JP2870232B2 - Coal gasification power plant - Google Patents

Coal gasification power plant

Info

Publication number
JP2870232B2
JP2870232B2 JP3173592A JP17359291A JP2870232B2 JP 2870232 B2 JP2870232 B2 JP 2870232B2 JP 3173592 A JP3173592 A JP 3173592A JP 17359291 A JP17359291 A JP 17359291A JP 2870232 B2 JP2870232 B2 JP 2870232B2
Authority
JP
Japan
Prior art keywords
air
turbine
gas
coal
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3173592A
Other languages
Japanese (ja)
Other versions
JPH0518265A (en
Inventor
成久 杉田
仁一 戸室
善助 田村
芳樹 野口
俊彦 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3173592A priority Critical patent/JP2870232B2/en
Publication of JPH0518265A publication Critical patent/JPH0518265A/en
Application granted granted Critical
Publication of JP2870232B2 publication Critical patent/JP2870232B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/067Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
    • F01K23/068Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification in combination with an oxygen producing plant, e.g. an air separation plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/0403Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04539Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels
    • F25J3/04545Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels for the gasification of solid or heavy liquid fuels, e.g. integrated gasification combined cycle [IGCC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04575Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for a gas expansion plant, e.g. dilution of the combustion gas in a gas turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04593The air gas consuming unit is also fed by an air stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04593The air gas consuming unit is also fed by an air stream
    • F25J3/046Completely integrated air feed compression, i.e. common MAC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04593The air gas consuming unit is also fed by an air stream
    • F25J3/04606Partially integrated air feed compression, i.e. independent MAC for the air fractionation unit plus additional air feed from the air gas consuming unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04612Heat exchange integration with process streams, e.g. from the air gas consuming unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04612Heat exchange integration with process streams, e.g. from the air gas consuming unit
    • F25J3/04618Heat exchange integration with process streams, e.g. from the air gas consuming unit for cooling an air stream fed to the air fractionation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/04Compressor cooling arrangement, e.g. inter- or after-stage cooling or condensate removal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To improve the efficiency of a coal gasifying power plant employing an oxygen oxidizing type coal gasifying furnace. CONSTITUTION:A gas turbine device comprises an air compressor 1, a combustor 2, a gas turbine 3, and a gas turbine generator 4. An air gas separating device 10 separates air into oxygen and nitrogen and feeds oxygen to a coal gasifying furnace 5 to perform gasification. Since even after nitrogen separated by the air separating device 10 is boosted by a nitrogen gas compressor 113, the temperature thereof is lower than the outlet temperature of the compressor 1, heat- exchange is effected by means of a turbine cooling air cooler 114. A nitrogen gas piping from a fuel gas feed pipe 112 and the air separating device 10 is joined in a position before the combustor 2, nitrogen gas from the air separating device 10 is also fed to the combustor 2. This constitution reduces a gas turbine cooling air temperature and reduces a cooling air amount, whereby the efficiency of a coal gasifying power plant employing an oxygen oxidizing system coal gasifying furnace can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【産業上の利用分野】本発明は酸素酸化方式の石炭ガス
化炉を用いた石炭ガス化発電プラントにおいてガスター
ビンをより高温化しより高効率化を達成するシステム構
成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a system configuration for achieving higher temperature and higher efficiency of a gas turbine in a coal gasification power generation plant using an oxygen oxidation type coal gasifier.

【従来の技術】石炭ガス化発電プラントは、石炭を燃料
とする高効率発電プラントの中でも、ガスタービンの利
用によって特に高効率化が期待できるため開発が推進さ
れている。石炭をガス化するガス化炉には多くの形式が
あり、それぞれに特徴があるが、現在の開発の主流は、
微粉化した石炭をノズルから噴射しガス化する噴流層ガ
ス化炉で、ガス化するのに空気を用いる空気酸化方式と
酸素を用いる酸素酸化方式がある。本発明は、酸素酸化
方式の石炭ガス化炉に関するものであり、従来の酸素酸
化方式の石炭ガス化炉を用いた石炭ガス化発電プラント
の構成については、例えば特開昭59−229005号公報に記
載されている。ところで石炭ガス化発電プラントでは、
石炭ガス化炉で発生したガス化燃料をガスタービンの燃
料として使用するが、このガスタービンの動翼等は冷却
空気によって充分に冷却される必要が有る。ガスタービ
ンの冷却空気を冷却する効果については、米国機械学会
論文集第106編第4号(1984年12月)、第756
頁から第764頁(Trans.ASME,Vol.106,No.4,Oct.198
4,PP756−764)に記載されている。
2. Description of the Related Art Coal gasification and power generation plants are being developed because of the use of gas turbines, which can be expected to achieve particularly high efficiency among high efficiency power generation plants using coal as fuel. There are many types of gasifiers for gasifying coal, each with its own characteristics.
Spouted bed gasifiers in which pulverized coal is injected from a nozzle and gasified. There are an air oxidation method using air for gasification and an oxygen oxidation method using oxygen for gasification. The present invention relates to an oxygen oxidation type coal gasifier, and a configuration of a coal gasification power generation plant using a conventional oxygen oxidation type coal gasifier is disclosed in, for example, JP-A-59-229005. Are listed. By the way, in coal gasification power plants,
Gasification fuel generated in a coal gasifier is used as fuel for a gas turbine, and the moving blades and the like of the gas turbine need to be sufficiently cooled by cooling air. Regarding the effect of cooling the cooling air of the gas turbine, see the Transactions of the American Society of Mechanical Engineers, Vol. 106, No. 4, December 1984, No. 756.
Page to page 764 (Trans.ASME, Vol. 106, No. 4, Oct. 198)
4, PP756-764).

【発明が解決しようとする課題】現在の石炭ガス化炉の
主流である噴流層石炭ガス化炉では、ガス化した石炭灰
を溶融させガス化炉下部出口から排出させる必要がある
ためガス化炉内部の温度を石炭灰の溶融温度以上に保た
ねばならない。炉内温度は石炭の発熱反応によって温度
を維持しているため、ガス化のために空気を用いる空気
酸化方式の噴流層ガス化炉では、反応に関与しない窒素
を79%(体積比)を含むため、炉内温度維持には供給
空気の温度を高める等の手段を用いないと炉内発熱反応
の割合が増加し、石炭の化学エネルギー消費量が多くな
り、ガス化炉出口の石炭ガス化燃料の発熱量は低下す
る。石炭ガス化燃料の発熱量が低下するとガスタービン
の出力割合が低下するため、発電プラント全体の効率は
低下することになる。このため、石炭ガス化発電プラン
ト内に空気分離装置を設置し、石炭ガス化発電プラント
内で分離された酸素を石炭ガス化炉に供給する酸素酸化
方式の石炭ガス化炉を用いた石炭ガス化発電プラントが
検討されている。この酸素酸化方式の石炭ガス化発電プ
ラントにおいても、より高効率化することが要求されて
おり、特開昭59−229005号公報では、ボトミングプラン
トである蒸気タービン系の改良か提案されている。しか
しながら、ボトミング系の改良は限度があり、本質的に
はガスタービンの効率向上が期待されている。ガスター
ビンの高効率化手段として、タービン入口温度を高温化
することが有効であることは、周知の事実であるが、高
温化に伴いタービンの冷却に必要とされる冷却空気の量
が増加するため、タービン翼冷却構造やタービン翼材料
の改良なしには高効率化の効果が得られなくなってい
る。このため冷却空気の量を減少する手段としてガスタ
ービン冷却空気の温度を予め冷却し低温化することが米
国機械学会論文集第106編第4号(1984年12
月)、第756頁から第764頁(Trans.ASME,Vol.106,
No.4,Oct.1984,PP756−764)で提案されている。冷却空
気の温度を低下させることによって冷却空気量を減少さ
せることができるし、同じ冷却空気量であればタービン
翼温度を低下させてガスタービンの寿命および信頼性を
向上させることができる。しかしながら、冷却空気量の
減少によってガスタービン単体の効率は向上するが、ガ
スタービン冷却空気冷却時の冷却空気の顕熱の回収を効
果的に行わねば発電プラントとしての効率は低下する。
このため、発電プラント内部で顕熱を回収する方法が重
要となっている。以上のことから本発明の目的は、酸素
酸化方式石炭ガス化炉を用いた石炭ガス化発電プラント
の効率を向上することにある。
In the spouted bed coal gasifier, which is the mainstream of the current coal gasifier, it is necessary to melt the gasified coal ash and discharge it from the lower outlet of the gasifier. The internal temperature must be kept above the coal ash melting temperature. Since the temperature in the furnace is maintained by the exothermic reaction of coal, the air oxidation type spouted bed gasifier using air for gasification contains 79% (volume ratio) of nitrogen not involved in the reaction. Therefore, unless measures such as raising the temperature of the supply air are used to maintain the furnace temperature, the rate of exothermic reaction in the furnace increases, the chemical energy consumption of coal increases, and the coal gasification fuel at the outlet of the gasification furnace increases. Calorific value decreases. When the calorific value of the coal gasified fuel is reduced, the output ratio of the gas turbine is reduced, so that the efficiency of the entire power plant is reduced. For this purpose, an air separation device is installed in the coal gasification power plant, and the oxygen separated in the coal gasification power plant is supplied to the coal gasifier. Power plants are being considered. In this oxygen oxidation type coal gasification power generation plant, higher efficiency is also required, and Japanese Patent Application Laid-Open No. 59-229005 proposes improvement of a steam turbine system as a bottoming plant. However, there is a limit to the improvement of the bottoming system, and the improvement of the efficiency of the gas turbine is essentially expected. It is a well-known fact that it is effective to increase the turbine inlet temperature as a means for increasing the efficiency of a gas turbine. However, as the temperature increases, the amount of cooling air required for cooling the turbine increases. Therefore, the effect of increasing the efficiency cannot be obtained without improving the turbine blade cooling structure and the turbine blade material. Therefore, as a means for reducing the amount of cooling air, the temperature of the gas turbine cooling air is previously cooled to lower the temperature.
Mon.), pages 756 to 764 (Trans.ASME, Vol. 106,
No. 4, Oct. 1984, PP756-764). By lowering the temperature of the cooling air, the amount of cooling air can be reduced, and if the amount of cooling air is the same, the turbine blade temperature can be lowered to improve the life and reliability of the gas turbine. However, although the efficiency of the gas turbine alone is improved by reducing the amount of cooling air, the efficiency of the power plant is reduced unless the sensible heat of the cooling air at the time of cooling the gas turbine cooling air is effectively recovered.
For this reason, a method of recovering sensible heat inside a power plant is important. In view of the above, an object of the present invention is to improve the efficiency of a coal gasification power generation plant using an oxygen oxidation type coal gasifier.

