JP2863645B2 - Feedwater flow control system for an exhaust gas reburning combined cycle power plant - Google Patents

Feedwater flow control system for an exhaust gas reburning combined cycle power plant

Info

Publication number
JP2863645B2
JP2863645B2 JP8864391A JP8864391A JP2863645B2 JP 2863645 B2 JP2863645 B2 JP 2863645B2 JP 8864391 A JP8864391 A JP 8864391A JP 8864391 A JP8864391 A JP 8864391A JP 2863645 B2 JP2863645 B2 JP 2863645B2
Authority
JP
Japan
Prior art keywords
exhaust gas
feed water
boiler
flow control
gas cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8864391A
Other languages
Japanese (ja)
Other versions
JPH04320702A (en
Inventor
林 正 昭 若
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8864391A priority Critical patent/JP2863645B2/en
Publication of JPH04320702A publication Critical patent/JPH04320702A/en
Application granted granted Critical
Publication of JP2863645B2 publication Critical patent/JP2863645B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、火力発電におけるガス
タービンと蒸気タービンプラントとを組合わせた排気再
燃式複合発電所のボイラへの給水流量制御装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for controlling the flow rate of water supplied to a boiler of a combined power generation plant of an exhaust gas reburning type combined with a gas turbine and a steam turbine plant in thermal power generation.

【0002】[0002]

【従来の技術】図3は、従来の排気再燃式複合発電所の
概略構成を示す系統図であって、ボイラ1で発生した高
圧・高温の蒸気は導管2を介して蒸気タービン3に導入
され、蒸気タービン3で仕事を行ないその蒸気タービン
3に連結されている発電機4によって動力が発生され
る。
2. Description of the Related Art FIG. 3 is a system diagram showing a schematic configuration of a conventional combined-cycle exhaust-reign power plant, in which high-pressure and high-temperature steam generated in a boiler 1 is introduced into a steam turbine 3 via a conduit 2. Work is performed by the steam turbine 3 and power is generated by a generator 4 connected to the steam turbine 3.

【0003】タービン3で仕事を行なった蒸気は、復水
器5で凝縮され、復水ポンプ6により低圧給水加熱器7
を経由して脱気器8に送られ、さらに給水ポンプ9によ
って加圧されて高圧給水加熱器10で加熱された後再び
ボイラ1に給水される。
[0003] The steam that has performed work in the turbine 3 is condensed in a condenser 5, and is condensed by a condensate pump 6 into a low-pressure feedwater heater 7.
The water is then sent to the deaerator 8, further pressurized by the water supply pump 9, heated by the high-pressure water heater 10, and then supplied to the boiler 1 again.

【0004】一方、コンプレッサ11で圧縮された空気
は燃焼器12に送給され、そこで燃料供給管13を経て
送られる燃料と燃焼し、その高温燃焼ガスがガスタービ
ン14に導入され、上記ガスタービン14が作動され発
電機15が駆動される。上記ガスタービン14で仕事を
行なったガスタービン排ガスは前記ボイラ1に導入され
て熱回収に利用されると共に、そのガスタービン排ガス
中に含まれる未燃焼酸素がボイラ1の燃焼用に使用され
る。
On the other hand, the air compressed by the compressor 11 is supplied to a combustor 12, where it combusts with fuel sent through a fuel supply pipe 13, and the high-temperature combustion gas is introduced into a gas turbine 14, where 14 is operated, and the generator 15 is driven. The gas turbine exhaust gas that has performed work in the gas turbine 14 is introduced into the boiler 1 and used for heat recovery, and unburned oxygen contained in the gas turbine exhaust gas is used for combustion of the boiler 1.

【0005】ところで、排気再燃式複合発電所において
は、ガスタービン発電と蒸気タービン発電との複合運転
によって高効率な運転を行うことを目的としており、こ
のためにガスタービンとボイラで発生する排ガスの排熱
を給水により可能な限り熱回収するようにしてある。
[0005] Meanwhile, in an exhaust-gas reburning combined cycle power plant, the purpose is to perform highly efficient operation by combined operation of gas turbine power generation and steam turbine power generation. Waste heat is recovered as much as possible by supplying water.

