WO2024053250A1 - Boiler system - Google Patents

Boiler system Download PDF

Info

Publication number
WO2024053250A1
WO2024053250A1 PCT/JP2023/026068 JP2023026068W WO2024053250A1 WO 2024053250 A1 WO2024053250 A1 WO 2024053250A1 JP 2023026068 W JP2023026068 W JP 2023026068W WO 2024053250 A1 WO2024053250 A1 WO 2024053250A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
boiler
oxygen
combustion
line
Prior art date
Application number
PCT/JP2023/026068
Other languages
French (fr)
Japanese (ja)
Inventor
聡 吉本
伸章 林本
将貴 菅井
裕人 田中
Original Assignee
株式会社日本サーモエナー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本サーモエナー filed Critical 株式会社日本サーモエナー
Publication of WO2024053250A1 publication Critical patent/WO2024053250A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/02Feed-water heaters, i.e. economisers or like preheaters with water tubes arranged in the boiler furnace, fire tubes, or flue ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/08Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber for reducing temperature in combustion chamber, e.g. for protecting walls of combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion

Definitions

  • the present invention relates to a boiler system, and particularly to a boiler system that can increase the CO 2 concentration in exhaust gas discharged from a small boiler.
  • Non-Patent Document 1 and Patent Document 1 a method has been proposed to increase the CO2 concentration in exhaust gas by performing oxy-combustion instead of conventional air-combustion in the boiler of a coal-fired power plant. Demonstration tests have also been conducted on carbon dioxide capture and storage (Non-Patent Document 1 and Patent Document 1).
  • Oxygen combustion is a method of burning fuel by supplying oxygen gas instead of air as an oxidizing agent or combustion-supporting gas.
  • the exhaust gas contains almost no nitrogen component, so the main component of the exhaust gas (for example, 90% or more in the case of coal combustion) can be CO 2 gas. Therefore, if oxyfuel combustion is used, it becomes easier to separate and recover CO 2 by cooling the exhaust gas.
  • Non-Patent Document 1 and Patent Document 1 a part of the exhaust gas is circulated and the produced oxygen is mixed with recirculated gas (mainly CO 2 gas) to reduce the oxygen concentration.
  • recirculated gas mainly CO 2 gas
  • an oxygen production device is installed near the boiler to produce high-purity oxygen from the taken in air using a cryogenic separation method or the like.
  • electric power is required to produce oxygen, it is conceivable to take in atmospheric air and perform air combustion as in the past until the start of power generation.
  • Patent Document 2 discloses a boiler plant for coal-fired power generation that can switch between oxygen combustion and air combustion.
  • air combustion can be performed by supplying atmospheric air instead of oxygen gas and circulating exhaust gas when the boiler is started before shifting to oxyfuel combustion.
  • the air supply system was closed and oxygen gas and circulating exhaust gas were supplied to the boiler, which led to the oxy-combustion of coal. Can be easily migrated.
  • Patent Document 2 describes a technique for controlling the oxygen concentration in combustion-supporting gas by adjusting the flow rate of circulating exhaust gas, and controlling the ratio of the amount of oxygen to the amount of fuel to a desired setting.
  • the oxygen concentration can be calculated from each gas flow rate command value as a ratio of the oxygen flow rate to the total gas flow rate. Furthermore, by setting the feed water temperature based on the calculated oxygen concentration, it is also possible to control the temperature of water or steam flowing through the heat exchanger within an allowable range for safe operation.
  • Patent Documents 3 and 4 describe specific exhaust gas CO 2 separation/recovery devices.
  • Patent Document 5 describes a technique for adjusting the CO 2 concentration in exhaust gas in a relatively small boiler. However, this exhaust gas is used to neutralize the boiler effluent, and the CO2 concentration is simply adjusted by adjusting the amount of air mixed before being introduced into the boiler effluent. .
  • the present invention has been made to solve the above problems, and even when using a small boiler that requires relatively high response in combustion control, it is possible to achieve oxy-fuel combustion while achieving stable combustion.
  • the purpose of the present invention is to provide a boiler system that can improve the CO 2 concentration in exhaust gas.
  • a boiler system includes a boiler that heats feed water by burning fuel gas, an exhaust line that exhausts exhaust gas from the boiler, and a circulating gas line that branches from the exhaust line, a circulating gas line to which a supply line and an atmospheric supply line are connected and capable of supplying the exhaust gas to the boiler as a combustion supporting gas together with at least one of atmospheric air and oxygen gas;
  • a damper for controlling suction is provided, and the oxygen supply line includes a main line provided with an on/off valve and a subline provided with a variable opening valve, and the oxygen supply line includes a main line provided with an on/off valve and a subline provided with a variable opening valve.
  • Adjusting the oxygen concentration in the mixed gas of the oxygen gas from the oxygen supply line and the exhaust gas by closing the damper and controlling the opening/closing of the on/off valve and the opening degree of the variable opening valve of the oxygen supply line. It is configured such that it can be supplied to the boiler as a combustion-supporting gas.
  • the boiler system includes a combustion-supporting gas fan provided near the boiler for delivering the combustion-supporting gas from the circulating gas line to the boiler;
  • the fuel cell further includes an oxygen sensor that measures the oxygen concentration in the combustion-supporting gas sent to the boiler, and the variable opening valve is configured to be feedback-controlled based on the output of the oxygen sensor.
  • the outlet of the combustion-supporting gas fan is connected to a burner wind box provided in the boiler, and the oxygen sensor measures the oxygen concentration of the gas inside the burner wind box. Based on the output of the oxygen sensor, the variable opening valve is controlled so that the oxygen concentration of the gas inside the burner wind box is maintained at 20 to 22%.
  • the main line of the oxygen supply line is configured by a plurality of lines connected in parallel, each of which is provided with the on/off valve, and by controlling each on/off valve of the plurality of lines, the main line is It is configured so that oxygen gas can be supplied from the line at multiple flow rates.
  • a manual valve is provided on at least one of the primary side and the secondary side of the variable opening valve provided in the subline of the oxygen supply line, and a manual valve is provided on at least one of the primary side and secondary side of the variable opening valve provided in the subline of the oxygen supply line, and ⁇ 90% of oxygen can be supplied through the main line, and 0 ⁇ 50% of the theoretical combustion oxygen amount required for combustion can be supplied through the subline. .
  • the boiler system further includes an economizer that preheats water supplied to the boiler using the heat of exhaust gas from the boiler, and a gas cooler that cools the exhaust gas downstream of the economizer, and the exhaust line includes:
  • the gas cooler is provided to exhaust the exhaust gas cooled by the gas cooler, and the gas cooler is configured to be able to cool the outlet temperature of the exhaust gas to 30°C to 50°C.
  • the on-off valve provided in the main line of the oxygen supply line is a solenoid valve
  • the variable opening valve provided in the subline of the oxygen supply line is an electric valve
  • the fuel gas is either city gas or LP gas
  • the boiler is either a once-through boiler or a hot water boiler.
  • FIG. 1 is a schematic diagram showing a boiler system according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating one aspect of an oxygen supply line according to an embodiment of the invention.
  • FIG. 1 shows a boiler system 100 according to an embodiment of the invention.
  • the boiler system 100 includes a combustion boiler 10 having a burner 11 that burns fuel gas GF, an economizer 12 through which exhaust gas GE from the boiler 10 passes, and a cooling system for cooling the exhaust gas GE that has passed through the economizer 12.
  • a gas cooler 14 and an exhaust line 16 for exhausting the exhaust gas GE cooled by the gas cooler 14 are provided.
  • the boiler 10 used in this embodiment is a relatively small once-through boiler or a hot water boiler, for example.
  • the fuel gas GF used is, for example, city gas (or gas containing methane as a main component) or LP gas (or gas containing propane or butane as a main component).
  • the boiler system 100 is configured to generate and provide steam or hot water using a relatively small boiler 10, and is installed in various factories, residences/accommodations, hot bath facilities, etc., depending on the purpose. It is possible to provide hot water or steam at an appropriate temperature.
  • the boiler 10 can heat the water supply W1 to the boiler 10 by burning the fuel gas GF with the burner 11, and can generate hot water and steam.
  • the economizer 12 can preheat the feed water W1 before supplying it to the boiler 10 using the heat of the exhaust gas GE from the boiler 10, and can save the amount of fuel gas GF consumed.
  • the gas cooler 14 exchanges heat with the supplied cooling water W2 using various heat exchangers (for example, a plate heat exchanger or a tube heat exchanger), thereby reducing exhaust gas GE. is configured to cool the The gas cooler 14 is configured to be able to cool the exhaust gas until the outlet temperature T1 reaches, for example, about 30 to 50°C, particularly about 40°C. Thereby, steam contained in the exhaust gas can be converted into drain in the gas cooler 14, and dry exhaust gas can be obtained.
  • various heat exchangers for example, a plate heat exchanger or a tube heat exchanger
  • Blow water from the boiler 10, drain from the economizer 12, and drain from the gas cooler 14 are sent to the neutralization device 18.
  • the neutralization device 18 neutralizes wastewater using various methods, adjusts the pH value to meet industrial wastewater standards, and discharges the wastewater to the outside.
  • the exhaust line 16 is provided to discharge the cooled exhaust gas GE from the flue 16A into the atmosphere or to transfer it to the CO 2 recovery facility via the CO 2 recovery line 16B.
  • the CO 2 concentration in the exhaust gas can be increased by performing oxygen combustion, so it is possible to efficiently recover CO 2 from the exhaust gas sent through the CO 2 recovery line 16B.
  • the exhaust line 16 may be provided with any exhaust gas treatment device such as a bag filter, if necessary.
  • a circulating gas line 20 branching from the exhaust line 16 is connected to the exhaust line 16.
  • the circulating gas line 20 is configured to be able to circulate the exhaust gas GE cooled by the gas cooler 14 to the boiler 10 using a forced fan (combustion-supporting gas fan) 22 provided near the boiler.
  • the circulating gas line 20 is provided with a damper 24 for drawing in circulating gas driven by a motor M, and by adjusting the opening degree of the damper 24 for drawing in circulating gas, exhaust gas GE is supplied to the boiler 10 at an arbitrary flow rate. be able to.
  • an atmosphere supply line 26 and an oxygen supply line 30 are connected to the circulating gas line 20.
  • atmospheric air AIR, oxygen gas O 2 and/or exhaust gas GE drawn from the exhaust line 16 can be supplied to the boiler 10 as the combustion-supporting gas GS.
  • the boiler 10 is capable of performing both air combustion and oxygen combustion.
  • the atmospheric supply line 26 is connected to the upstream side of the oxygen supply line 30, but on the contrary, the oxygen supply line 30 may be connected to the upstream side.
  • the atmospheric supply line 26 and the oxygen supply line 30 do not necessarily need to be connected to different places, but are connected using a common line at the same connection point of the circulating gas line 20, and are branched on the upstream side of the common line. may be arranged in parallel.
  • the atmospheric supply line 26 and the oxygen supply line 30 may be connected in any manner as long as they communicate with the circulating gas line 20 between the circulating gas drawing damper 24 and the boiler 10.
  • the forced fan 22 as a combustion-supporting gas fan provided near the boiler is used to form the gas flow in the circulating gas line 20 toward the boiler, but instead of this, Alternatively, in addition to this, another blower (such as a forced fan or an induced fan) may be provided in the circulating gas line 20. Further, an arbitrary blower may be provided in the exhaust line 16 as well, if necessary.