【課題を解決するための手段】従来の酸素酸化方式の石
炭ガス化発電プラントでは、空気分離装置において分離
された窒素を石炭ガス化炉へ石炭を供給するために用い
るのみで、石炭ガス化発電プラント系外に放出してお
り、分離された窒素を系内で十分に用いていなかった
点、さらに、この窒素は空気分離装置内で空気を分離す
る際に窒素の液化温度近くまで下げられ、空気分離装置
出口では、約20℃と低温であり、空気分離装置の作動
圧力を通常より高くすることにより低温の窒素が得られ
る点に注目し、本発明においては、この窒素の持つ冷熱
をガスタービン高温部を冷却する冷却空気の冷却に用い
るようにした。
In a conventional oxygen oxidation type coal gasification power generation plant, the nitrogen separated in the air separation unit is used only for supplying coal to the coal gasification furnace, and the coal gasification power generation is performed. Discharged outside the plant system, the separated nitrogen was not sufficiently used in the system, and this nitrogen was lowered to near the liquefaction temperature of nitrogen when separating air in the air separation device, At the outlet of the air separator, the temperature is as low as about 20 ° C, and it is noted that low-temperature nitrogen can be obtained by raising the operating pressure of the air separator higher than usual. It is used for cooling the cooling air for cooling the high temperature part of the turbine.

【作用】酸素酸化石炭ガス化炉を用いた石炭ガス化発電
プラントでは、石炭ガス化炉で酸素をガス化するために
酸素を必要とし、酸素を製造する設備として空気分離装
置をプラント内に設置している。空気分離装置では、外
部より空気を装置内に取入れ、低温化し空気の成分であ
る窒素と酸素の液化温度差によって窒素と酸素を分離す
る。したがって、空気分離装置出口における窒素及び酸
素はプロセスの違いによって異なるが、本質的には低温
(常温)となって出てくる。また、空気分離装置内では
圧力による液化温度の差を利用するため、通常空気を6
気圧(ata)まで加圧し空気分離装置へ供給し、常圧(1a
ta)の酸素及び窒素を得ている。本発明では空気分離装
置の作動圧力をガスタービンの作動圧力近くにすること
によって、空気分離装置で発生した窒素ガスの昇圧圧縮
機圧力比をガスタービン圧縮機より小さくし、窒素ガス
昇圧圧縮機出口の温度を、ガスタービン圧縮機出口の空
気温度より低くすることが可能になる。
[Function] In a coal gasification power generation plant using an oxygen oxidizing coal gasifier, oxygen is required to gasify oxygen in the coal gasifier, and an air separation device is installed in the plant as a facility for producing oxygen. doing. In an air separation device, air is taken into the device from the outside, the temperature is lowered, and nitrogen and oxygen are separated based on a liquefaction temperature difference between nitrogen and oxygen, which are components of air. Therefore, the nitrogen and oxygen at the outlet of the air separation device differ depending on the process, but essentially come out at a low temperature (normal temperature). In the air separation device, the difference in liquefaction temperature due to pressure is used.
Pressurized to atmospheric pressure (ata) and supplied to the air separation device, normal pressure (1a
ta) oxygen and nitrogen. In the present invention, by setting the operating pressure of the air separation device close to the operating pressure of the gas turbine, the pressure ratio of the pressure of the nitrogen gas generated by the air separation device is made smaller than that of the gas turbine compressor. Can be lower than the air temperature at the gas turbine compressor outlet.