【0006】すなわち、前記高圧給水加熱器10と並列
に排ガスクーラ16が設けられており、給水ポンプ9に
よってボイラ1に供給される給水の一部が上記排ガスク
ーラ16に導入され、そこでボイラ1からの排ガスと熱
交換された後高圧給水加熱器10から出た給水と合流し
てボイラ1に導入される。一方、上記排ガスクーラ16
によって冷却された排ガスは煙突17から大気中に放散
される。
That is, an exhaust gas cooler 16 is provided in parallel with the high-pressure feed water heater 10, and a part of the feed water supplied to the boiler 1 by the feed pump 9 is introduced into the exhaust gas cooler 16, where it is discharged from the boiler 1. After the heat exchange with the exhaust gas from the high pressure feed water heater 10, the feed water is merged with the feed water and introduced into the boiler 1. On the other hand, the exhaust gas cooler 16
The exhaust gas cooled by the gas is discharged from the chimney 17 into the atmosphere.

【0007】したがって、このようなプラントにおいて
は、複合運転での高負荷から低負荷までの運転において
ボイラ1に対して安定かつ良好に制御して給水を供給
し、併せて蒸気タービンプラント側の高圧給水加熱器1
0と排ガスクーラ16とに給水を安定して分配制御する
必要がある。
[0007] Therefore, in such a plant, in the operation from high load to low load in combined operation, feed water is supplied to the boiler 1 stably and satisfactorily in a controlled manner, and at the same time, the high pressure in the steam turbine plant side Feed water heater 1
It is necessary to control the distribution of the water supply to the exhaust gas cooler 16 and the exhaust gas cooler 16 stably.

【0008】ところで、蒸気タービンプラントの構成の
中でボイラは最も重要な機器の一つであり、通常ボイラ
はプラントの運転出力に見合った燃料、燃焼用空気、給
水の三要素を制御することで安定した運転状態と信頼性
を確保している。給水はボイラ制御装置から給水制御装
置に指令信号を出し、給水ポンプの回転数又はポンプ出
口の調節弁開度を制御することによりボイラへの給水流
量を調整している。排気再燃式複合発電所におけるボイ
ラ給水流量制御においても同様である。
By the way, a boiler is one of the most important devices in the configuration of a steam turbine plant. Usually, a boiler controls three elements of fuel, combustion air and feed water in accordance with the operation output of the plant. Ensures stable operating conditions and reliability. For the water supply, a command signal is sent from the boiler control device to the water supply control device, and the flow rate of the water supply to the boiler is adjusted by controlling the rotation speed of the water supply pump or the opening degree of the control valve at the pump outlet. The same applies to the control of the boiler feedwater flow rate in an exhaust-refueling combined cycle power plant.

【0009】図4は、上記排気再燃式複合発電所におい
て一般的に行われている排ガスクーラと高圧給水加熱器
への給水の分配制御装置を示す図であって、ボイラの運
転状態に対応する制御信号がボイラ制御装置20に入力
されると、そのボイラ制御装置20からの出力信号が給
水制御装置21を経て給水ポンプ制御装置22に入力さ
れ、その給水ポンプ制御装置22によって給水ポンプ9
が制御され、給水量が調整される。
FIG. 4 is a diagram showing an exhaust gas cooler and a distribution control device for supplying water to a high-pressure feedwater heater, which are generally performed in the above-mentioned combined regenerative power plant, and corresponds to the operating state of the boiler. When a control signal is input to the boiler control device 20, an output signal from the boiler control device 20 is input to a water supply pump control device 22 via a water supply control device 21, and the water supply pump 9 is controlled by the water supply pump control device 22.
Is controlled, and the water supply amount is adjusted.

