JPS6239656B2 - - Google Patents

Info

Publication number
JPS6239656B2
JPS6239656B2 JP56101529A JP10152981A JPS6239656B2 JP S6239656 B2 JPS6239656 B2 JP S6239656B2 JP 56101529 A JP56101529 A JP 56101529A JP 10152981 A JP10152981 A JP 10152981A JP S6239656 B2 JPS6239656 B2 JP S6239656B2
Authority
JP
Japan
Prior art keywords
steam
turbine
pressure
steam pressure
heat recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56101529A
Other languages
Japanese (ja)
Other versions
JPS585415A (en
Inventor
Tatsuo Arii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP10152981A priority Critical patent/JPS585415A/en
Publication of JPS585415A publication Critical patent/JPS585415A/en
Publication of JPS6239656B2 publication Critical patent/JPS6239656B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 本発明は、ガスタービンと蒸気タービンを組合
わせたコンバインドサイクル発電プラントの蒸気
圧力制御装置に係り、特に起動や負荷変動に要す
る時間を短縮するとともに、停止時や負荷降下時
あるいは蒸気圧力が異常に高くなつた場合のプラ
ント熱損失を少なくする蒸気圧力制御装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a steam pressure control device for a combined cycle power plant that combines a gas turbine and a steam turbine. The present invention relates to a steam pressure control device that reduces plant heat loss when steam or steam pressure becomes abnormally high.

コンバインドサイクル発電プラントは、ガスタ
ービンと蒸気タービンを組合わせることにより起
動や負荷変動に要する時間を短くするとともに熱
効率を高くしたものであり、その起動・停止ある
いは負荷変動の制御は、ガスタービンの燃焼室へ
の燃料供給量を調節して行なつていた。
Combined cycle power generation plants combine a gas turbine and a steam turbine to shorten the time required for startup and load fluctuations and to increase thermal efficiency. Control of startup, shutdown, and load fluctuations is achieved through the combustion of the gas turbine. This was done by adjusting the amount of fuel supplied to the chamber.

すなわち、第1図に示すように、コンバインド
サイクル発電プラントにおいては、コンプレツサ
1、ガスタービン2、蒸気タービン3および発電
機4が一本の軸で結合されている。コンプレツサ
1に入つた空気aは圧縮されて圧縮空気cとな
り、燃焼室5へ送られる。燃焼室5では燃料制御
弁6によりその供給量が調節された燃料fと前記
圧縮空気cが混合されて燃焼し、高温の燃焼ガス
gが生じる。この燃焼ガスgはガスタービン2に
送られて仕事をする。その排ガスeはまだ温度が
高いため排熱回収ボイラ7に導かれ、ここで給水
wと熱交換して高温高圧の蒸気Sを発生させ、低
温になつた排ガスeは大気に放出される。
That is, as shown in FIG. 1, in a combined cycle power plant, a compressor 1, a gas turbine 2, a steam turbine 3, and a generator 4 are connected by a single shaft. Air a entering the compressor 1 is compressed into compressed air c, which is sent to the combustion chamber 5. In the combustion chamber 5, the fuel f whose supply amount is adjusted by the fuel control valve 6 and the compressed air c are mixed and combusted, producing high-temperature combustion gas g. This combustion gas g is sent to the gas turbine 2 and does work. Since the exhaust gas e is still high in temperature, it is guided to the exhaust heat recovery boiler 7, where it exchanges heat with the feed water w to generate high temperature and high pressure steam S, and the cooled exhaust gas e is released into the atmosphere.

前記蒸気Sは蒸気加減弁8を経て蒸気タービン
3に送られ、ここで仕事をする。
The steam S is sent to the steam turbine 3 via the steam control valve 8, where it does work.

コンバインドサイクル発電プラントの起動は燃
料制御弁6を開けて燃料fを燃焼室5へ供給する
と同時に燃料に点火して開始する。そして次第に
燃料制御弁6の開度を大きくして燃料fの供給量
を増加させ、ガスタービン2の回転数を上昇させ
ていく。ガスタービン2は定格回転数に達すると
まもなく発電機4が接続され、さらに燃料制御弁
6を徐々に開けて負荷を上昇させていく。これと
ともに排熱回収ボイラ7で発生する蒸気Sの温度
圧力が上昇する。このころから蒸気加減弁8が
徐々に開けられ、やがて全開となる。
The combined cycle power generation plant is started by opening the fuel control valve 6 and supplying the fuel f to the combustion chamber 5, and simultaneously igniting the fuel. Then, the opening degree of the fuel control valve 6 is gradually increased to increase the amount of fuel f supplied, and the rotational speed of the gas turbine 2 is increased. As soon as the gas turbine 2 reaches its rated speed, the generator 4 is connected, and the fuel control valve 6 is gradually opened to increase the load. At the same time, the temperature and pressure of the steam S generated in the exhaust heat recovery boiler 7 increases. From around this time, the steam control valve 8 is gradually opened and eventually becomes fully open.

