JPH04179833A - Gas turbine co-generation system - Google Patents
Gas turbine co-generation systemInfo
- Publication number
- JPH04179833A JPH04179833A JP30622190A JP30622190A JPH04179833A JP H04179833 A JPH04179833 A JP H04179833A JP 30622190 A JP30622190 A JP 30622190A JP 30622190 A JP30622190 A JP 30622190A JP H04179833 A JPH04179833 A JP H04179833A
- Authority
- JP
- Japan
- Prior art keywords
- water
- steam
- amount
- gas turbine
- boiler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 68
- 239000007789 gas Substances 0.000 claims description 37
- 239000002918 waste heat Substances 0.000 claims description 16
- 239000000446 fuel Substances 0.000 abstract description 8
- 238000010438 heat treatment Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 abstract 1
- 238000003809 water extraction Methods 0.000 abstract 1
- 238000003303 reheating Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/14—Combined heat and power generation [CHP]
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、発電機駆動用ガスタービンを用いて発電し、
その排ガスのエネルギーを、廃熱ボイラーなどを介して
蒸気として回収する所謂ガスタービンコージェネレーシ
ョンシステムに関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention generates electricity using a gas turbine for driving a generator,
The present invention relates to a so-called gas turbine cogeneration system that recovers the energy of the exhaust gas as steam via a waste heat boiler or the like.
上記のようなガスタービンコージェネレーションシステ
ムでは、その廃熱ボイラーのエコノマイザ−又は給水予
熱器から出た温水をその廃熱ボイラーの蒸発器に供給し
、ガスタービンの排ガスで加熱し、蒸気を発生させてい
る。しかし、このような廃熱ボイラーでは、その蒸気条
件を与えると、蒸気によるエネルギーの回収量が一義的
に決まってしまい、回収率を向上させることに限界があ
った。In the gas turbine cogeneration system described above, hot water from the waste heat boiler's economizer or feed water preheater is supplied to the waste heat boiler's evaporator, where it is heated with the gas turbine's exhaust gas to generate steam. ing. However, in such a waste heat boiler, given the steam conditions, the amount of energy recovered by steam is uniquely determined, and there is a limit to improving the recovery rate.
そこで、ガスタービンの排ガスで得られる蒸気量に対し
て、それ以上の蒸気を必要とする需要家については、こ
の廃熱ボイラーに追焚−バーナを設け、必要蒸気量に応
じて追焚燃料を投入してガスタービンの排ガス温度を上
げるようにしている。ところで、ガスタービンの排ガス
温度は、通常500℃前後であるが、前述したように追
焚すると、廃熱ボイラー内の温度力月000℃以上にも
達し、廃熱ボイラーが過酷な温度下に曝されるという問
題がある。さらに、追焚ボイラーは高価であると共に、
その信頼性においてやや不安を有するという問題もあっ
た。Therefore, for customers who require more steam than the amount of steam obtained from the exhaust gas of the gas turbine, a reheating burner is installed in this waste heat boiler to provide reheating fuel according to the required amount of steam. It is used to raise the exhaust gas temperature of the gas turbine. Incidentally, the exhaust gas temperature of a gas turbine is normally around 500°C, but when additional firing is performed as mentioned above, the temperature inside the waste heat boiler reaches over 000°C, exposing the waste heat boiler to harsh temperatures. There is a problem of being exposed. Furthermore, reheating boilers are expensive and
There was also the problem that there was some concern about its reliability.
本発明の目的は、信頼性が高く、しかもその設備費も比
較的安価なパンケージボイラーで必要な蒸気量を確保で
きるガスタービンコージェネレーションシステムを提供
することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a gas turbine cogeneration system that is highly reliable and can secure a necessary amount of steam using a pan cage boiler whose equipment cost is relatively low.
すなわち、本発明のガスタービンコージェネレーション
システムは、ガスタービン用廃熱ボイラーの給水予熱器
へ、その蒸発器への給水量以上に給水すると共に、前記
給水予熱器で予熱された温水を抽出してパッケージボイ
ラーへ供給するようにしたことを特徴とするものである
。That is, the gas turbine cogeneration system of the present invention supplies water to the feed water preheater of the gas turbine waste heat boiler in an amount greater than the amount of water supplied to the evaporator, and also extracts hot water preheated by the feed water preheater. It is characterized by being supplied to a package boiler.
上記のような、コージェネレーションシステムでは、信
頼性の高いパフケージボイラーで必要蒸気量を確保でき
、しかもそのパッケージボイラーへの給水は廃熱ボイラ
ーの給水予熱器で予熱されているので、パッケージボイ
ラーでの燃料量が軽減されることになる。In the above-mentioned cogeneration system, the required amount of steam can be secured with a highly reliable puff cage boiler, and the water supplied to the package boiler is preheated by the waste heat boiler's feed water preheater. The amount of fuel will be reduced.