  • the atmosphere supply line 26 connected to the circulating gas line 20 is provided with an atmosphere suction damper 28 driven by a motor M.
  • atmospheric air (air) AIR can be supplied to the boiler 10 at an arbitrary flow rate.
  • air whose flow rate can be controlled can be supplied to the boiler 10 as the combustion-supporting gas GS via the circulating gas line 20, so that oxy-fuel combustion can be performed stably, such as when starting up the boiler.
  • boiler operation using air combustion can be performed.
  • air is supplied to the boiler 10 at a controlled flow rate via the atmospheric suction damper 28 whose opening degree is adjusted, while the circulating gas suction damper 24 and the oxygen Supply line 30 remains closed.
  • the oxygen supply line 30 used for oxygen combustion is composed of a main line 30A and a subline 30B connected in parallel.
  • the main line 30A and the subline 30B are connected to the same oxygen supply source, but they may be connected to different oxygen supply sources.
  • oxygen supply source for example, oxygen gas generated from air by pressure swing adsorption (PSA) can be used.
  • PSA pressure swing adsorption
  • the main line 30A of the oxygen supply line 30 is provided with an on/off valve 32, while the subline 30B is provided with a variable opening valve (typically a proportional valve) 34.
  • the on-off valve 32 is constituted by a solenoid valve (solenoid valve S), and the variable opening valve 34 is constituted by an electric valve driven by motor M.
  • the on-off valve 32 may be configured by, for example, an air-operated valve (AOV).
  • the main line 30A can supply 80 to 90% of the theoretical combustion oxygen amount required for combustion that matches the composition and flow rate of the fuel gas GF
  • the subline 30B can supply oxygen that is 80% to 90% of the theoretical combustion
  • the flow rate of oxygen gas in each line is controlled so that 0 to 50% of the amount of oxygen can be supplied.
  • the oxygen gas supplied from the oxygen supply line 30 is mixed with the exhaust gas GE introduced by opening the circulating gas intake damper 24, and is supplied to the boiler 10 as a combustion-supporting gas GS with an adjusted oxygen concentration.
  • the sub-line 30B is composed of one line provided with a single variable-opening valve 34, whereas the main line 30A is composed of a single line provided with an on-off valve 32, respectively. Consists of multiple parallel lines.
  • FIG. 2 shows an example in which the main line 30A is composed of three lines.
  • a main line 30A is composed of lines 301, 302, and 303 connected in parallel, and each line 301, 302, and 303 is connected to an on-off valve (here, a solenoid valve) 321, 322, and 323. are provided for each.
  • the rated flow rate (or CV value: the flow rate coefficient of the fluid passing through the open valve when the inlet pressure and outlet pressure values are the specified values) of each on-off valve 321, 322, and 323 when open is the same. It may be different, or it may be different.
  • the on-off valves 321, 322, and 323 by controlling the opening and closing of the on-off valves 321, 322, and 323, it is possible to immediately control the oxygen flow rate in multiple stages that match the combustion pattern of the boiler. For example, in the case of 4-position control that controls the combustion pattern at 0%-20%-50%-100%, 0% control is performed with all on-off valves closed, and 20% control is performed with only the on-off valve 321 open. 50% control can be performed with the on-off valves 321 and 322 open, and 100% control can be performed with all the on-off valves 321, 322, and 323 open. In each combustion pattern, the total amount of oxygen supplied via each line is adjusted according to the fluctuation of the fuel gas flow rate so that the amount of oxygen is 80 to 90% of the theoretical combustion oxygen amount as described above. ing.
  • main line 30A is also configured with one line, as in the subline 30B, as shown in Fig. 1. may have been done.
  • each electromagnetic valve constituting the on-off valve 32 has sufficiently high responsiveness compared to a motor-driven electric valve (opening variable valve 34). Therefore, opening control of each electromagnetic valve can be performed at high speed to match the combustion pattern, and thereby oxygen gas can be supplied at a flow rate that can prevent occurrence of combustion defects. Furthermore, since the on/off valves 32 are provided in a plurality of lines and the flow rate is controlled by controlling the opening and closing of the valves, instantaneous switching between a large flow rate and a small flow rate can be realized relatively easily.
  • the output adjustment of small boilers is often switched in a very short time (for example, 2 to 3 seconds, often within 5 seconds) in accordance with the demands of the heat demand side, and the output is high for a narrow combustion chamber. Since combustion is performed using a burner, the amount of oxygen required for fuel combustion may change in a short period of time each time the output is switched. For this reason, if there is even a slight delay in the supply of the required amount of oxygen, it will instantly lead to incomplete combustion, oscillating combustion, and even misfire. In contrast, although the flow rate is controlled in stages, oxygen is supplied from the main line 30A, which is highly responsive and can control the flow rate from small to large. It is possible to reliably supply a limited amount of oxygen. Therefore, the boiler system 100 can prevent misfires and poor combustion even when used as a small boiler with severe output fluctuations.
  • a manual valve 38 may be provided on at least one of the primary side and the secondary side of the variable opening valve 34.
  • FIG. 1 shows an example in which a manual valve 38 is provided on the primary side of the variable opening valve 34
  • FIG. 2 shows an example in which a manual valve 38 is provided on the secondary side of the variable opening valve 34.
  • Manual valve 38 arranged in this manner can be used to adjust the maximum control flow rate in subline 30B.
  • a subline 30B having a variable opening valve 34 is used.
  • the oxygen concentration in the combustion-supporting gas GS formed by the mixture of oxygen gas O 2 from the oxygen supply line 30, exhaust gas from the exhaust line 16, and GE is equivalent to, for example, the oxygen concentration in the atmosphere.
  • the overall flow rate of oxygen gas can be fine-tuned so that it remains stable at a ratio of about 21% (eg, 20-22%).
  • variable opening valve 34 has a CV value (CV value) that can supply up to about half of the required amount of oxygen. or rated flow rate value).
  • the boiler system 100 of this embodiment includes an oxygen sensor 36a for measuring the oxygen concentration of the combustion-supporting gas GS supplied to the burner 11. More specifically, the oxygen sensor 36a is attached to the burner wind box 13 to which the outlet of the forced fan 22 is connected, and is installed to measure the oxygen concentration of the gas inside the burner wind box 13. .
  • the oxygen sensor 36a for example, a galvanic cell type sensor is suitably used, but various types of sensors can be used as long as they can measure the oxygen concentration.
  • an oxygen concentration control circuit 36b is connected to the oxygen sensor 36a.
  • the oxygen concentration control circuit 36b is configured to feedback control the variable opening valve 34 provided in the subline 30B of the oxygen supply line 30 based on the output of the oxygen sensor 36a.
  • the variable opening valve 34 is opened with a manipulated variable according to the difference. Increase oxygen concentration. Further, when the oxygen concentration output by the oxygen sensor 36a is higher than 22%, the opening degree of the variable opening valve 34 is closed with a manipulated variable according to the difference to lower the oxygen concentration. In this way, by feedback-controlling the variable opening valve 34 using the oxygen concentration control circuit 36b so that the difference between the set concentration and the measured concentration approaches 0, a desired set oxygen concentration is set for the burner 11. It is possible to continue supplying the combustion-supporting gas GS having the following properties. Note that it goes without saying that the set oxygen concentration may be a constant value (for example, 21%).
  • the boiler system 100 can supply the combustion-supporting gas GS, which is a mixture of oxygen gas and exhaust gas (mainly CO 2 ), to the boiler 10 via the circulating gas line 20. Oxygen combustion can be performed stably.
  • exhaust gas mixed with oxygen gas is supplied to the boiler 10 as the combustion-supporting gas GS, while normally the atmosphere suction damper 28 is closed and the atmosphere supply line 26 is closed. remains closed.
  • the circulating gas suction damper 24 and the on/off valve 32 in the main line 30A are opened in synchronization with the closing operation of the atmospheric suction damper 28.
  • an oxygen concentration adjustment operation by adjusting the opening of the variable opening valve 34 in the sub-line 30B is also started.
  • the boiler system 100 closes the damper 28 of the atmospheric supply line 26 and controls the opening/closing of the on/off valve 32 and the opening degree of the variable opening valve 34 of the oxygen supply line 30, thereby removing oxygen gas O 2 from the oxygen supply line.
  • this is configured to be able to be supplied to the boiler 10 as a combustion-supporting gas GS to perform oxy-fuel combustion.
  • the boiler system 100 it is possible to smoothly transition from air combustion to oxyfuel combustion when the boiler is started, and after switching to oxyfuel combustion, the oxygen supply amount can be quickly switched to match the output change characteristics of the small boiler. By doing so, it is possible to discharge exhaust gas with a high concentration of CO 2 while preventing the occurrence of combustion defects such as incomplete combustion and misfire.
  • the gas cooler 14 in this embodiment is configured to lower the exhaust gas outlet temperature T1 to, for example, 30° C. to 50° C. to obtain dry exhaust gas.
  • the exhaust gas GE does not contain corrosive gases such as sulfur, so it is cooled to near room temperature.
  • the cooling water W2 used in the gas cooler 14 is typically provided using a cooling water circulation line that includes a cooling system such as a cooling tower that is provided as a separate system from the supply system for the boiler feed water W1.
  • a cooling system such as a cooling tower that is provided as a separate system from the supply system for the boiler feed water W1.
  • the gas cooler 14 a large amount of drain is generated during cooling of the exhaust gas.
  • the exhaust gas GE flows downward from the top of the gas cooler 14 toward the bottom.
  • the cooling water W2 be allowed to flow upward in order to prevent the formation of air pockets.
  • the gas cooler 14 be constructed using an acid-resistant material. Note that it is preferable that the gas cooler 14 be constructed using a material having an appropriate heat-resistant temperature, taking into consideration the inlet exhaust gas temperature when the economizer 12 is operated by bypass.
  • the boiler system according to the embodiment of the present invention is suitably used in, for example, a small steam boiler or a water heater to increase the CO 2 concentration in exhaust gas while continuing stable combustion.
  • Boiler 12 Economizer 14 Gas cooler 16 Exhaust line 18 Neutralization device 20 Circulating gas line 22 Forced fan (combustion-supporting gas fan) 24 Damper for drawing in circulating gas 26 Atmospheric supply line 28 Damper for atmospheric suction 30 Oxygen supply line 30A Main line 30B Sub line 32 On-off valve (electromagnetic valve) 34 Adjustable opening valve (motorized valve) 36a Oxygen sensor 36b Oxygen concentration control circuit 38 Manual valve 100 Boiler system GE Exhaust gas GF Fuel gas GS Combustion supporting gas

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)

Abstract

A boiler system 100 includes: a boiler 10 that combusts fuel gas GF to heat supply water W1; an exhaust line 16 that exhausts exhaust gas GE from the boiler; a circulation line 20 that branches from the exhaust line, has connected thereto an oxygen supply line 30 and an air supply line 26, and supplies air or oxygen gas together with the exhaust gas GE to the boiler as combustion-supporting gas GS. The oxygen supply line 30 includes a main line 30A provided with an ON/OFF valve 32, and a sub line 30B provided with an adjustable opening value 34, and is configured to be capable of adjusting an oxygen concentration in a mixed gas of the oxygen gas and the exhaust gas and supplying the mixed gas to the boiler.