ガスタービン2が定格負荷の約50%に達する
と、負荷上昇を停止して一定負荷に保持する。こ
の期間を中間負荷保持と呼び、起動に際し蒸気タ
ービン3の熱応力を少なくする目的で行なわれる
暖機運転である。この保持は通常10〜15分間行な
われる。中間負荷保持が終了すると再び燃料制御
弁6を開けて、ガスタービン2の負荷を上昇させ
ていく。同時に蒸気Sの圧力も上昇するために蒸
気タービン3の負荷も徐々に上昇する。そして燃
料制御弁6を調節して負荷指令値に負荷を保つよ
うに制御される。蒸気加減弁8は、中間負荷保持
期間以降全開のままであり、何ら制御を行なわな
い。
When the gas turbine 2 reaches approximately 50% of the rated load, the load is stopped increasing and the load is maintained at a constant level. This period is called intermediate load holding, and is a warm-up operation performed for the purpose of reducing thermal stress on the steam turbine 3 upon startup. This hold is typically carried out for 10-15 minutes. When the intermediate load maintenance is completed, the fuel control valve 6 is opened again and the load on the gas turbine 2 is increased. At the same time, the pressure of the steam S also increases, so the load on the steam turbine 3 gradually increases. The fuel control valve 6 is then adjusted to maintain the load at the load command value. The steam control valve 8 remains fully open after the intermediate load holding period and does not perform any control.

次に停止あるいは負荷降下時の制御について、
第2図を参照しながら説明する。第2図Aの様に
時刻t1において停止指令または負荷指令値を下げ
ると、第2図Bに示すように燃料制御弁6が閉じ
て燃料fの供給量が減少し、そのためにガスター
ビン2の負荷も減少する。同時に排ガスeの温度
が低くなるために、蒸気Sの圧力は第2図図Cの
様に減少する。しかし、排熱回収ボイラ7の熱容
量が大きいため、蒸気Sの圧力減少が始まるのは
指令が出力されてから時間l経過した後である。
こうして、第2図Dに示す様にプラントの全負荷
が指令値に達するか、あるいは停止するのは時刻
t2においてである。つまり、排熱回収ボイラ7の
熱容量により生ずる余剰蒸気のため、停止あるい
は負荷降下に時間lだけ遅れを生じている。
Next, regarding control during stoppage or load drop,
This will be explained with reference to FIG. When the stop command or load command value is lowered at time t1 as shown in FIG. 2A, the fuel control valve 6 closes and the supply amount of fuel f decreases as shown in FIG. 2B. load is also reduced. At the same time, since the temperature of the exhaust gas e becomes lower, the pressure of the steam S decreases as shown in FIG. 2C. However, since the heat capacity of the exhaust heat recovery boiler 7 is large, the pressure of the steam S starts to decrease only after time l has elapsed since the command was output.
In this way, as shown in Figure 2D, the total load of the plant reaches the command value or stops at a certain time.
At t 2 . In other words, due to surplus steam generated by the heat capacity of the exhaust heat recovery boiler 7, there is a delay of time 1 in stopping or lowering the load.

