load or 25% load. Doing so-called midnight stop start (hereinafter referred to simply as DSS) and weekend stop start (hereinafter referred to simply as WSS) operation and carrying an intermediate load. Operations that improve power generation efficiency are being carried out.

DSS運転は、昼間と夜間の電力需要格差に対応するため、ボイラユニットを深夜に停止し翌朝起動する場合で、停止時間は約6〜12時間程度であり、ホットスタートと呼ばれる。またWSS運転は、運用上、週末は需要が少ないことから、ボイラユニットを週末に停止し、週明けの電力需要増加に対応するため起動する場合で、停止時間は約12〜36時間程度である。24時間程度での起動の場合、ウォームスタートと呼ばれる。   The DSS operation is a case where the boiler unit is stopped at midnight and started the next morning in order to cope with the difference in power demand between daytime and nighttime, and the stop time is about 6 to 12 hours, which is called hot start. Moreover, since WSS operation is operationally less demanded on the weekend, the boiler unit is stopped on the weekend and started to respond to the increase in power demand at the beginning of the week. The stop time is about 12 to 36 hours. . When starting up in about 24 hours, it is called a warm start.

通常運転時には、図5に示すように、自己のボイラユニットに属する火炉(自缶)2Aの蒸気ドラム21からの蒸気を、補助蒸気供給弁22、補助蒸気ヘッダー23及びSAH温度調整弁24を経て、蒸気式空気予熱器(SAH)25に導くことにより、空気予熱器10の上流側に在る蒸気式空気予熱器25を加温し、ここで押込通風機12からの空気を加熱してから空気予熱器10に送り込み、空気予熱器10を通して所定温度まで加熱した空気を火炉(自缶)2Aに送り込んでいる。従って、他のボイラユニットの火炉(他缶)2Bの蒸気ドラム31は、補助蒸気供給弁32を閉じることにより、この補助蒸気供給系統から切り離されている。なお火炉2Aの排ガスは、煙道9から空気予熱器10を通して煙突13より大気放出される。
このような需給上の要請で給電指令によるDSS、WSSに基づいてボイラユニットを通常停止した場合、ボイラは消火され、通風機は停止されており、このような状態からボイラユニットを起動することが必要となる。図6に停止中の状態を示す。図中、斜線を施した機器は停止中であることを示す。
During normal operation, as shown in FIG. 5, steam from the steam drum 21 of the furnace (own can) 2 </ b> A belonging to its own boiler unit passes through the auxiliary steam supply valve 22, the auxiliary steam header 23, and the SAH temperature adjustment valve 24. The steam type air preheater (SAH) 25 is led to heat the steam type air preheater 25 on the upstream side of the air preheater 10, and the air from the forced air blower 12 is heated here. Air that has been sent to the air preheater 10 and heated to a predetermined temperature through the air preheater 10 is sent to the furnace (self-can) 2A. Therefore, the steam drum 31 of the furnace (other can) 2B of another boiler unit is disconnected from the auxiliary steam supply system by closing the auxiliary steam supply valve 32. The exhaust gas from the furnace 2A is discharged from the chimney 13 through the air preheater 10 from the flue 9.
When the boiler unit is normally stopped based on the DSS and WSS based on the power supply command due to such demand and supply requirements, the boiler is extinguished and the ventilator is stopped, and the boiler unit can be started from such a state. Necessary. FIG. 6 shows a stopped state. In the figure, the shaded device indicates that it is stopped.

従来のボイラの起動方法では、図7に示すように、ボイラ起動時に、補助蒸気供給弁32を開くことにより、他の火炉(他缶)2Bの蒸気ドラム31から、補助蒸気ヘッダー23及びSAH温度調整弁24を経て、蒸気式空気予熱器25に補助蒸気の供給を行い、蒸気式空気予熱器25を運転し、ボイラの起動を行っていた。すなわち、蒸気式空気予熱器25を運転している状態で、押込通風機12を起動し、空気予熱器10を通して加熱した空気を火炉(自缶)2Aに送り込み、蒸気ドラム21の圧力が所定値の例えば4MPaになった時点で、図8の如く、他缶の補助蒸気供給弁32を閉じ自缶の補助蒸気供給弁22を開くことにより、補助蒸気の供給源を他缶から自缶に切換え、その後は蒸気式空気予熱器25を自缶の補助蒸気にて運転していた。この制御の概略を図2(b)に示す。   In the conventional boiler starting method, as shown in FIG. 7, the auxiliary steam header 23 and the SAH temperature are opened from the steam drum 31 of the other furnace (other can) 2B by opening the auxiliary steam supply valve 32 when the boiler is started. Auxiliary steam was supplied to the steam air preheater 25 via the regulating valve 24, the steam air preheater 25 was operated, and the boiler was started. That is, while operating the steam type air preheater 25, the forced air blower 12 is started, air heated through the air preheater 10 is sent to the furnace (own can) 2A, and the pressure of the steam drum 21 is a predetermined value. For example, when the pressure reaches 4 MPa, the auxiliary steam supply valve 32 of the other can is closed and the auxiliary steam supply valve 22 of the own can is opened as shown in FIG. 8, thereby switching the supply source of the auxiliary steam from the other can to the own can. Thereafter, the steam air preheater 25 was operated with its own auxiliary steam. An outline of this control is shown in FIG.