【0010】そして、ボイラ1への給水量は流量計23
によって検出され、流量信号変換装置24を介して給水
流量値が再びボイラ制御装置20にフィードバックされ
る。また、排ガスクーラ16及び高圧給水加熱器10の
各給水出口側にはそれぞれ流量調節弁25a,25bが
設けられており、その流量調節弁25aの下流側には排
ガスクーラ16によって加熱された給水の温度を検出す
る温度検出器26が設けられている。
The amount of water supplied to the boiler 1 is measured by a flow meter 23.
The feedwater flow value is fed back to the boiler control device 20 again via the flow signal conversion device 24. Further, flow control valves 25a and 25b are provided on the respective water supply outlet sides of the exhaust gas cooler 16 and the high-pressure feed water heater 10, and the water supplied by the exhaust gas cooler 16 is provided downstream of the flow control valves 25a. A temperature detector 26 for detecting a temperature is provided.

【0011】しかして、上記温度検出器26の検出信号
が給水分配制御装置27に入力され、その給水分配制御
装置27から両流量調節弁25a,25bに制御信号が
送られ、両流量調節弁25a,25bの開度が制御さ
れ、排ガスクーラ16及び高圧給水加熱器10を流れる
給水の流量が調整される。一方、この各給水流量はそれ
ぞれ各流量調節弁25a,25bの下流側に設けられた
流量計28a,28bによって検出され、その各給水流
量値が給水分配制御装置27にフィードバックされる。
The detection signal of the temperature detector 26 is input to the water supply distribution control device 27, and a control signal is sent from the water supply distribution control device 27 to the two flow control valves 25a and 25b, and the two flow control valves 25a , 25b are controlled, and the flow rate of the feedwater flowing through the exhaust gas cooler 16 and the high-pressure feedwater heater 10 is adjusted. On the other hand, the respective feed water flow rates are detected by flow meters 28a, 28b provided downstream of the respective flow control valves 25a, 25b, and the respective feed water flow values are fed back to the feed water distribution control device 27.

【0012】[0012]

【発明が解決しようとする課題】上述の如き制御装置に
おいては、プラントのマスター制御でもあるボイラ制御
及び給水流量制御と、プラントローカル制御の位置にあ
る排ガスクーラ及び高圧給水加熱器の給水分配制御との
強調性をどう図るかが問題となる。すなわち、分配制御
側は主として排ガスクーラの制御と保護とに主眼が置か
れているため、電力系統からの要求に応じるプラントの
大きな負荷変化や負荷変化率に対して、さらに負荷遮断
等の過渡状態においてボイラ側の給水制御の外乱になり
易く、この外乱を押えるためにはプラントの負荷変化率
を小さくする等のプラント運用性を犠牲にしなければな
らない等の問題がある。
In the control apparatus as described above, the boiler control and the feedwater flow rate control, which are also the master control of the plant, and the feedwater distribution control of the exhaust gas cooler and the high-pressure feedwater heater at the position of the plant local control, are performed. The problem is how to emphasize the nature of the information. In other words, since the distribution control side mainly focuses on the control and protection of the exhaust gas cooler, transient conditions such as load rejection and the like can be applied to a large load change or load change rate of the plant in response to a request from the power system. In this case, there is a problem that disturbance of water supply control on the boiler side is apt to occur, and in order to suppress the disturbance, plant operability such as reducing a load change rate of the plant must be sacrificed.

【0013】また、排ガスクーラと高圧給水加熱器への
給水分配制御のために設けた両流量調節弁の上流側は、
給水ポンプの締切り圧力によって設計する必要が生じ、
給水系を構成する機器及び配管弁類の設計圧力が大幅に
上昇するため信頼性の維持・確保と建設費の上昇という
不都合もある。
The upstream sides of the two flow control valves provided for controlling the distribution of water to the exhaust gas cooler and the high-pressure water heater are:
It becomes necessary to design according to the cutoff pressure of the water supply pump,
Since the design pressure of the equipment and piping valves that constitute the water supply system is significantly increased, there are also disadvantages of maintaining and securing reliability and increasing construction costs.