プラントの非常停止の場合は、燃料制御弁6と
蒸気加減弁8を瞬時に全閉とする。このとき、排
熱回収ボイラ7の残熱により発生する蒸気は、タ
ービンバイパス弁9が全開になるために減圧減温
装置10により減圧減温された後、復水器11に
送られる。また運転中に、蒸気Sの圧力が異常に
高くなるとタービンバイパス弁9を開いて余剰蒸
気を復水器11に送つている。なお、復水器11
内の復水は復水ポンプ12により循環され、復水
ポンプ12により循環する水は給水供給弁13を
介して前記減圧減温装置10内に送られる。さら
に、前記排熱回収ボイラ7内には、節炭器15、
蒸発器16、過熱器17が設けられ、これら各機
器15,16,17の中間には水を貯留しておく
ためのドラム14が設けられている。
In the case of an emergency stop of the plant, the fuel control valve 6 and steam control valve 8 are instantly fully closed. At this time, the steam generated by the residual heat of the exhaust heat recovery boiler 7 is sent to the condenser 11 after being reduced in pressure and temperature by the decompression and temperature reduction device 10 because the turbine bypass valve 9 is fully opened. Further, when the pressure of the steam S becomes abnormally high during operation, the turbine bypass valve 9 is opened to send surplus steam to the condenser 11. In addition, the condenser 11
The condensate inside is circulated by a condensate pump 12, and the water circulated by the condensate pump 12 is sent into the depressurization and temperature reduction device 10 via a water supply valve 13. Furthermore, in the exhaust heat recovery boiler 7, a energy saver 15,
An evaporator 16 and a superheater 17 are provided, and a drum 14 for storing water is provided between these devices 15, 16, 17.

以上述べたきた様に、従来技術によればコンバ
インド・サイクル発電プラントの制御はすべて燃
料制御弁により行なわれていた。そのためプラン
ト停止時や負荷降下時は、排熱回収ボイラの熱容
量に起因した余剰蒸気のために停止時間が長くな
り、また負荷指令値への追従性が遅れていた。ま
た異常時は、熱損失を生じており、さらに起動時
は、中間負荷保持のために起動時間が長くなつて
いた。
As described above, according to the prior art, all controls of a combined cycle power plant were performed by a fuel control valve. Therefore, when the plant is shut down or the load is reduced, the stop time becomes longer due to excess steam due to the heat capacity of the waste heat recovery boiler, and the follow-up to the load command value is delayed. Furthermore, during abnormal conditions, heat loss occurs, and furthermore, during startup, the startup time becomes longer in order to maintain an intermediate load.

本発明は、かかる点に鑑み、起動、停止および
負荷降下に要する時間を短縮し、さらに余剰蒸気
による熱損失が少なくなる様にしたコンバイン
ド・サイクル発電プラントにおける蒸気圧力制御
装置を提供することを目的とする。以下、第3図
を参照して本発明の一実施例について説明する。
In view of the above, an object of the present invention is to provide a steam pressure control device for a combined cycle power plant that reduces the time required for startup, shutdown, and load reduction, and further reduces heat loss due to excess steam. shall be. An embodiment of the present invention will be described below with reference to FIG.

第3図において、前記排熱回収ボイラ7と蒸気
タービン3間の主配管l0には、本発明の蒸気圧力
制御装置18が連結され、この蒸気圧力制御装置
18は蒸気溜め19を備えている。この蒸気溜め
19には配管l1により排熱回収ボイラ7の過熱器
17からの蒸気Sが導びかれるようになつてお
り、この配管l1上に蒸気圧力調節弁22が取付け
られている。
In FIG. 3, a steam pressure control device 18 of the present invention is connected to the main pipe l 0 between the exhaust heat recovery boiler 7 and the steam turbine 3, and this steam pressure control device 18 is equipped with a steam reservoir 19. . Steam S from the superheater 17 of the exhaust heat recovery boiler 7 is guided to the steam reservoir 19 through a pipe l1 , and a steam pressure regulating valve 22 is installed on the pipe l1 .

また、蒸気溜め19と蒸気加減弁8の下流側と
は配管l2により接続され、この配管l2上には蒸気
供給弁23が取付けられている。
Further, the steam reservoir 19 and the downstream side of the steam control valve 8 are connected by a pipe l2 , and a steam supply valve 23 is installed on the pipe l2.

一方、前記過熱器17の出口にはそこの蒸気S
の圧力を測定するための公知の蒸気圧力検出器2
0が取付けられ、この蒸気圧力検出器20の検知
信号は蒸気圧力調節器21に入力され、この蒸気
圧力調節器21によつて前記蒸気圧力調節弁22
および蒸気供給弁23の開閉が制御される。
On the other hand, the steam S at the outlet of the superheater 17 is
Known steam pressure detector 2 for measuring the pressure of
0 is attached, and the detection signal of this steam pressure detector 20 is inputted to the steam pressure regulator 21, and the steam pressure regulator 21 controls the steam pressure regulating valve 22.
The opening and closing of the steam supply valve 23 is controlled.

次に、作用について説明する。 Next, the effect will be explained.