このように従来のボイラユニットの起動方法では、他缶の蒸気ドラム31から補助蒸気を供給するため、他缶の発電機出力を抑制し、蒸気発生量を制限値内に納めている。   As described above, in the conventional boiler unit starting method, auxiliary steam is supplied from the steam drum 31 of the other can, so that the generator output of the other can is suppressed and the amount of generated steam is kept within the limit value.

しかしながら、従来のボイラの起動方法では、ボイラ起動時に他のボイラユニットの蒸気ドラムから補助蒸気の供給を行って蒸気式空気予熱器を運転することとしているため、他のボイラユニットの発電機出力を抑制しなければならず、他のボイラユニットの発電効率が低下する。
そこで、本発明の目的は、上記課題を解決し、他のボイラユニットの発電効率を低下させずにボイラを起動する方法を提供することにある。
However, in the conventional boiler starting method, auxiliary steam is supplied from the steam drum of another boiler unit and the steam air preheater is operated when the boiler is started, so the generator output of the other boiler unit is The power generation efficiency of other boiler units is reduced.
Therefore, an object of the present invention is to solve the above-described problems and provide a method for starting a boiler without reducing the power generation efficiency of another boiler unit.

上記目的を達成するため、本発明では、深夜停止起動(DSS)運転や週末停止起動(WSS)運転時に、ボイラ排ガス温度が酸露点以上確保できる場合は、他缶からの補助蒸気を供給せずに、つまり蒸気式空気予熱器(SAH)を運転せずにボイラを起動する。本発明は、具体的には次のように構成したものである。
本発明に係るボイラの起動方法は、ボイラの起動に際し、ボイラの排ガス温度が酸露点以上であることを確保できた場合に、他の火炉の蒸気ドラムからの補助蒸気を蒸気式空気予熱器に供給せずに押込通風機を運転してボイラを起動し、自己の火炉の蒸気ドラムの圧力が所定値まで上昇した時点で、自己の火炉の蒸気ドラムから補助蒸気を上記蒸気式空気予熱器に供給開始することを特徴とする。
本発明は、火力発電のDSS運転でのボイラの起動又はWSS運転でのボイラの起動のいずれにも適用することができる。
In order to achieve the above object, the present invention does not supply auxiliary steam from other cans when the boiler exhaust gas temperature can be secured above the acid dew point during midnight stop start (DSS) operation or weekend stop start (WSS) operation. That is, the boiler is started without operating the steam air preheater (SAH). The present invention is specifically configured as follows.
In the boiler start-up method according to the present invention, when it is ensured that the exhaust gas temperature of the boiler is higher than the acid dew point when the boiler is started, auxiliary steam from the steam drum of another furnace is supplied to the steam-type air preheater. The boiler is started by operating the forced draft fan without supply, and when the pressure of the steam drum of its furnace rises to a predetermined value, auxiliary steam from the steam drum of its furnace is supplied to the steam air preheater. The supply is started.
The present invention can be applied to either a boiler start-up in a DSS operation of thermal power generation or a boiler start-up in a WSS operation.

本発明のボイラの起動方法は、空気予熱器の入口温度を検出し、上記ボイラの排ガス温度が酸露点(硫酸の結露温度)以上となる入口温度であることが確認できた場合に、上記押込通風機を運転してボイラを起動することが好ましい。
上記自己の火炉の蒸気ドラムの圧力が所定値まで上昇した時点とは、例えば4MPaまで上昇した時点であり、この時点で自己の火炉の蒸気ドラムから補助蒸気を上記蒸気式空気予熱器に供給開始することが可能である。
本発明のボイラの起動方法は、上記ボイラが微粉炭焚ボイラまたは石油焚ボイラに適用するとよい。
The boiler start-up method of the present invention detects the inlet temperature of the air preheater, and when the exhaust gas temperature of the boiler can be confirmed to be the inlet temperature at which the acid dew point (sulfuric acid condensation temperature) or higher is confirmed, It is preferable to start the boiler by operating the ventilator.
The time when the pressure of the steam drum of the own furnace has increased to a predetermined value is the time when the pressure has increased to, for example, 4 MPa, and at this time, supply of auxiliary steam from the steam drum of the own furnace to the steam air preheater is started. Is possible.
The boiler startup method of the present invention is preferably applied to a pulverized coal fired boiler or an oil fired boiler.

本発明によれば、火力発電のDSS運転やWSS運転のボイラの起動に際し、他のボイラユニットの蒸気ドラムからの補助蒸気を蒸気式空気予熱器に供給しない状態、つまり蒸気式空気予熱器を運転しない状態でボイラを起動するので、他のボイラユニットの発電効率を低下させずにボイラを起動することができる。   According to the present invention, when a boiler for thermal power generation DSS operation or WSS operation is started, auxiliary steam from the steam drum of another boiler unit is not supplied to the steam air preheater, that is, the steam air preheater is operated. Since a boiler is started in the state which does not carry out, a boiler can be started, without reducing the electric power generation efficiency of another boiler unit.

