JP2001108201A - Multiple pressure waste heat boiler - Google Patents

Multiple pressure waste heat boiler

Info

Publication number
JP2001108201A
JP2001108201A JP28335999A JP28335999A JP2001108201A JP 2001108201 A JP2001108201 A JP 2001108201A JP 28335999 A JP28335999 A JP 28335999A JP 28335999 A JP28335999 A JP 28335999A JP 2001108201 A JP2001108201 A JP 2001108201A
Authority
JP
Japan
Prior art keywords
pressure
low
boiler
drum
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28335999A
Other languages
Japanese (ja)
Inventor
Susumu Kono
進 河野
Kazuko Takeshita
和子 竹下
Kenji Suzuki
健治 鈴木
Kazuhiro Takeda
一浩 武多
Kazuhiro Dafuku
和寛 蛇蝮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP28335999A priority Critical patent/JP2001108201A/en
Publication of JP2001108201A publication Critical patent/JP2001108201A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce cost by designing a high pressure drum and a low pressure drum at an optimum value and avoid pressure rising at the side of the low pressure drum. SOLUTION: A multiple pressure exhaust heat boiler comprises a high pressure boiler 2 and a low pressure boiler 4 and constructed such that steam of the high pressure boiler and steam of the low pressure boiler are merged. A pressure regulating valve 62 or a bypass valve 64 to a condenser is provided to the exit piping of the low pressure boiler so that the pressure in a drum 40 of the low pressure boiler does not vary due to the variation of the steam rate of the high pressure boiler. By permitting the steam of the low pressure boiler to join the steam of the high pressure boiler through the pressure regulating valve 62, pressure variation in the low pressure drum 40 can be detected, and the valve travel of the pressure regulating valve 62 is controlled so as to suppress pressure variation. Alternatively, when the pressure variation is detected through the bypass valve 64 to the condenser, the valve travel of the bypass valve is controlled. Pressure is kept at a given level mainly by the pressure regulating valve. When the pressure in the low pressure drum goes up, steam is discharged to the condenser through the bypass so as to keep the inside pressure at a given level.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複合発電プラント
等に利用される少なくとも高圧ボイラと低圧ボイラを有
する多重圧排熱ボイラに関し、コストダウンと高い効率
を実現することができると共に、ボイラのトリップ(停
止)を防止することができる多重圧排熱ボイラの改良に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-pressure exhaust heat boiler having at least a high-pressure boiler and a low-pressure boiler for use in a combined cycle power plant or the like. The present invention relates to an improvement of a multi-pressure exhaust heat boiler capable of preventing stoppage.

【0002】[0002]

【従来の技術】複合発電プラントは、ガスタービン開放
サイクル部と蒸気タービンサイクル部とにより発電器を
駆動し、発電を行う。蒸気タービンサイクル部は、ガス
タービンからの排ガスの熱を回収する排熱ボイラが発生
する蒸気により駆動される。排熱ボイラは、ガスタービ
ンの排ガス流路内に設けた蒸発器と、加熱された給水が
供給されそれを溜めるドラムと、ドラムと蒸発器とを接
続してドラム内の水を循環させる降水管と上昇管とで構
成され、ドラム内の蒸気が蒸発タービンサイクル部に供
給される。蒸発タービンで発電に利用された給水は、循
環ポンプによって送られ、排ガス流路内に設けたエコノ
マイザで加熱されドラムに戻される。
2. Description of the Related Art In a combined cycle power plant, a generator is driven by a gas turbine open cycle section and a steam turbine cycle section to generate power. The steam turbine cycle section is driven by steam generated by an exhaust heat boiler that recovers heat of exhaust gas from the gas turbine. The exhaust heat boiler includes an evaporator provided in an exhaust gas flow path of the gas turbine, a drum for supplying and storing heated supply water, and a downcomer pipe for connecting the drum and the evaporator to circulate water in the drum. And the riser pipe, and the steam in the drum is supplied to the evaporative turbine cycle section. Feed water used for power generation in the evaporative turbine is sent by a circulation pump, heated by an economizer provided in the exhaust gas flow path, and returned to the drum.

【0003】上記の排熱ボイラは、排熱回収の効率を少
しでも上げるために、少なくとも高圧ボイラと低圧ボイ
ラを有する多重圧のボイラで構成される。高圧ボイラ
は、ボイラ内の圧力を高くしその分蒸発温度を高くし、
排ガス流路の上流の比較的高温部分に蒸発器や過熱器が
設けられる。低圧ボイラは、ボイラ内の圧力を低くしそ
の分蒸発温度を低くし、その蒸発器は排ガス流路の下流
の比較的低温部分に設けられる。そして、高圧ボイラの
高圧蒸気で駆動される高圧タービンからの低圧の蒸気
と、低圧ボイラにより生成された蒸気とが混合され、排
ガス流路内の過熱器で過熱されて、低圧ボイラに供給さ
れる。低圧ボイラを設けることで、少しでも排熱を回収
して、全体の効率を高めている。
The above-mentioned waste heat boiler is composed of a multi-pressure boiler having at least a high-pressure boiler and a low-pressure boiler in order to improve the efficiency of waste heat recovery. The high-pressure boiler raises the pressure inside the boiler and raises the evaporation temperature,
An evaporator or a superheater is provided in a relatively high temperature portion upstream of the exhaust gas flow path. The low-pressure boiler lowers the pressure in the boiler and thereby lowers the evaporation temperature, and the evaporator is provided at a relatively low temperature portion downstream of the exhaust gas flow path. Then, the low-pressure steam from the high-pressure turbine driven by the high-pressure steam in the high-pressure boiler and the steam generated by the low-pressure boiler are mixed, heated by a superheater in the exhaust gas passage, and supplied to the low-pressure boiler. . By installing a low-pressure boiler, even a small amount of exhaust heat is recovered, increasing the overall efficiency.