平常運転時においては、配管l1上の蒸気圧力調
節弁22および配管l2上の蒸気供給弁23を閉鎖
しておく。
During normal operation, the steam pressure control valve 22 on the pipe l1 and the steam supply valve 23 on the pipe l2 are closed.

余剰蒸気すなわち必要蒸気圧力により高い蒸気
が前記排熱回収ボイラ7内に発生している場合、
たとえばプラント停止時あるいは負荷指令値が下
つた場合には蒸気圧力調節弁22を開いて過熱器
17からの余剰の蒸気を蒸気溜め19内に蓄積す
る。
When excess steam, that is, steam with a higher required steam pressure is generated in the exhaust heat recovery boiler 7,
For example, when the plant is stopped or the load command value decreases, the steam pressure control valve 22 is opened to accumulate excess steam from the superheater 17 in the steam reservoir 19.

前記過熱器17出口の蒸気圧力は前記蒸気圧力
検出器20によつて検出され、前記蒸気圧力調節
器21は蒸気圧力検出器20からの検知信号と負
荷指令値より決定される予め定まつた必要蒸気圧
力とを比較し、検知信号が必要蒸気圧力以上であ
れば、その圧力に応じて前記圧力調節弁22の開
度を調整するとともに蒸気供給弁23を全閉す
る。
The steam pressure at the outlet of the superheater 17 is detected by the steam pressure detector 20, and the steam pressure regulator 21 detects a predetermined required value determined from the detection signal from the steam pressure detector 20 and the load command value. The steam pressure is compared with the steam pressure, and if the detection signal is equal to or higher than the required steam pressure, the opening degree of the pressure regulating valve 22 is adjusted according to the pressure, and the steam supply valve 23 is fully closed.

したがつて、排熱回収ボイラ7内の余剰蒸気は
蒸気溜めに貯えられ、蒸気タービン3へ供給され
る蒸気の圧力も下がるので、蒸気タービン3の負
荷はガスタービン2の負荷降下と同時に降下す
る。このため、プラント停止あるいは負荷降下に
要する時間を大幅に短縮することができる。ま
た、余浄蒸気は、蒸気溜め19に蓄積されるため
にその熱損失が少ない。
Therefore, excess steam in the heat recovery boiler 7 is stored in the steam reservoir, and the pressure of the steam supplied to the steam turbine 3 is also reduced, so the load on the steam turbine 3 is reduced simultaneously with the load on the gas turbine 2. . Therefore, the time required for plant shutdown or load reduction can be significantly reduced. Further, since the residual cleaning steam is accumulated in the steam reservoir 19, its heat loss is small.

プラントの緊急停止時や蒸気圧力が異常に高い
場合も蒸気調節弁22を開放して蒸気を蒸気溜め
19に貯えるようにする。
Even at the time of emergency shutdown of the plant or when the steam pressure is abnormally high, the steam control valve 22 is opened to store steam in the steam reservoir 19.

一方、起動時、すなわち排熱回収ボイラ7でま
だ十分温度圧力の高い蒸気が発生していない場合
には、蒸気加減弁8を全閉にするとともに蒸気供
給弁23を適宜の開度に開放する。したがつて、
蒸気視め19内に貯えられていた高温高圧の蒸気
が蒸気タービン3に供給され、暖機運転がなされ
る。これにより中間負荷保持を行なう必要がなく
なり、起動時間が著しく短縮される。
On the other hand, at startup, that is, when steam with a sufficiently high temperature and pressure is not yet generated in the exhaust heat recovery boiler 7, the steam control valve 8 is fully closed, and the steam supply valve 23 is opened to an appropriate opening degree. . Therefore,
High-temperature, high-pressure steam stored in the steam sight 19 is supplied to the steam turbine 3, and warm-up operation is performed. This eliminates the need for intermediate load holding and significantly shortens startup time.