以下、本発明を図示の実施の形態に基づいて説明する。
図1は火力発電に用いられる微粉炭焚ボイラ設備の一例を表わすものであって、1は微粉炭焚ボイラ、2Aは微粉炭焚ボイラ1の火炉、3は火炉2Aの下流側に形成された後部伝熱部、4は火炉2Aに配設された微粉炭燃焼用のバーナ、5はバーナ4のウィンドボックス、6は石炭を微粉砕し且つ乾燥させ微粉炭としてバーナ4へ供給するためのミル、7は微粉炭搬送用の一次空気をミル6へ供給する一次空気ライン、8は燃焼用の二次空気をウィンドボックス5へ供給する二次空気ライン、9は微粉炭焚ボイラ1から排出される排ガスが流れる煙道(排ガスライン)、10は排ガスと一次空気並びに二次空気とを熱交換させる空気予熱器(AH)、11は一次空気を圧送する一次通風機(PAF)、12は二次空気を圧送する押込通風機(FDF)、13は煙道9に接続された煙突である。
Hereinafter, the present invention will be described based on the illustrated embodiments.
FIG. 1 shows an example of a pulverized coal fired boiler facility used for thermal power generation. 1 is a pulverized coal fired boiler, 2A is a furnace of the pulverized coal fired boiler 1, and 3 is formed downstream of the furnace 2A. Rear heat transfer section 4 is a burner for pulverized coal combustion disposed in the furnace 2A, 5 is a wind box for the burner 4, 6 is a mill for pulverizing and drying the coal and supplying it to the burner 4 as pulverized coal , 7 is a primary air line for supplying primary air for conveying pulverized coal to the mill 6, 8 is a secondary air line for supplying secondary air for combustion to the wind box 5, and 9 is discharged from the pulverized coal fired boiler 1. A flue (exhaust line) through which exhaust gas flows through 10 is an air preheater (AH) that exchanges heat between the exhaust gas and primary air and secondary air, 11 is a primary ventilator (PAF) that pumps primary air, and 12 is two A forced draft fan that pumps the next air ( DF), 13 is a chimney that is connected to the flue 9.

火炉2Aには、復水器から給水ポンプ14を経て得られる給水を加熱する節炭器15と、該節炭器15で加熱された給水を更に加熱して飽和蒸気を発生させる多数の蒸発管(蒸発器)16と、該蒸発管16で発生させた飽和蒸気を集める蒸気ドラム21と、該蒸気ドラム21からの飽和蒸気を過熱して過熱蒸気を発生させる一次過熱器a及び二次過熱器bとが設けられている。火炉2A内には、上流側から下流側へ向け、蒸発管16、二次過熱器b、一次過熱器a、再熱器d、節炭器15が順に配置されている。蒸気ドラム21は火炉上部に設置されており、その蒸気ドラム21中には、蒸発管16からの水に含まれている蒸気と水を分離する汽水分離器が設けられている。   The furnace 2A includes a economizer 15 that heats feed water obtained from a condenser through a feed pump 14, and a number of evaporator tubes that further heat the feed water heated by the economizer 15 to generate saturated steam. (Evaporator) 16, a steam drum 21 that collects saturated steam generated in the evaporator pipe 16, a primary superheater a and a secondary superheater that superheats saturated steam from the steam drum 21 to generate superheated steam b. In the furnace 2A, an evaporation pipe 16, a secondary superheater b, a primary superheater a, a reheater d, and a economizer 15 are sequentially arranged from the upstream side to the downstream side. The steam drum 21 is installed in the upper part of the furnace, and the steam drum 21 is provided with a brackish water separator that separates the steam and water contained in the water from the evaporation pipe 16.

燃焼ガスの流れについて説明すると、火炉2Aにて燃焼したガスは、まず蒸発管16、二次過熱器b、一次過熱器a、再熱器d、節炭器15を通り、一部は火炉内へ注入されることにより伝熱調整に使用され、残りは煙道9から空気予熱器10を通り煙突13より排出される。
火炉2A内を流れる熱空気により、蒸発管16と節炭器15が加熱され、節炭器15で加熱された給水が、蒸気ドラム21を介して蒸発管16へ送られて更に加熱され、該蒸発管16で発生させた飽和蒸気が、蒸気ドラム21を介して、火炉2A内に配設された一次過熱器aへ送られる。この飽和蒸気が一次過熱器a及び二次過熱器bにて過熱されて過熱蒸気(主蒸気)が発生される。
過熱器a、bで発生した過熱蒸気により高圧タービン(主蒸気タービン)cが回転され、高圧タービンcから排出され再過熱器dで加熱されて得られた再加熱蒸気により、中圧タービン(再蒸気タービン)eが回転され、一次発電機fが駆動されて発電が行われる。
The flow of the combustion gas will be described. The gas burned in the furnace 2A first passes through the evaporator tube 16, the secondary superheater b, the primary superheater a, the reheater d, and the economizer 15, and part of the gas is in the furnace. Is used for heat transfer adjustment, and the rest is discharged from the chimney 13 through the air preheater 10 from the flue 9.
The evaporation pipe 16 and the economizer 15 are heated by the hot air flowing in the furnace 2A, and the feed water heated by the economizer 15 is sent to the evaporator pipe 16 via the steam drum 21 and further heated. Saturated steam generated in the evaporation pipe 16 is sent via the steam drum 21 to the primary superheater a disposed in the furnace 2A. The saturated steam is superheated by the primary superheater a and the secondary superheater b, and superheated steam (main steam) is generated.
The high pressure turbine (main steam turbine) c is rotated by the superheated steam generated in the superheaters a and b, and is discharged from the high pressure turbine c and heated by the resuperheater d. Steam turbine) e is rotated, and primary generator f is driven to generate power.