Description

ボイラシステムboiler system
 本発明は、ボイラシステムに関し、特に、小型ボイラから排出される排ガス中のCO濃度を高めることができるボイラシステムに関する。 The present invention relates to a boiler system, and particularly to a boiler system that can increase the CO 2 concentration in exhaust gas discharged from a small boiler.
 近年、地球温暖化の要因とされるCO(二酸化炭素)ガス排出量の大幅な削減が求められている。このために、ボイラなどの燃焼装置から排気される排ガス中のCOを、化学吸着法や固体吸収法などによって分離回収するための各種システムが開発されている。ただし、排ガス中のCO濃度は、通常10%程度と低いため、CO分離回収装置の回収効率が低いという問題がある。 In recent years, there has been a demand for a significant reduction in CO 2 (carbon dioxide) gas emissions, which are considered to be a cause of global warming. To this end, various systems have been developed for separating and recovering CO2 in exhaust gas exhausted from combustion devices such as boilers by chemical adsorption methods, solid absorption methods, and the like. However, since the CO 2 concentration in the exhaust gas is usually as low as about 10%, there is a problem that the recovery efficiency of the CO 2 separation and recovery device is low.
 これに対して、石炭火力発電プラントが備えるボイラにおいて、従来の空気燃焼に代えて酸素燃焼を行うことによって、排ガス中のCO濃度を高める方法が提案されており、酸素燃焼を利用するCCS(Carbon dioxide Capture and Storage)の実証試験も行われている(非特許文献1および特許文献1)。 In response, a method has been proposed to increase the CO2 concentration in exhaust gas by performing oxy-combustion instead of conventional air-combustion in the boiler of a coal-fired power plant. Demonstration tests have also been conducted on carbon dioxide capture and storage (Non-Patent Document 1 and Patent Document 1).
 酸素燃焼は、酸化剤または支燃性ガスとして、空気の代わりに酸素ガスを供給して燃料を燃焼させる方式である。酸素燃焼の場合、排ガスに窒素成分がほとんど含まれないので、排ガスの主成分(石炭燃焼の場合、例えば90%以上)をCOガスとすることができる。このため、酸素燃焼を利用すれば、排ガスを冷却等してCOを分離回収することが、より容易になる。 Oxygen combustion is a method of burning fuel by supplying oxygen gas instead of air as an oxidizing agent or combustion-supporting gas. In the case of oxyfuel combustion, the exhaust gas contains almost no nitrogen component, so the main component of the exhaust gas (for example, 90% or more in the case of coal combustion) can be CO 2 gas. Therefore, if oxyfuel combustion is used, it becomes easier to separate and recover CO 2 by cooling the exhaust gas.
 ただし、高濃度の酸素ガスを用いて酸素燃焼を行うと、火炎温度が高くなりすぎることからバーナやボイラが損傷するおそれがある。このため、非特許文献1および特許文献1に記載の酸素燃焼ボイラ設備では、排ガスの一部を循環させ、製造した酸素と再循環ガス(主としてCOガス)とを混合し、酸素濃度を低下させた支燃性ガスをボイラに供給している。 However, if oxygen combustion is performed using highly concentrated oxygen gas, the flame temperature will become too high, which may damage the burner or boiler. For this reason, in the oxyfuel combustion boiler equipment described in Non-Patent Document 1 and Patent Document 1, a part of the exhaust gas is circulated and the produced oxygen is mixed with recirculated gas (mainly CO 2 gas) to reduce the oxygen concentration. The combustion supporting gas is supplied to the boiler.
 また、上記の石炭火力発電プラントでは、酸素燃焼を行うために、取り込んだ大気から深冷分離法などによって高純度酸素を製造するための酸素製造装置がボイラの近傍に設けられている。ただし、酸素製造に電力を要する場合、発電開始に至るまでは、従来と同様に大気を取り込んでの空気燃焼を行うことが考えられる。 In addition, in the above-mentioned coal-fired power plant, in order to perform oxy-combustion, an oxygen production device is installed near the boiler to produce high-purity oxygen from the taken in air using a cryogenic separation method or the like. However, if electric power is required to produce oxygen, it is conceivable to take in atmospheric air and perform air combustion as in the past until the start of power generation.
 特許文献2には、酸素燃焼と空気燃焼とを切り替えて行うことができる石炭火力発電用のボイラプラントが開示されている。このボイラプラントでは、酸素燃焼に移行する前のボイラ起動時に、酸素ガスおよび循環排ガスの代わりに大気を供給することによって空気燃焼を行うことができる。そして空気燃焼によって得られた電力を用いて酸素ガスの製造を行えるようになった後は、空気の供給系を閉じて、酸素ガスと循環排ガスとをボイラに供給し、石炭の酸素燃焼へと容易に移行することができる。 Patent Document 2 discloses a boiler plant for coal-fired power generation that can switch between oxygen combustion and air combustion. In this boiler plant, air combustion can be performed by supplying atmospheric air instead of oxygen gas and circulating exhaust gas when the boiler is started before shifting to oxyfuel combustion. After it became possible to produce oxygen gas using the electricity obtained by air combustion, the air supply system was closed and oxygen gas and circulating exhaust gas were supplied to the boiler, which led to the oxy-combustion of coal. Can be easily migrated.
 また、特許文献2には、循環排ガスの流量を調節することによって支燃性ガスにおける酸素濃度を制御し、燃料量に対する酸素量の割合を所望の設定に制御する技術が記載されている。酸素濃度は、合計ガス流量に対する酸素流量の割合として、各ガス流量指令値から演算によって求めることができる。また、算出された酸素濃度に基づいて給水温度を設定することによって、熱交換器を流れる水や蒸気の温度を許容範囲内に制御して安全運転を図ることも可能である。 Further, Patent Document 2 describes a technique for controlling the oxygen concentration in combustion-supporting gas by adjusting the flow rate of circulating exhaust gas, and controlling the ratio of the amount of oxygen to the amount of fuel to a desired setting. The oxygen concentration can be calculated from each gas flow rate command value as a ratio of the oxygen flow rate to the total gas flow rate. Furthermore, by setting the feed water temperature based on the calculated oxygen concentration, it is also possible to control the temperature of water or steam flowing through the heat exchanger within an allowable range for safe operation.
 このようにして酸素燃焼を行うことによって排ガス中のCO濃度を高めたうえで、COの回収を行うことによって、より効率的にCOを回収・貯留することが可能である。特許文献3および4には、具体的な排ガスCO分離・回収装置が記載されている。また、特許文献5には、比較的小型のボイラにおいて排ガス中のCO濃度を調整する技術が記載されている。ただし、この排ガスは、ボイラ排液を中和するために用いられるものであり、ボイラ排液に導入する前に大気の混合量を調整することによってCO濃度が調整されているものにすぎない。 By performing oxygen combustion in this manner to increase the CO 2 concentration in the exhaust gas and then recovering CO 2 , it is possible to recover and store CO 2 more efficiently. Patent Documents 3 and 4 describe specific exhaust gas CO 2 separation/recovery devices. Furthermore, Patent Document 5 describes a technique for adjusting the CO 2 concentration in exhaust gas in a relatively small boiler. However, this exhaust gas is used to neutralize the boiler effluent, and the CO2 concentration is simply adjusted by adjusting the amount of air mixed before being introduced into the boiler effluent. .
特許第6471485号公報Patent No. 6471485 特許第5130145号公報Patent No. 5130145 特許第5351816号公報Patent No. 5351816 特許第3025566号公報Patent No. 3025566 特開平11-244654号公報Japanese Patent Application Publication No. 11-244654
 上述したように、石炭火力発電装置などの大型設備において、大気から製造した酸素ガスと再循環させた排ガスとを用いて酸素燃焼を行うことによって、排ガス中のCO濃度を大幅に高め、より効率的なCOの回収・貯蔵を行う試みがなされている。このような方式では、支燃性ガスから予め窒素を除去しているので、ボイラ燃焼における窒素酸化物(NO)の発生を抑制することができるという利点も得られる。 As mentioned above, in large-scale equipment such as coal-fired power generation equipment, by performing oxy-combustion using oxygen gas produced from the atmosphere and recirculated exhaust gas, the CO2 concentration in the exhaust gas is significantly increased, and even more Attempts have been made to efficiently capture and store CO2 . In such a system, since nitrogen is removed from the combustion-supporting gas in advance, there is also the advantage that the generation of nitrogen oxides (NO x ) during boiler combustion can be suppressed.
 しかしながら、発電所のような大型設備ではなく、小型貫流ボイラや温水ボイラなど小型のボイラでは、要求される使用中の出力変化がより大きく、大型設備に比べて燃焼の制御速度を、桁外れに高速にしなければならない。このため、従来の大型設備と同様の酸素燃焼ボイラ構成を採用しただけでは、排ガスCO濃度を高められたとしても、小型ボイラ設備では、失火などの運転不良が生じるおそれがあった。 However, rather than large equipment such as power plants, small boilers such as small once-through boilers and hot water boilers require larger changes in output during use, and the combustion control speed must be controlled at an order of magnitude faster than in large equipment. must be done. For this reason, even if exhaust gas CO 2 concentration can be increased by simply adopting the same oxyfuel combustion boiler configuration as in conventional large-scale equipment, there is a risk that malfunctions such as misfires will occur in small-sized boiler equipment.
 本発明は、上記課題を解決するためになされたものであり、燃焼制御に比較的高い応答性が求められる小型ボイラを利用する場合であっても、安定燃焼を実現しながら、酸素燃焼を可能とし、排ガス中のCO濃度を向上させることができるボイラシステムを提供することをその目的とする。 The present invention has been made to solve the above problems, and even when using a small boiler that requires relatively high response in combustion control, it is possible to achieve oxy-fuel combustion while achieving stable combustion. The purpose of the present invention is to provide a boiler system that can improve the CO 2 concentration in exhaust gas.
 本発明の実施形態によるボイラシステムは、燃料ガスを燃焼させることによって給水を加熱するボイラと、前記ボイラからの排ガスを排気する排気ラインと、前記排気ラインから分岐する循環ガスラインであって、酸素供給ラインおよび大気供給ラインが接続され、大気および酸素ガスの少なくともいずれかとともに前記排ガスを前記ボイラに支燃性ガスとして供給することができる循環ガスラインとを備え、前記大気供給ラインには、大気吸い込みを制御するためのダンパが設けられており、前記酸素供給ラインは、オンオフ弁が設けられたメインラインと、開度自在弁が設けられたサブラインとを含んでおり、前記大気供給ラインの前記ダンパを閉じるとともに、前記酸素供給ラインの前記オンオフ弁の開閉および前記開度自在弁の開度を制御することによって、前記酸素供給ラインからの酸素ガスと前記排ガスとの混合ガスにおける酸素濃度を調節して支燃性ガスとして前記ボイラに供給できるように構成されている。 A boiler system according to an embodiment of the present invention includes a boiler that heats feed water by burning fuel gas, an exhaust line that exhausts exhaust gas from the boiler, and a circulating gas line that branches from the exhaust line, a circulating gas line to which a supply line and an atmospheric supply line are connected and capable of supplying the exhaust gas to the boiler as a combustion supporting gas together with at least one of atmospheric air and oxygen gas; A damper for controlling suction is provided, and the oxygen supply line includes a main line provided with an on/off valve and a subline provided with a variable opening valve, and the oxygen supply line includes a main line provided with an on/off valve and a subline provided with a variable opening valve. Adjusting the oxygen concentration in the mixed gas of the oxygen gas from the oxygen supply line and the exhaust gas by closing the damper and controlling the opening/closing of the on/off valve and the opening degree of the variable opening valve of the oxygen supply line. It is configured such that it can be supplied to the boiler as a combustion-supporting gas.
 ある実施形態において、ボイラシステムは、前記ボイラの近傍に設けられ前記循環ガスラインからの前記支燃性ガスを前記ボイラに送出するための支燃性ガスファンと、前記支燃性ガスファンから前記ボイラに送出された前記支燃性ガス中の酸素濃度を測定する酸素センサとをさらに備え、前記酸素センサの出力に基づいて、前記開度自在弁がフィードバック制御されるように構成されている。 In one embodiment, the boiler system includes a combustion-supporting gas fan provided near the boiler for delivering the combustion-supporting gas from the circulating gas line to the boiler; The fuel cell further includes an oxygen sensor that measures the oxygen concentration in the combustion-supporting gas sent to the boiler, and the variable opening valve is configured to be feedback-controlled based on the output of the oxygen sensor.