〔実施例〕
以下、図面を参照して本発明の実施例について説明する
。[Example] Hereinafter, an example of the present invention will be described with reference to the drawings.
第1図は、本発明にかかるガスタービンコージェネレー
ションシステムの系統図であり、ガスタービン1によっ
て発電機2が駆動されるようになっている。このガスタ
ービン1には、矢印で示すように、空気A及び燃料Fが
供給される。また、このガスタービン1の排ガスエネル
ギーを蒸気Sとして回収する廃熱ボイラー13及び燃料
fの追焚により蒸気Sを発生するパンケージボイラー7
を有している。図中、14は煙突である。さらに、この
廃熱ボイラー13には、給水ポンプ8によって導入した
給水Wを予熱して温水とする給水予熱器4と、この予熱
された温水を給水加減弁5を介して導入して、蒸気Sを
発生する蒸発器3とが設けられている。FIG. 1 is a system diagram of a gas turbine cogeneration system according to the present invention, in which a gas turbine 1 drives a generator 2. As shown in FIG. Air A and fuel F are supplied to this gas turbine 1 as shown by arrows. Also, a waste heat boiler 13 that recovers the exhaust gas energy of the gas turbine 1 as steam S, and a pan cage boiler 7 that generates steam S by reheating the fuel f.
have. In the figure, 14 is a chimney. Further, this waste heat boiler 13 includes a feed water preheater 4 that preheats the feed water W introduced by the feed water pump 8 to make it hot water, and a feed water preheater 4 that preheats the feed water W introduced by the feed water pump 8 to make it hot water, and a feed water preheater 4 that introduces the preheated hot water via the feed water control valve 5 to generate steam S. An evaporator 3 for generating .
しかも、このシステムでは、前述した給水ポンプ8社よ
って給水予熱器4に、蒸発器3への給水量以上の給水を
行うようになっている。Furthermore, in this system, the aforementioned eight water supply pumps supply water to the water supply preheater 4 in an amount greater than the amount of water supplied to the evaporator 3.
また、給水予熱器4からの温水状態の給水を、蒸発器3
への給水加減弁5の手前で抽出し、パッケージボイラー
7への給水として供給する給水加減弁6が設けられてい
る。In addition, the hot water supply from the water supply preheater 4 is transferred to the evaporator 3.
A water supply regulating valve 6 is provided for extracting water before the water supply regulating valve 5 and supplying water to the package boiler 7.
前述した給水ポンプ8は、モーター9により駆動される
が、このモーター9は、給水加減弁6の手前に設けた検
出器11の信号を取り入れるインバーターなどの制御装
置10によって制御されるようになっている。The water supply pump 8 described above is driven by a motor 9, and this motor 9 is controlled by a control device 10 such as an inverter that receives a signal from a detector 11 provided before the water supply control valve 6. There is.
次に、上記の構成からなるコージェネレーションシステ
ムの作用について説明する。Next, the operation of the cogeneration system having the above configuration will be explained.
通常、第1図のような廃熱ボイラー13において、排ガ
ス温度降下線上で、ボイラ蒸発開始点のガス温度と蒸気
の温度との差は、経済的観点から最少の点を有し、この
温度差Δtをピンチ温度差と称している。これは、蒸気
条件が与えられると、ピンチ温度差Δtを与える所の排
ガス温度は決まってくる〔第2図のTgz(ピンチ温度
)〕。Normally, in the waste heat boiler 13 as shown in FIG. 1, the difference between the gas temperature at the boiler evaporation start point and the steam temperature on the exhaust gas temperature drop line is the smallest from an economic point of view, and this temperature difference Δt is called a pinch temperature difference. This is because when the steam conditions are given, the exhaust gas temperature at the point where the pinch temperature difference Δt is given is determined [Tgz (pinch temperature) in FIG. 2].
従って、通常の場合、給水予熱器4を有する廃熱ボイラ
ー13の出口ガス温度は図中のTgsで示され、これら
ガス入口温度TgIと出口ガス温度Tgsの温度差分の
エネルギーが回収されることになる。Therefore, in a normal case, the outlet gas temperature of the waste heat boiler 13 having the feed water preheater 4 is indicated by Tgs in the figure, and the energy of the temperature difference between the gas inlet temperature TgI and the outlet gas temperature Tgs is recovered. Become.