一方、蒸気ドラム21から一次過熱器aへ続く飽和蒸気の供給配管L1には、補助蒸気供給系(22、23、24)が接続されている。すなわち、補助蒸気供給弁22を介して配管L3により補助蒸気ヘッダー23の入口が接続され、また配管L3には、補助蒸気供給弁32を介して、他の火炉2Bの蒸気ドラム31からの配管L2が接続されている。そして、この補助蒸気ヘッダー23の出口にはSAH温度調整弁24を介して配管L4により蒸気式空気予熱器25が接続されている。蒸気式空気予熱器25は、押込通風機12と空気予熱器10の間に設けられている。
ここで空気系機器の機能を説明補足すると、押込通風機(FDF)12は、強制的に燃焼空気を火炉2A内へ押し込み、炉内圧力を2.4〜5.88kPaに加圧した状態で燃焼を行わせる働きをする。この押込通風機12を設けると、ボイラ1が気密構造となり外気漏入がないため、燃焼空気の管理がしやすく必要最小限の空気量でボイラ1を効率よく運転することができる。
On the other hand, an auxiliary steam supply system (22, 23, 24) is connected to the saturated steam supply pipe L1 extending from the steam drum 21 to the primary superheater a. That is, the inlet of the auxiliary steam header 23 is connected to the pipe L3 via the auxiliary steam supply valve 22, and the pipe L2 from the steam drum 31 of the other furnace 2B is connected to the pipe L3 via the auxiliary steam supply valve 32. Is connected. A steam air preheater 25 is connected to the outlet of the auxiliary steam header 23 through a pipe L4 via a SAH temperature control valve 24. The steam air preheater 25 is provided between the forced air blower 12 and the air preheater 10.
Here, to supplement the explanation of the functions of the air system equipment, the forced air blower (FDF) 12 forcibly pushes the combustion air into the furnace 2A and pressurizes the furnace pressure to 2.4 to 5.88 kPa. It works to make it burn. Providing this push-in ventilator 12 makes the boiler 1 an airtight structure and prevents outside air from leaking. Therefore, it is easy to manage the combustion air, and the boiler 1 can be operated efficiently with a minimum amount of air.

空気予熱器(AH)10は、燃焼ガスの予熱を利用して、ボイラで燃料を燃焼させるのに必要な空気を、押込通風機12から火炉2Aへ送り込む前に予熱し、燃焼性の向上及び排ガス損失の低減等ボイラの効率を向上させるために設置されている。
蒸気式空気予熱器(SAH)25は、押込通風機12と空気予熱器10の間にあって、押込通風機12よりの空気を所定の温度に予熱する為に設置されている。ボイラ負荷が低下するか、又は空気予熱器10の入口温度が低下すると、空気予熱器10の低温側メタル温度が低下し硫酸ガスによる低温腐食が発生する。これを防止する為に、空気予熱器10の低温側メタル温度が硫酸ガスの露点以下にならないように、蒸気式空気予熱器25で加熱している。
The air preheater (AH) 10 uses the preheating of the combustion gas to preheat the air necessary for burning the fuel in the boiler before it is sent from the forced air blower 12 to the furnace 2A to improve combustibility and It is installed to improve boiler efficiency such as reduction of exhaust gas loss.
The steam air preheater (SAH) 25 is provided between the forced air blower 12 and the air preheater 10 and preheats the air from the forced air ventilator 12 to a predetermined temperature. When the boiler load decreases or the inlet temperature of the air preheater 10 decreases, the low temperature side metal temperature of the air preheater 10 decreases and low temperature corrosion due to sulfuric acid gas occurs. In order to prevent this, the steam-type air preheater 25 is heated so that the low temperature side metal temperature of the air preheater 10 does not fall below the dew point of sulfuric acid gas.

