JPS62294724A - Turbine casing cooler for turbocharger - Google Patents

Turbine casing cooler for turbocharger

Info

Publication number
JPS62294724A
JPS62294724A JP61138200A JP13820086A JPS62294724A JP S62294724 A JPS62294724 A JP S62294724A JP 61138200 A JP61138200 A JP 61138200A JP 13820086 A JP13820086 A JP 13820086A JP S62294724 A JPS62294724 A JP S62294724A
Authority
JP
Japan
Prior art keywords
cooling water
turbine
turbocharger
low
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61138200A
Other languages
Japanese (ja)
Inventor
Akiyoshi Ohara
大原 昭良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61138200A priority Critical patent/JPS62294724A/en
Publication of JPS62294724A publication Critical patent/JPS62294724A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To lighten low cycle fatigue of turbine casings, by supplying cooling water to the casings wherein the cooling water was heat-exchanged with the exhaust of the low pressure turbine of a two-stage pressure up type turbocharger. CONSTITUTION:A heat exchanger 19 is provided for the exhaust side of a low pressure turbine 15. Cooling water which was heat-exchanged with the exhaust of the turbine by the heat exchanger 19 is supplied to the casings of the low pressure turbine 15 and a high pressure turbine 14 via flow control valves 21 and 23 so as to cool the casings. The temperature difference between the turbine casings and the cooling water is made smaller so as to lighten thermal stress. Thus, low cycle fatigue occurring by thermal stress can be lightened.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [発明の目的] (産業上の利用分野) 本発明は、例えば燃料電池発電プラントに用いられる2
段方式の昇圧用ターボチャージャシステムにおける改良
したターボチャージャのタービンケーシング冷却装置に
関する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Object of the Invention] (Field of Industrial Application) The present invention is directed to
The present invention relates to an improved turbocharger turbine casing cooling device in a stage-type boosting turbocharger system.

(従来の技術) 一般に燃料電池発電プラントにおいては、低圧タービン
および高圧タービンを備えた2段方式の昇圧用ターボチ
ャージャで低圧空気圧縮機よ3よび高圧空気圧縮機を駆
動し、その両圧縮機で昇圧した高圧の空気を酸化剤ガス
として燃料電池本体に供給することが行われている。
(Prior Art) In general, in a fuel cell power plant, a two-stage boosting turbocharger equipped with a low-pressure turbine and a high-pressure turbine drives a low-pressure air compressor 3 and a high-pressure air compressor. Pressurized high-pressure air is supplied to the fuel cell main body as an oxidizing gas.

そして2段方式の昇圧用ターボチャージ髪・は、燃料電
池から排出された空気を燃焼器で燃料と混合して燃焼さ
−Uて1qられた高温高圧ガスを駆動源として使用する
もので、その燃焼器から出た高温高圧ガスを高圧タービ
ンで膨張させて仕事させて高圧空気圧縮機を駆動し”、
さらに高痒タービンを通過したガスを低圧タービンで再
度膨張させて仕事をさせて低圧空気圧縮機を駆動するよ
う系統構成され、低圧タービンで膨張し終った高温の排
熱は大気中へ放出される。
The two-stage booster turbocharger uses the high-temperature, high-pressure gas produced by mixing the air discharged from the fuel cell with fuel in a combustor and burning it as a driving source. The high-temperature, high-pressure gas that comes out of the combustor is expanded in a high-pressure turbine to do work and drive a high-pressure air compressor.
Furthermore, the system is configured so that the gas that has passed through the high-pressure turbine is expanded again in the low-pressure turbine to do work and drive the low-pressure air compressor, and the high-temperature waste heat that has been expanded in the low-pressure turbine is released into the atmosphere. .