【0014】さらに、複合運転中の低負荷運用において
は、熱効率向上と排ガスクーラの保護を考慮して排ガス
クーラ側に給水を殆ど通水してしまうため、高圧給水加
熱器の給水通水量はなくなってしまう。このような低負
荷運転を長時間行うと給水加熱器は温水である給水の通
水がないために大気への放熱により冷却してしまい、こ
の後の急速な負荷上昇においては過大な熱応力が発生す
ることにつながり、運転の繰り返しによって給水加熱器
の損傷につながる可能性もある等の問題がある。
Furthermore, in low load operation during combined operation, almost all of the feedwater flows to the exhaust gas cooler side in consideration of the improvement of thermal efficiency and protection of the exhaust gas cooler. Would. If such a low load operation is performed for a long time, the feed water heater cools down by radiating heat to the air because there is no passage of hot water supply water, and in the subsequent rapid load increase excessive heat stress will occur. There is a problem that the water supply heater may be damaged due to repeated operation.

【0015】本発明はこのような点に鑑み、プラントの
重要なボイラの給水制御に対してプラントローカル制御
である排ガスクーラと高圧給水加熱器への給水分配制御
が外乱となる余地を排除することができる制御装置を得
ることを目的とする。
In view of the above, the present invention eliminates the possibility of disturbance in the control of water supply to the exhaust gas cooler and the high-pressure feed water heater, which is a plant local control, with respect to the important water supply control of the boiler of the plant. It is an object of the present invention to obtain a control device capable of performing the control.

【0016】[0016]

【課題を解決するための手段】本発明は、ガスタービン
の排ガスを蒸気タービンプラントのボイラに供給するよ
うにした排気再燃式複合発電所における給水流量制御装
置において、ボイラへの給水を加熱する高圧給水加熱器
に対して、上記ボイラへの給水の一部をボイラからの排
ガスによって加熱する排ガスクーラを並列に接続すると
ともに、上記高圧給水加熱器系のみに流量調節弁を設
け、その流量調節弁の制御によって高圧給水加熱器系及
び排ガスクーラ系への給水配分制御を行なうようにした
ことを特徴とする。
SUMMARY OF THE INVENTION The present invention relates to a high-pressure high-pressure system for heating water supplied to a boiler in a feed water flow control device in an exhaust gas reburning combined cycle power plant configured to supply exhaust gas from a gas turbine to a boiler of a steam turbine plant. An exhaust gas cooler that heats part of the water supplied to the boiler with exhaust gas from the boiler is connected in parallel to the feed water heater, and a flow control valve is provided only in the high-pressure feed water heater system, and the flow control valve is provided. Control of water supply to the high-pressure feed water heater system and the exhaust gas cooler system.

【0017】[0017]

【作用】プラントの高負荷においては、流量調節弁の開
度を増して圧力損失を小とし、高圧給水加熱器系への通
水量を増加することにより排ガスクーラの通水量が相対
的に減少して適正な給水の分配制御が行なわれる。すな
わち、同一のポンプによって給水が供給される二つの系
統において、各々への給水の配分はお互いの系統の圧力
損失の相対関係によって決定されるため、プラントの高
負荷のある状態において排ガスクーラと高圧給水加熱器
との相対的圧力損失の関係を決定して給水を配分してお
き、通常の給水配分制御を行なうためには一方に設置し
た流量調節弁の開度調整による絞りで圧力損失を可変す
ることにより良好な制御性を得ることができる。
When the load of the plant is high, the pressure loss is reduced by increasing the opening of the flow control valve, and the flow rate of the exhaust gas cooler is reduced relatively by increasing the flow rate to the high pressure feed water heater system. In this way, appropriate water supply distribution control is performed. That is, in two systems in which water is supplied by the same pump, the distribution of water to each is determined by the relative relationship between the pressure losses of the respective systems, so that the exhaust gas cooler and the high pressure Determines the relative pressure loss relationship with the feed water heater and distributes the feed water.In order to perform normal feed water distribution control, the pressure loss can be varied by restricting the opening of the flow control valve installed on one side. By doing so, good controllability can be obtained.