【実施例】以下、本発明の一実施例を図1により説明す
る。ガスタービン装置は、空気圧縮機1,燃焼器2,ガ
スタービン3及びガスタービン発電機4で構成される。
空気圧縮機1の出口からは、ガスタービン高温部にター
ビン冷却管路111が設けてあり、タービン冷却管路1
11上にはタービン冷却空気冷却器114が設置されて
いる。石炭ガス化炉5には石炭供給系統52の他に、空
気分離装置10から酸素配管系統が接続され系統には酸
素圧縮機11が設置されている。空気分離装置10に
は、空気圧縮機12からの空気配管が接続されている。
また、空気分離装置10からの窒素配管は窒素ガス圧縮
機113を経由してタービン冷却空気冷却器114を経
由した後に燃料ガス供給管112に接続される。ガス化
炉5出口からは、粗製燃料ガス配管53が粗製燃料ガス
熱回収ボイラー6に接続され、ガス化炉5内には、蒸発
器38が設置され、粗製燃料ガス熱回収ボイラー6にも
蒸発器39、さらにエコノマイザー36、過熱器40が
設置される。粗製燃料ガス熱回収ボイラー40出口から
の配管は、ガス=ガス熱交換器7を通りガス精製装置8
へ接続される。ガス精製装置8からの配管は再びガス=
ガス熱交換器7及び燃料ガス供給管112を通りガスタ
ービン装置の燃焼器2に接続される。ガス精製装置8か
らは硫黄回収装置9への配管も接続される。ガスタービ
ン3の排気ダクトは、排熱回収ボイラー14に接続され
る。排熱回収ボイラー14内では、低圧エコノマイザー
30,低圧ドラム31,低圧蒸発器32,高圧エコノマ
イザー33,高圧ドラム34,高圧蒸発器35,過熱器
45,再熱器46,加圧ポンプ23が設置されている。
蒸気タービン系は、高圧蒸気タービン15,再熱蒸気タ
ービン16,低圧タービン17,蒸気タービン発電機1
8,復水器19,給水ポンプ20で構成されている。復
水器19からの給水管路57は、給水ポンプ20を通り
排熱回収ボイラー14内の低圧エコノマイザー30に接
続される。低圧エコノマイザー30の出口は低圧ドラム
31に接続されると同時に、加圧ポンプ23へ接続され
る。加圧ポンプ23出口の配管は、高圧エコノマイザー
33につながり高圧ドラム34へ接続さられる。さら
に、加圧ポンプ23出口から、粗製燃料ガス熱回収ボイ
ラー6のエコノマイザー36にも接続される配管が設け
られる。低圧ドラム31は低圧蒸発器32を備え、高圧
ドラム34は高圧蒸発器35を備えている。高圧ドラム
34は過熱器45に接続され、過熱器の途中には、粗製
燃料ガス熱回収ボイラー6の過熱器40からの配管が接
続される。粗製燃料ガス熱回収ボイラー6のエコノマイ
ザー36の出口は高圧ドラム37につながり、ドラムか
らはガス化炉5内の蒸発器38及び、粗製燃料ガス熱回
収ボイラー6の蒸発器39に接続されると同時に、過熱
器40に接続される。排熱回収ボイラー14内の過熱器
45からの配管は高圧蒸気タービン15に接続され、高
圧蒸気タービン15出口からは排熱回収ボイラー14内
の再熱器46へ配管が接続される。また、配管には低圧
ドラム31からの配管も接続される。再熱器46出口か
らは再熱蒸気タービン16へ配管が接続され、再熱蒸気
タービン16出口からは低圧タービン17へ管路が接続
され低圧蒸気タービン17出口からは、復水器19に管
路が接続される。蒸気タービン発電機18は、高圧蒸気
タービン15,再熱蒸気タービン16,低圧蒸気タービ
ン17に接続されている。空気分離装置10へは空気圧
縮機12によって15ata 程度に圧縮された空気が供給
される。空気圧縮機12は一般には中間冷却器付きの圧
縮機で圧縮動力の低減を計っている。この高圧空気は空
気分離装置10内で膨張して酸素と窒素に分離され、空
気分離装置10出口では、10ata 、20℃の酸素及び
窒素が得られる。酸素は酸素圧縮機11によって35at
a 程度に昇圧された後にガス化剤として石炭ガス化炉5
に供給される。ガス化炉5では、酸素によって石炭供給
系統52から供給された石炭がガス化され粗製ガスがつ
くられる。この粗製ガスは温度が高いため粗製燃料ガス
熱回収ボイラー6におくられ排熱回収ボイラー14の加
圧ポンプ23から送られた高圧給水をボイラー6内のエ
コノマイザー36で加熱し、ドラム37に送り、蒸発器
39及びガス化炉の蒸発器38で蒸発させ、さらに過熱
器40で過熱する。粗製燃料ガス熱回収ボイラー6をで
た粗製ガスはガス=ガス熱交換器7にはいって、ガス精
製装置8をでた精製燃料ガスを加熱しガス精製装置8に
はいる。ガス精製装置では、粗製ガス中の不純物、特に
硫黄を含む硫化物が除去される。ガス精製装置8で回収
された硫黄は硫黄回収装置9で回収される。ガス精製装
置8をでた精製燃料ガスはガス=ガス熱交換器7にはい
って加熱された後に燃料ガス供給管112を通ってガス
タービン燃焼器2に供給され燃焼する。燃焼器2をでた
高温の燃焼ガスはガスタービン3に供給され膨張し動力
を発生し、ガスタービン3は空気圧縮機1及びガスター
ビン発電機4を駆動する。ガスタービン出た燃焼ガス5
5は、排熱回収ボイラー14に供給される。排熱回収ボ
イラー14では、復水器19から給水ポンプ20で送ら
れてきた給水を給水配管57を通して、低圧エコノマイ
ザー30に供給し排熱回収ボイラ14内で、低圧ドラム
31,低圧蒸発器32,高圧エコノマイザー33,高圧
ドラム34,高圧蒸発器35,過熱器45を通して加
熱,蒸発,過熱し、過熱蒸気を高圧蒸気タービン15に
供給する。低圧エコノマイザー30出口では、加圧ポン
プ23で昇圧が行われ、高圧給水は高圧エコノマイザー
33及び粗製燃料ガス熱回収ボイラー6のエコノマイザ
ー36に送る。過熱器46の途中には、粗製燃料ガス熱
回収ボイラー6で発生した過熱蒸気が混入する。高圧蒸
気タービン15の戻り蒸気は低圧ドラム31で発生した
蒸気と混ざり再熱器46へおくられ、再度昇温され、再
熱蒸気タービン16,低圧蒸気タービン17へおくられ
る。各タービンで発生した動力は蒸気タービン発電機1
8を駆動する。空気圧縮機1は大気より空気50を取り
込み昇圧し、燃焼器2へ送る。例えば圧力比15位では
圧縮機出口の空気温度は約400℃に達する。ガスター
ビン3高温部を冷却する空気は圧縮機1出口からのター
ビン冷却管路111を通りタービン冷却空気冷却器11
4に供給される。タービン冷却空気冷却器114へは空
気分離装置10から窒素ガス圧縮機113を通して窒素
ガスが供給される。空気分離装置10出口の窒素ガス圧
力は10ata程度であり、ガスタービン燃焼器2に供
給する燃料ガス供給管112へ供給するため25ata
程度までしなければならないが、昇圧に必要な圧力比は
2.5 程度であり、タービン冷却空気冷却器114入口
の窒素温度は約110℃となり、タービン冷却空気冷却
器114出口のタービン冷却空気温度はタービン冷却空
気冷却器114における温度効率を80%と仮定すれ
ば、冷却空気温度は約170℃程度まで低下させること
が可能であり、このため冷却に必要な空気量を低減させ
ることができる。また、冷却空気顕熱も窒素ガスに回収
され、窒素ガスは燃料ガス供給管112で燃料ガスと混
合してガスタービン燃焼器2に供給されるため、冷却空
気冷却熱の損失はない。本実施例によれば、酸素酸化の
石炭ガス化で発生した中カロリーの発熱量の燃料ガスを
空気分離装置10で発生した窒素ガスを混合させること
によって空気酸化の石炭ガス化燃料ガス程度に低下させ
ることができるため、ガスタービン燃焼器2における燃
焼時に発生するサーマルNOxを低下できる効果があ
る。本発明の他の実施例を図2により説明する。図2の
実施例が図1の実施例と異なる点は、空気圧縮機1の出
口から空気分離装置10へ抽気配管122を設置し、圧
縮機抽気配管122上に抽気空気冷却器123,給水加
熱器124および空気冷却器125を設置し、タービン
冷却空気管路121を空気冷却器125と空気分離装置
10の間とガスタービン高温部を結ぶように設けた点で
ある。空気分離装置10からの窒素配管は窒素ガス圧縮
機113,抽気空気冷却器123を通りタービン冷却空
気管路121に接続される。給水ポンプ20からの配管
は給水加熱器124,加圧ポンプ126を経由して粗製
ガス熱回収ボイラ6の粗製ガス熱回収ボイラーエコノマ
イザ36に接続されている。圧縮機1を出た抽気空気は
圧縮機抽気配管122を通り抽気空気冷却器123に入
り、空気分離装置10からの窒素ガスで冷却する。冷却
後の窒素ガスは燃料ガス供給管112で燃料ガスに混合
され燃焼器2に供給される。抽気空気冷却器123で冷
却された抽気空気はさらに給水加熱器124で給水ポン
プ20からの給水によって冷却される。給水は加圧ポン
プ126で昇圧された後に粗製ガス熱回収ボイラ6の粗
製ガス熱回収ボイラーエコノマイザ36へ供給される。
給水加熱器124を出た抽気空気はさらに空気冷却器1
25で冷却水の温度近くまでおとされ、一部はガスター
ビン冷却用空気としてタービン冷却空気管路121を通
ってガスタービン高温冷却部に供給される。残りの空気
は石炭ガス化のための酸素を分離するために空気分離装
置10に送られる。空気分離装置10からの窒素ガスは
窒素ガス圧縮機113で燃焼器2に供給可能な圧力まで
昇圧される。本実施例によれば、図1の実施例に比較し
てタービン冷却空気の温度を冷却水温度近くまで低下さ
せることができるため、冷却空気量をさらに低減できる
効果がある。本発明の他の実施例を図3により説明す
る。図3の実施例が図2の実施例と異なる点は圧縮機抽
気配管122に設けられた空気冷却器125出口にブー
スト圧縮機131を設置したことである。空気冷却器1
25で十分温度低下した抽気空気はブースト圧縮機13
1で昇圧された後に空気分離装置10及びタービン冷却
空気管路121を通りガスタービン高温部供給される。
ガスタービンは部分負荷時に、タービン入口温度を低下
させるために動作圧力が低下する。したがって、空気分
離装置10や石炭ガス化炉5の動作圧力を部分負荷時に
も一定に保つためには、部分負荷に伴い低下する圧縮機
出口の抽気空気圧力を補正する手段が必要となり、ここ
ではブースト圧縮機131を用いてブースト圧縮機13
1出口圧力をガスタービンの部分負荷によらず一定に保
つことが可能であり、部分負荷における空気分離装置1
0および石炭ガス化炉5の運転制御を容易にできる効果
がある。さらに、ブースト圧縮機131によって昇圧が
行われるために、ガスタービン高温部冷却空気の圧力を
常に圧縮機1吐出圧より高く保つことができるために、
冷却効率を高めるため複雑な構造となり圧力損失が増加
するような冷却翼を採用することができ、ガスタービン
高温部の冷却構造,冷却空気通路,冷却方法等に柔軟性
を与えると同時に、ガスタービン冷却の信頼性を確保で
きる効果がある。本発明の他の実施例を図4により説明
する。図4の実施例が図1の実施例と異なる点は圧縮機
1出口に設置したタービン冷却管路111に設けたター
ビン冷却空気冷却器114の代わりに冷却空気混合器1
41をタービン冷却管路111に設置したことである。
空気分離装置10から出た低温の窒素ガスは窒素ガス圧
縮機113で昇圧された後にタービン冷却管路111上
の冷却空気混合器141で圧縮機1出口から抽気された
冷却空気と混合される。この混合によって混合後の混合
ガス温度を低下させることができる。さらに、窒素ガス
の混合によって冷却ガスの流量を増加させることができ
るため、実質的には大幅に圧縮機1吐出空気からの冷却
空気抽気量を低減させることができる効果がある。本発
明の他の実施例を図5により説明する。図5の実施例が
図1の実施例と異なる点は、空気分離装置10から石炭
ガス化炉5への酸素ガス供給管路に設置されていた酸素
圧縮機11を取り除き、空気分離装置10と石炭ガス化
炉5間には酸素供給管152を設置したこと、および、
空気分離装置10からガスタービン燃焼器2までの窒素
ガス配管上、空気分離装置10と燃料ガス圧縮機151
間に燃料ガス窒素混合器154を設け、空気分離装置1
0からの窒素供給管153とガス=ガス熱交換器7から
の燃料ガス供給管112を燃料ガス窒素混合器154で
接続するようにしたことである。本実施例では石炭ガス
化炉5系統は空気分離装置10から酸素供給管152を
通って石炭ガス化炉5に供給される酸素ガスの圧力にな
る。ガス化された燃料ガスは燃料ガス供給管112を通
って燃料ガス窒素混合器154内に供給され、空気分離
装置10から窒素供給管153を通って供給された窒素
ガスと混合された後に燃料ガス圧縮機151で昇圧され
タービン冷却空気冷却器114に供給されタービン冷却
管路111を通ってきた冷却空気を冷却した後に、燃料
として燃焼器2へ供給される。本実施例によれば、空気
分離装置10,石炭ガス化炉5,粗製ガス熱回収ボイラ
6等で構成される燃料供給系と、該燃料を消費するガス
タービン系を、燃料ガス圧縮機151の運転方法によっ
て制御でき、例えば、燃料ガス窒素混合器154の容量を
膨大にすれば、燃料系と発電系の運転を独立に近く形で
行うことが可能になり、部分負荷時の運用性を向上でき
る効果がある。本発明の他の実施例を図6により説明す
る。図6の実施例が図1の実施例と異なる点は、タービ
ン冷却空気管路111をガスタービン圧縮機1の吐出部
より接続することをやめたことである。また、空気分離
装置10に空気を供給する空気圧縮機12を、中間冷却
器163を備えた複数段の構造にしている。ここでは、
空気圧縮機低圧段161出口に中間冷却器163を設置
し中間冷却器163出口からは空気分離装置10に配管
を接続すると同時に、中間冷却器163出口からは空気
圧縮機高圧段162へタービン冷却管路111を接続し
ている。空気圧縮機高圧段162から中間冷却器163
を通り空気分離装置10に供給された空気は図1の実施
例と同様にして酸素と窒素に分離され、該酸素及び窒素
は図1の実施例と同様に処理される。異なるのはガスタ
ービン高温部冷却用の空気で、ガスタービン冷却用の空
気は、空気圧縮機低圧段161で昇圧され中間冷却器1
63で冷却され、さらに空気圧縮機高圧段162で昇圧
された空気がタービン冷却管路111を通じてタービン
冷却空気冷却器114を通った後ガスタービン3高温部
に供給される。本実施例では、ガスタービンの冷却空気
系をガスタービンと独立に計画し、運転することがで
き、ガスタービンの冷却空気の流量,温度,圧力を運転
条件に対して最適にすることができる効果がある。本発
明の他の実施例を図7により説明する。図7の実施例が
図1の実施例と異なる点は、空気分離装置10から燃焼
器2へ接続される窒素配管と燃料ガス供給管112が接
続される部分に触媒燃焼器171を設置した点である。
空気分離装置10では、厳密には、100%の酸素と1
00%の窒素に分離されるわけではなく酸素中に微量の
窒素が含まれるし、窒素中にも微量の酸素が含まれる。
したがって、完全な安全性を確保するためには、該窒素
ガスと該燃料ガスが混合する時点で該窒素ガス中の酸素
を除去することが必要になる。触媒燃焼器171内には
燃焼触媒が設置されているため、空気分離装置10が異
常時を生じ窒素ガス中の酸素ガス濃度が上昇するような
場合であっても、該窒素ガスと該燃料ガスの混合時点
で、燃焼触媒によって酸素ガスは燃料と反応して燃焼し
てしまい、爆発等の異常事態が生じることを防止でき
る。触媒燃焼器171内における燃焼は燃焼器2に供給
される燃料ガスの温度を上昇させるだけで、最終的には
燃焼器2へ供給されるだけで損失にはならない。本発明
の他の実施例を図8により説明する。図8の実施例が図
1の実施例と異なる点は、燃料ガス供給管112とター
ビン冷却空気冷却器114間の窒素ガス供給配管に窒素
ガス制御弁制御装置182を備えた窒素ガス制御弁18
1を設置し、燃料ガス供給管112上に燃料ガス発熱量
測定器183を設置した点である。石炭ガス化炉5で発
生する燃料ガスの発熱量は石炭の種類が変われば変化す
るだけでなく、負荷の状態などによっても変化する。特
に石炭ガス化複合発電プラントの負荷変化時には空気分
離装置10の運転もアンバランス状態となるため石炭ガ
ス化炉5に供給される酸素ガス量も所定の量とはならず
発生する燃料ガスの発熱量は変化する。この発熱量の変
化は一定の発熱量で供給される燃料を前提にして考えて
あるガスタービンの制御を困難にする。特に、発熱量が
異常に上昇した場合には燃焼器2内での温度が上昇しガ
スタービン翼を焼損することとなる。本実施例では、燃
料ガス供給管112上に設置された燃料ガス発熱量測定
器183で発熱量の変化を検知し、その信号を窒素ガス
制御弁制御装置182に送り、窒素ガス制御弁181を
制御し、燃料ガスに混合する窒素ガス量を制御し、燃焼
器2に供給される燃料ガスの発熱量を制御できる効果が
ある。本発明の他の実施例を図9により説明する。図9
の実施例が図1の実施例と異なる点は、窒素ガス圧縮機
113と燃料ガス供給管112間の窒素ガス供給配管を
2系統にしたことである。第一の系統は窒素ガス圧縮機
113と燃料ガス供給管112を直接に接続し、第二の
系統は窒素ガス圧縮機113から窒素ガスバイパス制御
弁191を経由してタービン冷却空気冷却器114を通
って燃料ガス供給管112に接続される。ガスタービン
3内の温度は運転状態や負荷によって変化するため、運
転状態に対応した最適な冷却を行うことが望ましいが、
従来のガスタービンでは、安全のために必要以上の冷却
空気量を流している。これは、冷却に最適な冷却空気の
量や、温度,圧力が検知できたとしても、制御する手段
がなかったためである。本実施例では、ガスタービン3
の状態に対応して窒素ガスバイパス制御弁191を制御
することによってタービン冷却空気冷却器114に供給
される窒素量を変化させタービン冷却空気冷却器114
内での熱交換量を変化させることによって、ガスタービ
ン3に供給される冷却空気温度を変え、最適な冷却空気
温度を得ることができる効果がある。本発明の他の実施
例を図10により説明する。図10の実施例が図6の実
施例と異なる点は、窒素ガス圧縮機113と燃料ガス供
給管112間の窒素ガス供給配管を2系統にしたことで
ある。第一の系統は窒素ガス圧縮機113と燃料ガス供
給管112を直接に接続し、第二の系統は窒素ガス圧縮
機113から窒素ガスバイパス制御弁191を経由して
タービン冷却空気冷却器114を通って燃料ガス供給管
112に接続される。また、空気圧縮機低圧段161と
空気圧縮機高圧段162は別系統の駆動装置で駆動さ
れ、中間冷却器163と空気圧縮機高圧段162の管路
には冷却空気制御弁201を設置してある。この実施例
では、図9で示した実施例と同様な効果を目的としてお
り、図9の実施例で示した窒素ガスバイパス制御弁19
1を用いた冷却空気温度の制御に加え、冷却空気制御弁
201及び空気圧縮機高圧段162を制御することによ
って冷却空気の量及び圧力の制御ができる効果がある。
An embodiment of the present invention will be described below with reference to FIG. The gas turbine device includes an air compressor 1, a combustor 2, a gas turbine 3, and a gas turbine generator 4.
From the outlet of the air compressor 1, a turbine cooling line 111 is provided in the gas turbine high-temperature section.
A turbine cooling air cooler 114 is provided on 11. An oxygen piping system is connected to the coal gasification furnace 5 from the air separation device 10 in addition to the coal supply system 52, and an oxygen compressor 11 is installed in the system. The air pipe from the air compressor 12 is connected to the air separation device 10.
The nitrogen pipe from the air separation device 10 is connected to the fuel gas supply pipe 112 after passing through the nitrogen gas compressor 113 and the turbine cooling air cooler 114. From the outlet of the gasification furnace 5, a crude fuel gas pipe 53 is connected to the crude fuel gas heat recovery boiler 6, and an evaporator 38 is installed in the gasification furnace 5, and the crude fuel gas heat recovery boiler 6 also evaporates. A heater 39, an economizer 36, and a superheater 40 are provided. The pipe from the outlet of the crude fuel gas heat recovery boiler 40 passes through the gas-gas heat exchanger 7 and the gas purification device 8
Connected to The pipe from the gas purification device 8 is again gas =
The gas turbine is connected to the combustor 2 of the gas turbine device through the gas heat exchanger 7 and the fuel gas supply pipe 112. A pipe from the gas purification device 8 to the sulfur recovery device 9 is also connected. An exhaust duct of the gas turbine 3 is connected to an exhaust heat recovery boiler 14. In the exhaust heat recovery boiler 14, the low pressure economizer 30, the low pressure drum 31, the low pressure evaporator 32, the high pressure economizer 33, the high pressure drum 34, the high pressure evaporator 35, the superheater 45, the reheater 46, and the pressure pump 23 are provided. is set up.
The steam turbine system includes a high-pressure steam turbine 15, a reheat steam turbine 16, a low-pressure turbine 17, and a steam turbine generator 1.