すなわち、蒸気式空気予熱器25に補助蒸気を供給しているが、起動運転時、復水器からボイラに供給される復水の温度が低くなると、復水をボイラの蒸気ドラム21で飽和温度まで過熱させるため、排ガスの熱がより多く奪われる。このため排ガスは、ボイラの後部伝熱部3を流れる際、著しく低温化し、その下流側に配置されている空気予熱器10の熱交換器チューブを酸露点(硫酸の結露温度)以下にさせ、そのチューブを露点腐食させる。これを防止する為に、空気予熱器10の入口温度を蒸気式空気予熱器25で加熱している。
図1において、30は上記の補助蒸気供給系(22、23、24)を含むボイラユニットの空気、給水、温度(主蒸気温度)系を制御する制御装置であり、コンピュータを主体として構成されている。また31は酸露点検出手段であり、空気予熱器10の入口温度を検出して、空気予熱器10の低温側メタル温度が硫酸ガスの露点以下にならないことを監視している。
That is, auxiliary steam is supplied to the steam air preheater 25, but when the temperature of the condensate supplied from the condenser to the boiler becomes low during the start-up operation, the condensate is saturated at the steam drum 21 of the boiler. As a result, the exhaust gas is deprived of heat. For this reason, when the exhaust gas flows through the rear heat transfer section 3 of the boiler, the temperature is remarkably lowered, and the heat exchanger tube of the air preheater 10 disposed on the downstream side is made to be below the acid dew point (condensation temperature of sulfuric acid). The tube is dew point eroded. In order to prevent this, the inlet temperature of the air preheater 10 is heated by the steam air preheater 25.
In FIG. 1, reference numeral 30 denotes a control device for controlling the air, feed water, and temperature (main steam temperature) system of the boiler unit including the auxiliary steam supply system (22, 23, 24), and is mainly composed of a computer. Yes. Reference numeral 31 denotes an acid dew point detection means that detects the inlet temperature of the air preheater 10 and monitors that the low temperature side metal temperature of the air preheater 10 does not become lower than the dew point of sulfuric acid gas.

<通常運転時>
ボイラ1の通常運転時には、一次通風機11の作動により空気予熱器(AH)10を通して一次空気がミル6へ供給され、該ミル6で粉砕され且つ乾燥された微粉炭がバーナ4へ供給される。また、押込通風機12の作動により蒸気式空気予熱器(SAH)25、空気予熱器(AH)10を通して二次空気がウィンドボックス5へ供給され、火炉2A内で微粉炭の燃焼が行われる。
発生した燃焼ガスの熱により、蒸発管16、過熱器a、b、再熱器d、節炭器15等が加熱されて蒸気が発生し、中圧タービンc、eが駆動されて発電が行われる一方、排ガスが煙道9を流れて空気予熱器10へ導入され、該空気予熱器10において前記一次空気並びに二次空気が加熱され、熱回収が行われる。
<During normal operation>
During normal operation of the boiler 1, primary air is supplied to the mill 6 through the air preheater (AH) 10 by the operation of the primary ventilator 11, and pulverized coal pulverized and dried by the mill 6 is supplied to the burner 4. . Moreover, secondary air is supplied to the wind box 5 through the steam type air preheater (SAH) 25 and the air preheater (AH) 10 by the operation of the forced air blower 12, and the pulverized coal is burned in the furnace 2A.
Due to the heat of the generated combustion gas, the evaporator pipe 16, the superheaters a and b, the reheater d, the economizer 15 and the like are heated to generate steam, and the intermediate pressure turbines c and e are driven to generate power. On the other hand, the exhaust gas flows through the flue 9 and is introduced into the air preheater 10, where the primary air and the secondary air are heated and heat recovery is performed.

<運転停止時>
DSS、WSSに基づいてボイラユニットの運転を停止した場合、補助蒸気供給弁22、32及び調整弁24は閉じられ、ボイラは消火され、一次通風機11、押込通風機12、蒸気式空気予熱器25、空気予熱器10は停止されている(図6参照)。図中の斜線を施した機器は停止中であることを示す。
<When operation is stopped>
When the operation of the boiler unit is stopped based on DSS, WSS, the auxiliary steam supply valves 22, 32 and the regulating valve 24 are closed, the boiler is extinguished, and the primary ventilator 11, the push ventilator 12, the steam type air preheater. 25, the air preheater 10 is stopped (see FIG. 6). The hatched device in the figure indicates that it is stopped.

<ボイラ起動時>
本実施形態のボイラの起動方法は、図3に示すように、補助蒸気供給弁22、32及び調整弁24は閉じたままとし、ボイラ1の起動を行う。すなわち、起動用燃料として軽油を使用してボイラを点火し、蒸気式空気予熱器25が停止している状態で、押込通風機12を起動し、空気予熱器10を通して加熱した空気を火炉(自缶)2Aに送り込む。
発電機並列後,燃料を起動用の軽油から主燃料の微粉炭に切り換える。すなわち、一次通風機11を作動し、一次空気を空気予熱器10を通してミル6へ供給し、乾燥した微粉炭をバーナ4へ供給して火炉2A内で燃焼させる。また図4の如く、自缶の補助蒸気供給弁22及びSAH温度調整弁24を開き、自缶の蒸気ドラム21から補助蒸気ヘッダー23を通して補助蒸気ASを蒸気式空気予熱器25に供給開始する。その後、自缶の蒸気ドラム21からの補助蒸気ASにて蒸気式空気予熱器25を運転し、ボイラを運転する。
<When the boiler starts>
As shown in FIG. 3, the boiler startup method of the present embodiment starts the boiler 1 while keeping the auxiliary steam supply valves 22 and 32 and the regulating valve 24 closed. That is, the boiler is ignited using light oil as the starting fuel, and the forced air blower 12 is started in a state where the steam air preheater 25 is stopped, and the air heated through the air preheater 10 is supplied to the furnace (self Can) Feed into 2A.
After the generators are paralleled, the fuel is switched from the starting diesel oil to the main fuel pulverized coal. That is, the primary ventilator 11 is operated, the primary air is supplied to the mill 6 through the air preheater 10, and the dried pulverized coal is supplied to the burner 4 to be burned in the furnace 2A. Further, as shown in FIG. 4, the auxiliary steam supply valve 22 of the own can and the SAH temperature adjustment valve 24 are opened, and supply of the auxiliary steam AS to the steam air preheater 25 is started from the own drum steam drum 21 through the auxiliary steam header 23. Thereafter, the steam air preheater 25 is operated with the auxiliary steam AS from the self-propelled steam drum 21, and the boiler is operated.