【0018】一方、プラントの出力を低減していくと、
負荷に対する給水量の相対的減少に対しボイラ排ガス量
の相対的減少が緩やかなため、ボイラ排ガスの回収熱量
が相対的に多く、排ガスクーラを保護のため付随して排
ガスクーラ側への給水通水量を多く配分する必要が生ず
るので、この場合には流量調節弁を絞って圧力損失を大
として高圧給水加熱器系の通水量を減じることにより反
対側の排ガスクーラへの通水量を相対的に増加させるこ
とができる。
On the other hand, when the output of the plant is reduced,
Since the relative decrease in boiler exhaust gas volume is relatively slow relative to the load water supply volume relative to the load, the amount of heat recovered from boiler exhaust gas is relatively large. In this case, the flow control valve is throttled to increase the pressure loss and reduce the flow through the high pressure feed water heater system, thereby relatively increasing the flow through the exhaust gas cooler on the opposite side. Can be done.

【0019】[0019]

【実施例】以下、図1を参照して本発明の一実施例につ
いて説明する。なお、図中図4と同一部分には同一符号
を付しその詳細な説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. In the drawing, the same parts as those in FIG. 4 are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0020】高圧給水加熱器10と並列に排ガスクーラ
16が設けられており、給水ポンプ9によってボイラ1
に供給される給水の一部が上記排ガスクーラ16に導入
され、そこでボイラ1からの排ガスと熱交換された後高
圧給水加熱器10から出た給水と合流してボイラ1に導
入される。
An exhaust gas cooler 16 is provided in parallel with the high-pressure feed water heater 10.
Is supplied to the exhaust gas cooler 16, where it is subjected to heat exchange with the exhaust gas from the boiler 1, and then merges with the water supplied from the high pressure feed water heater 10 to be introduced into the boiler 1.

【0021】ところで、上記排ガスクーラ16の入口側
および出口側にはそれぞれ止め弁30a,30bが設け
られ、高圧給水加熱器10の入口側には止め弁31が設
けられており、その高圧給水加熱器10の出口側のみに
流量調節弁32が設けられている。また、高圧給水加熱
器系から分岐した排ガスクーラ系には、複合運転中の或
るプラント負荷において給水分配制御の基点として排ガ
スクーラ側と高圧給水加熱器側の圧力損失を予め調節す
るためのオリフィス或は弁類等の圧力調整装置33が設
けられている。
By the way, stop valves 30a and 30b are provided on the inlet side and the outlet side of the exhaust gas cooler 16, respectively, and a stop valve 31 is provided on the inlet side of the high pressure feed water heater 10, and the high pressure feed water The flow control valve 32 is provided only on the outlet side of the vessel 10. Also, the exhaust gas cooler system branched from the high pressure feed water heater system has an orifice for pre-adjusting the pressure loss on the exhaust gas cooler side and the high pressure feed water heater side as a base point of feed water distribution control at a certain plant load during combined operation. Alternatively, a pressure adjusting device 33 such as a valve is provided.

【0022】一方、給水分配制御装置27には、流量計
23によって検出された給水流量信号aと温度検出器2
6で検出された排ガスクーラ16から流出する給水の温
度信号bが入力されており、そこで上記給水流量信号a
と給水温度信号b等が総合的に演算され、流量調節弁制
御信号が出力され、この制御信号によって流量調節弁3
2の開度が制御されるようにしてある。
On the other hand, the feed water distribution control device 27 includes a feed water flow signal a detected by the flow meter 23 and the temperature detector 2.
6, the temperature signal b of the feed water flowing out of the exhaust gas cooler 16 is input, and the feed water flow signal a
And the feed water temperature signal b are comprehensively calculated, and a flow control valve control signal is output.
2 is controlled.