8, a condenser 19 and a water supply pump 20. A water supply line 57 from the condenser 19 is connected to the low-pressure economizer 30 in the exhaust heat recovery boiler 14 through the water supply pump 20. The outlet of the low-pressure economizer 30 is connected to the low-pressure drum 31 and also to the pressurizing pump 23 at the same time. The piping at the outlet of the pressure pump 23 is connected to a high-pressure economizer 33 and connected to a high-pressure drum 34. Further, a pipe is provided from the outlet of the pressure pump 23 to the economizer 36 of the crude fuel gas heat recovery boiler 6. The low-pressure drum 31 has a low-pressure evaporator 32, and the high-pressure drum 34 has a high-pressure evaporator 35. The high-pressure drum 34 is connected to a superheater 45, and a pipe from the superheater 40 of the crude fuel gas heat recovery boiler 6 is connected in the middle of the superheater. The outlet of the economizer 36 of the crude fuel gas heat recovery boiler 6 is connected to a high-pressure drum 37, which is connected to an evaporator 38 in the gasification furnace 5 and an evaporator 39 of the crude fuel gas heat recovery boiler 6. At the same time, it is connected to the superheater 40. The pipe from the superheater 45 in the exhaust heat recovery boiler 14 is connected to the high pressure steam turbine 15, and the pipe is connected from the outlet of the high pressure steam turbine 15 to the reheater 46 in the exhaust heat recovery boiler 14. Further, a pipe from the low-pressure drum 31 is also connected to the pipe. A pipe is connected from the outlet of the reheater 46 to the reheat steam turbine 16, a pipe is connected from the outlet of the reheat steam turbine 16 to the low-pressure turbine 17, and a pipe is connected to the condenser 19 from the outlet of the low-pressure steam turbine 17. Is connected. The steam turbine generator 18 is connected to the high-pressure steam turbine 15, the reheat steam turbine 16, and the low-pressure steam turbine 17. Air compressed by the air compressor 12 to about 15ata is supplied to the air separation device 10. The air compressor 12 is generally a compressor with an intercooler for reducing compression power. This high-pressure air expands in the air separation device 10 and is separated into oxygen and nitrogen. At the outlet of the air separation device 10, oxygen and nitrogen at 10 at, 20 ° C. are obtained. Oxygen is 35 at by the oxygen compressor 11
After being pressurized to about a, coal gasifier 5
Supplied to In the gasification furnace 5, the coal supplied from the coal supply system 52 is gasified by oxygen to produce a crude gas. Since this crude gas has a high temperature, it is sent to the crude fuel gas heat recovery boiler 6 and the high pressure water supplied from the pressure pump 23 of the exhaust heat recovery boiler 14 is heated by the economizer 36 in the boiler 6 and sent to the drum 37. , An evaporator 39 and an evaporator 38 of the gasification furnace, and further superheated by a superheater 40. The crude gas leaving the crude fuel gas heat recovery boiler 6 enters the gas-gas heat exchanger 7, heats the purified fuel gas leaving the gas purification device 8, and enters the gas purification device 8. In the gas purifier, impurities in the crude gas, particularly sulfides containing sulfur, are removed. The sulfur recovered by the gas purification device 8 is recovered by the sulfur recovery device 9. The purified fuel gas leaving the gas purification device 8 enters the gas-gas heat exchanger 7 and is heated and thereafter supplied to the gas turbine combustor 2 through the fuel gas supply pipe 112 and burned. The high-temperature combustion gas leaving the combustor 2 is supplied to a gas turbine 3 and expanded to generate power. The gas turbine 3 drives the air compressor 1 and the gas turbine generator 4. Combustion gas emitted from gas turbine 5
5 is supplied to an exhaust heat recovery boiler 14. In the exhaust heat recovery boiler 14, water supplied from the condenser 19 by the water supply pump 20 is supplied to the low-pressure economizer 30 through the water supply pipe 57, and the low-pressure drum 31 and the low-pressure evaporator 32 are provided in the exhaust heat recovery boiler 14. , High-pressure economizer 33, high-pressure drum 34, high-pressure evaporator 35, superheater 45, heat, evaporate, and superheat, and supply superheated steam to high-pressure steam turbine 15. At the outlet of the low-pressure economizer 30, the pressure is increased by the pressurizing pump 23, and the high-pressure water is sent to the high-pressure economizer 33 and the economizer 36 of the crude fuel gas heat recovery boiler 6. In the middle of the superheater 46, superheated steam generated in the crude fuel gas heat recovery boiler 6 is mixed. The return steam from the high-pressure steam turbine 15 is mixed with the steam generated from the low-pressure drum 31, sent to the reheater 46, heated again, and sent to the reheat steam turbine 16 and the low-pressure steam turbine 17. The power generated by each turbine is the steam turbine generator 1
8 is driven. The air compressor 1 takes in the air 50 from the atmosphere, raises the pressure, and sends it to the combustor 2. For example, at a pressure ratio of about 15, the air temperature at the compressor outlet reaches about 400 ° C. The air for cooling the high temperature part of the gas turbine 3 passes through a turbine cooling line 111 from the compressor 1 outlet, and the turbine cooling air cooler 11
4 is supplied. Nitrogen gas is supplied to the turbine cooling air cooler 114 from the air separation device 10 through the nitrogen gas compressor 113. The nitrogen gas pressure at the outlet of the air separation device 10 is about 10 ata, and is 25 ata for supplying to the fuel gas supply pipe 112 for supplying to the gas turbine combustor 2.
The pressure ratio required for the pressure increase is about 2.5, the nitrogen temperature at the inlet of the turbine cooling air cooler 114 is about 110 ° C., and the turbine cooling air temperature at the outlet of the turbine cooling air cooler 114 is Assuming that the temperature efficiency in the turbine cooling air cooler 114 is 80%, the cooling air temperature can be reduced to about 170 ° C., and therefore, the amount of air required for cooling can be reduced. The sensible heat of the cooling air is also recovered as nitrogen gas, and the nitrogen gas is mixed with the fuel gas in the fuel gas supply pipe 112 and supplied to the gas turbine combustor 2, so that there is no loss of cooling air cooling heat. According to the present embodiment, the fuel gas having a calorific value of medium calorie generated by the coal gasification of the oxygen oxidation is reduced to about the coal gasification fuel gas of the air oxidation by mixing the nitrogen gas generated by the air separation device 10. Therefore, there is an effect that thermal NOx generated during combustion in the gas turbine combustor 2 can be reduced. Another embodiment of the present invention will be described with reference to FIG. 2 is different from the embodiment of FIG. 1 in that a bleed pipe 122 is installed from the outlet of the air compressor 1 to the air separation device 10, and a bleed air cooler 123 and feed water heating are provided on the compressor bleed pipe 122. This is the point that the cooler 124 and the air cooler 125 are installed, and the turbine cooling air line 121 is provided so as to connect the space between the air cooler 125 and the air separation device 10 and the high temperature portion of the gas turbine. A nitrogen pipe from the air separation device 10 is connected to a turbine cooling air pipe 121 through a nitrogen gas compressor 113 and a bleed air cooler 123. A pipe from the feed water pump 20 is connected to a crude gas heat recovery boiler economizer 36 of the crude gas heat recovery boiler 6 via a feed water heater 124 and a pressure pump 126. The bleed air exiting the compressor 1 passes through the compressor bleed pipe 122, enters the bleed air cooler 123, and is cooled by nitrogen gas from the air separator 10. The cooled nitrogen gas is mixed with the fuel gas in the fuel gas supply pipe 112 and supplied to the combustor 2. The bleed air cooled by the bleed air cooler 123 is further cooled by water supplied from the water supply pump 20 by the water heater 124. The pressure of the feed water is increased by the pressurizing pump 126 and then supplied to the crude gas heat recovery boiler economizer 36 of the crude gas heat recovery boiler 6.
The bleed air exiting the feedwater heater 124 is further supplied to the air cooler 1
At 25, the temperature of the cooling water is lowered to near the temperature, and a part of the cooling water is supplied to the gas turbine high-temperature cooling section through the turbine cooling air line 121 as gas turbine cooling air. The remaining air is sent to an air separation unit 10 to separate oxygen for coal gasification. The nitrogen gas from the air separation device 10 is pressurized by the nitrogen gas compressor 113 to a pressure that can be supplied to the combustor 2. According to the present embodiment, the temperature of the turbine cooling air can be reduced to a temperature close to the cooling water temperature as compared with the embodiment of FIG. 1, so that the cooling air amount can be further reduced. Another embodiment of the present invention will be described with reference to FIG. The embodiment of FIG. 3 differs from the embodiment of FIG. 2 in that a boost compressor 131 is installed at an outlet of an air cooler 125 provided in a compressor bleed pipe 122. Air cooler 1
The bleed air whose temperature has been sufficiently lowered at 25 is supplied to the boost compressor 13.
After the pressure is increased at 1, the gas is supplied to the gas turbine high-temperature section through the air separation device 10 and the turbine cooling air line 121.
When the gas turbine is under partial load, the operating pressure decreases to reduce the turbine inlet temperature. Therefore, in order to keep the operating pressure of the air separation device 10 or the coal gasifier 5 constant even at the time of partial load, a means for correcting the bleed air pressure at the compressor outlet that decreases with the partial load is required. Using the boost compressor 131, the boost compressor 13
(1) It is possible to keep the outlet pressure constant regardless of the partial load of the gas turbine.
0 and the operation of the coal gasifier 5 can be easily controlled. Further, since the pressure is increased by the boost compressor 131, the pressure of the gas turbine high-temperature section cooling air can always be kept higher than the compressor 1 discharge pressure.