 ある実施形態において、前記支燃性ガスファンの出口は、前記ボイラに設けられたバーナ用風箱に接続されており、前記酸素センサは、前記バーナ用風箱の内側のガスの酸素濃度を測定するように構成されており、前記酸素センサの出力に基づいて、前記バーナ用風箱の内側のガスの酸素濃度が20~22%に維持されるように前記開度自在弁が制御される。 In one embodiment, the outlet of the combustion-supporting gas fan is connected to a burner wind box provided in the boiler, and the oxygen sensor measures the oxygen concentration of the gas inside the burner wind box. Based on the output of the oxygen sensor, the variable opening valve is controlled so that the oxygen concentration of the gas inside the burner wind box is maintained at 20 to 22%.
 ある実施形態において、前記酸素供給ラインの前記メインラインは、それぞれに前記オンオフ弁が設けられ並列接続された複数ラインによって構成されており、前記複数ラインの各オンオフ弁を制御することによって、前記メインラインから複数段の流量で酸素ガスを供給することができるように構成されている。 In one embodiment, the main line of the oxygen supply line is configured by a plurality of lines connected in parallel, each of which is provided with the on/off valve, and by controlling each on/off valve of the plurality of lines, the main line is It is configured so that oxygen gas can be supplied from the line at multiple flow rates.
 ある実施形態において、前記酸素供給ラインの前記サブラインに設けられた前記開度自在弁の一次側または二次側の少なくとも一方に手動弁が設けられており、燃焼に必要な理論燃焼酸素量の80~90%の酸素を前記メインラインを介して供給することができ、燃焼に必要な理論燃焼酸素量の0~50%の酸素を前記サブラインを介して供給することができるように構成されている。 In one embodiment, a manual valve is provided on at least one of the primary side and the secondary side of the variable opening valve provided in the subline of the oxygen supply line, and a manual valve is provided on at least one of the primary side and secondary side of the variable opening valve provided in the subline of the oxygen supply line, and ~90% of oxygen can be supplied through the main line, and 0~50% of the theoretical combustion oxygen amount required for combustion can be supplied through the subline. .
 ある実施形態において、前記ボイラシステムは、前記ボイラからの排ガスの熱によって前記ボイラへの給水を予熱するエコノマイザと、前記エコノマイザの下流側の排ガスを冷却するガスクーラとをさらに備え、前記排気ラインは、前記ガスクーラによって冷却された排ガスを排気するように設けられており、前記ガスクーラは、前記排ガスの出口温度を30℃~50℃に冷却することができるように構成されている。 In one embodiment, the boiler system further includes an economizer that preheats water supplied to the boiler using the heat of exhaust gas from the boiler, and a gas cooler that cools the exhaust gas downstream of the economizer, and the exhaust line includes: The gas cooler is provided to exhaust the exhaust gas cooled by the gas cooler, and the gas cooler is configured to be able to cool the outlet temperature of the exhaust gas to 30°C to 50°C.
 ある実施形態において、前記酸素供給ラインのメインラインに設けられた前記オンオフ弁は、電磁弁であり、前記酸素供給ラインのサブラインに設けられた前記開度自在弁は、電動弁である。 In one embodiment, the on-off valve provided in the main line of the oxygen supply line is a solenoid valve, and the variable opening valve provided in the subline of the oxygen supply line is an electric valve.
 ある実施形態において、前記燃料ガスは、都市ガスまたはLPガスのいずれかであり、前記ボイラは、貫流ボイラまたは温水ボイラのいずれかである。 In one embodiment, the fuel gas is either city gas or LP gas, and the boiler is either a once-through boiler or a hot water boiler.
 本発明の実施形態によるボイラシステムによれば、貫流ボイラまたは温水ボイラなどの小型ボイラを用いる場合にも、安定燃焼を実現しながら排ガス中のCO濃度を高めることができる。 According to the boiler system according to the embodiment of the present invention, even when using a small boiler such as a once-through boiler or a hot water boiler, it is possible to increase the CO 2 concentration in exhaust gas while achieving stable combustion.
本発明の実施形態によるボイラシステムを示す模式図である。1 is a schematic diagram showing a boiler system according to an embodiment of the present invention. 本発明の実施形態による酸素供給ラインの一態様を示す図である。FIG. 2 is a diagram illustrating one aspect of an oxygen supply line according to an embodiment of the invention.
 以下、図面を参照しながら本発明の実施形態を説明するが、本発明は以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments.
 図1は、本発明の実施形態によるボイラシステム100を示す。ボイラシステム100は、燃料ガスGFを燃焼するバーナ11を有する燃焼するボイラ10と、ボイラ10からの排ガスGEが通過するエコノマイザ(節炭器)12と、エコノマイザ12を通過した排ガスGEを冷却するためのガスクーラ14と、ガスクーラ14によって冷却された排ガスGEを排気する排気ライン16とを備えている。 FIG. 1 shows a boiler system 100 according to an embodiment of the invention. The boiler system 100 includes a combustion boiler 10 having a burner 11 that burns fuel gas GF, an economizer 12 through which exhaust gas GE from the boiler 10 passes, and a cooling system for cooling the exhaust gas GE that has passed through the economizer 12. A gas cooler 14 and an exhaust line 16 for exhausting the exhaust gas GE cooled by the gas cooler 14 are provided.
 本実施形態で用いられるボイラ10は、比較的小型の例えば貫流ボイラまたは温水ボイラである。また、用いられる燃料ガスGFは、例えば、都市ガス(またはメタンを主成分とするガス)またはLPガス(またはプロパンまたはブタンを主成分とするガス)である。ボイラシステム100は、比較的小型のボイラ10を用いて蒸気または温水を生成して提供できるように構成されており、各種工場、住居・宿泊施設や温浴施設などにおいて設置されて、用途に応じて適宜温度設定された温水や蒸気を提供することができる。 The boiler 10 used in this embodiment is a relatively small once-through boiler or a hot water boiler, for example. Further, the fuel gas GF used is, for example, city gas (or gas containing methane as a main component) or LP gas (or gas containing propane or butane as a main component). The boiler system 100 is configured to generate and provide steam or hot water using a relatively small boiler 10, and is installed in various factories, residences/accommodations, hot bath facilities, etc., depending on the purpose. It is possible to provide hot water or steam at an appropriate temperature.
 ボイラ10は、バーナ11によって燃料ガスGFを燃焼させることによってボイラ10への給水W1を加熱し、温水や蒸気を生成することができる。エコノマイザ12は、ボイラ10からの排ガスGEの熱を利用して、ボイラ10に供給する前に給水W1を予熱することができ、燃料ガスGFの消費量を節約することができる。 The boiler 10 can heat the water supply W1 to the boiler 10 by burning the fuel gas GF with the burner 11, and can generate hot water and steam. The economizer 12 can preheat the feed water W1 before supplying it to the boiler 10 using the heat of the exhaust gas GE from the boiler 10, and can save the amount of fuel gas GF consumed.
 また、本実施形態では、ガスクーラ14は、種々の熱交換器(例えばプレート式熱交換器やチューブ式熱交換器)を用いて、供給された冷却水W2との熱交換を行うことによって排ガスGEを冷却するように構成されている。ガスクーラ14は、排ガスの出口温度T1が、例えば約30~50℃、特には約40℃になるまで冷却することができるように構成されている。これによって、ガスクーラ14において排ガスに含まれる蒸気をドレン化し、ドライな排ガスを得ることができる。 Furthermore, in the present embodiment, the gas cooler 14 exchanges heat with the supplied cooling water W2 using various heat exchangers (for example, a plate heat exchanger or a tube heat exchanger), thereby reducing exhaust gas GE. is configured to cool the The gas cooler 14 is configured to be able to cool the exhaust gas until the outlet temperature T1 reaches, for example, about 30 to 50°C, particularly about 40°C. Thereby, steam contained in the exhaust gas can be converted into drain in the gas cooler 14, and dry exhaust gas can be obtained.
 ボイラ10からのブロー水、エコノマイザ12からのドレン(排水)、ガスクーラ14からのドレンは中和装置18に送られる。中和装置18は、種々方法により排水を中和して、産業排水基準に適合するpH値に調整したうえで外部に排出する。 Blow water from the boiler 10, drain from the economizer 12, and drain from the gas cooler 14 are sent to the neutralization device 18. The neutralization device 18 neutralizes wastewater using various methods, adjusts the pH value to meet industrial wastewater standards, and discharges the wastewater to the outside.
 排気ライン16は、冷却された排ガスGEを、煙道16Aから大気中へ放出したり、CO回収ライン16Bを介してCO回収設備に移送するために設けられている。後述するように、ボイラシステム100では、酸素燃焼を行って排ガス中のCO濃度を高めることができるので、CO回収ライン16Bで送られた排ガスからCOを効率的に回収することが可能である。なお、図示しないが、排気ライン16には、バグフィルタなどの任意の排ガス処理装置が必要に応じて設けられていてもよい。 The exhaust line 16 is provided to discharge the cooled exhaust gas GE from the flue 16A into the atmosphere or to transfer it to the CO 2 recovery facility via the CO 2 recovery line 16B. As will be described later, in the boiler system 100, the CO 2 concentration in the exhaust gas can be increased by performing oxygen combustion, so it is possible to efficiently recover CO 2 from the exhaust gas sent through the CO 2 recovery line 16B. It is. Although not shown, the exhaust line 16 may be provided with any exhaust gas treatment device such as a bag filter, if necessary.
 本実施形態のボイラシステム100において、排気ライン16には、排気ライン16から分岐する循環ガスライン20が接続されている。循環ガスライン20は、ガスクーラ14によって冷却された排ガスGEを、ボイラ近傍に設けられた押込ファン(支燃性ガスファン)22を用いて、ボイラ10へと循環させることができるように構成されている。循環ガスライン20には、モータM駆動の循環ガス引込用ダンパ24が設けられており、循環ガス引込用ダンパ24の開度を調整することによって、任意の流量で排ガスGEをボイラ10に供給することができる。 In the boiler system 100 of this embodiment, a circulating gas line 20 branching from the exhaust line 16 is connected to the exhaust line 16. The circulating gas line 20 is configured to be able to circulate the exhaust gas GE cooled by the gas cooler 14 to the boiler 10 using a forced fan (combustion-supporting gas fan) 22 provided near the boiler. There is. The circulating gas line 20 is provided with a damper 24 for drawing in circulating gas driven by a motor M, and by adjusting the opening degree of the damper 24 for drawing in circulating gas, exhaust gas GE is supplied to the boiler 10 at an arbitrary flow rate. be able to.
 また、循環ガスライン20には、大気供給ライン26と酸素供給ライン30とが接続されている。これによって、ボイラ10には、大気AIR、酸素ガスOおよび/または排気ライン16から引き込んだ排ガスGEを、支燃性ガスGSとして供給することができる。この構成において、ボイラ10は、空気燃焼と酸素燃焼との両方を実施することが可能である。 Further, an atmosphere supply line 26 and an oxygen supply line 30 are connected to the circulating gas line 20. Thereby, atmospheric air AIR, oxygen gas O 2 and/or exhaust gas GE drawn from the exhaust line 16 can be supplied to the boiler 10 as the combustion-supporting gas GS. In this configuration, the boiler 10 is capable of performing both air combustion and oxygen combustion.
 なお、図示する態様において、大気供給ライン26は、酸素供給ライン30の上流側に接続されているが、これとは逆に酸素供給ライン30が上流側に接続されていてもよい。また、大気供給ライン26と酸素供給ライン30とは、必ずしも異なる場所に接続されている必要はなく、循環ガスライン20の同じ接続箇所において共通ラインを用いて接続され、共通ラインの上流側で分岐して並列に配置されていてもよい。 Note that in the illustrated embodiment, the atmospheric supply line 26 is connected to the upstream side of the oxygen supply line 30, but on the contrary, the oxygen supply line 30 may be connected to the upstream side. In addition, the atmospheric supply line 26 and the oxygen supply line 30 do not necessarily need to be connected to different places, but are connected using a common line at the same connection point of the circulating gas line 20, and are branched on the upstream side of the common line. may be arranged in parallel.
 大気供給ライン26および酸素供給ライン30は、循環ガス引込用ダンパ24とボイラ10との間で循環ガスライン20に連通する限り、任意の態様で接続されていてよい。また、本実施形態では、ボイラ近傍に設けられた支燃性ガスファンとしての押込ファン22を用いて、循環ガスライン20におけるボイラ方向へのガスの流れを形成しているが、これに代えて、または、これに追加して、循環ガスライン20に他の送風機(押込ファンや誘引ファンなど)を設けてもよい。また、排気ライン16にも、必要に応じて任意の送風機を設けてもよい。 The atmospheric supply line 26 and the oxygen supply line 30 may be connected in any manner as long as they communicate with the circulating gas line 20 between the circulating gas drawing damper 24 and the boiler 10. Further, in this embodiment, the forced fan 22 as a combustion-supporting gas fan provided near the boiler is used to form the gas flow in the circulating gas line 20 toward the boiler, but instead of this, Alternatively, in addition to this, another blower (such as a forced fan or an induced fan) may be provided in the circulating gas line 20. Further, an arbitrary blower may be provided in the exhaust line 16 as well, if necessary.
 以下、循環ガスライン20のより詳細な構成について説明する。 Hereinafter, a more detailed configuration of the circulating gas line 20 will be described.