【0004】図4は、従来の二重圧ボイラの構成図であ
る。ガス燃料により駆動されるガスタービン10が、発
電器12を駆動し、排ガス流路15内に排ガスを供給す
る。高圧ボイラ2は、給水が溜められる高圧ドラム20
と、高圧ドラム20内の給水を循環する下降管22及び
上昇管26と、排ガス流路15内に設けられて循環して
きた給水を沸かす高圧蒸発器24とを有する。高圧ドラ
ム20の頂上部に設けられ出口28から、高温、高圧の
蒸気が、配管29を経由して排ガス流路15内に設けら
れた高圧過熱器30で更に過熱され、高圧タービン14
に供給され、タービン14が駆動される。
FIG. 4 is a configuration diagram of a conventional double pressure boiler. A gas turbine 10 driven by gas fuel drives a generator 12 and supplies exhaust gas into an exhaust gas channel 15. The high-pressure boiler 2 includes a high-pressure drum 20 in which water is stored.
And a downcomer pipe 22 and an ascending pipe 26 for circulating the feedwater in the high-pressure drum 20, and a high-pressure evaporator 24 provided in the exhaust gas passage 15 for boiling the circulated feedwater. From an outlet 28 provided at the top of the high-pressure drum 20, high-temperature, high-pressure steam is further heated by a high-pressure superheater 30 provided in the exhaust gas passage 15 via a pipe 29, and
And the turbine 14 is driven.

【0005】更に、低圧ボイラ4は、高圧ボイラ2と同
様に、給水が溜められる低圧ドラム40と、低圧ドラム
40内の給水を循環する下降管42及び上昇管46と、
排ガス流路15内に設けられて循環してきた給水を沸か
す低圧蒸発器44とを有する。そして、低圧ドラム40
の出口48から配管49を循環してきた低圧の蒸気は、
高圧タービン14から配管32に排出される低圧の蒸気
と合流し、低圧過熱器50内で再度過熱され、高温の蒸
気が低圧タービン16に供給される。そして、低圧ター
ビン16から排出される給水は、復水器54により低温
下され、高圧ボイラ・フィード・ウオータ・ポンプ56
により送られ、図示しないエコノマイザを介して高温化
され、各ドラム20,40に適宜戻される。
Further, similarly to the high-pressure boiler 2, the low-pressure boiler 4 includes a low-pressure drum 40 for storing water, a descending pipe 42 and a rising pipe 46 for circulating the water in the low-pressure drum 40,
And a low-pressure evaporator 44 provided in the exhaust gas passage 15 for boiling the circulated feedwater. And the low pressure drum 40
The low-pressure steam circulating through the pipe 49 from the outlet 48 of
The low-pressure superheater 50 merges with the low-pressure steam discharged from the high-pressure turbine 14 to the pipe 32, is superheated again in the low-pressure superheater 50, and the high-temperature steam is supplied to the low-pressure turbine 16. Then, the feedwater discharged from the low-pressure turbine 16 is cooled by a condenser 54 to a low temperature, and the high-pressure boiler feedwater pump 56
, And is heated to a high temperature via an economizer (not shown), and is returned to the drums 20 and 40 as appropriate.

【0006】低圧ボイラ4は、低圧であるために蒸気温
度が低く、従って排ガス流路15内の比較的低温の排ガ
スを回収することができ、全体の発電の効率を向上させ
ることができる。高圧ボイラと低圧ボイラに加えて中圧
ボイラなどを設けて、更に多重圧にすることで、その効
率を更に上げることも可能である。
[0006] The low-pressure boiler 4 can recover relatively low temperature exhaust gas in the exhaust gas passage 15 because of its low pressure, so that the efficiency of power generation as a whole can be improved. It is also possible to further increase the efficiency by providing a medium pressure boiler or the like in addition to the high pressure boiler and the low pressure boiler, and further increasing the pressure.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、低圧ボ
イラ4は、排ガス流路15内の比較的低温の排ガスを利
用して蒸気を生成することから、比較的少量の蒸気しか
発生させることができない。従って、その蒸気の量に対
応して、低圧ドラム40の大きさも小さく設計すること
が、排熱ボイラ全体のコストダウンにつながる。一般的
な例では、高圧ドラム20と低圧ドラム40とを比較す
ると、例えば10対1の流量、或いは蒸気量の関係にあ
り、そのサイズも同様の比率である。
However, since the low-pressure boiler 4 generates steam using the relatively low-temperature exhaust gas in the exhaust gas channel 15, it can generate only a relatively small amount of steam. Therefore, designing the low-pressure drum 40 to have a small size corresponding to the amount of the steam leads to a reduction in the cost of the entire exhaust heat boiler. In a general example, when the high-pressure drum 20 and the low-pressure drum 40 are compared, for example, the flow rate or the amount of steam is 10: 1, and the size is also the same ratio.

【0008】その為、ガスタービン10の排ガス温度が
変動したり、排ガス流量が変動したりすると、高圧ボイ
ラ2側で生成される蒸気の量に変動が生じる。高圧ボイ
ラ側の蒸気量の変動は、合流点52で接続されている低
圧ドラム内の圧力の変動を招く。低圧ドラム40は高圧
ドラム20に比較して非常に小さく蒸気流量も非常に少
ない。従って、高圧ボイラ側のわずかな蒸気量の変動
が、低圧ドラム40内の圧力を大きく変動させる。
Therefore, when the temperature of the exhaust gas of the gas turbine 10 fluctuates or the flow rate of the exhaust gas fluctuates, the amount of steam generated on the high-pressure boiler 2 side fluctuates. The change in the amount of steam on the high-pressure boiler side causes a change in the pressure in the low-pressure drum connected at the junction 52. The low-pressure drum 40 is much smaller than the high-pressure drum 20 and has a very small steam flow rate. Therefore, a slight change in the amount of steam on the high-pressure boiler side greatly changes the pressure in the low-pressure drum 40.

【0009】低圧ドラム40内の圧力が上昇した場合、
蒸気温度が上昇し、発生する蒸気流量が少なくなる。蒸
気流量の低下は、低圧ドラム40内の気泡率であるボイ
ド率を低下させ、一時的に水面の低下を招来する。かか
る水面の低下は、低圧ボイラ4における下降管42等の
循環路の空焚きを招き、循環路に損傷を与えてしまう。
従って、かかる損傷を避けるためには、発電プラント全
体を停止させることが必要になり、低圧ボイラ内の水圧
の低下は極力避けなければならない。
When the pressure in the low pressure drum 40 increases,
The steam temperature rises and the generated steam flow decreases. The reduction in the steam flow rate lowers the void ratio, which is the bubble ratio in the low-pressure drum 40, and temporarily lowers the water level. Such lowering of the water surface causes the circulation path such as the downcomer pipe 42 in the low-pressure boiler 4 to be idled, and damages the circulation path.
Therefore, in order to avoid such damage, it is necessary to shut down the entire power generation plant, and a reduction in water pressure in the low-pressure boiler must be avoided as much as possible.