本実施形態のボイラの起動方法の特色は、図2(a)に示すように、ボイラの起動に際し、他の火炉(他缶)2Bの蒸気ドラム31からの補助蒸気を蒸気式空気予熱器25に供給せずに、つまり蒸気式空気予熱器(SAH)25を運転せずに、押込通風機(FDF)12を運転してボイラを起動するところにあり、その後、自己の火炉2Aの蒸気ドラム21の飽和蒸気圧力が所定値の例えば4MPaまで上昇した時点で、自己の火炉2Aの蒸気ドラム21から補助蒸気を蒸気式空気予熱器25に供給開始するものである。これは、従来のボイラの起動方法(図2(b))では、他の火炉(他缶)2Bの蒸気ドラム31から、配管L2、L3、L4を通して蒸気式空気予熱器25に補助蒸気の供給を行い、蒸気式空気予熱器25を運転してボイラの起動を行っていたのと対照的である。   As shown in FIG. 2 (a), the boiler start-up method of the present embodiment is characterized in that auxiliary steam from the steam drum 31 of another furnace (other can) 2B is supplied to the steam air preheater 25 when the boiler is started. Without operating the steam air preheater (SAH) 25, without operating the steam air preheater (SAH) 25, the boiler is started by operating the forced air blower (FDF) 12, and then the steam drum of its own furnace 2A When the saturated steam pressure of 21 rises to a predetermined value, for example, 4 MPa, auxiliary steam is started to be supplied from the steam drum 21 of its own furnace 2A to the steam air preheater 25. In the conventional boiler starting method (FIG. 2B), the auxiliary steam is supplied from the steam drum 31 of another furnace (other can) 2B to the steam air preheater 25 through the pipes L2, L3, and L4. In contrast, the steam air preheater 25 is operated to start the boiler.

本実施形態のボイラの起動方法の他の特色は、ボイラの排ガス温度が酸露点以上であることを確保できた場合に、上記ボイラの起動を行うことである。これを行う理由は、起動運転時、ボイラに供給される給水の温度が低くなると、排ガスの熱がより多く奪われるため、排ガスが低温化し、その下流側に配置されている空気予熱器10の熱交換器チューブを酸露点(硫酸の結露温度)以下にさせ、そのチューブを露点腐食させるので、これを避ける必要があるからである。   Another feature of the boiler starting method according to the present embodiment is that the boiler is started when it is ensured that the exhaust gas temperature of the boiler is equal to or higher than the acid dew point. The reason for this is that, during start-up operation, if the temperature of the feed water supplied to the boiler is lowered, the heat of the exhaust gas is deprived more, so the exhaust gas is cooled down and the air preheater 10 disposed downstream thereof This is because the heat exchanger tube is brought to an acid dew point (condensation temperature of sulfuric acid) or lower and the tube is subjected to dew point corrosion, which must be avoided.

そこで、図1の制御装置30は、上記の補助蒸気供給系(22、23、24)を含むボイラユニットの空気、給水、温度(主蒸気温度)系を制御するに際し、酸露点検出手段31から得られる空気予熱器10の入口温度の検出値を評価して、空気予熱器10の低温側メタル温度が硫酸ガスの露点以下にならないことを確認し、確認できた場合に、上記ボイラユニットの空気、給水、主蒸気温度系の制御をする。   1 controls the air, feed water, and temperature (main steam temperature) system of the boiler unit including the auxiliary steam supply system (22, 23, 24) from the acid dew point detection means 31. The detected value of the inlet temperature of the air preheater 10 obtained is evaluated, and it is confirmed that the low temperature side metal temperature of the air preheater 10 is not lower than the dew point of sulfuric acid gas. Control of water supply and main steam temperature system.

本実施形態によれば、DSS運転やWSS運転のボイラの起動に際し、他のボイラユニットの蒸気ドラムから補助蒸気を蒸気式空気予熱器に供給しないので、他のボイラユニットの発電効率を低下させずにホットスタート又はウォームスタートを実施することができる。   According to the present embodiment, since the auxiliary steam is not supplied from the steam drum of the other boiler unit to the steam air preheater when starting the boiler in the DSS operation or the WSS operation, the power generation efficiency of the other boiler unit is not lowered. A hot start or a warm start can be performed.

本発明は、火力発電のDSS運転やWSS運転のボイラの起動に際し利用することができるが、その他のボイラの起動に際しても利用することができる。   The present invention can be used for starting a boiler for DSS operation or WSS operation for thermal power generation, but can also be used for starting other boilers.