 循環ガスライン20に接続された大気供給ライン26には、モータM駆動の大気吸込用ダンパ28が設けられている。この大気吸込用ダンパ28の開度を調整することによって、任意の流量で大気(空気)AIRをボイラ10に供給することができる。 The atmosphere supply line 26 connected to the circulating gas line 20 is provided with an atmosphere suction damper 28 driven by a motor M. By adjusting the opening degree of this atmospheric suction damper 28, atmospheric air (air) AIR can be supplied to the boiler 10 at an arbitrary flow rate.
 このようにして、循環ガスライン20を介して、ボイラ10に対して流量制御可能な空気を支燃性ガスGSとして供給することができるので、ボイラ起動時など、酸素燃焼を安定して行うことが困難なときには、空気燃焼によるボイラ運転を行うことができる。空気燃焼を行っている期間中、ボイラ10には、開度調整された大気吸込用ダンパ28を介して制御された流量で空気が供給される一方で、通常、循環ガス引込用ダンパ24および酸素供給ライン30は閉じた状態に維持されている。 In this way, air whose flow rate can be controlled can be supplied to the boiler 10 as the combustion-supporting gas GS via the circulating gas line 20, so that oxy-fuel combustion can be performed stably, such as when starting up the boiler. When this is difficult, boiler operation using air combustion can be performed. During the period when air combustion is being performed, air is supplied to the boiler 10 at a controlled flow rate via the atmospheric suction damper 28 whose opening degree is adjusted, while the circulating gas suction damper 24 and the oxygen Supply line 30 remains closed.
 燃料ガスとして都市ガス13Aを用いる場合、大気供給ライン26からの空気を用いた空気燃焼では、燃焼排ガスに約10vol%のCOが含まれ、残りの大部分が窒素ガスおよび水蒸気によって構成される。このため、空気燃焼における排ガスからCOを分離回収しようとする場合には、効率が悪く、回収装置側の設備が過大となるため、コストメリットが望めないという問題がある。そこで、ボイラ起動後、燃焼が安定し、排ガスGEの安定循環供給も可能になった後は、空気燃焼から酸素燃焼に切替えて、排ガス中のCO濃度を向上させることが好適である。 When city gas 13A is used as the fuel gas, in air combustion using air from the atmospheric supply line 26, the combustion exhaust gas contains about 10 vol% CO2 , and most of the remainder is composed of nitrogen gas and water vapor. . For this reason, when trying to separate and recover CO 2 from exhaust gas in air combustion, there is a problem that efficiency is poor and the equipment on the recovery device side becomes excessively large, so that no cost advantage can be expected. Therefore, after the boiler is started and combustion becomes stable and stable circulating supply of exhaust gas GE becomes possible, it is preferable to switch from air combustion to oxyfuel combustion to improve the CO 2 concentration in the exhaust gas.
 酸素燃焼のために用いられる酸素供給ライン30は、並列に接続されたメインライン30Aとサブライン30Bとによって構成されている。図示する態様では、メインライン30Aとサブライン30Bとは同じ酸素供給源に接続されているが、それぞれ別の酸素供給源に接続されていても良い。酸素供給源としては、例えば、圧力変動吸着法(PSA)によって空気から生成した酸素ガスを利用することができる。 The oxygen supply line 30 used for oxygen combustion is composed of a main line 30A and a subline 30B connected in parallel. In the illustrated embodiment, the main line 30A and the subline 30B are connected to the same oxygen supply source, but they may be connected to different oxygen supply sources. As the oxygen supply source, for example, oxygen gas generated from air by pressure swing adsorption (PSA) can be used.
 そして、酸素供給ライン30のメインライン30Aには、オンオフ弁32が設けられており、一方で、サブライン30Bには、開度自在弁(典型的には比例弁)34が設けられている。本実施形態において、オンオフ弁32は電磁弁(ソレノイドバルブS)によって構成され、開度自在弁34は、モータM駆動される電動弁によって構成されている。オンオフ弁32は、例えば空気駆動弁(AOV)によって構成されていてもよい。 The main line 30A of the oxygen supply line 30 is provided with an on/off valve 32, while the subline 30B is provided with a variable opening valve (typically a proportional valve) 34. In this embodiment, the on-off valve 32 is constituted by a solenoid valve (solenoid valve S), and the variable opening valve 34 is constituted by an electric valve driven by motor M. The on-off valve 32 may be configured by, for example, an air-operated valve (AOV).
 本実施形態において、メインライン30Aからは、燃料ガスGFの成分および流量に適合する燃焼に必要な理論燃焼酸素量の80~90%の酸素を供給することができ、サブライン30Bからは、理論燃焼酸素量の0~50%の酸素を供給することができるように、各ラインでの酸素ガスの流量制御が行われる。酸素供給ライン30から供給された酸素ガスは、循環ガス引込用ダンパ24を開いて導入された排ガスGEと混合され、酸素濃度が調整された支燃性ガスGSとしてボイラ10に供給される。 In this embodiment, the main line 30A can supply 80 to 90% of the theoretical combustion oxygen amount required for combustion that matches the composition and flow rate of the fuel gas GF, and the subline 30B can supply oxygen that is 80% to 90% of the theoretical combustion The flow rate of oxygen gas in each line is controlled so that 0 to 50% of the amount of oxygen can be supplied. The oxygen gas supplied from the oxygen supply line 30 is mixed with the exhaust gas GE introduced by opening the circulating gas intake damper 24, and is supplied to the boiler 10 as a combustion-supporting gas GS with an adjusted oxygen concentration.
 また、本実施形態において、サブライン30Bは、単独の開度自在弁34が設けられた1本のラインで構成されているのに対して、メインライン30Aは、それぞれにオンオフ弁32が設けられた複数の並列ラインによって構成されている。 Further, in this embodiment, the sub-line 30B is composed of one line provided with a single variable-opening valve 34, whereas the main line 30A is composed of a single line provided with an on-off valve 32, respectively. Consists of multiple parallel lines.
 図2は、メインライン30Aが、3本のラインで構成されている例を示す。図2に示すように、並列に接続されたライン301、302、303によってメインライン30Aが構成されており、各ライン301、302、303に、オンオフ弁(ここでは電磁弁)321、322、323がそれぞれ設けられている。各オンオフ弁321、322、323の開放時定格流量(またはCV値:一次側圧力と2次側圧力値とが規定値の場合に開放バルブを通過する流体の流量係数)は、同じであっても良いし、異なっていてもよい。 FIG. 2 shows an example in which the main line 30A is composed of three lines. As shown in FIG. 2, a main line 30A is composed of lines 301, 302, and 303 connected in parallel, and each line 301, 302, and 303 is connected to an on-off valve (here, a solenoid valve) 321, 322, and 323. are provided for each. The rated flow rate (or CV value: the flow rate coefficient of the fluid passing through the open valve when the inlet pressure and outlet pressure values are the specified values) of each on-off valve 321, 322, and 323 when open is the same. It may be different, or it may be different.
 この構成において、オンオフ弁321、322、323の開閉制御を行うことによって、ボイラの燃焼パターンに適合する複数段での酸素流量制御を即座に行うことができる。例えば、0%-20%-50%-100%で燃焼パターンを制御する4位置制御の場合、全オンオフ弁を閉じた状態で0%制御を行い、オンオフ弁321のみを開いた状態で20%制御を行い、オンオフ弁321とオンオフ弁322とを開いた状態で50%制御を行い、全てのオンオフ弁321、322、323を開いた状態で100%制御を行うことができる。それぞれの燃焼パターンにおいて、各ラインを介して供給される酸素量の合計は、燃料ガス流量の変動に合わせて、上記のように理論燃焼酸素量の80~90%の酸素となるように調整されている。 In this configuration, by controlling the opening and closing of the on-off valves 321, 322, and 323, it is possible to immediately control the oxygen flow rate in multiple stages that match the combustion pattern of the boiler. For example, in the case of 4-position control that controls the combustion pattern at 0%-20%-50%-100%, 0% control is performed with all on-off valves closed, and 20% control is performed with only the on-off valve 321 open. 50% control can be performed with the on-off valves 321 and 322 open, and 100% control can be performed with all the on-off valves 321, 322, and 323 open. In each combustion pattern, the total amount of oxygen supplied via each line is adjusted according to the fluctuation of the fuel gas flow rate so that the amount of oxygen is 80 to 90% of the theoretical combustion oxygen amount as described above. ing.
 なお、上記には、4位置制御を行うために3本のオンオフ弁付きラインを用いる態様を説明したが、燃焼パターンに応じて、2本または4本以上のオンオフ弁付きラインを用いても良いことは言うまでもない。また、メインライン30Aにおける流量制御が0%-100%の2段階の制御で足りる場合には、図1に示したように、メインライン30Aも、サブライン30Bと同様に、1本のラインで構成されていてもよい。 In addition, although the embodiment in which three lines with on/off valves are used to perform four-position control has been described above, depending on the combustion pattern, two or four or more lines with on/off valves may be used. Needless to say. In addition, if the flow rate control in the main line 30A is sufficient with two-stage control from 0% to 100%, the main line 30A is also configured with one line, as in the subline 30B, as shown in Fig. 1. may have been done.
 メインライン30Aにおいて、オンオフ弁32を構成する各電磁弁は、モータ駆動の電動弁(開度自在弁34)に比べて応答性が十分に高いものである。したがって、燃焼パターンに適合するように、各電磁弁の開放制御を高速に行うことができ、これによって燃焼不良の発生が防止できる流量で酸素ガスを供給することができる。また、複数ラインにオンオフ弁32を設けてそれらの開閉制御によって流量を制御するので、大流量または小流量への瞬時の切り替えも比較的容易に実現することができる。 In the main line 30A, each electromagnetic valve constituting the on-off valve 32 has sufficiently high responsiveness compared to a motor-driven electric valve (opening variable valve 34). Therefore, opening control of each electromagnetic valve can be performed at high speed to match the combustion pattern, and thereby oxygen gas can be supplied at a flow rate that can prevent occurrence of combustion defects. Furthermore, since the on/off valves 32 are provided in a plurality of lines and the flow rate is controlled by controlling the opening and closing of the valves, instantaneous switching between a large flow rate and a small flow rate can be realized relatively easily.
 特に、小型ボイラの出力調整は、熱需要側の要求に合わせて非常に短時間(例えば2~3秒など多くは5秒以内)で切り替えることも多く、また、狭い燃焼室に対して高出力のバーナで燃焼を行うため、燃料の燃焼に必要な酸素量が、出力切替えごとに短時間で変化することがある。このため、必要な酸素量の供給が少しでも遅れた場合、その瞬間に不完全燃焼や振動燃焼、さらには失火につながることになる。これに対して、段階的な流量制御ではあるものの、非常に応答性高く流量を小流量から大流量まで制御可能なメインライン30Aからの酸素供給を行うことによって、事前に燃焼不良に至らない最低限の酸素を確実に供給することができる。したがって、ボイラシステム100では、出力変動の激しい小型ボイラの用途においても、失火や燃焼不良の発生を防止することができる。 In particular, the output adjustment of small boilers is often switched in a very short time (for example, 2 to 3 seconds, often within 5 seconds) in accordance with the demands of the heat demand side, and the output is high for a narrow combustion chamber. Since combustion is performed using a burner, the amount of oxygen required for fuel combustion may change in a short period of time each time the output is switched. For this reason, if there is even a slight delay in the supply of the required amount of oxygen, it will instantly lead to incomplete combustion, oscillating combustion, and even misfire. In contrast, although the flow rate is controlled in stages, oxygen is supplied from the main line 30A, which is highly responsive and can control the flow rate from small to large. It is possible to reliably supply a limited amount of oxygen. Therefore, the boiler system 100 can prevent misfires and poor combustion even when used as a small boiler with severe output fluctuations.
 また、酸素供給ライン30のサブライン30Bにおいて、開度自在弁34の一次側または二次側の少なくともいずれかに手動弁38が設けられていてもよい。図1には、開度自在弁34の一次側に手動弁38が設けられた例が示されており、図2には、開度自在弁34の二次側に手動弁38が設けられた例が示されている。このように配置された手動弁38は、サブライン30Bにおける最大制御流量を調整するために用いることができる。手動弁38を用いて、循環ガス引込用ダンパ24の設定開度に対して投入したい酸素量を予め設定しておくことによって、循環ガス量の割合調整に対応することができる。 Furthermore, in the subline 30B of the oxygen supply line 30, a manual valve 38 may be provided on at least one of the primary side and the secondary side of the variable opening valve 34. FIG. 1 shows an example in which a manual valve 38 is provided on the primary side of the variable opening valve 34, and FIG. 2 shows an example in which a manual valve 38 is provided on the secondary side of the variable opening valve 34. An example is shown. Manual valve 38 arranged in this manner can be used to adjust the maximum control flow rate in subline 30B. By using the manual valve 38 to previously set the amount of oxygen to be introduced with respect to the set opening degree of the damper 24 for drawing in the circulating gas, it is possible to adjust the ratio of the circulating gas amount.
