JPH02163402A - Compound electric power plant and its operation - Google Patents

Compound electric power plant and its operation

Info

Publication number
JPH02163402A
JPH02163402A JP31766688A JP31766688A JPH02163402A JP H02163402 A JPH02163402 A JP H02163402A JP 31766688 A JP31766688 A JP 31766688A JP 31766688 A JP31766688 A JP 31766688A JP H02163402 A JPH02163402 A JP H02163402A
Authority
JP
Japan
Prior art keywords
turbine
pressure steam
steam
gas
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31766688A
Other languages
Japanese (ja)
Other versions
JP2657411B2 (en
Inventor
Naoto Koizumi
直人 小泉
Kazuhiko Yamazaki
和彦 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP63317666A priority Critical patent/JP2657411B2/en
Publication of JPH02163402A publication Critical patent/JPH02163402A/en
Application granted granted Critical
Publication of JP2657411B2 publication Critical patent/JP2657411B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To increase load down rate of an electric power plant overall by providing a means for bypassing all or a part of high-pressure steam to the lower stream side of a steam turbine. CONSTITUTION:At the time of load down, deviation between a load down requir ing signal 41 and a load output signal 45 of a generator 9 is read at a control device 40, and if the output in operation is larger than the required output, a contracting instruction 42 is sent to a fuel flow regulation valve 18. After that, when the opening degree reaches the allowable minimum degree set in advance by a signal 44 from an opening degree detector 39, an opening instruc tion 43 for opening a turbine bypass valve 19 is further sent. By this method opening degree of the turbine bypass valve 19 is controlled so that excessive steam from a waste heat recovering boiler 2 is directly bypassed to a condenser 15 and the load output from the generator 9 accords with the required output. As an existing turbine bypass valve can be utilized, and increase of load down rate can be contrived without installing any new equipment.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガスタービンと蒸気タービンの負荷を制御す
るようにして1発電プラント全体としての負荷降下率の
増加を図った複合発電プラントおよびその運転方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a combined power generation plant and a combined power generation plant in which the load reduction rate of one power generation plant as a whole is increased by controlling the loads of a gas turbine and a steam turbine. Regarding driving methods.

〔従来の技術〕[Conventional technology]

一般に、複合発電プラントには、燃焼ガスによって回転
駆動されるガスタービンと、ガスタービンからの排ガス
により高圧蒸気を発生する排熱回収ボイラと、排熱回収
ボイラからの高圧蒸気によって回転駆動される蒸気ター
ビンと、が設置されている。
Generally, a combined cycle power plant includes a gas turbine that is rotationally driven by combustion gas, an exhaust heat recovery boiler that generates high-pressure steam using exhaust gas from the gas turbine, and steam that is rotationally driven by the high-pressure steam from the exhaust heat recovery boiler. A turbine is installed.

このような複合発電プラントにおいては、消費電力の変
動に応じてガスタービンおよび蒸気タービンの負荷を制
御する必要がある。従来の複合発電プラントでは、燃料
流量を調節することによりガスタービンの負荷だけを制
御して、蒸気タービンの負荷に対しては特に制御してい
ない。
In such a combined power generation plant, it is necessary to control the loads of the gas turbine and steam turbine according to fluctuations in power consumption. In conventional combined cycle power plants, only the load on the gas turbine is controlled by adjusting the fuel flow rate, and the load on the steam turbine is not particularly controlled.

なお、蒸気タービンをバイパスする配管を設け。Additionally, piping is installed to bypass the steam turbine.

配管の途中に弁を取付けた複合発電プラントが提案され
ている(例えば特開昭60−125705号公報)。し
かし、この配管は発電プラントの起動・停止、負荷遮断
およびトリップ時に余剰蒸気を排出するためのもので、
蒸気タービンを制御するためのものではない。
A combined power generation plant in which a valve is installed in the middle of the piping has been proposed (for example, Japanese Patent Application Laid-Open No. 125705/1983). However, this piping is for exhausting excess steam during power plant startup, shutdown, load shedding, and tripping.
It is not intended to control steam turbines.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

燃焼流量を調節するようにした従来の技術では。 In the conventional technology, the combustion flow rate is adjusted.

ガスタービンの負荷を急速に降下させることは容易であ
るが、蒸気タービンの負荷を急速に降下させることは困
難である。これは蒸気タービンが排熱回収ボイラで発生
する高圧蒸気を利用しているためである。すなわち、排
熱回収ボイラの伝熱管。
Although it is easy to rapidly reduce the load on a gas turbine, it is difficult to rapidly reduce the load on a steam turbine. This is because the steam turbine uses high-pressure steam generated in the heat recovery steam generator. In other words, heat exchanger tubes for waste heat recovery boilers.

管寄、ドラムおよび脱硝装置等が持つ蓄熱量により、9
!生蒸気流量、温度の変化が小さくなり、蒸気タービン
への応答が遅くなるからである。このために、蒸気ター
ビンの負荷降下率が小さくなり、複合発電プラント全体
としての負荷降下率はせいぜい5%位までである。そし
て、これ以−ヒに負荷降下率を増加させることは、従来
の技術では不可能である。
9 depending on the amount of heat stored in the header, drum, denitrification equipment, etc.
! This is because changes in live steam flow rate and temperature become smaller, and the response to the steam turbine becomes slower. For this reason, the load drop rate of the steam turbine becomes small, and the load drop rate of the combined power plant as a whole is about 5% at most. Further, it is impossible with the conventional technology to increase the load drop rate any further.