In order to enhance the cooling efficiency, it is possible to adopt a cooling blade having a complicated structure and an increase in pressure loss, thereby providing flexibility in a cooling structure, a cooling air passage, a cooling method, etc. of a gas turbine high-temperature part, This has the effect of ensuring cooling reliability. Another embodiment of the present invention will be described with reference to FIG. The embodiment of FIG. 4 differs from the embodiment of FIG. 1 in that a cooling air mixer 1 is provided instead of a turbine cooling air cooler 114 provided in a turbine cooling line 111 installed at the outlet of the compressor 1.
41 is installed in the turbine cooling line 111.
The low-temperature nitrogen gas discharged from the air separation device 10 is pressurized by the nitrogen gas compressor 113 and then mixed with the cooling air extracted from the outlet of the compressor 1 by the cooling air mixer 141 on the turbine cooling line 111. This mixing can lower the temperature of the mixed gas after mixing. Further, since the flow rate of the cooling gas can be increased by mixing the nitrogen gas, there is an effect that the amount of the cooling air extracted from the air discharged from the compressor 1 can be substantially reduced. Another embodiment of the present invention will be described with reference to FIG. The difference between the embodiment of FIG. 5 and the embodiment of FIG. 1 is that the oxygen compressor 11 installed in the oxygen gas supply line to the coal gasification furnace 5 is removed from the air separation device 10, and the air separation device 10 Installing an oxygen supply pipe 152 between the coal gasifiers 5, and
On the nitrogen gas pipe from the air separation device 10 to the gas turbine combustor 2, the air separation device 10 and the fuel gas compressor 151
A fuel gas / nitrogen mixer 154 is provided between the
That is, the nitrogen supply pipe 153 from zero and the fuel gas supply pipe 112 from the gas-gas heat exchanger 7 are connected by a fuel gas nitrogen mixer 154. In this embodiment, the pressure of the oxygen gas supplied to the coal gasifier 5 from the air separation device 10 through the oxygen supply pipe 152 in the coal gasifier 5 is set. The gasified fuel gas is supplied into the fuel gas nitrogen mixer 154 through the fuel gas supply pipe 112, and is mixed with the nitrogen gas supplied from the air separation device 10 through the nitrogen supply pipe 153. After the cooling air that has been pressurized by the compressor 151 and supplied to the turbine cooling air cooler 114 and passed through the turbine cooling pipe 111 is cooled, it is supplied to the combustor 2 as fuel. According to the present embodiment, the fuel supply system including the air separation device 10, the coal gasifier 5, the crude gas heat recovery boiler 6, and the like, and the gas turbine system that consumes the fuel are combined with the fuel gas compressor 151. It can be controlled by the operation method.For example, if the capacity of the fuel gas nitrogen mixer 154 is enlarged, the operation of the fuel system and the power generation system can be performed almost independently, improving the operability under partial load. There is an effect that can be done. Another embodiment of the present invention will be described with reference to FIG. The embodiment of FIG. 6 differs from the embodiment of FIG. 1 in that the connection of the turbine cooling air line 111 from the discharge portion of the gas turbine compressor 1 is stopped. The air compressor 12 that supplies air to the air separation device 10 has a multi-stage structure including an intercooler 163. here,
An intercooler 163 is installed at the outlet of the air compressor low pressure stage 161, and a pipe is connected to the air separation device 10 from the outlet of the intercooler 163, and at the same time, a turbine cooling pipe is connected to the air compressor high pressure stage 162 from the outlet of the intercooler 163. The road 111 is connected. Air compressor high pressure stage 162 to intercooler 163
The air supplied to the air separation apparatus 10 through the air is separated into oxygen and nitrogen in the same manner as in the embodiment of FIG. 1, and the oxygen and nitrogen are treated in the same manner as in the embodiment of FIG. The difference is the air for cooling the gas turbine high-temperature section, and the air for cooling the gas turbine is pressurized in the air compressor low-pressure stage 161 and intercooled.
The air cooled at 63 and further pressurized at the high pressure stage 162 of the air compressor passes through a turbine cooling air cooler 114 through a turbine cooling line 111 and is supplied to a high temperature portion of the gas turbine 3. In this embodiment, the cooling air system of the gas turbine can be planned and operated independently of the gas turbine, and the flow rate, temperature and pressure of the cooling air of the gas turbine can be optimized for the operating conditions. There is. Another embodiment of the present invention will be described with reference to FIG. The embodiment of FIG. 7 differs from the embodiment of FIG. 1 in that a catalytic combustor 171 is provided at a portion where a nitrogen pipe connected from the air separation device 10 to the combustor 2 and a fuel gas supply pipe 112 are connected. It is.
Strictly speaking, in the air separation device 10, 100% oxygen and 1%
Oxygen contains not a small amount of nitrogen but a small amount of nitrogen, and also contains a small amount of oxygen.
Therefore, in order to ensure complete safety, it is necessary to remove oxygen in the nitrogen gas when the nitrogen gas and the fuel gas are mixed. Since a combustion catalyst is installed in the catalytic combustor 171, even when the air separation device 10 is abnormal and the oxygen gas concentration in the nitrogen gas increases, the nitrogen gas and the fuel gas At the time of mixing, it is possible to prevent the combustion catalyst from reacting with the fuel and burning the oxygen gas, thereby preventing an abnormal situation such as an explosion. Combustion in the catalytic combustor 171 only raises the temperature of the fuel gas supplied to the combustor 2, and is ultimately supplied only to the combustor 2 without any loss. Another embodiment of the present invention will be described with reference to FIG. The embodiment of FIG. 8 differs from the embodiment of FIG. 1 in that a nitrogen gas control valve 18 provided with a nitrogen gas control valve controller 182 in a nitrogen gas supply pipe between a fuel gas supply pipe 112 and a turbine cooling air cooler 114.
1 and the fuel gas calorific value measuring device 183 is installed on the fuel gas supply pipe 112. The calorific value of the fuel gas generated in the coal gasifier 5 changes not only when the type of coal changes, but also according to the load condition and the like. In particular, when the load of the integrated coal gasification combined cycle power plant changes, the operation of the air separation device 10 also becomes unbalanced, so that the amount of oxygen gas supplied to the coal gasification furnace 5 does not reach a predetermined amount, and the generated heat of the fuel gas is generated. The amount varies. This change in the calorific value makes it difficult to control the gas turbine, assuming that the fuel is supplied at a constant calorific value. In particular, when the calorific value rises abnormally, the temperature inside the combustor 2 rises, and the gas turbine blades are burned. In the present embodiment, a change in the calorific value is detected by the fuel gas calorific value measuring device 183 installed on the fuel gas supply pipe 112, and a signal thereof is sent to the nitrogen gas control valve control device 182, and the nitrogen gas control valve 181 is operated. Thus, there is an effect that the amount of nitrogen gas mixed with the fuel gas is controlled, and the calorific value of the fuel gas supplied to the combustor 2 can be controlled. Another embodiment of the present invention will be described with reference to FIG. FIG.
1 is different from the embodiment of FIG. 1 in that the nitrogen gas supply pipe between the nitrogen gas compressor 113 and the fuel gas supply pipe 112 is divided into two systems. The first system directly connects the nitrogen gas compressor 113 and the fuel gas supply pipe 112, and the second system connects the turbine cooling air cooler 114 from the nitrogen gas compressor 113 via the nitrogen gas bypass control valve 191. Through the fuel gas supply pipe 112. Since the temperature inside the gas turbine 3 changes depending on the operating state and the load, it is desirable to perform optimal cooling corresponding to the operating state.
In a conventional gas turbine, an excessive amount of cooling air is flown for safety. This is because there is no means for controlling even if the optimum amount of cooling air, temperature and pressure can be detected for cooling. In this embodiment, the gas turbine 3
The amount of nitrogen supplied to the turbine cooling air cooler 114 is changed by controlling the nitrogen gas bypass control valve 191 according to the state of the turbine cooling air cooler 114.
By changing the amount of heat exchange in the inside, the temperature of the cooling air supplied to the gas turbine 3 is changed, and there is an effect that an optimum cooling air temperature can be obtained. Another embodiment of the present invention will be described with reference to FIG. The embodiment of FIG. 10 differs from the embodiment of FIG. 6 in that the nitrogen gas supply pipe between the nitrogen gas compressor 113 and the fuel gas supply pipe 112 is divided into two systems. The first system directly connects the nitrogen gas compressor 113 and the fuel gas supply pipe 112, and the second system connects the turbine cooling air cooler 114 from the nitrogen gas compressor 113 via the nitrogen gas bypass control valve 191. Through the fuel gas supply pipe 112. Further, the air compressor low-pressure stage 161 and the air compressor high-pressure stage 162 are driven by separate driving devices. is there. In this embodiment, the same effect as that of the embodiment shown in FIG. 9 is intended, and the nitrogen gas bypass control valve 19 shown in the embodiment of FIG.
In addition to the control of the cooling air temperature using No. 1, by controlling the cooling air control valve 201 and the high pressure stage 162 of the air compressor, the amount and pressure of the cooling air can be controlled.