 酸素量の微調整を行うためには、開度自在弁34を有するサブライン30Bが用いられる。これによって、酸素供給ライン30からの酸素ガスOと排気ライン16からの排ガスとGEとの混合気体によって形成される支燃性ガスGSにおける酸素濃度が、例えば大気中の酸素濃度と同等である約21%(例えば20~22%)の比率で安定して維持されるように、酸素ガスの全体流量を微調整することができる。 In order to finely adjust the amount of oxygen, a subline 30B having a variable opening valve 34 is used. As a result, the oxygen concentration in the combustion-supporting gas GS formed by the mixture of oxygen gas O 2 from the oxygen supply line 30, exhaust gas from the exhaust line 16, and GE is equivalent to, for example, the oxygen concentration in the atmosphere. The overall flow rate of oxygen gas can be fine-tuned so that it remains stable at a ratio of about 21% (eg, 20-22%).
 また、排ガス量そのものを低減するために、酸素濃度を21%以上とする酸素富化燃焼も鑑みて、開度自在弁34は、必要酸素量の約半分までの酸素量を供給できるCV値(または定格流量値)に設定されていてもよい。 In addition, in order to reduce the amount of exhaust gas itself, in consideration of oxygen-enriched combustion in which the oxygen concentration is set to 21% or more, the variable opening valve 34 has a CV value (CV value) that can supply up to about half of the required amount of oxygen. or rated flow rate value).
 ここで、図1に示すように、本実施形態のボイラシステム100は、バーナ11に供給される支燃性ガスGSの酸素濃度を測定するための酸素センサ36aを備えている。より具体的には、酸素センサ36aは、押込ファン22の出口が接続されたバーナ用風箱13に取り付けられ、バーナ用風箱13の内側のガスの酸素濃度を測定するように設置されている。酸素センサ36aとしては、例えば、ガルバニ電池式のセンサが好適に利用されるが、酸素濃度を測定することができる限り、種々の態様のセンサを用いることができる。 Here, as shown in FIG. 1, the boiler system 100 of this embodiment includes an oxygen sensor 36a for measuring the oxygen concentration of the combustion-supporting gas GS supplied to the burner 11. More specifically, the oxygen sensor 36a is attached to the burner wind box 13 to which the outlet of the forced fan 22 is connected, and is installed to measure the oxygen concentration of the gas inside the burner wind box 13. . As the oxygen sensor 36a, for example, a galvanic cell type sensor is suitably used, but various types of sensors can be used as long as they can measure the oxygen concentration.
 また、酸素センサ36aには、酸素濃度制御回路36bが接続されている。そして、酸素濃度制御回路36bは、酸素センサ36aの出力に基づいて、酸素供給ライン30のサブライン30Bに設けられた開度自在弁34をフィードバック制御できるように構成されている。 Further, an oxygen concentration control circuit 36b is connected to the oxygen sensor 36a. The oxygen concentration control circuit 36b is configured to feedback control the variable opening valve 34 provided in the subline 30B of the oxygen supply line 30 based on the output of the oxygen sensor 36a.
 例えば設定酸素濃度が20~22%である場合、酸素センサ36aが出力する酸素濃度が20%よりも低い場合には、その差に応じた操作量で開度自在弁34の開度を開いて酸素濃度を上昇させる。また、酸素センサ36aが出力する酸素濃度が22%よりも高い場合には、その差に応じた操作量で開度自在弁34の開度を閉じて酸素濃度を低下させる。このようにして、酸素濃度制御回路36bを用いて、設定濃度と測定濃度との差が0に近づくように開度自在弁34をフィードバック制御することによって、バーナ11に対して所望の設定酸素濃度を有する支燃性ガスGSを供給し続けることができる。なお、設定酸素濃度は一定値(例えば21%)であってもよいことは言うまでもない。 For example, when the set oxygen concentration is 20 to 22%, and the oxygen concentration output by the oxygen sensor 36a is lower than 20%, the variable opening valve 34 is opened with a manipulated variable according to the difference. Increase oxygen concentration. Further, when the oxygen concentration output by the oxygen sensor 36a is higher than 22%, the opening degree of the variable opening valve 34 is closed with a manipulated variable according to the difference to lower the oxygen concentration. In this way, by feedback-controlling the variable opening valve 34 using the oxygen concentration control circuit 36b so that the difference between the set concentration and the measured concentration approaches 0, a desired set oxygen concentration is set for the burner 11. It is possible to continue supplying the combustion-supporting gas GS having the following properties. Note that it goes without saying that the set oxygen concentration may be a constant value (for example, 21%).
 このようにして、ボイラシステム100は、循環ガスライン20を介して、ボイラ10に対し酸素ガスと排気ガス(主としてCO)との混合気体による支燃性ガスGSを供給することができるので、酸素燃焼を安定して行うことができる。酸素燃焼を行っている期間中、ボイラ10には酸素ガスが混合された排気ガスが支燃性ガスGSとして供給される一方で、通常は、大気吸込用ダンパ28が閉鎖されて大気供給ライン26は閉じた状態に維持される。 In this way, the boiler system 100 can supply the combustion-supporting gas GS, which is a mixture of oxygen gas and exhaust gas (mainly CO 2 ), to the boiler 10 via the circulating gas line 20. Oxygen combustion can be performed stably. During the period of oxy-combustion, exhaust gas mixed with oxygen gas is supplied to the boiler 10 as the combustion-supporting gas GS, while normally the atmosphere suction damper 28 is closed and the atmosphere supply line 26 is closed. remains closed.
 空気燃焼から酸素燃焼への切り替えの際には、大気吸込用ダンパ28の閉操作に同期させて、循環ガス引込用ダンパ24、メインライン30Aにおけるオンオフ弁32の開操作が行われる。また、同時に、サブライン30Bにおける開度自在弁34の開度調整による酸素濃度調整操作も開始される。ボイラシステム100は、大気供給ライン26のダンパ28を閉じるとともに、酸素供給ライン30のオンオフ弁32の開閉および開度自在弁34の開度を制御することによって、酸素供給ラインからの酸素ガスOと排ガスGEとの混合ガスにおける酸素濃度を調節したうえで、これを支燃性ガスGSとしてボイラ10に供給して酸素燃焼を行うことができるように構成されている。 When switching from air combustion to oxygen combustion, the circulating gas suction damper 24 and the on/off valve 32 in the main line 30A are opened in synchronization with the closing operation of the atmospheric suction damper 28. At the same time, an oxygen concentration adjustment operation by adjusting the opening of the variable opening valve 34 in the sub-line 30B is also started. The boiler system 100 closes the damper 28 of the atmospheric supply line 26 and controls the opening/closing of the on/off valve 32 and the opening degree of the variable opening valve 34 of the oxygen supply line 30, thereby removing oxygen gas O 2 from the oxygen supply line. After adjusting the oxygen concentration in the mixed gas of the exhaust gas GE and the exhaust gas GE, this is configured to be able to be supplied to the boiler 10 as a combustion-supporting gas GS to perform oxy-fuel combustion.
 したがって、ボイラシステム100では、ボイラ起動時の空気燃焼から酸素燃焼にスムーズに移行することができ、また、酸素燃焼切替え後には、小型ボイラの出力変化特性に適合するように素早い酸素供給量の切り替えを行って、不完全燃焼や失火等の燃焼不良の発生を防止しながら、CO濃度が高い排ガスの排出を行うことができる。 Therefore, in the boiler system 100, it is possible to smoothly transition from air combustion to oxyfuel combustion when the boiler is started, and after switching to oxyfuel combustion, the oxygen supply amount can be quickly switched to match the output change characteristics of the small boiler. By doing so, it is possible to discharge exhaust gas with a high concentration of CO 2 while preventing the occurrence of combustion defects such as incomplete combustion and misfire.
 次に、ガスクーラ14の構成について説明する。上述したように本実施形態におけるガスクーラ14は、排ガスの出口温度T1を例えば30℃~50℃にまで低下させ、ドライな排ガスを得るように構成されている。特に、都市ガスやLPガスを燃料ガスとして用いる小型のボイラ10の場合、燃焼によって水蒸気は生成されるものの、排ガスGEに硫黄分などの腐食性ガスが含まれないので、常温近くまでこれを冷却しても大きな問題は生じない。したがって、冷却により含まれる水蒸気をドレン化してドライでCO濃度が高められた排ガスを容易に得ることができる。そして、ボイラシステム100では、酸素燃焼においてドライな排ガスを支燃性ガスに混合させて燃焼を行うので、再循環ガス中の水分によるバーナ燃焼への悪影響を避けることも可能である。 Next, the configuration of the gas cooler 14 will be explained. As described above, the gas cooler 14 in this embodiment is configured to lower the exhaust gas outlet temperature T1 to, for example, 30° C. to 50° C. to obtain dry exhaust gas. In particular, in the case of a small boiler 10 that uses city gas or LP gas as fuel gas, although water vapor is generated by combustion, the exhaust gas GE does not contain corrosive gases such as sulfur, so it is cooled to near room temperature. However, there will be no major problem. Therefore, it is possible to easily obtain dry exhaust gas with increased CO 2 concentration by converting the water vapor contained in the exhaust gas into drains through cooling. Since the boiler system 100 performs combustion by mixing dry exhaust gas with combustion-supporting gas in oxy-combustion, it is also possible to avoid adverse effects of moisture in the recirculated gas on burner combustion.
 ガスクーラ14で使用される冷却水W2は、典型的には、ボイラ給水W1の供給系とは別系統として設けられた冷却塔などの冷却システムを含む冷却水循環ラインを用いて提供される。ただし、ガスクーラ14の出口から、冷却水W2の一部を軟化装置に導き、これをボイラ給水W1として使用することも可能である。 The cooling water W2 used in the gas cooler 14 is typically provided using a cooling water circulation line that includes a cooling system such as a cooling tower that is provided as a separate system from the supply system for the boiler feed water W1. However, it is also possible to introduce a part of the cooling water W2 from the outlet of the gas cooler 14 to the softening device and use it as the boiler feed water W1.
 また、ガスクーラ14では、排ガス冷却時に大量のドレンが生じる。このドレンをガスクーラ14の底部に効率的に移動、滴下させるために、排ガスGEは、ガスクーラ14の上部から底部に向かって下向きに流れることが好適である。一方で、冷却水W2は、空気溜まりの発生を防ぐために上向き流すことが好適である。また、ドレンは排ガス中のCOなどを吸収して酸性になっているため、ガスクーラ14は耐酸性の材料を用いて構成することが好適である。なお、ガスクーラ14は、エコノマイザ12をバイパス運転した場合の入口排ガス温度も考慮して、適合する耐熱温度を有した材料を用いて構成することが好適である。 Further, in the gas cooler 14, a large amount of drain is generated during cooling of the exhaust gas. In order to efficiently move and drip this drain to the bottom of the gas cooler 14, it is preferable that the exhaust gas GE flows downward from the top of the gas cooler 14 toward the bottom. On the other hand, it is preferable that the cooling water W2 be allowed to flow upward in order to prevent the formation of air pockets. Further, since the drain absorbs CO 2 and the like in the exhaust gas and becomes acidic, it is preferable that the gas cooler 14 be constructed using an acid-resistant material. Note that it is preferable that the gas cooler 14 be constructed using a material having an appropriate heat-resistant temperature, taking into consideration the inlet exhaust gas temperature when the economizer 12 is operated by bypass.
 本発明の実施形態によるボイラシステムは、例えば小型の蒸気ボイラや温水機などにおいて、安定燃焼を継続しながら排ガス中のCO濃度を高くするために好適に利用される。 The boiler system according to the embodiment of the present invention is suitably used in, for example, a small steam boiler or a water heater to increase the CO 2 concentration in exhaust gas while continuing stable combustion.
 10 ボイラ
 12 エコノマイザ
 14 ガスクーラ
 16 排気ライン
 18 中和装置
 20 循環ガスライン
 22 押込ファン(支燃性ガスファン)
 24 循環ガス引込用ダンパ
 26 大気供給ライン
 28 大気吸込用ダンパ
 30 酸素供給ライン
 30A メインライン
 30B サブライン
 32 オンオフ弁(電磁弁)
 34 開度自在弁(電動弁)
 36a 酸素センサ
 36b 酸素濃度制御回路
 38 手動弁
 100 ボイラシステム
 GE 排ガス
 GF 燃料ガス
 GS 支燃性ガス
10 Boiler 12 Economizer 14 Gas cooler 16 Exhaust line 18 Neutralization device 20 Circulating gas line 22 Forced fan (combustion-supporting gas fan)
24 Damper for drawing in circulating gas 26 Atmospheric supply line 28 Damper for atmospheric suction 30 Oxygen supply line 30A Main line 30B Sub line 32 On-off valve (electromagnetic valve)
34 Adjustable opening valve (motorized valve)
36a Oxygen sensor 36b Oxygen concentration control circuit 38 Manual valve 100 Boiler system GE Exhaust gas GF Fuel gas GS Combustion supporting gas