本発明の目的は、負荷を降下させる際に、ガスタービン
の負荷降下に対する蒸気タービンの負荷降下の応答遅れ
を防ぎ1発電プラント全体としての負荷降下率を増加さ
せることができる複合発電プラントおよびその運転方法
を提供することである。
An object of the present invention is to provide a combined power generation plant and its operation that can prevent a delay in the response of a steam turbine to a load drop in response to a gas turbine load drop and increase the load drop rate of the power plant as a whole when the load is lowered. The purpose is to provide a method.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明は、燃焼ガスによっ
て回転駆動されるガスタービンと、該ガスタービンから
の排ガスの熱により高圧蒸気を発生する排熱回収ボイラ
と、前記高圧蒸気によって回転駆動される蒸気タービン
と、前記ガスタービンと蒸気タービンの回転軸に連結さ
れた発電機と、を備えた車圧型の複合発電プラントにお
いて、負荷降下時に前記高圧蒸気の全部または一部を前
記然気タービンの下流側へ逃がす手段を設けたものであ
る。
In order to achieve the above object, the present invention includes a gas turbine that is rotationally driven by combustion gas, an exhaust heat recovery boiler that generates high-pressure steam using the heat of exhaust gas from the gas turbine, and a gas turbine that is rotationally driven by the high-pressure steam. In a car-pressure type combined power generation plant comprising a steam turbine, a generator connected to the gas turbine and a rotating shaft of the steam turbine, all or part of the high-pressure steam is transferred to the natural gas turbine when the load is reduced. A means for escaping to the downstream side is provided.

また、本発明は、燃焼ガスによって回転駆動されるガス
タービンと、該ガスタービンからの排ガスの熱により高
圧蒸気と低圧蒸気を発生する排熱回収ボイラと、前記高
圧蒸気によって回転駆動される高圧蒸気タービンと、前
記低圧蒸気によって回転駆動される低圧蒸気タービンと
、前記ガスタービン、高圧蒸気タービンおよび低圧蒸気
タービンの回転軸に連結された発電機と、を備えた混圧
型の複合発電プラントにおいて、負荷降下時に前記高圧
蒸気および低圧蒸気の全部または一部を前記高圧蒸気タ
ービンおよび低圧蒸気タービンの下流側へ逃がす手段を
設けたものである。
The present invention also provides a gas turbine that is rotationally driven by combustion gas, an exhaust heat recovery boiler that generates high-pressure steam and low-pressure steam using the heat of exhaust gas from the gas turbine, and high-pressure steam that is rotationally driven by the high-pressure steam. A mixed-pressure combined power generation plant comprising a turbine, a low-pressure steam turbine rotationally driven by the low-pressure steam, and a generator connected to rotating shafts of the gas turbine, high-pressure steam turbine, and low-pressure steam turbine. Means is provided for releasing all or part of the high-pressure steam and low-pressure steam to the downstream side of the high-pressure steam turbine and the low-pressure steam turbine during descent.

また、本発明は、燃焼ガスによって回転駆動されるガス
タービンと、該ガスタービンからの排ガスの熱により高
圧蒸気を発生するとともに、内部に設けられた再熱器に
よって再熱蒸気を発生する排熱回収ボイラと、前記高圧
蒸気によって回転駆動される高圧蒸気タービンと、前記
再熱蒸気によって回転駆動される再熱蒸気タービンと、
前記ガスタービン、高圧蒸気タービンおよび再熱蒸気タ
ービンの回転軸に連結された発電機と、を備えた再熱型
の複合発電プラントにおいて、負荷降下時に前記高圧蒸
気の全部または一部を前記高圧蒸気タービンの下流側へ
逃がすとともに、前記再熱蒸気の一部を前記再熱蒸気タ
ービンの下流側へ逃がす手段を設けたものである。
The present invention also provides a gas turbine that is rotatably driven by combustion gas, a gas turbine that generates high-pressure steam using the heat of exhaust gas from the gas turbine, and an exhaust heat that generates reheated steam using a reheater provided inside the gas turbine. a recovery boiler, a high pressure steam turbine rotationally driven by the high pressure steam, a reheat steam turbine rotationally driven by the reheat steam,
In a reheat-type combined power generation plant comprising the gas turbine, a high-pressure steam turbine, and a generator connected to a rotating shaft of the reheat steam turbine, all or a part of the high-pressure steam is converted into the high-pressure steam during a load drop. Means is provided to allow the reheat steam to escape to the downstream side of the turbine, and also to allow a portion of the reheat steam to escape to the downstream side of the reheat steam turbine.

また、本発明は、燃焼ガスによって回転駆動されるガス
タービンと、該ガスタービンからの排ガスの熱により高
圧蒸気を発生する排熱回収ボイラと、前記高圧蒸気によ
って回転駆動される蒸気タービンと、前記ガスタービン
の回転軸に連結された発電機と、前記蒸気タービンの回
転軸に連結された発電機と、を備えた多軸型の複合発電
プラントにおいて、負荷降下時に前記高圧蒸気の全部ま
たは一部を前記蒸気タービンの下流側へ逃がす手段を設
けたものである。
The present invention also provides a gas turbine rotationally driven by combustion gas, an exhaust heat recovery boiler generating high pressure steam using heat of exhaust gas from the gas turbine, a steam turbine rotationally driven by the high pressure steam, and a steam turbine rotatably driven by the high pressure steam. In a multi-shaft combined power plant including a generator connected to the rotating shaft of a gas turbine and a generator connected to the rotating shaft of the steam turbine, all or part of the high-pressure steam is The steam turbine is provided with means for releasing the steam to the downstream side of the steam turbine.