他方、必要蒸気量が多くなって、ガスタービン1からの
排ガスのエネルギーのみでは賄えない場合には、第1図
の給水ポンプ8によって通常の蒸発器3への給水量以上
の必要給水量を給水予熱器4へ供給し、当該給水予熱器
4て予熱した後、給水加減弁5の手前で抽水してパッケ
ージボイラー7へ給水する。そして、パフケージボイラ
ー7で燃料fを焚いて蒸気を発生させれば、全体として
所定の蒸気量が確保されることになる。On the other hand, if the required amount of steam increases and cannot be met by the exhaust gas energy from the gas turbine 1 alone, the water supply pump 8 shown in FIG. After being supplied to the feed water preheater 4 and preheated by the feed water preheater 4, water is extracted before the feed water adjustment valve 5 and is supplied to the package boiler 7. Then, by burning the fuel f in the puff cage boiler 7 to generate steam, a predetermined amount of steam is ensured as a whole.
この場合の廃熱ボイラー13の出口ガス温度はTg’、
となり、T g +からT8.゛までの温度差分のエネ
ルギーが回収できたこととなり信頼性の高いパッケージ
ボイラー7で必要蒸気量を確保できることになる。In this case, the outlet gas temperature of the waste heat boiler 13 is Tg',
Therefore, from T g + to T8. Since the energy corresponding to the temperature difference up to 2000 can be recovered, the required amount of steam can be secured with the highly reliable package boiler 7.
ここで、パンケージボイラー7で燃料fを焚いている時
に、蒸気負荷の変動により、パンケージボイラー7の入
口の給水加減弁6の開閉が行なわれることがあり、この
時、給水が加減されることに伴って、給水ポンプ8の吐
出側系統内圧力の変動があり得るので、その系統内の圧
力を一定に保持する必要がある。そこで、この実施例で
は、検出器11からの信号により、給水ポンプ8のモー
タ9の回転数を、インバータなどの制御装置10を介し
て、一定圧になる様に制御している。Here, when the fuel f is being burned in the pan cage boiler 7, the feed water adjustment valve 6 at the inlet of the pan cage boiler 7 may be opened or closed due to fluctuations in the steam load, and at this time, the water supply is adjusted. As a result, the pressure within the discharge side system of the water supply pump 8 may fluctuate, so it is necessary to maintain the pressure within the system constant. Therefore, in this embodiment, the rotation speed of the motor 9 of the water supply pump 8 is controlled to a constant pressure by a signal from the detector 11 via a control device 10 such as an inverter.
またパッケージボイラー7又は廃熱ボイラー13の蒸発
器3.給水予熱器4のそれぞれの負荷が変化した時、各
給水加減弁5.6の開閉により、その管路の抵抗曲線が
、第3図の圧力と給水量とで示す各回転数N A、 N
m、 N cに伴なう給水ポンプ8の性能曲線上のI
A、I!、又はl。Also, the evaporator 3 of the package boiler 7 or the waste heat boiler 13. When the load on each of the feed water preheaters 4 changes, the resistance curve of the pipe line changes to each rotation speed N A, N as shown by the pressure and water supply amount in Fig. 3 by opening and closing each water supply control valve 5.
I on the performance curve of the water pump 8 with m, N c
A, I! , or l.
となる。従って、それぞれに対応する給水ポンプ8の回
転数Na、Nm又はN、を選択すれば、蒸気Sの負荷に
応じて、給水ポンプ8の作動点はA、B又はCを動くこ
とになる。becomes. Therefore, if the corresponding rotational speed Na, Nm, or N of the water supply pump 8 is selected, the operating point of the water supply pump 8 will move between A, B, and C depending on the load of the steam S.
上記のように、本発明のガスタービンコージェネレーシ
ョンシステムによれば、必要蒸気量の増加時に給水予熱
器への給水量を増し、その増加給水分の給水予熱器で余
熱した温水を信転性の高いパフケージボイラーへ供給し
、そこで蒸気にして供給するので、その必要蒸気量が確
保されることができる。しかも、ガスタービンの排ガス
エネルギーは従来のものより多く回収でき、熱効率を高
め得るという一石二鳥の利益が得られる。As described above, according to the gas turbine cogeneration system of the present invention, the amount of water supplied to the feed water preheater is increased when the required amount of steam increases, and the hot water preheated by the feed water preheater of the increased water supply is used to improve reliability. Since it is supplied to a high puff cage boiler where it is converted into steam, the required amount of steam can be secured. Moreover, more energy from the gas turbine's exhaust gas can be recovered than with conventional systems, and thermal efficiency can be improved, giving the advantage of killing two birds with one stone.
すなわち、パンケージボイラーは従来の追焚ボイラーよ
りも安価な設備費ですみ、しかもパッケージボイラーで
の燃料も、予熱された給水が導入される分節減できると
いう利点がある。In other words, a pancage boiler requires lower equipment costs than a conventional reheating boiler, and has the advantage that the amount of fuel used in the package boiler can be reduced by the amount of preheated feed water that is introduced.
第1図は本発明にかかるガスタービンコージェネレーシ
ョンシステムの系統図、第2図は本発明にかかるガスタ
ービンコージェネレーションシステムの作用を説明する
温度とエンタルピーとの関係線図、第3図は給水ポンプ
の各回転数における圧力と給水量との関係を示すポンプ
性能曲線を示す図面である。
1・・・ガスタービン、2・・・発電機、3・・・蒸発
器、4・・・給水予熱器、7・・・パフケージボイラー
、8・・・給水ポンプ、S・・・蒸気、W・・・給水。
代理人 弁理士 小 川 信 −Fig. 1 is a system diagram of a gas turbine cogeneration system according to the present invention, Fig. 2 is a diagram showing the relationship between temperature and enthalpy to explain the operation of the gas turbine cogeneration system according to the present invention, and Fig. 3 is a water pump It is a drawing which shows the pump performance curve which shows the relationship between the pressure and water supply amount at each rotation speed. 1... Gas turbine, 2... Generator, 3... Evaporator, 4... Feed water preheater, 7... Puff cage boiler, 8... Water feed pump, S... Steam, W...Water supply. Agent Patent Attorney Nobuo Ogawa −
Claims (1)
器への給水量以上に給水すると共に、前記給水予熱器で
予熱された温水を抽出してパッケージボイラーへ供給す
るようにしたガスタービンコージェネレーションシステ
ム。A gas turbine cogeneration system in which water is supplied to a feed water preheater of a gas turbine waste heat boiler in an amount greater than the amount of water supplied to the evaporator, and hot water preheated by the feed water preheater is extracted and supplied to the package boiler. system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30622190A JPH04179833A (en) | 1990-11-14 | 1990-11-14 | Gas turbine co-generation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30622190A JPH04179833A (en) | 1990-11-14 | 1990-11-14 | Gas turbine co-generation system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04179833A true JPH04179833A (en) | 1992-06-26 |
Family
ID=17954454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30622190A Pending JPH04179833A (en) | 1990-11-14 | 1990-11-14 | Gas turbine co-generation system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04179833A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013177838A (en) * | 2012-02-28 | 2013-09-09 | Kobe Steel Ltd | Method of controlling binary generator, and binary generator |
-
1990
- 1990-11-14 JP JP30622190A patent/JPH04179833A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013177838A (en) * | 2012-02-28 | 2013-09-09 | Kobe Steel Ltd | Method of controlling binary generator, and binary generator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5442908A (en) | Combined combustion and steam turbine power plant | |
JP2849140B2 (en) | Waste heat steam generation method and equipment | |
JP3783195B2 (en) | Current generation in a combined power plant with gas and steam turbines. | |
JPH08121703A (en) | Waste heat recovery apparatus | |
TWI848256B (en) | System and method for improving startup time in a fossil-fueled power generation system | |
US2486291A (en) | Steam-air thermal power plant | |
JPS61250306A (en) | Hot air turbine and steam turbine combination power plant | |
US5396865A (en) | Startup system for power plants | |
JP2007187352A (en) | Starting method of boiler | |
JPH04179833A (en) | Gas turbine co-generation system | |
JPH01203802A (en) | Steam production system at high pressure and high temperature level | |
JPH08501381A (en) | Methods and equipment for producing high steam temperatures when burning problematic fuels | |
CN209557055U (en) | High-efficiency refuse power generation by waste combustion system | |
JPH09303113A (en) | Combined cycle generating plant | |
JP3047194B2 (en) | Gas turbine cogeneration system | |
JPS60206909A (en) | Exhaust heat recovery gas turbine power generating facility | |
JPS5820914A (en) | Power generating plant using blast furnace gas as fuel | |
KR102222427B1 (en) | Combustion device and power generation system able to internal flue gas recirculation | |
GB1493488A (en) | Power plant system | |
MY128537A (en) | Integration construction between a boiler and a steam turbine and method in preheating of the supply water for a steam turbine and in its control | |
SU657180A1 (en) | Steam-gas installation | |
JPS6149486B2 (en) | ||
JP2001116208A (en) | Waste heat recovery boiler with duct burner | |
JPH0688502A (en) | Power generating plant | |
JPH0835406A (en) | Power generating facility by waste incineration |