以上説明したように、本発明は、ガスタービン
と蒸気タービンとを組合せ、ガスタービンで発生
した排ガスを排熱回収ボイラに導いて蒸気を発生
させ、この蒸気を蒸気タービンに導いて蒸気ター
ビンを回転させるようにしたコンバインドサイク
ル発電プラントにおいて、排熱回収ボイラの蒸気
を蒸気タービンに導く主配管に蒸気溜めを連結せ
しめ、主配管内の蒸気を蒸気溜めに導びく配管上
に蒸気圧力調節弁を設けるとともに前記蒸気溜め
内の蒸気を蒸気タービンに導く配管上に蒸気供給
弁を設け、前記排熱回収ボイラの出口に、そこか
ら流出する蒸気圧を検出する蒸気圧力検出器を取
付け、この蒸気圧力検出器からの信号と運転状態
に対応する必要蒸気圧力とを比較して前記蒸気圧
力調節弁および蒸気供給弁の開閉を行なうための
蒸気圧力調節器とを設けたので、起動停止および
負荷降下に要する時間を短縮できるとともに余剰
蒸気による熱損失を少なくすることができるとい
う効果を奏する。
As explained above, the present invention combines a gas turbine and a steam turbine, guides exhaust gas generated by the gas turbine to an exhaust heat recovery boiler to generate steam, and guides this steam to the steam turbine to rotate the steam turbine. In a combined cycle power generation plant, a steam reservoir is connected to the main piping that leads steam from the exhaust heat recovery boiler to the steam turbine, and a steam pressure regulating valve is installed on the piping that leads the steam in the main piping to the steam reservoir. At the same time, a steam supply valve is provided on the piping that leads the steam in the steam reservoir to the steam turbine, and a steam pressure detector is installed at the outlet of the exhaust heat recovery boiler to detect the steam pressure flowing out from there. A steam pressure regulator is provided to open and close the steam pressure regulating valve and the steam supply valve by comparing the signal from the steam generator with the required steam pressure corresponding to the operating state. This has the advantage of being able to shorten the time and reduce heat loss due to excess steam.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のコンバインドサイクル発電プラ
ントの系統を示す概略図、第2図は停止時あるい
は負荷降下時のプラント諸特性の時間変化を示す
グラフ、第3図は本発明による蒸気圧力制御装置
を備えたコンバインドサイクルの系統図である。 1…コンプレツサ、2…ガスタービン、3…蒸
気タービン、4…発電機、6…燃料制御弁、7…
排熱回収ボイラ、8…蒸気加減弁、11…復水
器、18…蒸気圧力制御装置、19…蒸気溜め、
20…蒸気圧力検出器、21…蒸気圧力調節器、
22…蒸気圧力制御弁、23…蒸気供給弁。
Figure 1 is a schematic diagram showing the system of a conventional combined cycle power plant, Figure 2 is a graph showing changes in plant characteristics over time during shutdown or load drop, and Figure 3 is a diagram showing the steam pressure control system according to the present invention. It is a system diagram of a combined cycle equipped with. DESCRIPTION OF SYMBOLS 1... Compressor, 2... Gas turbine, 3... Steam turbine, 4... Generator, 6... Fuel control valve, 7...
Exhaust heat recovery boiler, 8... Steam control valve, 11... Condenser, 18... Steam pressure control device, 19... Steam reservoir,
20... Steam pressure detector, 21... Steam pressure regulator,
22...Steam pressure control valve, 23...Steam supply valve.

Claims (1)

【特許請求の範囲】[Claims] 1 ガスタービンと蒸気タービンとを組合せ、ガ
スタービンで発生した排ガスを排熱回収ボイラに
導いて蒸気を発生させ、この蒸気を蒸気タービン
に導いて蒸気タービンを回転させるようにしたコ
ンバインサイクル発電プラントにおいて、排熱回
収ボイラの蒸気を蒸気タービンに導く主配管に蒸
気溜めを連結せしめ、主配管内の蒸気を蒸気溜め
に導びく配管上に蒸気圧力調節弁を設けるととも
に前記蒸気溜め内の蒸気を蒸気タービンに導く配
管上に蒸気供給弁を設け、前記排熱回収ボイラの
出口に、そこから流出する蒸気圧を検出する蒸気
圧力検出器を取付け、この蒸気圧力検出器からの
信号と運転状態に対応する必要蒸気圧力とを比較
して前記蒸気圧力調節弁および蒸気供給弁の開閉
を行なうための蒸気圧力調節器とを設けたことを
特徴とするコンバインドサイクル発電プラントの
蒸気圧力制御装置。
1 In a combined cycle power generation plant that combines a gas turbine and a steam turbine, the exhaust gas generated by the gas turbine is guided to an exhaust heat recovery boiler to generate steam, and this steam is guided to the steam turbine to rotate the steam turbine. , a steam reservoir is connected to the main piping that leads the steam of the exhaust heat recovery boiler to the steam turbine, and a steam pressure control valve is provided on the piping that leads the steam in the main piping to the steam reservoir, and the steam in the steam reservoir is A steam supply valve is installed on the piping leading to the turbine, and a steam pressure detector is installed at the outlet of the exhaust heat recovery boiler to detect the steam pressure flowing out from there, and the signal from this steam pressure detector and the operating status are responded to. 1. A steam pressure control device for a combined cycle power plant, comprising: a steam pressure regulator for opening and closing the steam pressure regulating valve and the steam supply valve by comparing the steam pressure with a required steam pressure.
JP10152981A 1981-06-30 1981-06-30 Steam pressure controller for combined-cycle power plant Granted JPS585415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10152981A JPS585415A (en) 1981-06-30 1981-06-30 Steam pressure controller for combined-cycle power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10152981A JPS585415A (en) 1981-06-30 1981-06-30 Steam pressure controller for combined-cycle power plant