【0010】そこで、本発明の目的は、多重圧排熱ボイ
ラにおいて、高圧ボイラ側の蒸気流量の変動により低圧
ボイラ側のドラム内の圧力が過度に変動することを防止
して、稼働停止を避けることができる多重圧排熱ボイラ
を提供することにある。
Accordingly, an object of the present invention is to prevent the pressure in the drum on the low-pressure boiler from excessively fluctuating due to the fluctuation in the steam flow rate on the high-pressure boiler side in a multi-pressure exhaust heat boiler, thereby avoiding an operation stop. It is an object of the present invention to provide a multi-pressure exhaust heat boiler which can be used.

【0011】更に、本発明の目的は、高圧ドラムと低圧
ドラムが最適なサイズに設計され、且つ高圧ボイラ側の
蒸気量の変動により低圧ドラム内の圧力の変動を防止し
た多重排熱ボイラを提供することにある。
It is a further object of the present invention to provide a multiple exhaust heat boiler in which the high-pressure drum and the low-pressure drum are designed to have optimal sizes, and the fluctuation of the pressure in the low-pressure drum is prevented by the fluctuation of the steam amount on the high-pressure boiler side. Is to do.

【0012】[0012]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の一つの側面は、高圧ボイラと低圧ボイラ
とを有し、高圧ボイラで生成した蒸気と低圧ボイラで生
成した蒸気とを合流させる構成を有する多重圧排熱ボイ
ラにおいて、高圧ボイラ側の蒸気量の変化などにより、
低圧ボイラのドラム内の圧力が変動しないように、低圧
ボイラの出口配管に、圧力調整弁または復水器へのバイ
パス弁を設ける。低圧ボイラ側の蒸気を圧力調整弁を介
して高圧ボイラ側の蒸気に合流させる構成を有すること
により、低圧ドラム内の圧力の変動を監視し、その圧力
の変動が検出されると、圧力変動を抑えるように圧力調
整弁の開度を制御する。または、復水器へのバイパス弁
を設ける構成にすることにより、低圧ドラム内の圧力の
変動を監視し、その圧力の変動が検出されると、圧力変
動を抑えるようにバイパス弁の開度を制御する。或い
は、圧力調整弁とバイパス弁の両方を設け、低圧ドラム
内の圧力の上昇に対して、主に圧力調整弁で圧力を一定
に保ち、更に低圧ドラム内の圧力が上昇すると、バイパ
ス弁を開いて蒸気を復水器に排出して、内部の圧力を一
定に保つように制御する。
According to one aspect of the present invention, there is provided a high pressure boiler and a low pressure boiler, wherein steam generated by the high pressure boiler and steam generated by the low pressure boiler are provided. In a multi-pressure exhaust heat boiler having a configuration to combine
A pressure regulating valve or a bypass valve to a condenser is provided at the outlet piping of the low-pressure boiler so that the pressure in the drum of the low-pressure boiler does not fluctuate. By having a configuration in which the steam on the low-pressure boiler is merged with the steam on the high-pressure boiler via the pressure regulating valve, the fluctuation of the pressure in the low-pressure drum is monitored, and when the fluctuation of the pressure is detected, the pressure fluctuation is detected. The opening of the pressure regulating valve is controlled so as to suppress it. Alternatively, a configuration in which a bypass valve is provided to the condenser to monitor the pressure fluctuation in the low-pressure drum, and when the pressure fluctuation is detected, the opening degree of the bypass valve is controlled so as to suppress the pressure fluctuation. Control. Alternatively, both the pressure control valve and the bypass valve are provided, and the pressure in the low-pressure drum is kept constant with respect to the increase in the pressure in the low-pressure drum. When the pressure in the low-pressure drum further increases, the bypass valve is opened. The steam is discharged to the condenser to control the internal pressure to be constant.

【0013】上記の発明によれば、低圧ドラムの大きさ
を高圧ドラムに比較して小さくして最適化しても、高圧
ボイラ側の変動により低圧ボイラのドラム内の圧力が極
端に上昇して、水面レベルが極端に低下することを防止
することができる。
According to the above invention, even if the size of the low-pressure drum is made smaller than that of the high-pressure drum and optimized, the pressure in the drum of the low-pressure boiler rises extremely due to fluctuations on the high-pressure boiler side. Extremely low water level can be prevented.

【0014】上記の目的を達成するために、本発明の別
の側面は、少なくとも高圧ボイラと低圧ボイラとを有
し、両ボイラが、給水を溜めるドラムと前記ドラムに循
環路を介して接続され排ガス流路内に設けられた蒸発器
とをそれぞれ有し、前記両ボイラが生成した蒸気を合流
させる構成を有する多重圧排熱ボイラにおいて、前記低
圧ボイラの低圧ドラムの蒸気出口と、前記高圧ボイラ側
の蒸気配管との合流点との間に、前記低圧ドラム内の圧
力に応じて開度が制御される圧力調整弁が設けられてい
ることを特徴とする。
In order to achieve the above object, another aspect of the present invention has at least a high pressure boiler and a low pressure boiler, both of which are connected to a drum for storing feed water and to the drum via a circulation path. A multi-pressure exhaust heat boiler having an evaporator provided in the exhaust gas flow path and having a configuration in which the steams generated by the two boilers are combined, wherein a steam outlet of a low-pressure drum of the low-pressure boiler; A pressure regulating valve whose opening is controlled in accordance with the pressure in the low-pressure drum is provided between the fuel cell and the junction with the steam pipe.

【0015】更に、上記の目的を達成するために、本発
明の別の側面は、少なくとも高圧ボイラと低圧ボイラと
を有し、両ボイラが、給水を溜めるドラムと前記ドラム
に循環路を介して接続され排ガス流路内に設けられた蒸
発器とをそれぞれ有し、前記両ボイラが生成した蒸気を
合流させる構成を有する多重圧排熱ボイラにおいて、前
記低圧ボイラの低圧ドラムの蒸気出口と復水器との間
に、前記低圧ドラム内の圧力に応じて開度が制御される
バイパス弁が設けられていることを特徴とする。
Further, in order to achieve the above object, another aspect of the present invention has at least a high-pressure boiler and a low-pressure boiler, wherein both boilers are connected to a drum for storing water and a circulation path through the drum. A multi-pressure exhaust heat boiler having an evaporator connected in the exhaust gas flow path and having a configuration in which the steams generated by the two boilers are combined, wherein a steam outlet of a low-pressure drum of the low-pressure boiler and a condenser And a bypass valve whose opening is controlled in accordance with the pressure in the low-pressure drum.