本発明のボイラの起動方法を適用したボイラユニットの構成を示す図である。It is a figure which shows the structure of the boiler unit to which the starting method of the boiler of this invention is applied. 本発明のボイラの起動方法(a)を、従来のボイラの起動方法(b)と比較して示した図である。It is the figure which showed the starting method (a) of the boiler of this invention compared with the starting method (b) of the conventional boiler. 本発明のボイラの起動方法の前半を示したボイラユニットの概略構成図である。It is a schematic block diagram of the boiler unit which showed the first half of the boiler starting method of this invention. 本発明のボイラの起動方法の後半を示したボイラユニットの概略構成図である。It is a schematic block diagram of the boiler unit which showed the second half of the boiler starting method of this invention. 通常運転時の状態を示したボイラユニットの概略構成図である。It is a schematic block diagram of the boiler unit which showed the state at the time of normal driving | operation. 停止中の状態を示したボイラユニットの概略構成図である。It is a schematic block diagram of the boiler unit which showed the state in the stop. 従来のボイラの起動方法の前半を示したボイラユニットの概略構成図である。It is a schematic block diagram of the boiler unit which showed the first half of the starting method of the conventional boiler. 従来のボイラの起動方法の後半を示したボイラユニットの概略構成図である。It is a schematic block diagram of the boiler unit which showed the second half of the starting method of the conventional boiler.

符号の説明Explanation of symbols

1 微粉炭焚ボイラ
2A 火炉(自缶)
2B 火炉(他缶)
6 ミル
10 空気予熱器(AH)
11 一次通風機(PAF)
12 押込通風機(FDF)
13 煙突
14 給水ポンプ
15 節炭器
16 蒸発管
21 蒸気ドラム
23 補助蒸気ヘッダー
25 蒸気式空気予熱器(SAH)
31 蒸気ドラム
1 Pulverized coal fired boiler 2A Furnace (own can)
2B furnace (other cans)
6mil 10 air preheater (AH)
11 Primary ventilator (PAF)
12 Intrusion ventilator (FDF)
13 Chimney 14 Water supply pump 15 Eco-saving device 16 Evaporating pipe 21 Steam drum 23 Auxiliary steam header 25 Steam air preheater (SAH)
31 Steam drum

Claims (6)

ボイラの起動に際し、ボイラの排ガス温度が硫酸の結露温度である酸露点以上であることを確保できた場合に、他の火炉の蒸気ドラムからの補助蒸気を蒸気式空気予熱器に供給せずに押込通風機を運転してボイラを起動し、自己の火炉の蒸気ドラムの圧力が所定値まで上昇した時点で、自己の火炉の蒸気ドラムから補助蒸気を上記蒸気式空気予熱器に供給開始することを特徴とするボイラの起動方法。   When starting the boiler, if it is ensured that the exhaust gas temperature of the boiler is higher than the acid dew point, which is the condensation temperature of sulfuric acid, do not supply auxiliary steam from the steam drum of other furnaces to the steam air preheater. Start the boiler by operating the forced draft fan, and start supplying auxiliary steam from the steam drum of the furnace to the steam air preheater when the pressure of the steam drum of the furnace rises to a predetermined value. The boiler starting method characterized by this. 上記ボイラの起動が、火力発電の深夜停止起動運転でのボイラの起動であることを特徴とする請求項1に記載のボイラの起動方法。   The boiler startup method according to claim 1, wherein the boiler startup is a boiler startup in a midnight stop startup operation of thermal power generation. 上記ボイラの起動が、週末停止起動運転でのボイラの起動であることを特徴とする請求項1に記載のボイラの起動方法。   The boiler startup method according to claim 1, wherein the boiler startup is a boiler startup during a weekend stop startup operation. 空気予熱器の入口温度を検出し、上記ボイラの排ガス温度が酸露点以上となる入口温度であることが確認できた場合に、上記押込通風機を運転してボイラを起動することを特徴とする請求項1〜3のいずれかに記載のボイラの起動方法。   The inlet temperature of the air preheater is detected, and when it is confirmed that the exhaust gas temperature of the boiler is an inlet temperature that is equal to or higher than the acid dew point, the boiler is started by operating the forced air blower. The boiler starting method according to any one of claims 1 to 3. 上記自己の火炉の蒸気ドラムの圧力が所定値の4MPaまで上昇した時点で、自己の火炉の蒸気ドラムから補助蒸気を上記蒸気式空気予熱器に供給開始することを特徴とする請求項1〜4のいずれかに記載のボイラの起動方法。   5. The supply of auxiliary steam from the steam drum of its own furnace to the steam air preheater is started when the pressure of the steam drum of its own furnace rises to a predetermined value of 4 MPa. The startup method of the boiler in any one of. 上記ボイラが微粉炭焚ボイラまたは石油焚ボイラであることを特徴とする請求項1〜5のいずれかに記載のボイラの起動方法。
The boiler startup method according to any one of claims 1 to 5, wherein the boiler is a pulverized coal fired boiler or an oil fired boiler.
JP2006004308A 2006-01-12 2006-01-12 Starting method of boiler Pending JP2007187352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006004308A JP2007187352A (en) 2006-01-12 2006-01-12 Starting method of boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006004308A JP2007187352A (en) 2006-01-12 2006-01-12 Starting method of boiler

Publications (1)

Publication Number Publication Date
JP2007187352A true JP2007187352A (en) 2007-07-26

Family

ID=38342639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006004308A Pending JP2007187352A (en) 2006-01-12 2006-01-12 Starting method of boiler