ターボチャージャが通常の運転状態に入った場合、高圧
タービンおよび低圧タービンケーシングは高温に暉され
る。このタービンケーシングの高温を防止するため(、
貯水タンクの冷却水を移送ポンプによって高圧タービン
および低圧タービンのケーシングに送って水冷すること
が行なわれている。そしてこの冷却後の高温になった冷
却水は、途中の冷却器で常温近くまで冷却されて貯水タ
ンク内に戻される。
When the turbocharger enters normal operating conditions, the high pressure turbine and low pressure turbine casing are heated to high temperatures. To prevent this turbine casing from getting too hot (
Cooling water in a water storage tank is sent to the casings of a high-pressure turbine and a low-pressure turbine using a transfer pump for water cooling. After this cooling, the high-temperature cooling water is cooled down to near room temperature by an intermediate cooler and then returned to the water storage tank.

一方、2段ターボタヤージャの低圧空気圧縮機と高温空
気圧縮機との間に中間冷却器を設け、燃料電池本体に供
給される空気は、低圧空気圧縮機を出たあとに中間冷却
器で温度が下げられてから次段の高圧空気圧縮機へ送ら
れる。ところでこの中!冷却器の冷却水は、前記貯水タ
ンクより移送ポンプによって中間冷却器に入り、熱交換
による受熱後に前記途中の冷却器によって常温近くまで
下げられて再び貯水タンクに回収される。
On the other hand, an intercooler is installed between the low-pressure air compressor and the high-temperature air compressor of the two-stage turbocharger, and the air supplied to the fuel cell body is cooled at the intercooler after leaving the low-pressure air compressor. After being lowered, it is sent to the next stage, a high-pressure air compressor. By the way, in this! The cooling water of the cooler enters the intercooler from the water storage tank by a transfer pump, receives heat through heat exchange, is lowered to near normal temperature by the intermediate cooler, and is recovered into the water storage tank again.

このようにターボチャージャのタービンケーシングの冷
却水系と中間冷却器の冷却水系を同一貯水タンク系によ
って構成している場合、ターボチャージャの高圧圧縮機
の効率を上げるためには、中間冷却器の冷却水入口温度
がなるべく低い方が良いため、タービンケーシングおよ
び中間冷却器から排出される冷却水を冷やす途中の冷却
器の冷却水設定温度はターボチャージャのタービンケー
シングの冷却水の最適温度より低い。すなわち、貯水タ
ンクの冷却水の温度は、タービンケーシングの冷却水と
しては低過ぎると云える。
If the cooling water system for the turbocharger's turbine casing and the cooling water system for the intercooler are configured in the same water storage tank system, in order to increase the efficiency of the turbocharger's high-pressure compressor, it is necessary to Since it is better for the inlet temperature to be as low as possible, the cooling water setting temperature of the cooler in the middle of cooling the cooling water discharged from the turbine casing and intercooler is lower than the optimum temperature of the cooling water of the turbine casing of the turbocharger. That is, it can be said that the temperature of the cooling water in the water storage tank is too low to be used as cooling water for the turbine casing.

(発明が解決しようとする問題点) しかして、このような燃料電池発電プラントに用いられ
る2段式の昇圧用ターボチャージャにおいては、タービ
ンケーシングの冷却水は、中間冷却器に使用される低温
の冷却水が直接使用されてケーシングを冷却することに
より、、タービンケーシング温度と冷却水温度との間に
150℃前後の温度差が存在することになり、この茗し
い温度差によってタービンケーシングに対して非常な熱
応力が生じていた。
(Problem to be solved by the invention) However, in the two-stage boosting turbocharger used in such a fuel cell power generation plant, the cooling water of the turbine casing is the low-temperature water used in the intercooler. When cooling water is used directly to cool the casing, there is a temperature difference of around 150°C between the turbine casing temperature and the cooling water temperature, and this large temperature difference causes the turbine casing to Extreme thermal stress was occurring.

またターボチャージャの負荷の変化により、タービン入
口温度が上昇したり下降したりした場合でも、冷却水温
度は一定のためタービンケーシングと冷却水との温度差
に変化が生じ、タービンケーシングに熱応力が発生して
低サイクル疲労によるクラックが発生することがある。
Furthermore, even if the turbine inlet temperature rises or falls due to changes in the turbocharger load, the cooling water temperature remains constant, so the temperature difference between the turbine casing and the cooling water changes, causing thermal stress to the turbine casing. Cracks may occur due to low cycle fatigue.