【0016】更に、本発明の好ましい実施例では、上記
の圧力調整弁とバイパス弁の両方を設け、圧力調整弁を
優先的に開度調整する。かかる構成にすることで、でき
るだけ蒸気の廃棄を避けながら、低圧ドラムの圧力を略
一定に保つことができ、最悪状態での低圧ドラム内の圧
力増加による運転停止を避けることができる。
Further, in a preferred embodiment of the present invention, both the pressure regulating valve and the bypass valve are provided, and the opening of the pressure regulating valve is preferentially regulated. With this configuration, it is possible to keep the pressure of the low-pressure drum substantially constant while avoiding the disposal of steam as much as possible, and it is possible to avoid a shutdown due to an increase in the pressure in the low-pressure drum in the worst case.

【0017】[0017]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態例を説明する。しかしながら、かかる実施の形
態例が、本発明の技術的範囲を限定するものではない。
Embodiments of the present invention will be described below with reference to the drawings. However, such embodiments do not limit the technical scope of the present invention.

【0018】図1は、本発明の実施の形態例における多
重圧排熱ボイラの構成図である。この例では、高圧ボイ
ラ2と低圧ボイラ4を有する二重圧排熱ボイラである。
基本的な構成は、図4の従来例と同じであり、対応する
箇所には同じ引用番号を与えている。
FIG. 1 is a configuration diagram of a multi-pressure exhaust heat boiler according to an embodiment of the present invention. In this example, it is a double pressure exhaust heat boiler having a high pressure boiler 2 and a low pressure boiler 4.
The basic configuration is the same as that of the conventional example shown in FIG. 4, and corresponding parts are given the same reference numerals.

【0019】図1の二重圧排熱ボイラは、従来例と同様
に、ガスタービンの排ガス流路15内に、流路に沿って
高圧ボイラ用の高圧蒸発器24と低圧ボイラ用の低圧蒸
発器44とが設けられる。更に、排ガス流路15内に、
流路に沿って高圧過熱器30と低圧過熱器50とが設け
られる。高圧ボイラ2の構成は、従来例と同様であり、
高圧ドラム20内に水が溜められ、高圧ドラム20、降
水管22、高圧蒸発器24、上昇管26内は高圧に保た
れている。そして、高圧蒸発器24にて循環水が蒸発温
度に高められ、高圧ドラム20の出口28から高圧蒸気
として、流路29を経由して高圧過熱器30に送られ
る。そこで、更に過熱されて高い温度の高圧蒸気が、高
圧用タービン14に供給される。高圧ドラム20のサイ
ズは、比較的大型であり、大量の蒸気を生成して高圧用
タービン14に供給することができる。
The dual-pressure exhaust heat boiler shown in FIG. 1 has a high-pressure evaporator 24 for a high-pressure boiler and a low-pressure evaporator for a low-pressure boiler in an exhaust gas passage 15 of a gas turbine along a flow passage as in the conventional example. 44 are provided. Furthermore, in the exhaust gas channel 15,
A high-pressure superheater 30 and a low-pressure superheater 50 are provided along the flow path. The configuration of the high-pressure boiler 2 is the same as the conventional example,
Water is stored in the high-pressure drum 20, and the high-pressure drum 20, the downcomer 22, the high-pressure evaporator 24, and the riser 26 are maintained at a high pressure. Then, the circulating water is raised to the evaporation temperature by the high-pressure evaporator 24, and is sent from the outlet 28 of the high-pressure drum 20 as high-pressure steam to the high-pressure superheater 30 via the flow path 29. Then, the high-pressure steam which is further heated and has a high temperature is supplied to the high-pressure turbine 14. The size of the high-pressure drum 20 is relatively large, and a large amount of steam can be generated and supplied to the high-pressure turbine 14.

【0020】一方、低圧ボイラ4は、比較的サイズが小
さく、高圧ドラム20に比較して少量蒸気を生成する低
圧ドラム40を有する。低圧ドラム40、その降水管4
2、低圧蒸発器44及び上昇管46内は、低圧に保た
れ、従って循環水の蒸発温度は高圧側に比較して低くな
っている。低圧蒸発器44は、高圧蒸発器24や高圧過
熱器30により使用された排ガスの更に残った排熱を回
収するものであり、その圧力は低く発生する蒸気の温度
の低くされている。従って、低圧蒸発器44の能力は比
較的低く、それに伴い低圧ドラム40のサイズも小さく
設計される。
On the other hand, the low-pressure boiler 4 has a low-pressure drum 40 that is relatively small in size and generates a smaller amount of steam than the high-pressure drum 20. Low pressure drum 40 and its downcomer 4
2. The inside of the low-pressure evaporator 44 and the riser 46 are kept at a low pressure, so that the evaporation temperature of the circulating water is lower than that on the high-pressure side. The low-pressure evaporator 44 is for recovering the remaining exhaust heat of the exhaust gas used by the high-pressure evaporator 24 and the high-pressure superheater 30, and has a low pressure and a low temperature of the generated steam. Accordingly, the capacity of the low-pressure evaporator 44 is relatively low, and accordingly, the size of the low-pressure drum 40 is designed to be small.

【0021】図1の実施の形態例では、低圧ドラム40
の出口48と高圧ボイラ側からの蒸気と低圧ボイラ側の
蒸気とが合流する点52との間に、圧力調整弁62が設
けられ、低圧ドラム40内の圧力が略一定になるように
その弁開度が制御される。更に、図1の実施の形態例で
は、低圧ドラム40の出口48と復水器55との間に、
バイパス弁64が設けられ、低圧ドラム40内の圧力を
略一定に保つようにその弁開度が制御される。これらの
圧力調整弁62とバイパス弁64とは、低圧ドラム40
内の圧力を測定する圧力計60から検出圧力を供給され
る圧力制御部68により、その開度が制御される。
In the embodiment of FIG. 1, the low-pressure drum 40
A pressure regulating valve 62 is provided between the outlet 48 of the pump and a point 52 where the steam from the high-pressure boiler side and the steam from the low-pressure boiler merge, and the valve is provided so that the pressure in the low-pressure drum 40 becomes substantially constant. The opening is controlled. Further, in the embodiment of FIG. 1, between the outlet 48 of the low-pressure drum 40 and the condenser 55,
A bypass valve 64 is provided, and its valve opening is controlled so as to keep the pressure in the low-pressure drum 40 substantially constant. The pressure regulating valve 62 and the bypass valve 64 are connected to the low-pressure drum 40
The degree of opening is controlled by a pressure control unit 68 supplied with a detected pressure from a pressure gauge 60 that measures the internal pressure.