Publications (2)

Publication Number Publication Date
JPS585415A JPS585415A (en) 1983-01-12
JPS6239656B2 true JPS6239656B2 (en) 1987-08-24

Family

ID=14302986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10152981A Granted JPS585415A (en) 1981-06-30 1981-06-30 Steam pressure controller for combined-cycle power plant

Country Status (1)

Country Link
JP (1) JPS585415A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5412936A (en) * 1992-12-30 1995-05-09 General Electric Co. Method of effecting start-up of a cold steam turbine system in a combined cycle plant
DE19535228C2 (en) * 1995-09-22 2003-05-08 Alstom Process for operating a power plant
DE59807318D1 (en) * 1998-07-29 2003-04-03 Alstom Switzerland Ltd Device and method for the rapid provision of power reserves in combined gas and steam turbine systems
EP1174591A1 (en) * 2000-07-21 2002-01-23 Siemens Aktiengesellschaft Primary regulation process with combined gas- and steam turbines plants
EP2024609A2 (en) * 2006-05-31 2009-02-18 Siemens Aktiengesellschaft Method and device for controlling a power plant
JP4616847B2 (en) 2007-02-16 2011-01-19 三菱重工業株式会社 Steam system and control system and control method thereof
JP4699401B2 (en) * 2007-02-20 2011-06-08 三菱重工業株式会社 Steam system control method and control apparatus
FR2999644B1 (en) * 2012-12-19 2015-03-13 Electricite De France METHOD OF CONTROLLING A THERMAL POWER PLANT USING REGULATING VALVES
DE102015219391A1 (en) * 2015-10-07 2017-04-13 Siemens Aktiengesellschaft Method for operating a gas-and-steam combined cycle power plant

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54135945A (en) * 1978-04-14 1979-10-22 Hitachi Ltd Combined power plant
JPS5510027A (en) * 1978-07-07 1980-01-24 Babcock Hitachi Kk Compound plant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54135945A (en) * 1978-04-14 1979-10-22 Hitachi Ltd Combined power plant
JPS5510027A (en) * 1978-07-07 1980-01-24 Babcock Hitachi Kk Compound plant

Also Published As

Publication number Publication date
JPS585415A (en) 1983-01-12

Similar Documents

Publication Publication Date Title
US7500349B2 (en) Power plant and operating method
KR101401135B1 (en) Methods and apparatus for electric power grid frequency stabilization
JP3800384B2 (en) Combined power generation equipment
US6301895B1 (en) Method for closed-loop output control of a steam power plant, and steam power plant
US4744723A (en) Method for starting thermal power plant
JPS6149485B2 (en)
JP2000161014A5 (en)
JPS61107004A (en) Controller for temperature of outlet of heat recovery steam generator for complex cycle generation plant
EP0908603B1 (en) Single shaft combined cycle plant
US4362013A (en) Method for operating a combined plant
JPS6239656B2 (en)
JPH0454802B2 (en)
US4145995A (en) Method of operating a power plant and apparatus therefor
JP2001108201A (en) Multiple pressure waste heat boiler
EP3306044A1 (en) Fast frequency response systems with thermal storage for combined cycle power plants
JPH08260907A (en) Steam storing electric power plant
JPS61187503A (en) Temperature decreasing controller of turbine gland sealing steam
CN112343679B (en) Control method for deep peak shaving and shutdown of unit
WO1999015765A1 (en) Cooling steam control method for combined cycle power generation plants
JPS58217709A (en) Composite cycle power generating plant
JP2625487B2 (en) Hot start method of boiler
JPS6211283Y2 (en)
JPH0610619A (en) Supply water heating device
JPS6135441B2 (en)
JPH02163402A (en) Compound electric power plant and its operation