さらに、本発明は、燃焼ガスによってガスタービンを回
転駆動し、前記ガスタービンから排出される排ガスを排
熱回収ボイラに導入して高圧蒸気を発生し、該高圧蒸気
によって蒸気タービンを回転駆動するとともに、前記ガ
スタービンおよび蒸気タービンの回転力によって発電機
を駆動する複合発電プラントの運転方法において、負荷
を降下させる際に、前記高圧蒸気の全部又は一部を前記
蒸気タービンの下流側へ直接逃がして、蒸気タービンの
負荷を速やかに降下させるようにしたことである。
Furthermore, the present invention rotates a gas turbine with combustion gas, introduces the exhaust gas discharged from the gas turbine into an exhaust heat recovery boiler to generate high pressure steam, and rotates the steam turbine with the high pressure steam. , in the method of operating a combined power plant in which a generator is driven by the rotational force of the gas turbine and the steam turbine, when lowering the load, all or part of the high-pressure steam is directly released to the downstream side of the steam turbine. , the load on the steam turbine was quickly reduced.

〔作用〕[Effect]

上記構成によれば、車圧型の複合発電プラントの場合、
負荷降下時に高圧蒸気の全部または一部を蒸気タービン
の下流側へ逃がすことにより、蒸気タービンへ流入する
高圧蒸気の量が低減し、蒸気タービンの負荷を急速に減
少させることができる。このとき、燃料流量を絞ること
により、ガスタービンの負荷を急速に減少させることも
同時に行なわれる。以上のことは、多軸型の複合発電プ
ラントの場合でも同様である。
According to the above configuration, in the case of a car pressure type combined power generation plant,
By letting all or a portion of the high-pressure steam escape to the downstream side of the steam turbine when the load decreases, the amount of high-pressure steam flowing into the steam turbine is reduced, and the load on the steam turbine can be rapidly reduced. At this time, by throttling the fuel flow rate, the load on the gas turbine is also rapidly reduced. The above also applies to multi-shaft combined power generation plants.

また、混圧型の複合発電プラントの場合、負荷降下時に
高圧蒸気および低圧蒸気の全部または一部を高圧蒸気タ
ービンのおよび低圧蒸気タービンの下流側へ逃がすこと
により、高圧蒸気タービンおよび低圧蒸気タービンの負
荷を急速に減少させることができる。
In addition, in the case of a mixed-pressure combined cycle power plant, when the load drops, all or part of the high-pressure steam and low-pressure steam is released to the downstream side of the high-pressure steam turbine and the low-pressure steam turbine, thereby increasing the load on the high-pressure steam turbine and the low-pressure steam turbine. can be rapidly reduced.

さらに、再熱型の複合発電プラントの場合、負荷降下時
に高圧蒸気の全部または一部を高圧蒸気タービンの下流
側へ逃がすことにより、高圧蒸気タービンの負荷を急速
に減少させるとともに、再熱蒸気の全部または一部を再
熱蒸気タービンの下流側へ逃がすことにより、再熱蒸気
タービンの負荷を急速に減少させることが可能になる。
Furthermore, in the case of a reheat-type combined cycle power plant, by releasing all or part of the high-pressure steam to the downstream side of the high-pressure steam turbine when the load drops, the load on the high-pressure steam turbine is rapidly reduced, and the reheat steam is By venting all or part of it to the downstream side of the reheat steam turbine, it is possible to rapidly reduce the load on the reheat steam turbine.

〔実施例〕〔Example〕

以下に本発明の一実施例を図面に従って説明する。 An embodiment of the present invention will be described below with reference to the drawings.

(第1実施例) 本発明の第1実施例を第1図に示す。これは車圧型の複
合発電プラントの概略系統図である。図に示すように、
ガスタービン圧縮機4によって圧縮された空気5は燃焼
器6へ送られ、ここで燃料7と混合されて燃焼し、高温
・高圧の燃焼ガスとなる。この燃焼ガスはガスタービン
1に導入され、膨張してガスタービン1を回転駆動する
。ガスタービン1を回転駆動したガスタービン排ガス1
0は、その下流側に配置された排熱回収ボイラ2へ送ら
れ、ここで給水12と熱交換が行なわれる。
(First Embodiment) A first embodiment of the present invention is shown in FIG. This is a schematic diagram of a vehicle pressure type combined power generation plant. As shown in the figure,
Air 5 compressed by the gas turbine compressor 4 is sent to the combustor 6, where it is mixed with fuel 7 and combusted, resulting in high-temperature, high-pressure combustion gas. This combustion gas is introduced into the gas turbine 1, expands, and drives the gas turbine 1 to rotate. Gas turbine exhaust gas 1 that rotates the gas turbine 1
0 is sent to the exhaust heat recovery boiler 2 disposed on the downstream side, where it exchanges heat with the feed water 12.