【0022】低圧ドラム40の出口48から出力される
低圧蒸気は、圧力調整弁62と逆止弁66を経由して、
合流点52で高圧側の蒸気と合流する。配管32内の蒸
気は、高圧側タービン14により圧力及び温度が低下し
ており、低圧ボイラ4からの蒸気と整合する。合流した
低圧蒸気は、低圧過熱器50により過熱されて、低圧タ
ービン16に供給される。
The low-pressure steam output from the outlet 48 of the low-pressure drum 40 passes through a pressure regulating valve 62 and a check valve 66,
At the junction 52, it merges with the steam on the high pressure side. The pressure and temperature of the steam in the pipe 32 is reduced by the high-pressure turbine 14, and matches the steam from the low-pressure boiler 4. The combined low-pressure steam is superheated by the low-pressure superheater 50 and supplied to the low-pressure turbine 16.

【0023】図1の実施の形態例では、圧力調整弁62
とバイパス弁64とを有し、低圧ドラム40内の圧力を
一定に保つために、圧力調整弁62を優先的に弁開度の
制御を行い、圧力調整弁62での圧力調整が限界になる
と、バイパス弁64の弁開度の制御が行われる。
In the embodiment of FIG. 1, the pressure regulating valve 62
And a bypass valve 64. In order to keep the pressure in the low-pressure drum 40 constant, the pressure control valve 62 is preferentially controlled in the valve opening, and when the pressure control by the pressure control valve 62 reaches its limit. The control of the valve opening of the bypass valve 64 is performed.

【0024】図2は、本実施の形態例における圧力調整
弁とバイパス弁の開度制御を説明するための図である。
図3は、圧力調整部による制御信号と圧力調整弁とバイ
パス弁の開度との関係を示す図である。
FIG. 2 is a view for explaining the opening control of the pressure regulating valve and the bypass valve in the present embodiment.
FIG. 3 is a diagram illustrating a relationship between a control signal from the pressure adjustment unit and the opening degrees of the pressure adjustment valve and the bypass valve.

【0025】圧力計60は、低圧ドラム40の出口48
の位置に設けられ、低圧ドラム40内の圧力を測定し、
圧力制御部68に検出圧力値を供給する。圧力制御部6
8は、検出圧力が上昇すると制御信号xを上昇させ、検
出圧力が低下すると制御信号xを下降させる。図3に示
される通り、制御信号xが0〜50%の間は、主に圧力
調整弁62の弁開度を0〜100%の間で制御する。即
ち、図2に示した関数fa(x)に従って、圧力調整弁6
2の弁開度が制御される。また、制御信号xが50〜1
00%の時は、圧力調整弁62の弁開度を100%に保
ちながら、バイパス弁64の弁開度を0〜100%の間
で、関数fb(x)に従って制御する。
The pressure gauge 60 is connected to the outlet 48 of the low-pressure drum 40.
, The pressure in the low-pressure drum 40 is measured,
The detected pressure value is supplied to the pressure control unit 68. Pressure controller 6
8 raises the control signal x when the detected pressure increases, and lowers the control signal x when the detected pressure decreases. As shown in FIG. 3, while the control signal x is between 0 and 50%, the valve opening of the pressure regulating valve 62 is mainly controlled between 0 and 100%. That is, according to the function fa (x) shown in FIG.
The second valve opening is controlled. When the control signal x is 50 to 1
At 00%, the valve opening of the bypass valve 64 is controlled between 0 and 100% in accordance with the function fb (x) while maintaining the valve opening of the pressure regulating valve 62 at 100%.

【0026】例えば、今仮に低圧ドラム40の圧力が一
定に保たれ、低圧ドラム40内の水面43が定常レベル
にあるとする。その時の制御信号xは、例えば図3中の
x0とする。この状態が、通常状態である。そこで、例
えばガスタービンの燃料に変動が生じたり等の理由で、
排ガス温度の変動や排ガス流量の変動が発生したとす
る。すると高圧ボイラ側で発生する蒸気量に変動が生じ
る。その結果、高圧ドラム20に蒸気の配管でつながれ
ている低圧ドラム40の圧力が上昇すると、前述した通
り、低圧ドラム側の蒸気流量が少なくなり、ボイド率が
小さくなり、水面のレベル43が一時的に低下してしま
う。特に、低圧ドラム40のサイズは最適値に設計さ
れ、比較的小さい。従って、ボイド率の低下により水面
レベル43は大きく低下する。
For example, it is now assumed that the pressure of the low-pressure drum 40 is kept constant and the water surface 43 in the low-pressure drum 40 is at a steady level. The control signal x at that time is, for example, x0 in FIG. This state is a normal state. Therefore, for example, because the fuel of the gas turbine fluctuates,
It is assumed that a change in the exhaust gas temperature and a change in the exhaust gas flow rate occur. Then, the amount of steam generated on the high pressure boiler fluctuates. As a result, when the pressure of the low-pressure drum 40 connected to the high-pressure drum 20 by the steam pipe increases, as described above, the steam flow rate on the low-pressure drum side decreases, the void ratio decreases, and the water surface level 43 temporarily changes. Will decrease. In particular, the size of the low-pressure drum 40 is designed to be an optimum value and is relatively small. Therefore, the water surface level 43 is greatly reduced due to a decrease in the void ratio.

【0027】そこで、その圧力の上昇を検出すると、圧
力制御部68は、制御信号xを上昇させる。それに伴
い、関数fa(x)に従って圧力調整弁62の弁開度がよ
り開くように制御され、低圧ドラム40内の圧力の上昇
を防止する。それにより、低圧ドラム40内の圧力は一
定に保たれ、水面レベル43が低下して、トリップに至
ることが防止される。
Therefore, upon detecting the rise in the pressure, the pressure control section 68 raises the control signal x. Along with this, the valve opening of the pressure regulating valve 62 is controlled so as to open further according to the function fa (x), and the pressure inside the low-pressure drum 40 is prevented from rising. As a result, the pressure in the low-pressure drum 40 is kept constant, and the water level 43 is prevented from lowering and tripping is prevented.

【0028】かかる圧力調整弁62の弁開度の増加は、
低圧ボイラ側からの蒸気の量を増加させることを意味す
る。低圧過熱器50を経由して蒸気が供給される低圧タ
ービン16は、一定の量の蒸気を使用する。従って、低
圧ボイラ側の供給蒸気量の増加は、高圧ボイラ側の高圧
ドラム20内の圧力の変動を招く。しかしながら、高圧
ドラム20は比較的大きなサイズを有し、圧力調整弁6
2による蒸気量の変動によってその水面レベルが大きな
影響を受けることはない。
The increase in the valve opening of the pressure regulating valve 62 is as follows.
This means increasing the amount of steam from the low pressure boiler side. The low-pressure turbine 16 supplied with steam via the low-pressure superheater 50 uses a certain amount of steam. Therefore, an increase in the amount of steam supplied on the low-pressure boiler side causes a change in the pressure in the high-pressure drum 20 on the high-pressure boiler side. However, the high pressure drum 20 has a relatively large size and the pressure regulating valve 6
2 does not greatly affect the water level.

【0029】逆に、低圧ドラム40内の圧力が低下した
ことが検出されると、圧力制御部68は、制御信号xを
下げるように制御し、それに伴い関数fa(x)に従って
圧力調整弁62の弁開度がより閉じるように制御され、
低圧ドラム40内の圧力は一定に保たれる。
Conversely, when it is detected that the pressure in the low-pressure drum 40 has decreased, the pressure control unit 68 controls the control signal x to decrease, and accordingly, the pressure regulating valve 62 according to the function fa (x). Is controlled so that the valve opening of the
The pressure in the low pressure drum 40 is kept constant.

【0030】低圧ドラム40内の圧力が上昇し、圧力調
整弁62の弁開度が最大まで開かれた後は、関数fb
(x)に従って、バイパス弁64の弁開度が制御される。
バイパス弁64の弁開度を開くことは、低圧ボイラで生
成した蒸気を復水器55に廃棄することを意味し、エネ
ルギーの無駄につながる。従って、バイパス弁64の弁
開度を開く制御は、できるだけ控えることが望まれる。
従って、図3の如き制御関数によりバイパス弁64の弁
開度の制御が行われる。
After the pressure in the low-pressure drum 40 increases and the valve opening of the pressure regulating valve 62 is opened to the maximum, the function fb
According to (x), the valve opening of the bypass valve 64 is controlled.
Opening the valve opening of the bypass valve 64 means that the steam generated by the low-pressure boiler is discarded to the condenser 55, which wastes energy. Therefore, it is desired that the control for opening the valve opening of the bypass valve 64 be refrained as much as possible.
Accordingly, the valve opening of the bypass valve 64 is controlled by a control function as shown in FIG.

【0031】バイパス弁64の弁開度の制御も、圧力調
整弁62と同様であり、低圧ドラム40の圧力が上昇す
ると、バイパス弁64の弁開度が開かれるように制御さ
れ、圧力が一定に保たれる。低圧ドラム40の圧力が低
下する場合は、バイパス弁64の弁開度が閉じられるよ
うに制御される。そして、バイパス弁64が完全に閉じ
られると、今度は、圧力調整弁62の弁開度の制御によ
り、低圧ドラム40内の圧力が一定に保たれる。
The control of the valve opening of the bypass valve 64 is the same as that of the pressure regulating valve 62. When the pressure of the low-pressure drum 40 increases, the valve opening of the bypass valve 64 is controlled to be opened, and the pressure is kept constant. Is kept. When the pressure of the low-pressure drum 40 decreases, control is performed so that the valve opening of the bypass valve 64 is closed. Then, when the bypass valve 64 is completely closed, the pressure in the low-pressure drum 40 is kept constant by controlling the valve opening of the pressure regulating valve 62.

【0032】上記の実施の形態例において、圧力調整弁
62とバイパス弁64のいずれか一方を設ける構成にし
ても、低圧ドラム40内の圧力を一定に保つことが可能
である。圧力調整弁62のみを設ける場合は、図3の制
御関数を、制御信号xの全範囲に対して弁開度が0〜1
00%になるようにする。或いは、バイパス弁64のみ
を設ける場合は、図3の制御関数を、制御信号xの全範
囲に対して弁開度が0〜100%になるようにする。
In the above embodiment, the pressure in the low-pressure drum 40 can be kept constant even if one of the pressure regulating valve 62 and the bypass valve 64 is provided. When only the pressure regulating valve 62 is provided, the control function of FIG.
00%. Alternatively, when only the bypass valve 64 is provided, the control function of FIG. 3 is set so that the valve opening is 0 to 100% over the entire range of the control signal x.

【0033】但し、圧力調整弁とバイパス弁の両方を設
けることにより、一定の範囲では蒸気の廃棄を伴わない
で低圧ドラム内の圧力を一定に保つことができ、エネル
ギー効率の面でメリットがある。そして、バイパス弁が
設けられることで、最悪状態でも低圧ドラム内の圧力の
上昇を避けて、発電プラント全体の運転停止を避けるこ
とができる。
However, by providing both the pressure regulating valve and the bypass valve, the pressure in the low-pressure drum can be kept constant without disposing of steam in a certain range, which is advantageous in terms of energy efficiency. . By providing the bypass valve, it is possible to avoid an increase in the pressure in the low-pressure drum even in the worst case, and to avoid shutting down the operation of the entire power plant.

【0034】上記の実施の形態例は、二重圧排熱ボイラ
を例にして説明したが、本発明は、三重圧排熱ボイラま
たはそれ以上の数の圧力ボイラを有する排熱ボイラにも
適用することができる。また、バイパス弁64の下流に
は便宜的に復水器55を設置したが、バイパス弁の下流
には何も設置せず大気に放出しても良い。
Although the above embodiment has been described with reference to a double-pressure exhaust heat boiler, the present invention is also applicable to a triple-pressure exhaust heat boiler or an exhaust heat boiler having more pressure boilers. Can be. Further, although the condenser 55 is provided downstream of the bypass valve 64 for convenience, nothing may be provided downstream of the bypass valve to discharge it to the atmosphere.

【0035】以上、本発明の保護範囲は、上記の実施の
形態例に限定されるものではなく、特許請求の範囲に記
載された発明とその均等物にまで及ぶものである。
As described above, the protection scope of the present invention is not limited to the above-described embodiment, but extends to the inventions described in the claims and their equivalents.

【0036】[0036]

【発明の効果】以上、本発明によれば、高圧ドラムと低
圧ドラムを最適値に設計してコストダウンを図ると共
に、低圧ドラム側の圧力上昇による運転停止を避けるこ
とができる。
As described above, according to the present invention, the high-pressure drum and the low-pressure drum are designed to have optimum values to reduce the cost, and it is possible to avoid the operation stop due to the increase in the pressure on the low-pressure drum.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態例における多重圧排熱ボイ
ラの構成図である。
FIG. 1 is a configuration diagram of a multi-pressure exhaust heat boiler according to an embodiment of the present invention.

【図2】本実施の形態例における圧力調整弁とバイパス
弁の開度制御を説明するための図である。
FIG. 2 is a diagram for describing opening control of a pressure regulating valve and a bypass valve in the present embodiment.