さらに低圧タービンより排出される排熱は、150℃前
後の温度がありながら、そのまま大気へ放出しているの
で熱が有効に利用されていなかった。
Furthermore, the exhaust heat discharged from the low-pressure turbine has a temperature of around 150°C, but it is directly released into the atmosphere, so the heat is not used effectively.

本、発明の目的は、タービンケーシングと冷却水との温
度差を小さくし、タービンケーシングに付加される熱応
力による低サイクル疲労を軽減したターボチャージャの
タービンケーシング冷却装置を提供するにある。
An object of the present invention is to provide a turbine casing cooling device for a turbocharger that reduces the temperature difference between the turbine casing and cooling water and reduces low cycle fatigue due to thermal stress applied to the turbine casing.

[発明の構成] (問題点を解決するための手段および作用)本発明によ
るターボチャージャのタービンケーシング冷却装置は、
タービンで空気圧縮機を駆動する2段昇圧方式のターボ
チャージャにおいて、前記低圧タービンの排気、側に熱
交換器を設け、この熱交換器で熱交換後の冷却水をター
ビンケーシングに冷却水として通すことを特徴とするも
のである。
[Structure of the Invention] (Means and Effects for Solving the Problems) The turbine casing cooling device for a turbocharger according to the present invention has the following features:
In a two-stage boosting turbocharger that uses a turbine to drive an air compressor, a heat exchanger is provided on the exhaust side of the low-pressure turbine, and the heat exchanger passes cooling water after heat exchange to the turbine casing as cooling water. It is characterized by this.

本発明においては、低圧タービンの排気側に設けた熱交
換器から出た熱交換器の冷却水をタービンケーシングに
冷却水として通すことにより、タービンケーシングと冷
却水との温度差を少なくして熱応力を軽減し、それによ
って熱応力による低サイル疲労を軽減することができる
In the present invention, by passing the cooling water from the heat exchanger provided on the exhaust side of the low-pressure turbine through the turbine casing as cooling water, the temperature difference between the turbine casing and the cooling water is reduced and heat is generated. It can reduce stress and thereby reduce low sile fatigue due to thermal stress.

(実施例) 以下本発明の一実施例を燃料電池発電プラントに適用し
たターボチャージャの系統を示す第1図および第2図に
基づいて説明する。まず第1図に示す実施例において、
燃料電池発電プラントは低圧空気圧縮機11および低圧
タービン15よりなる第1段ターボチャージャT1.高
圧空気圧縮機12および高圧タービン14よりなる第2
段ターボチャージャT2および燃料電池本体16を具備
し、燃料電池本体16の酸化剤ガスとなる空気は、通常
の運転時において低圧空気圧縮機11で加圧されたのち
、中間冷却器20で温度が下げられ、さらに高圧空気圧
縮機12で再加圧されて燃料電池本体16に供給される
(Embodiment) An embodiment of the present invention will be described below with reference to FIGS. 1 and 2 showing a system of a turbocharger applied to a fuel cell power generation plant. First, in the embodiment shown in FIG.
The fuel cell power plant includes a first stage turbocharger T1. A second unit consisting of a high pressure air compressor 12 and a high pressure turbine 14
Equipped with a stage turbocharger T2 and a fuel cell main body 16, the air that becomes the oxidant gas of the fuel cell main body 16 is pressurized by the low pressure air compressor 11 during normal operation, and then the temperature is lowered by the intercooler 20. The air is lowered, further pressurized again by the high-pressure air compressor 12, and then supplied to the fuel cell main body 16.