Country Status (1)

Country Link
JP (1) JP2007187352A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101312726B1 (en) * 2010-12-24 2013-10-01 한국남부발전 주식회사 Ventilating device for generating system
CN103423728A (en) * 2013-08-13 2013-12-04 南京钢铁股份有限公司 Boiler thermal state sliding-parameter shutdown method
CN104807500A (en) * 2015-04-15 2015-07-29 广东电网有限责任公司电力科学研究院 Performance detecting method for trisector regenerative air preheater of large power station boiler
CN106705110A (en) * 2016-09-30 2017-05-24 上海双木散热器制造有限公司 Anti-corrosion steam air preheater pipeline system for waste incineration power generation
CN106765287A (en) * 2017-01-22 2017-05-31 华北电力科学研究院有限责任公司 A kind of power plant boiler air and flue system and its start-up and shut-down control method
CN109185852A (en) * 2018-09-10 2019-01-11 佛山市三水至丰纸品制造有限公司 A kind of environment-friendlyboiler boiler system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6249116A (en) * 1985-08-29 1987-03-03 Idemitsu Petrochem Co Ltd Controlling method for discharged gas of boiler
JPH07119906A (en) * 1993-10-28 1995-05-12 Ishikawajima Harima Heavy Ind Co Ltd Auxiliary steam automatic switching apparatus for boiler
JP2000257855A (en) * 1999-03-09 2000-09-22 Ishikawajima Harima Heavy Ind Co Ltd Method and device for controlling bypass damper for air preheater

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6249116A (en) * 1985-08-29 1987-03-03 Idemitsu Petrochem Co Ltd Controlling method for discharged gas of boiler
JPH07119906A (en) * 1993-10-28 1995-05-12 Ishikawajima Harima Heavy Ind Co Ltd Auxiliary steam automatic switching apparatus for boiler
JP2000257855A (en) * 1999-03-09 2000-09-22 Ishikawajima Harima Heavy Ind Co Ltd Method and device for controlling bypass damper for air preheater

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101312726B1 (en) * 2010-12-24 2013-10-01 한국남부발전 주식회사 Ventilating device for generating system
CN103423728A (en) * 2013-08-13 2013-12-04 南京钢铁股份有限公司 Boiler thermal state sliding-parameter shutdown method
CN104807500A (en) * 2015-04-15 2015-07-29 广东电网有限责任公司电力科学研究院 Performance detecting method for trisector regenerative air preheater of large power station boiler
CN106705110A (en) * 2016-09-30 2017-05-24 上海双木散热器制造有限公司 Anti-corrosion steam air preheater pipeline system for waste incineration power generation
CN106705110B (en) * 2016-09-30 2018-07-10 上海双木散热器制造有限公司 Corrosion-proof type waste incineration and generating electricity steam type airheater pipe-line system
CN106765287A (en) * 2017-01-22 2017-05-31 华北电力科学研究院有限责任公司 A kind of power plant boiler air and flue system and its start-up and shut-down control method
CN106765287B (en) * 2017-01-22 2023-07-11 华北电力科学研究院有限责任公司 Boiler smoke system of thermal power plant and start-stop control method thereof
CN109185852A (en) * 2018-09-10 2019-01-11 佛山市三水至丰纸品制造有限公司 A kind of environment-friendlyboiler boiler system

Similar Documents

Publication Publication Date Title
JP4540472B2 (en) Waste heat steam generator
US7621133B2 (en) Methods and apparatus for starting up combined cycle power systems
US11326471B2 (en) System and method to improve boiler and steam turbine start-up times
JP6034154B2 (en) Waste heat recovery equipment, waste heat recovery method and waste treatment furnace
JP2007187352A (en) Starting method of boiler
JP5183305B2 (en) Startup bypass system in steam power plant
CN113874603B (en) System and method for improving boiler and steam turbine start-up time
US5396865A (en) Startup system for power plants
JP2007248018A (en) Control system for supply water preheater of reheat boiler
KR101690384B1 (en) Waste heat recovery apparatus for combustion furnace and method thereof
US11371392B1 (en) System and method for improving startup time in a fossil-fueled power generation system
JP5766527B2 (en) Method and apparatus for controlling once-through boiler
JP5164580B2 (en) Control method of power generator when power generation is stopped
JPH09303113A (en) Combined cycle generating plant
JP2019173696A (en) Combined cycle power generation plant, and operation method of the same
JP2021046989A (en) Feedwater heating system, power generation plant equipped with the same, and operation method of feedwater heating system
JP7150670B2 (en) BOILER, POWER PLANT INCLUDING THE SAME, AND BOILER CONTROL METHOD
JP2002106804A (en) Feedwater flow-rate controller of variable once- through boiler
KR102222427B1 (en) Combustion device and power generation system able to internal flue gas recirculation
EP3203149B1 (en) Combined-cycle co-generation process and installation
JP2003083501A (en) Fluidized bed boiler
KR20160147243A (en) Waste heat recovery apparatus for combustion furnace and method thereof
JP2009063205A (en) Once-through exhaust heat recovery boiler
JP2007327661A (en) Exhaust heat recovery boiler
JPH04179833A (en) Gas turbine co-generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110406