【図3】圧力調整部による制御信号と圧力調整弁とバイ
パス弁の開度との関係を示す図である。
FIG. 3 is a diagram illustrating a relationship between a control signal by a pressure adjustment unit and the opening degrees of a pressure adjustment valve and a bypass valve.

【図4】従来の二重圧ボイラの構成図である。FIG. 4 is a configuration diagram of a conventional double pressure boiler.

【符号の説明】[Explanation of symbols]

2 高圧ボイラ 4 低圧ボイラ 10 ガスタービン 15 排ガス流路 20 高圧ドラム 40 低圧ドラム 60 圧力計 62 圧力調整弁 64 バイパス弁 68 圧力制御部 2 High pressure boiler 4 Low pressure boiler 10 Gas turbine 15 Exhaust gas flow path 20 High pressure drum 40 Low pressure drum 60 Pressure gauge 62 Pressure regulating valve 64 Bypass valve 68 Pressure controller

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 健治 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 武多 一浩 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 蛇蝮 和寛 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島製作所内 Fターム(参考) 3G081 BA02 BA11 BC07 BD00 DA03 DA06 3L021 AA03 CA07 DA04 FA02  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kenji Suzuki 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Inside the Hiroshima Research Laboratory, Mitsubishi Heavy Industries, Ltd. (72) Inventor Kazuhiro Taketa Kannon Shinmachi 4 in Nishi-ku, Hiroshima City, Hiroshima Prefecture 6-22, Mitsubishi Heavy Industries, Ltd. Hiroshima Laboratory (72) Inventor Kazuhiro Viper, 4-4-2 Kanon Shinmachi, Nishi-ku, Hiroshima, Hiroshima Prefecture Mitsubishi Heavy Industries, Ltd. Hiroshima Works F-term (reference) 3G081 BA02 BA11 BC07 BD00 DA03 DA06 3L021 AA03 CA07 DA04 FA02

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】少なくとも高圧ボイラと低圧ボイラとを有
し、両ボイラが、給水を溜めるドラムと前記ドラムに循
環路を介して接続され排ガス流路内に設けられた蒸発器
とをそれぞれ有し、前記両ボイラが生成した蒸気を合流
させる構成を有する多重圧排熱ボイラにおいて、 前記低圧ボイラの低圧ドラムの蒸気出口と、前記高圧ボ
イラ側の蒸気配管との合流点との間に、前記低圧ドラム
内の圧力に応じて開度が制御される圧力調整弁が設けら
れていることを特徴とする多重圧排熱ボイラ。
1. A boiler having at least a high-pressure boiler and a low-pressure boiler, each of which has a drum for storing feedwater and an evaporator connected to the drum via a circulation path and provided in an exhaust gas passage. A multi-pressure exhaust heat boiler having a configuration in which steam generated by both boilers is combined, wherein the low-pressure drum is located between a steam outlet of a low-pressure drum of the low-pressure boiler and a junction with a steam pipe on the high-pressure boiler side. A multi-pressure exhaust heat boiler comprising a pressure regulating valve whose opening is controlled in accordance with the internal pressure.
【請求項2】請求項1において、 前記圧力調整弁の開度は、前記低圧ドラム内の圧力の上
昇に応答してより開く方向に制御され、前記低圧ドラム
内の圧力の低下に応答してより閉じる方向に制御される
ことを特徴とする多重圧排熱ボイラ。
2. The pressure control valve according to claim 1, wherein the opening degree of the pressure regulating valve is controlled to open more in response to an increase in the pressure in the low-pressure drum, and in response to a decrease in the pressure in the low-pressure drum. A multi-pressure exhaust heat boiler characterized by being controlled in a more closed direction.
【請求項3】少なくとも高圧ボイラと低圧ボイラとを有
し、両ボイラが、給水を溜めるドラムと前記ドラムに循
環路を介して接続され排ガス流路内に設けられた蒸発器
とをそれぞれ有し、前記両ボイラが生成した蒸気を合流
させる構成を有する多重圧排熱ボイラにおいて、 前記低圧ボイラの低圧ドラムの蒸気出口と復水器との間
に、前記低圧ドラム内の圧力に応じて開度が制御される
バイパス弁が設けられていることを特徴とする多重圧排
熱ボイラ。
3. A boiler having at least a high-pressure boiler and a low-pressure boiler, each of which has a drum for storing feedwater and an evaporator connected to the drum via a circulation path and provided in an exhaust gas passage. In a multi-pressure exhaust heat boiler having a configuration in which steam generated by the two boilers is combined, an opening degree is set between a steam outlet of a low-pressure drum of the low-pressure boiler and a condenser according to a pressure in the low-pressure drum. A multi-pressure exhaust heat boiler comprising a controlled bypass valve.
【請求項4】請求項3において、 前記バイパス弁の開度は、前記低圧ドラム内の圧力の上
昇に応答してより開く方向に制御され、前記低圧ドラム
内の圧力の低下に応答してより閉じる方向に制御される
ことを特徴とする多重圧排熱ボイラ。
4. The low-pressure drum according to claim 3, wherein the opening of the bypass valve is controlled to open in response to an increase in the pressure in the low-pressure drum, and is controlled in response to a decrease in the pressure in the low-pressure drum. A multi-pressure exhaust heat boiler characterized by being controlled in a closing direction.
【請求項5】少なくとも高圧ボイラと低圧ボイラとを有
し、両ボイラが、給水を溜めるドラムと前記ドラムに循
環路を介して接続され排ガス流路内に設けられた蒸発器
とをそれぞれ有し、前記両ボイラが生成した蒸気を合流
させる構成を有する多重圧排熱ボイラにおいて、 前記低圧ボイラの低圧ドラムの蒸気出口と前記高圧ボイ
ラ側の蒸気配管との合流点との間に設けられた圧力調整
弁と、 前記低圧ドラムの蒸気出口と復水器との間に設けられた
バイパス弁とを有し、 前記圧力調整弁と前記バイパス弁とは、前記低圧ドラム
内の圧力に応じて開度が制御されることを特徴とする多
重圧排熱ボイラ。
5. A boiler having at least a high-pressure boiler and a low-pressure boiler, each of which has a drum for storing feedwater and an evaporator connected to the drum via a circulation path and provided in an exhaust gas passage. A multi-pressure exhaust heat boiler having a configuration in which steam generated by both boilers is combined, wherein a pressure adjustment provided between a steam outlet of a low-pressure drum of the low-pressure boiler and a junction of a steam pipe on the high-pressure boiler side; A valve, and a bypass valve provided between a steam outlet of the low-pressure drum and a condenser, wherein the pressure regulating valve and the bypass valve have an opening degree according to the pressure in the low-pressure drum. A multi-pressure exhaust heat boiler characterized by being controlled.
【請求項6】請求項5において、 前記低圧ドラム内の圧力が上昇する時に、前記圧力調整
弁の開度が優先的に開かれるように制御され、前記圧力
調整弁の開度が略最大になった後に更に前記低圧ドラム
内の圧力が上昇する時に、前記バイパス弁の開度が開か
れるように制御されることを特徴とする多重圧排熱ボイ
ラ。
6. The pressure control valve according to claim 5, wherein when the pressure in the low-pressure drum increases, the opening of the pressure regulating valve is controlled to be preferentially opened, and the opening of the pressure regulating valve is substantially maximized. The multi-pressure heat boiler is controlled so that the degree of opening of the bypass valve is opened when the pressure in the low-pressure drum further increases after that.
JP28335999A 1999-10-04 1999-10-04 Multiple pressure waste heat boiler Withdrawn JP2001108201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28335999A JP2001108201A (en) 1999-10-04 1999-10-04 Multiple pressure waste heat boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28335999A JP2001108201A (en) 1999-10-04 1999-10-04 Multiple pressure waste heat boiler