そして、ガスタービン排ガス1oは、保有していた熱エ
ネルギ(顕熱)が回収され、低温のガス11となって大
気へ放出される。
Then, the thermal energy (sensible heat) held in the gas turbine exhaust gas 1o is recovered, and the gas turbine exhaust gas 1o is released into the atmosphere as a low-temperature gas 11.

また、排熱回収ボイラ2へ供給される給水12は、ガス
タービン排ガス10で高温・高圧の蒸気13となって蒸
気タービン3へ送られ、蒸気タービン3を回転能動させ
る。その後、蒸気13は低温・低圧の蒸気14となって
復水器15で海水16と熱交換され、凝縮して復水とな
り復水器15内に溜められる。さらに、その復水は復水
器15の出口に設けられた給水ポンプ17にて昇圧され
て、排熱回収ボイラ2へ供給される。
Further, the feed water 12 supplied to the exhaust heat recovery boiler 2 becomes high-temperature, high-pressure steam 13 in the gas turbine exhaust gas 10 and is sent to the steam turbine 3 to activate the rotation of the steam turbine 3. Thereafter, the steam 13 becomes low-temperature, low-pressure steam 14, which undergoes heat exchange with seawater 16 in a condenser 15, and is condensed to become condensate and stored in the condenser 15. Furthermore, the pressure of the condensate is increased by a water supply pump 17 provided at the outlet of the condenser 15, and then supplied to the exhaust heat recovery boiler 2.

また1回転駆動されたガスタービン1及び蒸気タービン
3は、発電機9を駆動して電気出力を得る。
Further, the gas turbine 1 and the steam turbine 3, which have been driven one rotation, drive the generator 9 to obtain electric output.

このような車圧型の複合発電プラントにおいては、急速
に負荷を降下させる必要が生じた場合、燃料流量調節弁
18を絞ることにより燃料7の流量が抑えられ、燃焼ガ
ス8の流量・温度が低下してガスタービン1の駆動力が
低下する。さらに、ガスタービン1からのガスタービン
排ガス1oの流量・温度も低下することによって、排熱
回収ボイラ2へ与える顕熱が減少し、発生蒸気量・温度
・圧力の低下により蒸気タービン3の駆動力も低下する
。しかし、蒸気タービン3の駆動力低下には応答遅れが
ある。そこで、本実施例では、負荷降下時にタービンバ
イパス弁19を開くことにより、蒸気タービン3へ流入
する蒸気13の全部または一部を直接復水器15ヘバイ
パスさせ、蒸気タービン3の駆動力を低下させる。その
結果、蒸気タービン3の負荷を急速に降下させることが
でき、複合発電プラント全体としての負荷降下率を従来
以上に増加させることができる。
In such a vehicle pressure type combined cycle power generation plant, when it is necessary to rapidly reduce the load, the flow rate of the fuel 7 is suppressed by throttling the fuel flow control valve 18, and the flow rate and temperature of the combustion gas 8 are reduced. As a result, the driving force of the gas turbine 1 decreases. Furthermore, as the flow rate and temperature of the gas turbine exhaust gas 1o from the gas turbine 1 also decreases, the sensible heat given to the exhaust heat recovery boiler 2 decreases, and the driving force of the steam turbine 3 also decreases due to the decrease in the amount, temperature, and pressure of generated steam. descend. However, there is a delay in response to the reduction in the driving force of the steam turbine 3. Therefore, in this embodiment, by opening the turbine bypass valve 19 when the load drops, all or part of the steam 13 flowing into the steam turbine 3 is bypassed directly to the condenser 15, thereby reducing the driving force of the steam turbine 3. . As a result, the load on the steam turbine 3 can be rapidly lowered, and the load lowering rate of the combined power plant as a whole can be increased more than before.

(第2実施例) 本発明の第2実施例を第2図に示す。これは混圧型の複
合発電プラントの概略系統図である。第1図と相違する
所だけを説明する。
(Second Embodiment) A second embodiment of the present invention is shown in FIG. This is a schematic diagram of a mixed pressure combined cycle power generation plant. Only the differences from FIG. 1 will be explained.

排熱回収ボイラ2へ供給される給水12の一部は、排熱
回収ボイラ2に設けられた移送ポンプ21で高圧に昇圧
され、高圧蒸気22となって高圧蒸気タービン24へ送
られ、高圧蒸気タービン24を回転駆動する。一方、移
送ポンプ21を通らない給水、すなわち昇圧されない給
水は、低圧蒸気23となって低圧蒸気タービン25へ送
られ、低圧蒸気タービン25を回転駆動する。そして、
高圧蒸気タービン24を回転駆動した高圧蒸気22およ
び低圧蒸気タービン25を回転駆動した低圧蒸気23は
、低温・低圧の蒸気14となり復水器15へ送られる。
A portion of the feed water 12 supplied to the exhaust heat recovery boiler 2 is boosted to high pressure by the transfer pump 21 provided in the exhaust heat recovery boiler 2, becomes high pressure steam 22, is sent to the high pressure steam turbine 24, and is turned into high pressure steam. The turbine 24 is driven to rotate. On the other hand, the feed water that does not pass through the transfer pump 21, that is, the feed water that is not pressurized, becomes low-pressure steam 23 and is sent to the low-pressure steam turbine 25, thereby driving the low-pressure steam turbine 25 to rotate. and,
The high-pressure steam 22 that rotates the high-pressure steam turbine 24 and the low-pressure steam 23 that rotates the low-pressure steam turbine 25 become low-temperature, low-pressure steam 14 and are sent to the condenser 15.