燃料電池本体16から排出された高温高圧ガスは、燃焼
器13で燃料と混合して燃焼せられ、高圧タービン14
で膨張仕事に変換して高圧空気圧縮機12に仕事を支え
、ざらに高圧タービン14を通過したガスは、低圧ター
ビン15で再度膨張仕事を行なって低圧空気圧縮機11
に仕事を支える。そして低圧タービン15で膨張し終っ
た高温の排熱は大気中へ放出される。
The high-temperature, high-pressure gas discharged from the fuel cell body 16 is mixed with fuel and burned in the combustor 13, and the high-pressure turbine 14
The gas that has passed through the high-pressure turbine 14 undergoes expansion work again in the low-pressure turbine 15 and is then transferred to the low-pressure air compressor 11.
to support work. The high-temperature exhaust heat that has been expanded in the low-pressure turbine 15 is released into the atmosphere.

なお、以上の通常運転に入る前の起動時には、燃料電池
本体16のバイパス回路のバイパス弁16aを開き、高
圧空気圧縮機12で加圧された空気をバイパス弁16a
から燃焼器13に通し、この燃焼器13で燃料と混合し
て高温高圧ガスとし、これをターボチャージャT1.T
2の駆動源として高圧タービン14および低圧タービン
15に供給する。そして空気系が運転条件に達するとバ
イパス弁16aを調整して高圧空気圧縮機12から出た
空気の大部分を燃料電池本体16に供給して通常の運転
状態に入る。
In addition, at the time of startup before starting the above normal operation, the bypass valve 16a of the bypass circuit of the fuel cell main body 16 is opened, and the air pressurized by the high-pressure air compressor 12 is passed through the bypass valve 16a.
The gas is passed through the combustor 13, where it is mixed with fuel to form high-temperature, high-pressure gas, which is then fed into the turbocharger T1. T
The high-pressure turbine 14 and the low-pressure turbine 15 are supplied as a driving source for the high-pressure turbine 14 and the low-pressure turbine 15. When the air system reaches operating conditions, the bypass valve 16a is adjusted to supply most of the air discharged from the high-pressure air compressor 12 to the fuel cell main body 16, and the system enters a normal operating state.

一方ターボチャージャT1.T2の通常の運転状態に入
ると、高圧タービン14および低圧タービン15のケー
シングは高温にさらされる。そこで本発明においては、
低圧タービン15の下流側に冷却水の温度を上昇させる
熱交換器19を設け、この熱交換器19に貯水タンク1
7の冷却水を移送ポンプ18で送って高温の排熱ガスと
熱交換させる。そして熱交換器19から出た冷却水と移
送ポンプ18から出た冷却水を混合して低圧タービン1
5および高圧タービン14のケーシングに送り、熱交換
したのちの冷却水を熱交換器25で常温に低下させて貯
水タンク17に回収するよう構成されている。
On the other hand, turbocharger T1. Upon entering normal operating conditions at T2, the casings of the high pressure turbine 14 and the low pressure turbine 15 are exposed to high temperatures. Therefore, in the present invention,
A heat exchanger 19 for increasing the temperature of cooling water is provided downstream of the low-pressure turbine 15, and a water storage tank 1 is connected to this heat exchanger 19.
The cooling water from No. 7 is sent by a transfer pump 18 to exchange heat with the high-temperature exhaust gas. The cooling water discharged from the heat exchanger 19 and the cooling water discharged from the transfer pump 18 are then mixed to form a low-pressure turbine 1.
5 and the casing of the high-pressure turbine 14 for heat exchange, the cooling water is lowered to room temperature by a heat exchanger 25 and then collected in a water storage tank 17.