Publications (1)

Publication Number Publication Date
JP2001108201A true JP2001108201A (en) 2001-04-20

Family

ID=17664477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28335999A Withdrawn JP2001108201A (en) 1999-10-04 1999-10-04 Multiple pressure waste heat boiler

Country Status (1)

Country Link
JP (1) JP2001108201A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075996A (en) * 2006-09-22 2008-04-03 Babcock Hitachi Kk Exhaust heat recovery boiler and its steam pressure control method
CN103471070A (en) * 2013-08-30 2013-12-25 江苏太湖锅炉股份有限公司 Horizontal dual-temperature and dual-pressure waste heat boiler structure
US20130340434A1 (en) * 2012-06-26 2013-12-26 Harris Corporation Hybrid thermal cycle with independent refrigeration loop
US20140026573A1 (en) * 2012-07-24 2014-01-30 Harris Corporation Hybrid thermal cycle with enhanced efficiency
CN103775819A (en) * 2014-02-26 2014-05-07 章礼道 System for once-through boiler start-up drainage water and low voltage bypass shared energy dissipater
US8991181B2 (en) 2011-05-02 2015-03-31 Harris Corporation Hybrid imbedded combined cycle
US9297387B2 (en) 2013-04-09 2016-03-29 Harris Corporation System and method of controlling wrapping flow in a fluid working apparatus
US9303533B2 (en) 2013-12-23 2016-04-05 Harris Corporation Mixing assembly and method for combining at least two working fluids
US9303514B2 (en) 2013-04-09 2016-04-05 Harris Corporation System and method of utilizing a housing to control wrapping flow in a fluid working apparatus
US9574563B2 (en) 2013-04-09 2017-02-21 Harris Corporation System and method of wrapping flow in a fluid working apparatus
WO2021025153A1 (en) * 2019-08-07 2021-02-11 ダイキン工業株式会社 Heat source unit for refrigeration device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075996A (en) * 2006-09-22 2008-04-03 Babcock Hitachi Kk Exhaust heat recovery boiler and its steam pressure control method
US8991181B2 (en) 2011-05-02 2015-03-31 Harris Corporation Hybrid imbedded combined cycle
US20130340434A1 (en) * 2012-06-26 2013-12-26 Harris Corporation Hybrid thermal cycle with independent refrigeration loop
US9038389B2 (en) 2012-06-26 2015-05-26 Harris Corporation Hybrid thermal cycle with independent refrigeration loop
US20140026573A1 (en) * 2012-07-24 2014-01-30 Harris Corporation Hybrid thermal cycle with enhanced efficiency
US9297387B2 (en) 2013-04-09 2016-03-29 Harris Corporation System and method of controlling wrapping flow in a fluid working apparatus
US9303514B2 (en) 2013-04-09 2016-04-05 Harris Corporation System and method of utilizing a housing to control wrapping flow in a fluid working apparatus
US9574563B2 (en) 2013-04-09 2017-02-21 Harris Corporation System and method of wrapping flow in a fluid working apparatus
CN103471070A (en) * 2013-08-30 2013-12-25 江苏太湖锅炉股份有限公司 Horizontal dual-temperature and dual-pressure waste heat boiler structure
US9303533B2 (en) 2013-12-23 2016-04-05 Harris Corporation Mixing assembly and method for combining at least two working fluids
CN103775819A (en) * 2014-02-26 2014-05-07 章礼道 System for once-through boiler start-up drainage water and low voltage bypass shared energy dissipater
WO2021025153A1 (en) * 2019-08-07 2021-02-11 ダイキン工業株式会社 Heat source unit for refrigeration device

Similar Documents

Publication Publication Date Title
KR101401135B1 (en) Methods and apparatus for electric power grid frequency stabilization
JP4540472B2 (en) Waste heat steam generator
JP2006105442A (en) Pressure drain collecting system
JP2001108201A (en) Multiple pressure waste heat boiler
JP7111525B2 (en) Once-through heat recovery boiler and control system for once-through heat recovery boiler
JPH10306708A (en) Combined cycle generating plant
JPS6239656B2 (en)
CN215259733U (en) Dry-wet state undisturbed switching system suitable for supercritical unit under deep peak regulation state
JPH05248604A (en) Waste heat recovery boiler
JPH11148603A (en) Controller for coal/residual oil gassifying combined power generation plant
JPS61213401A (en) Waste-heat recovery boiler
JP2971629B2 (en) Waste heat recovery boiler
JP2839195B2 (en) Waste heat recovery boiler water supply control device
JPH07217802A (en) Waste heat recovery boiler
JPS6214041B2 (en)
JPS59153003A (en) Method of stopping waste-heat recovery boiler
JP2716442B2 (en) Waste heat recovery boiler device
JPH10176804A (en) Vertical waste heat recovery boiler and operating method thereof
JPH0335562B2 (en)
JPS6211283Y2 (en)
JPH04278101A (en) Exhaust heat recovery boiler
JPS61276601A (en) Exhaust-heat recovery boiler
JP2951294B2 (en) How to stop the waste heat recovery boiler
JPS63192919A (en) Control device for coal gasification combined plant
JP3221738B2 (en) Steam temperature controller for variable-pressure once-through boiler

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061205