このような混圧型の複合発電プラントにおいては、急速
に負荷を降下させる必要が生じた場合、第1実施例と同
様に、燃料流量調節弁18を絞ることにより、ガスター
ビンの負荷が降下する。また高圧タービンバイパス弁2
6を開き、高圧蒸気22の全部または一部を復水器15
ヘバイパスさせることにより、高圧蒸気タービン24の
負荷が降下する。同時に、低圧タービンバイパス弁27
を開き、低圧蒸気23を復水器15ヘバイパスさせるこ
とにより、低圧蒸気タービン25の負荷が降下する。こ
のようにして、複合発電プラント全体としての負荷降下
率の増加を図ることができる。
In such a mixed pressure combined cycle power plant, when it is necessary to rapidly reduce the load, the load on the gas turbine is reduced by throttling the fuel flow control valve 18, as in the first embodiment. Also, high pressure turbine bypass valve 2
6 and transfer all or part of the high pressure steam 22 to the condenser 15.
By bypassing the high pressure steam turbine 24, the load on the high pressure steam turbine 24 is reduced. At the same time, the low pressure turbine bypass valve 27
By opening the low-pressure steam turbine 23 and bypassing the low-pressure steam 23 to the condenser 15, the load on the low-pressure steam turbine 25 is reduced. In this way, it is possible to increase the load drop rate of the combined cycle power plant as a whole.

(第3実施例) 本発明の第3実施例を第3図に示す。これは再熱型の複
合発電プラントの概略系統図である。ここでは本実施例
の特徴部分だけを説明する。
(Third Embodiment) A third embodiment of the present invention is shown in FIG. This is a schematic diagram of a reheat-type combined cycle power plant. Here, only the characteristic parts of this embodiment will be explained.

排熱回収ボイラ2からの高圧蒸気28は、高圧蒸気ター
ビン29を回転能動した後、低圧・低温の蒸気30とな
って排熱回収ボイラ2内の再熱器31で加熱され、低圧
・高温の蒸気(再熱蒸気)32となる。この再熱蒸気3
2は再熱タービン33へ流入して、再熱タービン33を
回転駆動する。
The high-pressure steam 28 from the waste heat recovery boiler 2 rotates the high-pressure steam turbine 29, and then becomes low-pressure, low-temperature steam 30, which is heated in the reheater 31 in the waste heat recovery boiler 2, and is converted into low-pressure, high-temperature steam 30. It becomes steam (reheated steam) 32. This reheated steam 3
2 flows into the reheat turbine 33 and drives the reheat turbine 33 to rotate.

このような再熱型の複合発電プラントにおいては、急速
に負荷を降下させる必要が生じた場合、前述した2つの
実施例と同様に、燃料流量調節弁18を絞ることにより
、ガスタービンの負荷が降下する。また高圧タービンバ
イパス弁34を開き、高圧蒸気28を高圧蒸気タービン
29の下流側へバイパスさせることにより、高圧蒸気タ
ービン29の負荷が降下する。この場合、再熱器31出
口の再熱蒸気温度が過度に上昇するのを防ぐため、高圧
タービンバイパス弁34の下流側に減温器35が設けら
れており、この減温器35には給水12が調節弁36を
介して注入される。さらに再熱タービンバイパス弁37
を開き、再熱蒸気32を復水器15ヘバイパスさせるこ
とにより、再熱タービン33の負荷が降下する。このよ
うにして、複合発電プラント全体としての負荷降下率の
増加を図ることができる。
In such a reheat type combined cycle power plant, when it is necessary to rapidly reduce the load, the load on the gas turbine is reduced by throttling the fuel flow control valve 18, as in the two embodiments described above. Descend. Furthermore, by opening the high-pressure turbine bypass valve 34 and bypassing the high-pressure steam 28 to the downstream side of the high-pressure steam turbine 29, the load on the high-pressure steam turbine 29 is reduced. In this case, in order to prevent the reheated steam temperature at the outlet of the reheater 31 from rising excessively, a desuperheater 35 is provided downstream of the high-pressure turbine bypass valve 34, and this desuperheater 35 is provided with a water supply. 12 is injected via control valve 36. Furthermore, the reheat turbine bypass valve 37
By opening the reheat turbine 32 and bypassing the reheat steam 32 to the condenser 15, the load on the reheat turbine 33 is reduced. In this way, it is possible to increase the load drop rate of the combined cycle power plant as a whole.

以上の3つの実施例では、ガスタービン装置、排熱回収
ボイラ装置および蒸気タービン装置が各々1台で構成さ
れていたがガスタービン装置および排熱回収ボイラ装置
が複数台で、蒸気タービン装置が1台で構成される多軸
型の複合発電プラントにおいても、本発明は適用するこ
とができる。
In the above three embodiments, each of the gas turbine device, the exhaust heat recovery boiler device, and the steam turbine device was configured with one unit, but the gas turbine device and the exhaust heat recovery boiler device were configured with multiple units, and the steam turbine device was configured with one unit. The present invention can also be applied to a multi-shaft combined power generation plant configured with a single power plant.