Claims (8)

  1.  燃料ガスを燃焼させることによって給水を加熱するボイラと、
     前記ボイラからの排ガスを排気する排気ラインと、
     前記排気ラインから分岐する循環ガスラインであって、酸素供給ラインおよび大気供給ラインが接続され、大気および酸素ガスの少なくともいずれかとともに前記排ガスを前記ボイラに支燃性ガスとして供給することができる循環ガスラインと
     を備えるボイラシステムであって、
     前記大気供給ラインには、大気吸い込みを制御するためのダンパが設けられており、
     前記酸素供給ラインは、オンオフ弁が設けられたメインラインと、開度自在弁が設けられたサブラインとを含んでおり、
     前記大気供給ラインの前記ダンパを閉じるとともに、前記酸素供給ラインの前記オンオフ弁の開閉および前記開度自在弁の開度を制御することによって、前記酸素供給ラインからの酸素ガスと前記排ガスとの混合ガスにおける酸素濃度を調節して支燃性ガスとして前記ボイラに供給できるように構成されている、ボイラシステム。
    a boiler that heats feed water by burning fuel gas;
    an exhaust line for exhausting exhaust gas from the boiler;
    A circulating gas line branching from the exhaust line, to which an oxygen supply line and an atmosphere supply line are connected, and which can supply the exhaust gas to the boiler as a combustion-supporting gas together with at least one of atmospheric air and oxygen gas. A boiler system comprising a gas line,
    The atmospheric supply line is provided with a damper for controlling atmospheric suction,
    The oxygen supply line includes a main line provided with an on-off valve and a subline provided with a variable opening valve,
    Mixing of the oxygen gas from the oxygen supply line and the exhaust gas by closing the damper of the atmospheric supply line and controlling the opening/closing of the on/off valve and the opening degree of the variable opening valve of the oxygen supply line. A boiler system configured to adjust the oxygen concentration in the gas and supply it to the boiler as a combustion-supporting gas.
  2.  前記ボイラの近傍に設けられ前記循環ガスラインからの前記支燃性ガスを前記ボイラに送出するための支燃性ガスファンと、前記支燃性ガスファンから前記ボイラに送出された前記支燃性ガス中の酸素濃度を測定する酸素センサとをさらに備え、
     前記酸素センサの出力に基づいて、前記開度自在弁がフィードバック制御されるように構成されている、請求項1に記載のボイラシステム。
    a combustion-supporting gas fan provided near the boiler for sending the combustion-supporting gas from the circulating gas line to the boiler; and a combustion-supporting gas fan that sends the combustion-supporting gas from the combustion-supporting gas fan to the boiler. It further includes an oxygen sensor that measures the oxygen concentration in the gas,
    The boiler system according to claim 1, wherein the variable opening valve is configured to be feedback-controlled based on the output of the oxygen sensor.
  3.  前記支燃性ガスファンの出口は、前記ボイラに設けられたバーナ用風箱に接続されており、前記酸素センサは、前記バーナ用風箱の内側のガスの酸素濃度を測定するように構成されており、前記酸素センサの出力に基づいて、前記バーナ用風箱の内側のガスの酸素濃度が20~22%に維持されるように前記開度自在弁が制御される、請求項2に記載のボイラシステム。 The outlet of the combustion-supporting gas fan is connected to a burner wind box provided in the boiler, and the oxygen sensor is configured to measure the oxygen concentration of the gas inside the burner wind box. 3. The variable opening valve is controlled based on the output of the oxygen sensor so that the oxygen concentration of the gas inside the burner wind box is maintained at 20 to 22%. boiler system.
  4.  前記酸素供給ラインの前記メインラインは、それぞれに前記オンオフ弁が設けられ並列接続された複数のラインによって構成されており、前記複数のラインの各オンオフ弁を制御することによって、前記メインラインから複数段の流量で酸素ガスを供給することができるように構成されている、請求項1から3のいずれかに記載のボイラシステム。 The main line of the oxygen supply line is composed of a plurality of lines connected in parallel, each of which is provided with the on/off valve, and by controlling each on/off valve of the plurality of lines, a plurality of lines can be connected from the main line to the main line. 4. The boiler system according to claim 1, wherein the boiler system is configured to be able to supply oxygen gas at a flow rate of stages.
  5.  前記酸素供給ラインの前記サブラインに設けられた前記開度自在弁の一次側または二次側の少なくとも一方に手動弁が設けられており、燃焼に必要な理論燃焼酸素量の80~90%の酸素を前記メインラインを介して供給することができ、燃焼に必要な理論燃焼酸素量の0~50%の酸素を前記サブラインを介して供給することができるように構成されている、請求項1から3のいずれかに記載のボイラシステム。 A manual valve is provided on at least one of the primary side and the secondary side of the variable opening valve provided in the subline of the oxygen supply line, and the oxygen supply line contains 80 to 90% of the theoretical combustion oxygen amount necessary for combustion. According to claim 1, the fuel cell is configured to be able to supply oxygen through the main line, and to supply oxygen in an amount of 0 to 50% of the theoretical combustion oxygen amount necessary for combustion through the sub-line. 3. The boiler system according to any one of 3.
  6.  前記ボイラからの排ガスの熱によって前記ボイラへの給水を予熱するエコノマイザと、前記エコノマイザの下流側の排ガスを冷却するガスクーラとをさらに備え、前記排気ラインは、前記ガスクーラによって冷却された排ガスを排気するように設けられており、
     前記ガスクーラは、前記排ガスの出口温度を30℃~50℃に冷却することができるように構成されている、請求項1から3のいずれかに記載のボイラシステム。
    The system further includes an economizer that preheats water supplied to the boiler using the heat of exhaust gas from the boiler, and a gas cooler that cools the exhaust gas downstream of the economizer, and the exhaust line exhausts the exhaust gas cooled by the gas cooler. It is set up so that
    The boiler system according to any one of claims 1 to 3, wherein the gas cooler is configured to be able to cool the outlet temperature of the exhaust gas to 30°C to 50°C.
  7.  前記酸素供給ラインのメインラインに設けられた前記オンオフ弁は、電磁弁であり、前記酸素供給ラインのサブラインに設けられた前記開度自在弁は、電動弁である、請求項1から3のいずれかに記載のボイラシステム。 Any one of claims 1 to 3, wherein the on-off valve provided in the main line of the oxygen supply line is a solenoid valve, and the variable opening valve provided in the subline of the oxygen supply line is an electric valve. Boiler system described in Crab.
  8.  前記燃料ガスは、都市ガスまたはLPガスのいずれかであり、前記ボイラは、貫流ボイラまたは温水ボイラのいずれかである、請求項1から3のいずれかに記載のボイラシステム。
     