すなわち、移送ポンプ18から出た冷却水は、熱交換器
19を出てから流量調整弁21から温度センサ22を通
って低圧タービン15のケーシングに送られる。ケーシ
ングで熱交換したのらの冷却水は、温度センサ24を経
て熱交換器25から貯水タンク17に回収される。この
時低圧タービン15のケーシングの入口には、熱交換器
19から出た冷却水とは別に移送ポンプ18から出た直
接の冷却水を流量調整弁29を通して送られるようにな
っている。この両流ω調整弁21.29は温度センサ2
2.24の信号を受けて制御装置26からの指令によっ
て開度調整される。
That is, the cooling water discharged from the transfer pump 18 exits the heat exchanger 19 and is then sent to the casing of the low pressure turbine 15 through the flow control valve 21 and the temperature sensor 22 . The cooling water that has undergone heat exchange with the casing passes through the temperature sensor 24 and is recovered from the heat exchanger 25 to the water storage tank 17. At this time, direct cooling water from the transfer pump 18 is sent to the inlet of the casing of the low-pressure turbine 15 through a flow rate regulating valve 29, in addition to the cooling water from the heat exchanger 19. This double-flow ω adjustment valve 21.29 is connected to the temperature sensor 2.
The opening degree is adjusted by a command from the control device 26 in response to the signal of 2.24.

同様に高圧タービン14に対する冷却水系も、熱交換器
19を出た冷却水を流量調整弁23を通して送る系と、
移送ポンプ18から出た冷却水を直接流量調整弁30を
介して送る系とが並列にあり、この両流量調整弁23.
30は温度センサ28.27の信号を受けて制御装置2
6の指令によって開度調整される。
Similarly, the cooling water system for the high-pressure turbine 14 includes a system that sends cooling water exiting the heat exchanger 19 through a flow rate adjustment valve 23;
There is a system in parallel with which the cooling water from the transfer pump 18 is directly sent via the flow rate adjustment valve 30, and both flow rate adjustment valves 23.
30 receives the signals from the temperature sensors 28 and 27 and controls the control device 2.
The opening degree is adjusted by the command No. 6.

また低圧空気圧縮)幾11と高圧空気圧縮)幾12の間
にある熱交換器20に対する冷却水は、移送ポンプ18
から送られ、熱交換した冷却水を熱交換器25で常温に
してから貯水タンク17に回収される。
Cooling water for the heat exchanger 20 located between the low-pressure air compressor) 11 and the high-pressure air compressor 12 is supplied to the transfer pump 18.
Cooling water sent from the water tank 17 is cooled to room temperature in a heat exchanger 25 and then collected in a water storage tank 17.

次に本発明によるターボチャージャのケーシング冷却装
置の作用について説明する。第1図において、燃料電池
本体16の通常運転状態において、ターボチャージャT
1 の低圧タービン15で膨張し終った排気の温度は、
150℃前後である。この排熱が熱交換器198通過す
るとき、冷却水と熱交換を行なって大気に放出される。
Next, the operation of the turbocharger casing cooling device according to the present invention will be explained. In FIG. 1, in the normal operating state of the fuel cell main body 16, the turbocharger T
The temperature of the exhaust gas that has finished expanding in the low pressure turbine 15 of 1 is:
The temperature is around 150°C. When this waste heat passes through the heat exchanger 198, it exchanges heat with the cooling water and is released to the atmosphere.

したがって貯水タンク17の冷却水は、移送ポンプ18
によって熱交換器19へ送られ、熱交換されて温度上昇
下のちに、高圧タービン14および低圧タービン15の
それぞれのケーシングへ送られて冷却を行なう。この間
にタービンケーシングの入口および出口の冷却水温は温
度センサ22.24および27゜28で検出され、制御
装置26を介して冷却水の流量および温度を予め決めた
値に設定し、各流量調整21、29および23.30に
よってタービンケーシングに入る冷11水の温度を調整
する。
Therefore, the cooling water in the water storage tank 17 is transferred to the transfer pump 18.
The water is sent to the heat exchanger 19, where it is heat exchanged and the temperature rises, and then sent to the respective casings of the high-pressure turbine 14 and the low-pressure turbine 15 for cooling. During this time, the temperature of the cooling water at the inlet and outlet of the turbine casing is detected by temperature sensors 22, 24 and 27, 28, and the flow rate and temperature of the cooling water are set to predetermined values via the control device 26, and each flow rate adjustment 21 , 29 and 23.30 to regulate the temperature of the cold 11 water entering the turbine casing.