すなわち、排熱回収ボイラ装装置から発生する余剰の蒸
気を蒸気タービン装置の下流側へ直接バイパスさせるこ
とにより、蒸気タービン装置の負荷を降下させ、複合発
電プラント全体としての負荷降下率を増加させることが
可能である。
In other words, by directly bypassing the excess steam generated from the exhaust heat recovery boiler equipment to the downstream side of the steam turbine equipment, the load on the steam turbine equipment is lowered, and the load reduction rate of the combined cycle power plant as a whole is increased. is possible.

複合発電プラントの負荷降下時におけるガスタービン・
蒸気タービンの負荷制御装置の一例を、第4図に示す。
Gas turbines during load drops in combined cycle power plants
An example of a steam turbine load control device is shown in FIG. 4.

負荷降下時、負荷降下要求信号41と発電機9の負荷出
力信号45との偏差を制御装置40で読取り、運転中の
出力が要求出力より大きい場合、制御装置40で、燃料
流量調節弁18を絞る燃料流量低減指令42を出す。そ
の時、開度検出器39からの開度信号44により、ガス
タービンの燃料流量調節弁18が予めセットされる許容
最低開度に達すれば、さらに制御装置40はタービンバ
イパス弁19を開くようにタービンバイパス弁開度の開
指令43を出す。このことにより、排熱回収ボイラ2か
らの余剰蒸気をバイパスさせ、発電機9からの負荷出力
が要求出力と合致するように、タービンバイパス弁19
の開度を制御する。
During load reduction, the control device 40 reads the deviation between the load reduction request signal 41 and the load output signal 45 of the generator 9, and if the output during operation is greater than the required output, the control device 40 controls the fuel flow control valve 18. A fuel flow rate reduction command 42 is issued. At that time, if the fuel flow control valve 18 of the gas turbine reaches a preset allowable minimum opening according to the opening signal 44 from the opening detector 39, the control device 40 further controls the turbine bypass valve 19 to open the turbine bypass valve 19. An opening command 43 for the bypass valve opening is issued. As a result, surplus steam from the exhaust heat recovery boiler 2 is bypassed, and the turbine bypass valve 19 is set so that the load output from the generator 9 matches the required output.
Controls the opening degree.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、現状の複合発電
プラントに設けられているタービンバイパス弁を利用し
ているので、新しく他の設備を設置することなく、負荷
降下率の増加を達成することができ、非常に経済的であ
る。
As explained above, according to the present invention, since the turbine bypass valve installed in the current combined cycle power plant is used, an increase in the load drop rate can be achieved without installing any new equipment. It is very economical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は車圧型の複合発電プラントの概略系統図、第2
図は混圧型の複合発電プラントの概略系統図、第3図は
再熱型の複合発電プラントの概略系統図、第4図は第1
図の車圧型の複合発電プラントに負荷制御装置を設けた
場合の概略系統図である。 1・・・ガスタービン、2・・・排熱回収ボイラ、3・
・・蒸気タービン、4・・・ガスタービン圧縮機、6・
・・燃焼器、9・・・発電機、13・・・高温高圧蒸気
、15・・・復水器、17・・・給水ポンプ、18・・
・燃料流量調節弁、19・・・タービンバイパス弁、2
2・・・高圧蒸気、23・・・低圧蒸気、24・・・高
圧蒸気タービン、25・・・低圧蒸気タービン、26・
・・高圧タービンバイパス弁、27・・・低圧タービン
バイパス弁、28・・・高圧蒸気、29・・・高圧蒸気
タービン、31・・・再熱器。 32・・・再熱蒸気、33・・・再熱タービン、34・
・・高圧タービンバイパス弁、37・・・再熱タービン
バイパス弁、40・・・制御装置。
Figure 1 is a schematic system diagram of a vehicle-pressure type combined power generation plant, Figure 2
The figure is a schematic system diagram of a mixed pressure type combined cycle power plant, Figure 3 is a schematic system diagram of a reheat type combined cycle plant, and Figure 4 is a schematic system diagram of a reheat type combined cycle power plant.
It is a schematic system diagram when a load control device is provided in the vehicle pressure type combined cycle power generation plant shown in the figure. 1... Gas turbine, 2... Exhaust heat recovery boiler, 3.
...Steam turbine, 4...Gas turbine compressor, 6.
... Combustor, 9... Generator, 13... High temperature and high pressure steam, 15... Condenser, 17... Water supply pump, 18...
・Fuel flow rate control valve, 19...Turbine bypass valve, 2
2... High pressure steam, 23... Low pressure steam, 24... High pressure steam turbine, 25... Low pressure steam turbine, 26...
...High pressure turbine bypass valve, 27...Low pressure turbine bypass valve, 28...High pressure steam, 29...High pressure steam turbine, 31... Reheater. 32... Reheat steam, 33... Reheat turbine, 34...
...High pressure turbine bypass valve, 37... Reheat turbine bypass valve, 40... Control device.