【0023】しかして、複合運転でプラントの高負荷運
転時においては、流量調節弁32の開度が大きくされ圧
力損失が小となるようにされており、脱気器8から給水
ポンプ9によって送給された給水が、排ガスクーラ16
系と高圧給水加熱器10系との相対的圧力損失の関係で
決まる配分によって排ガスクーラ16および高圧給水加
熱器10に供給され、その後ボイラ入口で合流してボイ
ラ1に供給される。一方、プラントが部分負荷の場合に
は、その負荷に対応して流量調節弁32が絞られ圧力損
失が増加され、高圧給水加熱器系への通水量が減少され
る。したがって、排ガスクーラ系への通水量が増加され
排ガスクーラの保護のために必要な給水流量が確保され
る。
When the plant is operating under a high load in the combined operation, the opening of the flow control valve 32 is increased and the pressure loss is reduced, and the flow is sent from the deaerator 8 by the water supply pump 9. The supplied water is supplied to the exhaust gas cooler 16.
The fuel is supplied to the exhaust gas cooler 16 and the high-pressure feed water heater 10 by distribution determined by the relative pressure loss between the system and the high-pressure feed water heater 10, and is then fed to the boiler 1 at the boiler inlet. On the other hand, when the plant has a partial load, the flow control valve 32 is throttled corresponding to the load, the pressure loss is increased, and the flow rate to the high-pressure feed water heater system is reduced. Therefore, the amount of water flowing into the exhaust gas cooler system is increased, and the water supply flow rate necessary for protecting the exhaust gas cooler is secured.

【0024】さらに低負荷になった場合には、全給水が
排ガスクーラ側に通水せざるを得なくなるが、この場合
にも流量調節弁32が所定微小開度に保持され、高圧給
水加熱器に対するミニマムフローが維持されウォーミン
グが行なわれる。
When the load is further reduced, all the feed water must be supplied to the exhaust gas cooler side. In this case, too, the flow control valve 32 is maintained at a predetermined minute opening, and the high pressure feed heater is operated. Is maintained and the warming is performed.

【0025】また、蒸気タービンプラントの単独運転に
際しては、止め弁30a,30bが全閉され、全給水量
が高圧給水加熱器側に供給される。
In the single operation of the steam turbine plant, the stop valves 30a and 30b are fully closed, and the entire water supply is supplied to the high-pressure water heater.

【0026】なお、上記実施例においては、高圧給水加
熱器の出口側に流量調節弁を設けたものを示したが、入
口側に設けてもよい。さらに給水分配制御装置には排ガ
スクーラ及び高圧給水加熱器の各々の通過流量や出口温
度、並びにプラントの出力を制御要素として取込むこと
によって精度を向上させることもできる。
In the above embodiment, the flow control valve is provided on the outlet side of the high pressure feed water heater, but it may be provided on the inlet side. In addition, the feedwater distribution control device can improve the accuracy by taking the flow rate and outlet temperature of each of the exhaust gas cooler and the high-pressure feedwater heater and the output of the plant as control elements.

【0027】図2は本発明の他の実施例を示す図であ
り、高圧給水加熱器10の出口側にも止め弁34が設け
られており、この止め弁34と並列に流量調節弁32が
設けられている。しかして、この流量調節弁32の開度
制御によって第1実施例と同様に高圧給水加熱器系およ
び排ガスクーラ系への給水流量配分を行なうことができ
る。
FIG. 2 is a view showing another embodiment of the present invention. A stop valve 34 is also provided on the outlet side of the high pressure feed water heater 10, and a flow control valve 32 is provided in parallel with the stop valve 34. Is provided. Thus, by controlling the opening degree of the flow control valve 32, the flow rate of the feedwater to the high-pressure feedwater heater system and the exhaust gas cooler system can be distributed as in the first embodiment.

【0028】しかも、蒸気タービンプラントの単独運転
中は全給水量を高圧給水加熱器側に通水する必要がある
ため、第1実施例のように流量調節弁32を直列に設け
たものにおいては、圧力損失が増加するだけでなく流量
調節弁32の口径を大きなものとする必要があるが、こ
の第2実施例においては止め弁34を全開すればよく、
圧力損失を低減することができる。さらに複合運転中に
おいては、給水量が2つに分配されるので制御量は少な
くなり、その流量を制御するための流量調節弁32は比
較的小口径のものとすることができる。
In addition, during the sole operation of the steam turbine plant, it is necessary to supply the entire feedwater to the high-pressure feedwater heater side. Therefore, in the case where the flow control valve 32 is provided in series as in the first embodiment, It is necessary not only to increase the pressure loss but also to increase the diameter of the flow control valve 32. In the second embodiment, the stop valve 34 may be fully opened.
Pressure loss can be reduced. Further, during the combined operation, the amount of water supply is divided into two, so that the control amount is reduced, and the flow control valve 32 for controlling the flow rate can have a relatively small diameter.