いま、タービン14および15の出口)帰度が」二昇し
Now, the return power at the exits of turbines 14 and 15 has increased by 2.

た場合、温度センサ27.28および22.24がそれ
を検知して制御装置26を動作させ、その制御装置26
の指令によってそれぞれの流量調整弁23.30および
21.29を調整し、冷却水の流量および温度を設定値
になるようケーシングに入る冷却水温度を調整する。
temperature sensors 27.28 and 22.24 detect this and operate the controller 26,
The flow regulating valves 23.30 and 21.29 are adjusted according to the command, and the temperature of the cooling water entering the casing is adjusted so that the flow rate and temperature of the cooling water become the set values.

したがって、タービンケーシングは温度差の小さい冷却
水で冷却されることから、熱応力は軽減され、熱応力に
よる低サイクル疲労の度合を小さくすることができる。
Therefore, since the turbine casing is cooled with cooling water having a small temperature difference, thermal stress is reduced, and the degree of low cycle fatigue due to thermal stress can be reduced.

またタービン14および15のケーシングに冷却水が入
ってから通過するまでの冷却水温度が100℃以上にな
らないように温度センサ27.2Bおよび22゜24で
検知し、流量調整弁30および29で冷却水の流量を調
整してベーパライズを防止するようになっている。
In addition, temperature sensors 27.2B and 22.24 detect the temperature of the cooling water from when it enters the casings of the turbines 14 and 15 to when it passes through the turbines, and the flow rate adjustment valves 30 and 29 are used to cool the water. The water flow rate is adjusted to prevent vaporization.

次に第2図に示す他の実施例においては、ターボチャー
ジャT1の低圧タービン15の排気側に2つの熱交換器
19および31を設け、その一方の熱交換器19の冷却
水を低圧タービン15のケーシングに供給するようにし
、他方の熱交換器31の冷却水を高圧タービン14のケ
ーシングに供給するようにしたものである。
Next, in another embodiment shown in FIG. 2, two heat exchangers 19 and 31 are provided on the exhaust side of the low pressure turbine 15 of the turbocharger T1, and the cooling water of one of the heat exchangers 19 is transferred to the low pressure turbine 15. The cooling water of the other heat exchanger 31 is supplied to the casing of the high pressure turbine 14.

この他の実施例においては、低圧タービン15および高
圧タービン14のタービンケーシングに入る冷却水量を
それぞれ調整することができることにより、それぞれの
タービンケーシングの温度に適した冷却水温度を供給す
ることができ、ざらにタービンケーシングに生じる□熱
応力を軽減し、低サイクル疲労を軽減することができる
In this other embodiment, by being able to adjust the amount of cooling water entering the turbine casings of the low-pressure turbine 15 and the high-pressure turbine 14, it is possible to supply a cooling water temperature suitable for the temperature of each turbine casing, □Thermal stress generated in the turbine casing can be reduced and low cycle fatigue can be reduced.

なお、第1図および第2図に示す実施例では燃料電池発
電プラントの2段方式のターボチャージャシステムにつ
いて説明したが、他のプラントに使用されるターボチャ
ージャのタービンケーシングの冷却システムも同様に実
施することができる。
In addition, although the embodiment shown in FIGS. 1 and 2 describes a two-stage turbocharger system for a fuel cell power generation plant, the cooling system for the turbine casing of a turbocharger used in other plants can be similarly implemented. can do.

[発明の効fA] 以上のように本発明によれば、ターボチャージャの低圧
タービンの後流側に熱交換器を設け、この熱交換器で熱
交換したあとの冷却水と貯水タンクからの冷却水とを混
合して冷却水温を調整した冷却水をタービンケーシング
に供給するよう構成したことにより、タービンケーシン
グと冷却水との温度差が少なくなって熱応力自体を軽減
させることができ、また熱応力による低サイクル疲労も
低減させることができ、併せて有効な排熱回収を行なう
ことができる。
[Effects of the Invention fA] As described above, according to the present invention, a heat exchanger is provided on the downstream side of the low-pressure turbine of the turbocharger, and the cooling water and cooling water from the water storage tank after heat exchange with the heat exchanger are By supplying cooling water whose temperature has been adjusted by mixing it with water to the turbine casing, the temperature difference between the turbine casing and the cooling water is reduced, reducing thermal stress itself. Low-cycle fatigue due to stress can also be reduced, and at the same time, effective exhaust heat recovery can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明によるターボチャージャの
タービンケーシング冷却装置のそれぞれ異なる実施例を
示す系統図である。 T1 ・・・低圧ターボチャージャ T2・・・高圧ターボチャージャ 11・・・低圧空気圧縮機 12・・・高圧空気圧縮機 13・・・燃焼器 14・・・高圧タービン 15・・・低圧タービン 16・・・燃料電池本体 17・・・貯水タンク 18・・・移送ポンプ 19、25.30・・・熱交換器 20・・・中間熱交換器 21、23.29.30.・・流量調整弁22、24.
27.28・・・温度センサ26・・・制御装置 (8733)代理人 弁理士 猪 股 祥 晃(ばか 
1名)
1 and 2 are system diagrams showing different embodiments of a turbine casing cooling device for a turbocharger according to the present invention. T1...Low pressure turbocharger T2...High pressure turbocharger 11...Low pressure air compressor 12...High pressure air compressor 13...Combustor 14...High pressure turbine 15...Low pressure turbine 16... ...Fuel cell body 17...Water tank 18...Transfer pump 19, 25.30...Heat exchanger 20...Intermediate heat exchanger 21, 23.29.30. ...Flow rate adjustment valves 22, 24.
27.28...Temperature sensor 26...Control device (8733) Agent Patent attorney Yoshiaki Inomata (Idiot)
1 person)

Claims (3)

【特許請求の範囲】[Claims] (1)タービンで空気圧縮機を駆動する2段昇圧方式の
ターボチャージャにおいて、前記低圧タービンの排気側
に熱交換器を設け、この熱交換器で熱交換後の冷却水を
タービンケーシングに冷却水として通すことを特徴とす
るターボチャージャのタービンケーシング冷却装置。
(1) In a two-stage boost type turbocharger in which a turbine drives an air compressor, a heat exchanger is provided on the exhaust side of the low-pressure turbine, and the heat exchanger transfers the cooling water after heat exchange to the turbine casing. A turbine casing cooling device for a turbocharger, which is characterized in that it passes through as a cooling device.
(2)熱交換器で熱交換後の冷却水と貯水タンクの冷却
水とを混合してタービンケーシングに冷却水として通す
ことを特徴とする特許請求の範囲第1項記載のターボチ
ャージャのタービンケーシング冷却装置。
(2) A turbine casing of a turbocharger according to claim 1, characterized in that the cooling water after heat exchange in a heat exchanger and the cooling water in a water storage tank are mixed and passed through the turbine casing as cooling water. Cooling system.
(3)熱交換器で熱交換後の冷却水と貯水タンクの冷却
水との混合は、その系に設けた流量調整弁をタービンケ
ーシングの入口水温との温度センサの検知結果で決まる
設定値水温になるよう開度調整して行なうことを特徴と
する実用新案登録請求の範囲第2項記載のターボチャー
ジャのタービンケーシング冷却装置。
(3) The cooling water after heat exchange in the heat exchanger and the cooling water in the water storage tank are mixed at a set water temperature determined by the flow rate adjustment valve installed in the system and the detection result of the temperature sensor at the inlet water temperature of the turbine casing. A turbine casing cooling device for a turbocharger according to claim 2, characterized in that the opening degree is adjusted so that
JP61138200A 1986-06-16 1986-06-16 Turbine casing cooler for turbocharger Pending JPS62294724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61138200A JPS62294724A (en) 1986-06-16 1986-06-16 Turbine casing cooler for turbocharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61138200A JPS62294724A (en) 1986-06-16 1986-06-16 Turbine casing cooler for turbocharger

Publications (1)

Publication Number Publication Date
JPS62294724A true JPS62294724A (en) 1987-12-22

Family

ID=15216421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61138200A Pending JPS62294724A (en) 1986-06-16 1986-06-16 Turbine casing cooler for turbocharger

Country Status (1)

Country Link
JP (1) JPS62294724A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006260855A (en) * 2005-03-15 2006-09-28 Aisin Seiki Co Ltd Fuel cell system
US20120003082A1 (en) * 2010-06-30 2012-01-05 Mazda Motor Corporation Cooling device of turbocharger of engine for vehicle
US8365526B2 (en) * 2006-03-15 2013-02-05 Man Truck & Bus Ag Vehicle or stationary power plant having a turbocharged internal combustion engine as a drive source
CN109372775A (en) * 2018-11-20 2019-02-22 势加透博(北京)科技有限公司 A kind of two stages of compression air supply system of fuel cell
WO2019166122A1 (en) * 2018-02-27 2019-09-06 Robert Bosch Gmbh Fuel cell system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006260855A (en) * 2005-03-15 2006-09-28 Aisin Seiki Co Ltd Fuel cell system
US8365526B2 (en) * 2006-03-15 2013-02-05 Man Truck & Bus Ag Vehicle or stationary power plant having a turbocharged internal combustion engine as a drive source
EP3591200A1 (en) * 2006-03-15 2020-01-08 MAN Truck & Bus SE Vehicle or stationary power station with a charged combustion engine as a drive source
EP3591189A1 (en) * 2006-03-15 2020-01-08 MAN Truck & Bus SE Vehicle or stationary power station with a charged combustion engine as a drive source
US20120003082A1 (en) * 2010-06-30 2012-01-05 Mazda Motor Corporation Cooling device of turbocharger of engine for vehicle
US8590306B2 (en) * 2010-06-30 2013-11-26 Mazda Motor Corporation Cooling device of turbocharger of engine for vehicle
WO2019166122A1 (en) * 2018-02-27 2019-09-06 Robert Bosch Gmbh Fuel cell system
CN109372775A (en) * 2018-11-20 2019-02-22 势加透博(北京)科技有限公司 A kind of two stages of compression air supply system of fuel cell

Similar Documents

Publication Publication Date Title
JP4754090B2 (en) Compressor discharge bleed air circuit and related method in gas turbine power plant
JP2000161014A (en) Combined power generator facility
JP2000161014A5 (en)
JPS60156910A (en) Steam turbine apparatus
JP2870232B2 (en) Coal gasification power plant
JPS62294724A (en) Turbine casing cooler for turbocharger
JPS6232181A (en) Device for energy recovery from gas generated in regeneration tower of fluid catalytic cracking equipment
JP3641030B2 (en) Safety valve operation test method for combined cycle power plant
JP3007724B2 (en) Load control method and apparatus for combined cycle power plant
JP2869070B2 (en) Gas turbine unit for electricity and heat generation and method of operation thereof
EP1273768A1 (en) Operation method for combined plant
JP3641518B2 (en) Steam temperature control method and apparatus for combined cycle plant
JPH0693810A (en) Combined power generating system
JPH062806A (en) Water supplying and heating device
JPS60249609A (en) Load control device in combined cycle power plant
JPH02163402A (en) Compound electric power plant and its operation
JPS6236124B2 (en)
JP2886211B2 (en) Combined cycle power plant
JPH0688502A (en) Power generating plant
JP3133034B2 (en) Combined cycle plant
JPH08260911A (en) Restarting method and controller for uniaxial type combined cycle power plant
JP2645128B2 (en) Coal gasification power plant control unit
JP2863645B2 (en) Feedwater flow control system for an exhaust gas reburning combined cycle power plant
JPS639084B2 (en)
JP2928678B2 (en) Pressurized fluidized bed plant and its operation method