【発明の効果】本発明によれば、ガスタービン冷却空気
温度を低くでき、そのためガスタービンの冷却空気量を
低減てきるため酸素酸化方式石炭ガス化炉を用いた石炭
ガス化発電プラントの効率を向上する効果がある。以
下、本発明の効果について、より定量的な説明をする。
ガスタービンでは圧縮機出口よりガスタービン翼等ガス
タービン高温部冷却用の空気を抽気する、冷却空気管路
は圧縮機出口からガスタービン高温冷却部に接続されて
おり、管路の途中にタービン冷却空気冷却器を設置して
おく。空気分離装置で分離した酸素は石炭ガス化炉に供
給されて石炭をガス化するために使用されるが、低温の
窒素は窒素圧縮機で昇圧された後に、タービン冷却空気
冷却器に供給され、タービン冷却空気冷却器内でガスタ
ービン冷却空気を冷却する。窒素はタービン冷却空気冷
却器を出た後ガスタービンの燃焼器に供給されるため、
ガスタービン冷却空気を冷却した熱はそのままガスター
ビン内に回収することができる。ガスタービン冷却空気
を冷却することによって、ガスタービン高温部の冷却に
必要とされる冷却空気の量は、ガスタービンの空気圧縮
機出口より抽気した空気を用いた場合より、少なくする
ことができるためガスタービンの出力は増加する。ター
ビン冷却空気冷却器で冷却空気との熱交換によって温度
ガスタービン冷却空気の持っていた顕熱も有効にガス化
炉系に回収させることができるため、石炭ガス化発電プ
ラントの効率を向上させることができる。ガスタービン
翼の冷却効率と冷却に必要な冷却空気量の一般的関係を
前記の米国機械学会論文集第106編第4号(1984
年12月)、第756頁から第764頁(Trans.ASME,V
ol.106,No.4,Oct.1984,PP756−764)を参照して説明す
る。図11で横軸の冷却空気量Φc は、必要とされる冷
却空気流量Gc (kg/s)とガスタービン入口流量G
(kg/s)の比で、縦軸の冷却効率ηは、ガスタービ
ン入口ガス温度Tg(℃),ガスタービン翼材料温度Tb
(℃),ガスタービン冷却空気温度Tc(℃)を用い
て、 η=(Tg−Tb)/(Tg−Tc) で定義される。冷却効率ηと冷却空気量Φc の関係を表
す曲線は、冷却翼の冷却構造によって決まるため、採用
するガスタービン翼材料の許容温度Tbと冷却空気温度
Tcが決まれば、ガスタービン入口ガス温度Tg に対す
る必要冷却空気量を求めることができる。例えば、圧縮
機圧力比15のガスタービンのデータ及び、図11の 1
st STAGE NOZZLE & BUCKETの曲線を用いて必要な冷却空
気量を計算すると、以下のようになる。 ガスタービン入口ガス温度 Tg=1300(℃) ガスタービン翼材料の許容温度 Tb= 800(℃) 冷却空気温度 Tc= 400(℃) η=(1300−800)/(1300−400)=0.5
555 図11の 1 st STAGE NOZZLE & BUCKET の曲線を用い
てη=0.5555から冷却空気量Φc を求めると、Φc
=0.0491となり、必要な冷却空気流量は、4.91
% となる。空気分離装置10への供給空気圧力を15a
ta とすると、空気分離装置10では圧力約10ata 、
温度20℃の窒素が発生する。この窒素をガスタービン
燃焼器に供給するため窒素圧縮機で25ata まで昇圧す
ると、圧縮機出口温度は110℃になり、タービン冷却空
気冷却器114の温度効率を80%と仮定すれば、冷却
空気の温度は168℃まで低下させることができる。こ
の場合の必要冷却空気量は、 η=(1300−800)/(1300−168)=0.4169 Φc=0.0245 となり、4.91−2.45=2.46(%)の冷却空気
量を低減させることとなる。冷却空気量の低減によるガ
スタービン性能及び石炭ガス化発電プラント性能の向上
率を一般的に示すには種々の仮定すべき条件があり難し
いが、一般の空気酸化石炭ガス化発電プラントにおいて
は、ガスタービンの発電出力とガスタービンの排熱及び
ガス化炉の排熱で発生した蒸気によって駆動される蒸気
タービンの発電出力の割合は、ほぼ1:1で、ガスター
ビンにおける圧縮機駆動力、ガスタービン出力、発電出
力の割合は、ほぼ1:2:1であることから、例えば冷
却空気量を1%の減少は圧縮機駆動力を1%低下させガ
スタービンの出力を1%増加させ、石炭ガス化発電プラ
ントの出力は0.5% 増加することになり、石炭ガス化
発電プラントの送電端効率を45%とすれば絶対値で
0.22% 効率が向上する。この場合には、冷却空気の
顕熱をできるだけガスタービンのトッピングサイクルで
あるガス化炉系回収するようにすることが前提条件であ
る。また、上記の計算では一つの翼列で2.46 %の冷
却空気量が減少できることを示したが、実際のガスター
ビンでは翼列は6つ以上あり冷却空気量の減少効果はこ
こで仮定した以上に大きくなることは明かである。
According to the present invention, the cooling air temperature of the gas turbine can be lowered, and the cooling air amount of the gas turbine can be reduced. Therefore, the efficiency of the coal gasification power generation plant using the oxygen oxidation type coal gasification furnace can be improved. There is an effect of improving. Hereinafter, the effects of the present invention will be described more quantitatively.
In a gas turbine, air for cooling the gas turbine high-temperature part such as gas turbine blades is extracted from the compressor outlet. The cooling air pipe is connected from the compressor outlet to the gas turbine high-temperature cooling part. Install an air cooler. Oxygen separated by the air separation device is supplied to a coal gasifier and used to gasify coal, but low-temperature nitrogen is supplied to a turbine cooling air cooler after being pressurized by a nitrogen compressor, The gas turbine cooling air is cooled in the turbine cooling air cooler. Since nitrogen is supplied to the gas turbine combustor after leaving the turbine cooling air cooler,
The heat of cooling the gas turbine cooling air can be directly recovered in the gas turbine. By cooling the gas turbine cooling air, the amount of cooling air required for cooling the gas turbine high-temperature portion can be made smaller than when using air extracted from the air compressor outlet of the gas turbine. The power of the gas turbine increases. Improve the efficiency of a coal gasification power plant because the sensible heat of the temperature gas turbine cooling air can be effectively recovered by the gasification furnace system by exchanging heat with the cooling air in the turbine cooling air cooler. Can be. The general relationship between the cooling efficiency of gas turbine blades and the amount of cooling air required for cooling is described in the Transactions of the American Society of Mechanical Engineers, Vol. 106, No. 4 (1984).
December), pages 756 to 764 (Trans.ASME, V
ol. 106, No. 4, Oct. 1984, PP756-764). In FIG. 11, the cooling air amount Φc on the horizontal axis indicates the required cooling air flow rate Gc (kg / s) and the gas turbine inlet flow rate G
(Kg / s), the cooling efficiency η on the vertical axis is the gas turbine inlet gas temperature Tg (° C.), the gas turbine blade material temperature Tb.
(° C.), and using the gas turbine cooling air temperature Tc (° C.), η = (Tg−Tb) / (Tg−Tc). The curve representing the relationship between the cooling efficiency η and the cooling air amount Φc is determined by the cooling structure of the cooling blades. The required amount of cooling air can be determined. For example, data of a gas turbine with a compressor pressure ratio of 15 and 1 in FIG.
The required cooling air amount is calculated using the curve of st STAGE NOZZLE & BUCKET as follows. Gas turbine inlet gas temperature Tg = 1300 (° C) Allowable temperature of gas turbine blade material Tb = 800 (° C) Cooling air temperature Tc = 400 (° C) η = (1300-800) / (1300-400) = 0.5
555 Using the curve of 1st STAGE NOZZLE & BUCKET in FIG. 11, the cooling air amount Φc is obtained from η = 0.5555.
= 0.0491 and the required cooling air flow rate is 4.91
%. The supply air pressure to the air separation device 10 is set to 15a
Assuming that ta, the air separation device 10 has a pressure of about 10ata,
Nitrogen at a temperature of 20 ° C. is generated. When the pressure of the nitrogen is increased to 25 at with a nitrogen compressor to supply this nitrogen to the gas turbine combustor, the compressor outlet temperature becomes 110 ° C., and assuming that the temperature efficiency of the turbine cooling air cooler 114 is 80%, the cooling air is cooled. The temperature can be reduced to 168 ° C. The required amount of cooling air in this case is as follows: η = (1300-800) / (1300-168) = 0.4169 Φc = 0.0245, and the cooling air of 4.91-2.45 = 2.46 (%) The amount will be reduced. Although it is difficult to generally show the improvement rate of gas turbine performance and coal gasification power plant performance by reducing the amount of cooling air, there are various conditions to be assumed, but in general air oxidation coal gasification power plants, The ratio of the power generation output of the turbine to the exhaust heat of the gas turbine and the power generation output of the steam turbine driven by the steam generated by the exhaust heat of the gasifier is approximately 1: 1. Since the ratio of the output and the power generation is approximately 1: 2: 1, for example, a decrease in the cooling air amount by 1% decreases the compressor driving force by 1%, increases the output of the gas turbine by 1%, The output of the gasification power plant will increase by 0.5%, and if the transmission end efficiency of the coal gasification power plant is set to 45%, the absolute value will increase by 0.22%. In this case, it is a precondition that the sensible heat of the cooling air is recovered as much as possible in the gasification furnace system, which is the topping cycle of the gas turbine. Although the above calculation shows that one blade row can reduce the cooling air amount by 2.46%, the actual gas turbine has six or more blade rows and the effect of reducing the cooling air amount is assumed here. Obviously, it will be larger.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例。FIG. 1 shows an embodiment of the present invention.