【0029】[0029]

【発明の効果】本発明は高圧給水加熱器系のみに流量調
節弁を設け、その流量調節弁の制御によって高圧給水加
熱器系及び排ガスクーラ系への給水配分制御を行なうよ
うにしたので、ボイラの給水制御に対して上記給水配分
制御が外乱となることがなく、プラントの良好な制御性
を得ることができ、しかも給水分配制御のシステムが簡
素化される。また、複合運転中の部分負荷において排ガ
スクーラ側に全量給水がとられてしまって高圧給水加熱
器への通水が無くなるような場合でも、流量調節弁を微
開して給水を少量だけ高圧給水加熱器に通水することに
よってウォーミングを行なうことができ、新たに給水加
熱器系統から復水器や脱気器等へ接続するウォーミング
系統の追加が不要となる。
According to the present invention, the flow control valve is provided only in the high pressure feed water heater system, and the distribution of feed water to the high pressure feed water heater system and the exhaust gas cooler system is controlled by controlling the flow control valve. The above-mentioned water supply distribution control does not become a disturbance to the water supply control, good plant controllability can be obtained, and the water supply distribution control system is simplified. Also, even when the entire amount of water is supplied to the exhaust gas cooler side during partial load during combined operation and water is not supplied to the high-pressure feed water heater, the flow control valve is slightly opened to supply a small amount of high-pressure water. Warming can be performed by passing water through the heater, and it is not necessary to newly add a warming system that connects the feed water heater system to a condenser, a deaerator, or the like.

【0030】さらに流量調節弁を高圧給水加熱器系に設
けられた止め弁に対して並列に設けた場合には、調節弁
を小口径のものとすることができ、機器の建設費低減の
面からも有効であり、高圧給水加熱器系統の止め弁を切
換え操作することで蒸気タービンプラント単独運転中に
おいて系統の圧力損失を低減でき、プラントの発電効率
を改善することができる。
Further, when the flow control valve is provided in parallel with the stop valve provided in the high pressure feed water heater system, the control valve can be made small in diameter, thereby reducing the construction cost of equipment. By switching the stop valve of the high-pressure feed water heater system, the pressure loss of the system can be reduced during the steam turbine plant alone operation, and the power generation efficiency of the plant can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の排気再燃式複合発電所の給水流量制御
装置の概略系統図。
FIG. 1 is a schematic system diagram of a feedwater flow rate control device for an integrated refueling combined cycle power plant of the present invention.

【図2】本発明の他の実施例を示す図。FIG. 2 is a diagram showing another embodiment of the present invention.

【図3】排気再燃式複合発電所の概略構成を示す系統
図。
FIG. 3 is a system diagram showing a schematic configuration of an exhaust gas reburning combined cycle power plant.

【図4】従来の排気再燃式複合発電所の給水流量制御装
置の系統図。
FIG. 4 is a system diagram of a conventional feedwater flow control device for an exhaust gas reburning combined cycle power plant.

【符号の説明】[Explanation of symbols]

1 ボイラ 3 蒸気タービン 10 高圧給水加熱器 11 コンプレッサ 14 ガスタービン 16 排ガスクーラ 20 ボイラ制御装置 23 流量計 27 給水分配制御装置 30a,30b,31,34 止め弁 32 流量調節弁 DESCRIPTION OF SYMBOLS 1 Boiler 3 Steam turbine 10 High pressure feed water heater 11 Compressor 14 Gas turbine 16 Exhaust gas cooler 20 Boiler control device 23 Flow meter 27 Feed water distribution control device 30a, 30b, 31, 34 Stop valve 32 Flow control valve