    The boiler system according to any one of claims 1 to 3, wherein the fuel gas is either city gas or LP gas, and the boiler is either a once-through boiler or a hot water boiler.
PCT/JP2023/026068 2022-09-09 2023-07-14 Boiler system WO2024053250A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022143700 2022-09-09
JP2022-143700 2022-09-09

Publications (1)

Publication Number Publication Date
WO2024053250A1 true WO2024053250A1 (en) 2024-03-14

Family

ID=90192432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026068 WO2024053250A1 (en) 2022-09-09 2023-07-14 Boiler system

Country Status (1)

Country Link
WO (1) WO2024053250A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57104144U (en) * 1980-12-18 1982-06-26
JPH04320702A (en) * 1991-04-19 1992-11-11 Toshiba Corp Feedwater flow rate controller of combined power plant of exhaust gas reburning type
JPH0526409A (en) * 1991-07-16 1993-02-02 Babcock Hitachi Kk Carbon dioxide recoverying boiler
JPH0778032A (en) * 1993-07-30 1995-03-20 Perkin Elmer Corp:The Valve device for change of flow rate of fluid
JP2001336736A (en) * 2000-05-30 2001-12-07 Ishikawajima Harima Heavy Ind Co Ltd Method and device for controlling concentration of exhaust gas oxygen of oxygen combustion boiler equipment
JP2007147162A (en) * 2005-11-28 2007-06-14 Electric Power Dev Co Ltd Combustion control method and device for oxygen burning boiler
JP2012052675A (en) * 2010-08-31 2012-03-15 Hitachi Ltd Control apparatus, control method, and display method of oxygen combustion boiler plant
WO2012049842A1 (en) * 2010-10-15 2012-04-19 バブコック日立株式会社 Boiler combustion system and operation method therefor
CN205288072U (en) * 2016-01-12 2016-06-08 李永陆 Denitration agent is diluted and is mixed measurement assigned unit

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57104144U (en) * 1980-12-18 1982-06-26
JPH04320702A (en) * 1991-04-19 1992-11-11 Toshiba Corp Feedwater flow rate controller of combined power plant of exhaust gas reburning type
JPH0526409A (en) * 1991-07-16 1993-02-02 Babcock Hitachi Kk Carbon dioxide recoverying boiler
JPH0778032A (en) * 1993-07-30 1995-03-20 Perkin Elmer Corp:The Valve device for change of flow rate of fluid
JP2001336736A (en) * 2000-05-30 2001-12-07 Ishikawajima Harima Heavy Ind Co Ltd Method and device for controlling concentration of exhaust gas oxygen of oxygen combustion boiler equipment
JP2007147162A (en) * 2005-11-28 2007-06-14 Electric Power Dev Co Ltd Combustion control method and device for oxygen burning boiler
JP2012052675A (en) * 2010-08-31 2012-03-15 Hitachi Ltd Control apparatus, control method, and display method of oxygen combustion boiler plant
WO2012049842A1 (en) * 2010-10-15 2012-04-19 バブコック日立株式会社 Boiler combustion system and operation method therefor
CN205288072U (en) * 2016-01-12 2016-06-08 李永陆 Denitration agent is diluted and is mixed measurement assigned unit

Similar Documents

Publication Publication Date Title
US8584604B2 (en) Method and apparatus for controlling combustion in oxygen fired boiler
US6247315B1 (en) Oxidant control in co-generation installations
JP5461873B2 (en) Oxyfuel coal-fired boiler and transition method between air combustion and oxyfuel combustion
JP5138028B2 (en) Oxygen supply control method and apparatus for oxyfuel boiler
US8561555B2 (en) Oxyfuel combustion boiler plant and operating method for the same
JP5270661B2 (en) Exhaust gas control method and apparatus for oxyfuel boiler
JP2010101587A (en) Oxygen burning boiler and method of controlling the same
WO2009110035A1 (en) Method of controlling combustion in oxygen combustion boiler and apparatus therefor
JP2004516446A (en) Oxygen separation combustion apparatus and method
WO2009110034A1 (en) Method of controlling flow rate of primary recirculating exhaust gas in oxygen combustion boiler and apparatus therefor
JP2011523012A (en) Method and apparatus for generating power by oxyfuel combustion
JP5130145B2 (en) Boiler plant, boiler plant control device and control method thereof
WO2024053250A1 (en) Boiler system
JP5487509B2 (en) Boiler combustion system and its operating method
JP4859512B2 (en) Combustion boiler control method
JP2012137269A (en) Coal fired power generation plant and method of controlling the same
JPS63254391A (en) Furnace system
JP2010060156A (en) NOx SUPPRESSION CONTROLLING DEVICE OF HEATING FURNACE
KR102258738B1 (en) Combustion System Combined with Pressurized Oxygen Combustion and Pulverized Coal Fuel Combustion
JP6357701B1 (en) Combustion state judgment system
JP2013057417A (en) Coal thermal power plant
JPH03160210A (en) Burner
CN117628518A (en) Low-nitrogen process and equipment of RTO (room temperature oxygen) oxidation furnace
JPH04340010A (en) Method of burning pulverized coal using pulverized coal and oxygen burner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862794

Country of ref document: EP

Kind code of ref document: A1