【図2】本発明の一実施例。FIG. 2 shows an embodiment of the present invention.

【図3】本発明の一実施例。FIG. 3 shows an embodiment of the present invention.

【図4】本発明の一実施例。FIG. 4 shows an embodiment of the present invention.

【図5】本発明の一実施例。FIG. 5 shows an embodiment of the present invention.

【図6】本発明の一実施例。FIG. 6 shows an embodiment of the present invention.

【図7】本発明の一実施例。FIG. 7 shows an embodiment of the present invention.

【図8】本発明の一実施例。FIG. 8 shows an embodiment of the present invention.

【図9】本発明の一実施例。FIG. 9 shows an embodiment of the present invention.

【図10】本発明の一実施例。FIG. 10 shows an embodiment of the present invention.

【図11】本発明の効果を示すためのデータ。FIG. 11 shows data showing the effect of the present invention.

【符号の説明】[Explanation of symbols]

1…圧縮機、2…燃焼器、3…ガスタービン、5…石炭
ガス化炉、10…空気分離装置、11…酸素圧縮機、1
2…空気圧縮機、111…タービン冷却空気管路、11
3…窒素ガス圧縮機、114…タービン冷却空気冷却
器、123…抽気空気冷却器、131…ブースト圧縮
機、141…冷却空気混合器、151…燃料ガス圧縮
機、171…触媒燃焼器、181…窒素ガス制御弁、1
91…窒素ガスバイパス弁。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Combustor, 3 ... Gas turbine, 5 ... Coal gasifier, 10 ... Air separation device, 11 ... Oxygen compressor, 1
2 ... air compressor, 111 ... turbine cooling air line, 11
3 ... nitrogen gas compressor, 114 ... turbine cooling air cooler, 123 ... extraction air cooler, 131 ... boost compressor, 141 ... cooling air mixer, 151 ... fuel gas compressor, 171 ... catalyst combustor, 181 ... Nitrogen gas control valve, 1
91: nitrogen gas bypass valve.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野口 芳樹 茨城県日立市幸町三丁目1番1号 株式 会社 日立製作所 日立工場内 (72)発明者 佐々木 俊彦 茨城県日立市幸町三丁目1番1号 株式 会社 日立製作所 日立工場内 (56)参考文献 特開 昭57−83636(JP,A) 特開 昭60−22003(JP,A) 特開 昭59−229005(JP,A) 実開 昭57−168735(JP,U) (58)調査した分野(Int.Cl.6,DB名) F02C 7/18 F02C 3/28 F02C 3/30 F02C 7/141 F02C 6/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshiki Noguchi 3-1-1 Sachimachi, Hitachi, Ibaraki Pref. Hitachi, Ltd. Inside the Hitachi Plant (72) Inventor Toshihiko Sasaki 3-1-1, Sachimachi, Hitachi, Ibaraki No. 1 Hitachi, Ltd. Hitachi Plant (56) References JP-A-57-83636 (JP, A) JP-A-60-22003 (JP, A) JP-A-59-229005 (JP, A) 57-168735 (JP, U) (58) Fields investigated (Int. Cl. 6 , DB name) F02C 7/18 F02C 3/28 F02C 3/30 F02C 7/141 F02C 6/00