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ガスタービンの排ガスを蒸気タービンプラ
ントのボイラに供給するようにした排気再燃式複合発電
所における給水流量制御装置において、ボイラへの給水
を加熱する高圧給水加熱器に対して、上記ボイラへの給
水の一部をボイラからの排ガスによって加熱する排ガス
クーラを並列に接続するとともに、上記高圧給水加熱器
系のみに流量調節弁を設け、その流量調節弁の制御によ
って高圧給水加熱器系及び排ガスクーラ系への給水配分
制御を行なうようにしたことを特徴とする、排気再燃式
複合発電所の給水流量制御装置。
1. A feed water flow control device for an exhaust gas reburning combined cycle power plant configured to supply exhaust gas from a gas turbine to a boiler of a steam turbine plant, wherein a high pressure feed water heater for heating the feed water to the boiler is provided. An exhaust gas cooler that heats part of the water supplied to the boiler by exhaust gas from the boiler is connected in parallel, and a flow control valve is provided only in the high-pressure feed water heater system, and the high-pressure feed water heater system is controlled by controlling the flow control valve. And a water supply distribution control system for an exhaust gas reburning combined cycle power plant, wherein water supply distribution control to an exhaust gas cooler system is performed.
【請求項2】流量調節弁は、高圧給水加熱器系に設けら
れた止め弁に対して並列に設けられていることを特徴と
する、請求項1記載の排気再燃式複合発電所の給水流量
制御装置。
2. The feed water flow rate of the combined exhaust power generation system according to claim 1, wherein the flow control valve is provided in parallel with a stop valve provided in the high pressure feed water heater system. Control device.
JP8864391A 1991-04-19 1991-04-19 Feedwater flow control system for an exhaust gas reburning combined cycle power plant Expired - Fee Related JP2863645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8864391A JP2863645B2 (en) 1991-04-19 1991-04-19 Feedwater flow control system for an exhaust gas reburning combined cycle power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8864391A JP2863645B2 (en) 1991-04-19 1991-04-19 Feedwater flow control system for an exhaust gas reburning combined cycle power plant

Publications (2)

Publication Number Publication Date
JPH04320702A JPH04320702A (en) 1992-11-11
JP2863645B2 true JP2863645B2 (en) 1999-03-03

Family

ID=13948504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8864391A Expired - Fee Related JP2863645B2 (en) 1991-04-19 1991-04-19 Feedwater flow control system for an exhaust gas reburning combined cycle power plant

Country Status (1)

Country Link
JP (1) JP2863645B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053250A1 (en) * 2022-09-09 2024-03-14 株式会社日本サーモエナー Boiler system

Also Published As

Publication number Publication date
JPH04320702A (en) 1992-11-11

Similar Documents

Publication Publication Date Title
US20010023577A1 (en) Cooling steam supply method of a combined cycle power generation plant
EP0900921A2 (en) Hydrogen burning turbine plant
JP4346213B2 (en) Combined cycle power plant
US6223520B1 (en) Gas turbine combined plant, method of operating the same, and steam-cooling system for gas turbine hot section
JPH0370804A (en) Starting of steam cycle in combined cycle plant
JP2595046B2 (en) Steam temperature control system for reheat type combined plant
JP2863645B2 (en) Feedwater flow control system for an exhaust gas reburning combined cycle power plant
JPH09317405A (en) Cooling system for high-pressure, front stage rotor blade embedded part of steam turbine
JP2002256816A (en) Combined cycle generating plant
JP3065794B2 (en) Feed water heating device
US5315816A (en) Method and device for temperature control in a combustion plant
JPH10131716A (en) Method and device for controlling steam cooling system of gas turbine
JP2999122B2 (en) Control equipment for complex plant
JPH062806A (en) Water supplying and heating device
JPH074605A (en) Composite power-generating plant
JPS62294724A (en) Turbine casing cooler for turbocharger
JPH0245763B2 (en) JOKITAABINPURANTONOKYUSUIKANETSUKEITO
JPH1193618A (en) Steam pressure control method for gas turbine steam cooling system
JPS5939122Y2 (en) combined plant
JPS61118508A (en) Control device for recirculating flow of feed pump
JPH06294305A (en) Exhaust heat recovery boiler
JPH06221504A (en) Waste heat recovery heat exchanger
JPH0719561Y2 (en) Mill air system
JPH04311608A (en) Repowering system of previously provided steam power facility
JPS5845566B2 (en) combined cycle power plant

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071211

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20091211

LAPS Cancellation because of no payment of annual fees