Claims (1)

【特許請求の範囲】 1、燃焼ガスによって回転駆動されるガスタービンと、
該ガスタービンからの排ガスの熱により高圧蒸気を発生
する排熱回収ボイラと、前記高圧蒸気によって回転駆動
される蒸気タービンと、前記ガスタービンと蒸気タービ
ンの回転軸に連結された発電機と、を備えた単圧型の複
合発電プラントにおいて、負荷降下時に前記高圧蒸気の
全部または一部を前記蒸気タービンの下流側へ逃がす手
段を設けたことを特徴とする複合発電プラント。 2、請求項1記載の複合発電プラントにおいて、前記手
段は、前記蒸気タービンの下流側に配設された復水器と
前記排熱回収ボイラとを、タービンバイパス弁を介して
連通する配管よりなることを特徴とする複合発電プラン
ト。 3、燃焼ガスによって回転駆動されるガスタービンと、
該ガスタービンからの排ガスの熱により高圧蒸気と低圧
蒸気を発生する排熱回収ボイラと、前記高圧蒸気によっ
て回転駆動される高圧蒸気タービンと、前記低圧蒸気に
よって回転駆動される低圧蒸気タービンと、前記ガスタ
ービン、高圧蒸気タービンおよび低圧蒸気タービンの回
転軸に連結された発電機と、を備えた混圧型の複合発電
プラントにおいて、負荷降下時に前記高圧蒸気および低
圧蒸気の全部または一部を前記高圧蒸気タービンおよび
低圧蒸気タービンの下流側へ逃がす手段を設けたことを
特徴とする複合発電プラント。 4、燃焼ガスによって回転駆動されるガスタービンと、
該ガスタービンからの排ガスの熱により高圧蒸気を発生
するとともに、内部に設けられた再熱器によって再熱蒸
気を発生する排熱回収ボイラと、前記高圧蒸気によって
回転駆動される高圧蒸気タービンと、前記再熱蒸気によ
って回転駆動される再熱蒸気タービンと、前記ガスター
ビン、高圧蒸気タービンおよび再熱蒸気タービンの回転
軸に連結された発電機と、を備えた再熱型の複合発電プ
ラントにおいて、負荷降下時に前記高圧蒸気の全部また
は一部を前記高圧蒸気タービンの下流側へ逃がすととも
に、前記再熱蒸気の一部を前記再熱蒸気タービンの下流
側へ逃がす手段を設けたことを特徴とする複合発電プラ
ント。 5、燃焼ガスによって回転駆動されるガスタービンと、
該ガスタービンからの排ガスの熱により高圧蒸気を発生
する排熱回収ボイラと、前記高圧蒸気によって回転駆動
される蒸気タービンと、前記ガスタービンの回転軸に連
結された発電機と、前記蒸気タービンの回転軸に連結さ
れた発電機と、を備えた多軸型の複合発電プラントにお
いて、負荷降下時に前記高圧蒸気の全部または一部を前
記蒸気タービンの下流側へ逃がす手段を設けたことを特
徴とする複合発電プラント。 6、燃焼ガスによってガスタービンを回転駆動し、前記
ガスタービンから排出される排ガスを排熱回収ボイラに
導入して高圧蒸気を発生し、該高圧蒸気によって蒸気タ
ービンを回転駆動するとともに、前記ガスタービンおよ
び蒸気タービンの回転力によって発電機を駆動する複合
発電プラントの運転方法において、負荷を降下させる際
に、前記高圧蒸気の全部または一部を前記蒸気タービン
の下流側へ直接逃がして、蒸気タービンの負荷を速やか
に降下させることを特徴とする複合発電プラントの運転
方法。
[Claims] 1. A gas turbine rotationally driven by combustion gas;
An exhaust heat recovery boiler that generates high-pressure steam using the heat of exhaust gas from the gas turbine, a steam turbine rotationally driven by the high-pressure steam, and a generator connected to the rotating shafts of the gas turbine and the steam turbine. What is claimed is: 1. A single-pressure combined power generation plant comprising means for releasing all or part of the high-pressure steam to the downstream side of the steam turbine when the load drops. 2. In the combined power generation plant according to claim 1, the means comprises piping that communicates a condenser disposed downstream of the steam turbine and the exhaust heat recovery boiler via a turbine bypass valve. A combined power generation plant characterized by: 3. A gas turbine rotationally driven by combustion gas;
an exhaust heat recovery boiler that generates high-pressure steam and low-pressure steam using the heat of exhaust gas from the gas turbine; a high-pressure steam turbine rotationally driven by the high-pressure steam; a low-pressure steam turbine rotationally driven by the low-pressure steam; In a mixed-pressure combined power generation plant comprising a gas turbine, a high-pressure steam turbine, and a generator connected to rotating shafts of a low-pressure steam turbine, all or part of the high-pressure steam and low-pressure steam are converted into the high-pressure steam during load drop. A combined power generation plant characterized by providing means for escaping downstream of a turbine and a low-pressure steam turbine. 4. A gas turbine rotationally driven by combustion gas;
an exhaust heat recovery boiler that generates high-pressure steam using the heat of exhaust gas from the gas turbine and generates reheated steam using a reheater provided inside; a high-pressure steam turbine that is rotationally driven by the high-pressure steam; A reheat-type combined power generation plant comprising a reheat steam turbine rotationally driven by the reheat steam, and a generator connected to the rotating shaft of the gas turbine, high-pressure steam turbine, and reheat steam turbine, The present invention is characterized by providing means for releasing all or part of the high-pressure steam to the downstream side of the high-pressure steam turbine when the load decreases, and also releasing a part of the reheat steam to the downstream side of the reheat steam turbine. Combined power plant. 5. A gas turbine rotationally driven by combustion gas;
an exhaust heat recovery boiler that generates high-pressure steam using the heat of exhaust gas from the gas turbine; a steam turbine rotationally driven by the high-pressure steam; a generator connected to the rotating shaft of the gas turbine; A multi-shaft combined power generation plant comprising a generator connected to a rotating shaft, characterized in that a means is provided for releasing all or part of the high-pressure steam to the downstream side of the steam turbine when the load drops. A combined power generation plant. 6. A gas turbine is rotationally driven by the combustion gas, the exhaust gas discharged from the gas turbine is introduced into an exhaust heat recovery boiler to generate high-pressure steam, and the steam turbine is rotationally driven by the high-pressure steam, and the gas turbine is In the method of operating a combined power plant in which a generator is driven by the rotational force of a steam turbine, when the load is lowered, all or part of the high-pressure steam is directly released to the downstream side of the steam turbine. A method of operating a combined power generation plant characterized by rapidly lowering the load.
JP63317666A 1988-12-16 1988-12-16 Combined cycle power plant and operating method thereof Expired - Lifetime JP2657411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63317666A JP2657411B2 (en) 1988-12-16 1988-12-16 Combined cycle power plant and operating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63317666A JP2657411B2 (en) 1988-12-16 1988-12-16 Combined cycle power plant and operating method thereof

Publications (2)

Publication Number Publication Date
JPH02163402A true JPH02163402A (en) 1990-06-22
JP2657411B2 JP2657411B2 (en) 1997-09-24

Family

ID=18090674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63317666A Expired - Lifetime JP2657411B2 (en) 1988-12-16 1988-12-16 Combined cycle power plant and operating method thereof

Country Status (1)

Country Link
JP (1) JP2657411B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102705020A (en) * 2012-05-18 2012-10-03 华北电力大学 Combined heat and power generation system and heat supplying method
WO2015147342A1 (en) * 2014-03-28 2015-10-01 Mitsubishi Hitachi Power Systems, Ltd. Combined Cycle Gas Turbine Plant
CN108104888A (en) * 2017-12-28 2018-06-01 赫普科技发展(北京)有限公司 A kind of power grid frequency modulation system and method based on frequency modulation bypass

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217709A (en) * 1982-06-10 1983-12-17 Toshiba Corp Composite cycle power generating plant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217709A (en) * 1982-06-10 1983-12-17 Toshiba Corp Composite cycle power generating plant

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102705020A (en) * 2012-05-18 2012-10-03 华北电力大学 Combined heat and power generation system and heat supplying method
WO2015147342A1 (en) * 2014-03-28 2015-10-01 Mitsubishi Hitachi Power Systems, Ltd. Combined Cycle Gas Turbine Plant
CN106030054A (en) * 2014-03-28 2016-10-12 三菱日立电力系统株式会社 Combined cycle gas turbine plant
JP2017506312A (en) * 2014-03-28 2017-03-02 三菱日立パワーシステムズ株式会社 Combined cycle gas turbine plant
US10358947B2 (en) 2014-03-28 2019-07-23 Mitsubishi Hitachi Power Systems, Ltd. Combined cycle gas turbine plant
CN108104888A (en) * 2017-12-28 2018-06-01 赫普科技发展(北京)有限公司 A kind of power grid frequency modulation system and method based on frequency modulation bypass
CN108104888B (en) * 2017-12-28 2023-09-05 赫普能源环境科技股份有限公司 Power grid frequency modulation system and method based on frequency modulation bypass

Also Published As

Publication number Publication date
JP2657411B2 (en) 1997-09-24

Similar Documents

Publication Publication Date Title
JP3481983B2 (en) How to start a steam turbine
US6422022B2 (en) Apparatus and methods for supplying auxiliary steam in a combined cycle system
JP2000161014A (en) Combined power generator facility
EP0908603B1 (en) Single shaft combined cycle plant
JP4503995B2 (en) Reheat steam turbine plant and operation method thereof
JP2000130108A (en) Starting method for combined cycle power plant
JP3774487B2 (en) Combined cycle power plant
JPH02163402A (en) Compound electric power plant and its operation
JP2004169625A (en) Co-generation plant and its starting method
JP2004245184A (en) Reheat steam turbine plant and starting method for the plant
JPH02259301A (en) Waste heat recovery boiler
JP4090584B2 (en) Combined cycle power plant
JPH11200889A (en) Gas turbine combined power generation system
JP3641518B2 (en) Steam temperature control method and apparatus for combined cycle plant
JPS62294724A (en) Turbine casing cooler for turbocharger
JPH10331608A (en) Closed steam cooling gas turbine combined plant
JPH1193618A (en) Steam pressure control method for gas turbine steam cooling system
JP3068972B2 (en) Combined cycle power plant
JPH0814009A (en) Operation control method for pressurized fluidized bed boiler type composite cycle power plant
JP3354776B2 (en) Operation method of incinerator complex plant equipment
JP2645128B2 (en) Coal gasification power plant control unit
JP2558855B2 (en) Method of operating steam-gas combined cycle power plant and its power plant
JPH11166403A (en) Turbine bypass steam supply device
JPH03199601A (en) Control of vapor temperature at superheater/reheater outlet of complex power plant
JPS63192919A (en) Control device for coal gasification combined plant