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】空気を導入し、窒素と酸素とに分離する空
気分離装置、該空気分離装置からの酸素と石炭とを導入
し、石炭をガス化しガス化燃料を得る石炭ガス化装置、
空気圧縮機と、燃焼器と、タービンと、発電機を備え、
圧縮空気と前記ガス化燃料を燃焼器に導き、燃焼ガスを
タービンに与えて発電機を駆動するガスタービン設備と
から構成される石炭ガス化発電プラントにおいて、 空気分離装置からの窒素を用いて空気圧縮機からの圧縮
空気の一部を冷却する空気冷却器、該空気圧縮機からの
冷却空気を前記タービンの翼冷却空気としてタービンに
与える手段とを備えたことを特徴とする石炭ガス化発電
プラント。
An air separation device for introducing air and separating it into nitrogen and oxygen, a coal gasification device for introducing oxygen and coal from the air separation device to gasify coal to obtain a gasified fuel,
Equipped with an air compressor, a combustor, a turbine, and a generator,
In a coal gasification power generation plant comprising compressed air and the gasified fuel guided to a combustor, and supplying combustion gas to a turbine to drive a generator, a gasification power plant comprising: A coal gasification power plant, comprising: an air cooler for cooling a part of compressed air from a compressor; and means for supplying cooling air from the air compressor to a turbine as blade cooling air for the turbine. .
【請求項2】空気を導入し、窒素と酸素とに分離する空
気分離装置、該空気分離装置からの酸素と石炭とを導入
し、石炭をガス化しガス化燃料を得る石炭ガス化装置、
空気圧縮機と、燃焼器と、タービンと、発電機を備え、
圧縮空気と前記ガス化燃料を燃焼器に導き、燃焼ガスを
タービンに与えて発電機を駆動するガスタービン設備と
から構成される石炭ガス化発電プラントにおいて、 空気分離装置からの窒素と空気圧縮機からの圧縮空気の
一部を混合する空気混合器、該空気混合器からの混合空
気を前記タービンの翼冷却空気としてタービンに与える
手段とを備えたことを特徴とする石炭ガス化発電プラン
ト。
2. An air separation device for introducing air and separating it into nitrogen and oxygen, a coal gasification device for introducing oxygen and coal from the air separation device to gasify coal to obtain a gasified fuel,
Equipped with an air compressor, a combustor, a turbine, and a generator,
A coal gasification power plant comprising compressed air and the gasified fuel introduced into a combustor and supplying combustion gas to a turbine to drive a generator, wherein a nitrogen gas from an air separation device and an air compressor And a means for supplying the mixed air from the air mixer to the turbine as blade cooling air for the turbine.
【請求項3】空気を導入し、窒素と酸素とに分離する空
気分離装置、該空気分離装置からの酸素と石炭とを導入
し、石炭をガス化しガス化燃料を得る石炭ガス化装置、
圧縮空気と前記ガス化燃料を燃焼器に導き、燃焼ガスを
タービンに与えて発電機を駆動するガスタービン設備と
から構成される石炭ガス化発電プラントにおいて、 空気分離装置からの窒素を用いて圧縮空気を冷却する空
気冷却器、該空気冷却器からの冷却空気を前記タービン
の翼冷却空気としてタービンに与える手段とを備えたこ
とを特徴とする石炭ガス化発電プラント。
3. An air separation device for introducing air and separating it into nitrogen and oxygen, a coal gasification device for introducing oxygen and coal from the air separation device to gasify coal and obtain gasified fuel,
In a coal gasification power plant, comprising compressed air and the gasified fuel guided to a combustor, and supplying combustion gas to a turbine to drive a generator, a gasification plant is compressed using nitrogen from an air separation device. A coal gasification power plant comprising: an air cooler for cooling air; and means for supplying cooling air from the air cooler to a turbine as blade cooling air for the turbine.
【請求項4】空気を導入し、窒素と酸素とに分離する空
気分離装置、該空気分離装置からの酸素と石炭とを導入
し、石炭をガス化しガス化燃料を得る石炭ガス化装置、
空気圧縮機と、燃焼器と、タービンと、発電機を備え、
圧縮空気と前記ガス化燃料を燃焼器に導き、燃焼ガスを
タービンに与えて発電機を駆動するガスタービン設備と
から構成される石炭ガス化発電プラントにおいて、 空気分離装置からの窒素を用いて空気圧縮機からの圧縮
空気の一部を冷却する空気冷却器、該空気圧縮機からの
冷却空気を前記タービンの翼冷却空気としてタービンに
与える手段、圧縮空気冷却後の窒素をガス化燃料ととも
に前記の燃焼器に導入する手段とを備えたことを特徴と
する石炭ガス化発電プラント。
4. An air separation device for introducing air and separating it into nitrogen and oxygen, a coal gasification device for introducing oxygen and coal from the air separation device to gasify coal to obtain a gasified fuel,
Equipped with an air compressor, a combustor, a turbine, and a generator,
In a coal gasification power generation plant comprising compressed air and the gasified fuel guided to a combustor, and supplying combustion gas to a turbine to drive a generator, a gasification power plant comprising: An air cooler for cooling a part of the compressed air from the compressor; a means for supplying cooling air from the air compressor to the turbine as blade cooling air for the turbine; Means for introducing into a combustor.
【請求項5】空気を導入し、窒素と酸素とに分離する空
気分離装置、該空気分離装置からの酸素と石炭とを導入
し、石炭をガス化しガス化燃料を得る石炭ガス化装置、
空気圧縮機と、燃焼器と、タービンと、発電機を備え、
圧縮空気と前記ガス化燃料を燃焼器に導き、燃焼ガスを
タービンに与えて発電機を駆動するガスタービン設備と
から構成される石炭ガス化発電プラントにおいて、 空気分離装置からの窒素とガス化燃料を混合する混合
器、該混合器からの混合空気でガスタービン設備の圧縮
空気を冷却する冷却器、冷却された圧縮空気を前記ター
ビンの翼冷却空気としてタービンに与える手段とを備え
たことを特徴とする石炭ガス化発電プラント。
5. An air separation device for introducing air and separating it into nitrogen and oxygen, a coal gasification device for introducing oxygen and coal from the air separation device to gasify coal to obtain a gasified fuel,
Equipped with an air compressor, a combustor, a turbine, and a generator,
A coal gasification power plant comprising compressed air and said gasified fuel to a combustor, and supplying combustion gas to a turbine to drive a generator; , A cooler for cooling the compressed air of the gas turbine equipment with the mixed air from the mixer, and means for supplying the cooled compressed air to the turbine as blade cooling air for the turbine. Coal gasification power plant.
【請求項6】空気を導入し、窒素と酸素とに分離する空
気分離装置、該空気分離装置からの酸素と石炭とを導入
し、石炭をガス化しガス化燃料を得る石炭ガス化装置、
圧縮空気と前記ガス化燃料を燃焼器に導き、燃焼ガスを
タービンに与えて発電機を駆動するガスタービン設備と
から構成される石炭ガス化発電プラントにおいて、 空気分離装置からの窒素を用いて圧縮空気を冷却する空
気冷却器、該空気冷却器からの冷却空気を前記タービン
の翼冷却空気としてタービンに与える手段、圧縮空気冷
却後の窒素をガス化燃料とともに前記の燃焼器に導入す
る手段とを備えたことを特徴とする石炭ガス化発電プラ
ント。
6. An air separation device for introducing air and separating it into nitrogen and oxygen, a coal gasification device for introducing oxygen and coal from the air separation device to gasify coal to obtain a gasified fuel,
In a coal gasification power plant, comprising compressed air and the gasified fuel guided to a combustor, and supplying combustion gas to a turbine to drive a generator, a gasification plant is compressed using nitrogen from an air separation device. An air cooler for cooling air, means for supplying cooling air from the air cooler to the turbine as blade cooling air for the turbine, and means for introducing nitrogen after compressed air cooling to the combustor together with gasified fuel. A coal gasification power plant comprising:
JP3173592A 1991-07-15 1991-07-15 Coal gasification power plant Expired - Fee Related JP2870232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3173592A JP2870232B2 (en) 1991-07-15 1991-07-15 Coal gasification power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3173592A JP2870232B2 (en) 1991-07-15 1991-07-15 Coal gasification power plant

Publications (2)

Publication Number Publication Date
JPH0518265A JPH0518265A (en) 1993-01-26
JP2870232B2 true JP2870232B2 (en) 1999-03-17

Family

ID=15963454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3173592A Expired - Fee Related JP2870232B2 (en) 1991-07-15 1991-07-15 Coal gasification power plant

Country Status (1)

Country Link
JP (1) JP2870232B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102562302A (en) * 2012-02-15 2012-07-11 武汉都市环保工程技术股份有限公司 Gas-steam combined cycle inert gas protection control system

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5555723A (en) * 1994-04-28 1996-09-17 Westinghouse Electric Corporation Ducting for an external gas turbine topping combustor
GB2335953A (en) * 1998-03-30 1999-10-06 Magnox Electric Plc Air extraction from a power generation turbine
JP4003553B2 (en) * 2002-06-26 2007-11-07 Jfeスチール株式会社 Power generation method and power generation facility using by-product gas
FR2858398B1 (en) * 2003-07-30 2005-12-02 Air Liquide METHOD AND INSTALLATION FOR SUPPLYING AN AIR SEPARATION UNIT USING A GAS TURBINE
JP4611373B2 (en) * 2005-01-26 2011-01-12 川崎重工業株式会社 Gas turbine equipment, fuel gas supply equipment, and fuel gas calorie increase suppressing method
US9109513B2 (en) 2008-10-01 2015-08-18 Mitsubishi Hitachi Power Systems, Ltd. Combined cycle electric power generation plant and heat exchanger
US8069672B2 (en) * 2008-12-22 2011-12-06 General Electric Company Method and systems for operating a combined cycle power plant
US8783036B2 (en) * 2010-11-04 2014-07-22 General Electric Company System for cooling syngas
JP6000148B2 (en) * 2013-01-31 2016-09-28 三菱重工業株式会社 Gasification combined power generation system and operation method of gasification combined power generation system
CN103388497B (en) * 2013-08-09 2015-05-20 中国能源建设集团广东省电力设计研究院 Preheating clean synthesis gas method and system for improving IGCC (integrated gasification combined cycle) power generation facility performances
JP6265535B2 (en) * 2014-03-24 2018-01-24 三菱日立パワーシステムズ株式会社 Feed water preheating device, gas turbine plant equipped with the same, and feed water preheating method
JP6033380B2 (en) * 2015-09-24 2016-11-30 三菱日立パワーシステムズ株式会社 Coal gasification combined power generation facility
JP6710618B2 (en) 2016-10-12 2020-06-17 三菱日立パワーシステムズ株式会社 Furnace wall, gasification furnace equipment, gasification combined cycle power generation equipment, and method of manufacturing furnace wall

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102562302A (en) * 2012-02-15 2012-07-11 武汉都市环保工程技术股份有限公司 Gas-steam combined cycle inert gas protection control system
CN102562302B (en) * 2012-02-15 2013-11-13 武汉都市环保工程技术股份有限公司 Gas-steam combined cycle inert gas protection control system

Also Published As

Publication number Publication date
JPH0518265A (en) 1993-01-26

Similar Documents

Publication Publication Date Title
KR100268611B1 (en) Combined cycle power plant and supplying method of coolant therof
US6824575B1 (en) Integrated coal gasification combined cycle power generator
JP2870232B2 (en) Coal gasification power plant
US6233940B1 (en) Dual-pressure stem injection partial-regeneration-cycle gas turbine system
US5581128A (en) Gas-turbine and steam-turbine based electric power generation system with an additional auxiliary steam turbine to compensate load fluctuations
US20070039468A1 (en) Method for operating a gas turbine and a gas turbine for implementing the method
JPH05248260A (en) Coal gasified compound power generating plant
US6314715B1 (en) Modified fuel gas turbo-expander for oxygen blown gasifiers and related method
CA2618030C (en) A method for operating a gas turbine and a gas turbine for implementing the method
JPH074210A (en) Steam-cooled gas turbine combined plant
JPS6232181A (en) Device for energy recovery from gas generated in regeneration tower of fluid catalytic cracking equipment
JPH1182057A (en) Gasification-integrated combined power plant
JP2000120445A (en) Coal gasification composite power generation system
JPH0586897A (en) Coal gasification complex power generation plant
JP2928678B2 (en) Pressurized fluidized bed plant and its operation method
JP2750784B2 (en) Waste heat recovery method
JP2001221058A (en) Gasification combined power generation plant
JPH09166002A (en) Combined cycle power generation plant
JPH08246813A (en) Operation method and device for coal gasification compound generation plant
JP3133034B2 (en) Combined cycle plant
JP2000130107A (en) Combined cycle power plant with gas turbine
KR100355309B1 (en) Integration Gasification Combined Cycle system using excess nitrogen from Air Separation Unit
JP3112072B2 (en) Pressurized fluidized bed plant and its operation method
JP3794724B2 (en) Gasification combined power generation facility
JPS63285230A (en) Coal gasifying type composite power plant

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080108

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080108

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100108

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110108

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees