JP2010060156A - NOx SUPPRESSION CONTROLLING DEVICE OF HEATING FURNACE - Google Patents

NOx SUPPRESSION CONTROLLING DEVICE OF HEATING FURNACE Download PDF

Info

Publication number
JP2010060156A
JP2010060156A JP2008223723A JP2008223723A JP2010060156A JP 2010060156 A JP2010060156 A JP 2010060156A JP 2008223723 A JP2008223723 A JP 2008223723A JP 2008223723 A JP2008223723 A JP 2008223723A JP 2010060156 A JP2010060156 A JP 2010060156A
Authority
JP
Japan
Prior art keywords
combustion
preheated
nox
combustion air
heating furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008223723A
Other languages
Japanese (ja)
Inventor
Hidetaka Ageo
英孝 上尾
Eiichi Kuboyama
榮一 久保山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008223723A priority Critical patent/JP2010060156A/en
Publication of JP2010060156A publication Critical patent/JP2010060156A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Regulation And Control Of Combustion (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce NOx concentration in a heating furnace comprising a continuous combustion burner at low costs without badly affecting a combustion state in the continuous combustion burner and slab charged into the furnace. <P>SOLUTION: This NOx suppression controlling device includes: an exhausting means 9a for discharging a part of the preheated combustion air preheated by a heat exchanging means 5 to the external; a supplying means 14 for supplying the unpreheated cold air to the preheated combustion air supplied to the continuous combustion burner 2; an NOx measuring means 11 for measuring NOx concentration in a combustion exhaust gas discharged from the heating furnace 1; and a control means 12 for allowing the exhausting means 9a to discharge a part of the preheated combustion air to lower a temperature of the combustion air supplied to the continuous combustion burner 2 when the NOx concentration measured by the NOx measuring means 11 is over a predetermined set value, and supplies the cold air of the amount corresponding to the preheated combustion air discharged to the external, to the preheated combustion air supplied to the continuous combustion burner 2 by the supplying means 14. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、連続燃焼バーナを備えた加熱炉のNOx抑制制御装置に関する。   The present invention relates to a NOx suppression control device for a heating furnace provided with a continuous combustion burner.

近年、熱間圧延設備の連続式加熱炉では、燃焼排ガスの排熱を回収して燃焼空気を予熱することにより、省エネルギー効果を向上させることが行われている。この場合、燃焼排ガスからの排熱回収を増やすほど、燃焼空気を高温で予熱することができ、高い熱交換率を得ることができる。しかしながら、燃焼空気の予熱温度が高くなると、加熱炉に設置されたバーナの火炎温度が局所的に上昇し、大気汚染物質である窒素酸化物(NOx)の濃度が急激に上昇するという問題がある。   In recent years, in a continuous heating furnace of a hot rolling facility, an energy saving effect is improved by recovering exhaust heat of combustion exhaust gas and preheating combustion air. In this case, as the exhaust heat recovery from the combustion exhaust gas is increased, the combustion air can be preheated at a higher temperature, and a higher heat exchange rate can be obtained. However, when the preheating temperature of the combustion air becomes high, the flame temperature of the burner installed in the heating furnace rises locally, and there is a problem that the concentration of nitrogen oxide (NOx), which is an air pollutant, rapidly increases. .

また、加熱炉に設けられるバーナが、ルーフバーナのようなバーナタイル内で強い旋回流を与えて、バーナタイル内やその近傍の天井部において急激な燃焼を生じさせる形式のものの場合にはNOx濃度が非常に高くなる。   In addition, in the case where the burner provided in the heating furnace is of a type that gives a strong swirling flow in a burner tile such as a roof burner and causes abrupt combustion in the burner tile or in the vicinity of the ceiling, the NOx concentration is Become very expensive.

このような場合にNOx濃度の低減を図る方法としては、例えば燃焼排ガスとの熱交換により予熱された燃焼空気に水又は水蒸気を供給し、この燃焼空気を加湿し、バーナでの燃焼温度を下げることによって、NOxの発生を低減する方法が提案されている(例えば、特許文献1を参照)。また、NOx濃度を低減する別の方法としては、加熱炉の排気設備に脱硝装置を設ける方法も提案されている(例えば、特許文献2、3を参照)。
特開2005−241184号公報 特開2001−79394号公報 特開平9−141363号公報
In such a case, as a method for reducing the NOx concentration, for example, water or steam is supplied to the combustion air preheated by heat exchange with the combustion exhaust gas, the combustion air is humidified, and the combustion temperature in the burner is lowered. Thus, a method for reducing the generation of NOx has been proposed (see, for example, Patent Document 1). As another method for reducing the NOx concentration, a method of providing a denitration device in the exhaust equipment of a heating furnace has been proposed (see, for example, Patent Documents 2 and 3).
JP-A-2005-241184 JP 2001-79394 A JP-A-9-141363

しかしながら、上記特許文献1に記載される方法は、水又は水蒸気を供給するための加湿装置が必要となるため、設備が複雑になり、設備コストが増加し、かつ、炉内での湿度が高くなって、加熱炉内のスラブにスケールが発生し易くなるといった問題がある。また、上記特許文献2、3に記載される方法も、脱硝装置が高価であることやアンモニアの取り扱いに注意が必要であることなど問題が多い。   However, since the method described in Patent Document 1 requires a humidifier for supplying water or water vapor, the equipment becomes complicated, equipment costs increase, and the humidity in the furnace is high. As a result, there is a problem that scale is likely to occur in the slab in the heating furnace. In addition, the methods described in Patent Documents 2 and 3 have many problems such as the high cost of the denitration apparatus and the need for attention in handling ammonia.

本発明は、このような従来の事情に鑑みて提案されたものであり、連続燃焼バーナを備えた加熱炉においてのNOx濃度低減を、低コストで、しかも、該連続燃焼バーナでの燃焼状態、炉内に装入したスラブに悪影響を与えることなく、行うことができるNOx抑制制御装置を提供することを目的とする。   The present invention has been proposed in view of such conventional circumstances, and is capable of reducing NOx concentration in a heating furnace equipped with a continuous combustion burner at low cost and in the combustion state in the continuous combustion burner, It is an object of the present invention to provide a NOx suppression control device that can be performed without adversely affecting the slab charged in the furnace.

上記課題を解決することを目的とした本発明の要旨は以下の通りである。
(1) 炉内を連続的に燃焼する連続燃焼バーナを備えた加熱炉と、該加熱炉の炉尻から排出される燃焼排ガスの排熱を回収して前記連続燃焼バーナに供給される燃焼空気を予熱する熱交換手段と、該熱交換手段で排熱を回収した後の前記燃焼排ガスを大気中に放散する煙突を有する加熱炉において、
前記熱交換手段によって予熱された予熱燃焼空気の一部を外部に排出する排気手段と、
前記連続燃焼バーナに供給する予熱燃焼空気中に予熱されていない冷空気を供給する供給手段と、
前記加熱炉から排出される燃焼排ガス中のNOx濃度を測定するNOx測定手段と、
前記NOx測定手段で測定したNOx濃度が予め設定した設定値を超えたときに、前記連続燃焼バーナに供給される燃焼空気の温度を下げるために、前記排気手段が前記予熱された燃焼空気の一部を外部に排出すると共に、該外部に排出した予熱燃焼空気に対応した量の前記冷空気を前記供給手段により前記連続燃焼バーナに供給する予熱燃焼空気中に供給するための制御を行う制御手段を設けたことを特徴とする加熱炉のNOx抑制制御装置。
(2) 前記NOx測定手段により測定したNOx濃度と予め設定した設定値の差に応じて、前記予熱燃焼空気の排出量を決定することを特徴とする前記(1)に記載の加熱炉のNOx抑制制御装置。
The gist of the present invention aimed at solving the above problems is as follows.
(1) A heating furnace provided with a continuous combustion burner that continuously burns in the furnace, and combustion air supplied to the continuous combustion burner after recovering exhaust heat of combustion exhaust gas discharged from the bottom of the furnace In a heating furnace having a chimney for preheating the heat exchange means, and a chimney for dissipating the combustion exhaust gas after the exhaust heat is recovered by the heat exchange means into the atmosphere,
Exhaust means for discharging a part of the preheated combustion air preheated by the heat exchange means to the outside;
Supply means for supplying cold air that is not preheated into preheated combustion air supplied to the continuous combustion burner;
NOx measuring means for measuring NOx concentration in the combustion exhaust gas discharged from the heating furnace;
When the NOx concentration measured by the NOx measuring means exceeds a preset value, the exhaust means is used to reduce the temperature of the combustion air supplied to the continuous combustion burner. And a control means for controlling the supply of the cold air in an amount corresponding to the preheated combustion air discharged to the outside into the preheated combustion air supplied to the continuous combustion burner by the supply means A NOx suppression control device for a heating furnace, characterized by comprising:
(2) The NOx of the heating furnace according to (1), wherein the exhaust amount of the preheated combustion air is determined according to a difference between the NOx concentration measured by the NOx measuring means and a preset set value. Suppression control device.

以上のように、本発明では、簡単な設備構成であることから既設の加熱炉でも容易に適用可能であり、かつ、低コストで、しかも、加熱炉内に供給する燃焼用空気量及び水分量の変動が殆どないことから、バーナでの燃焼を安定継続でき、かつ、炉内に装入したスラブに悪影響を与えることなく、加熱炉の炉尻から排出される燃焼排ガス中の排熱を回収すると共に排ガス中のNOx濃度を予め設定した設定値以下にすることが可能となり、この分野における効果は大きい。   As described above, according to the present invention, since it has a simple equipment configuration, it can be easily applied to an existing heating furnace, and at a low cost, the amount of combustion air and the amount of moisture to be supplied into the heating furnace. Because there is almost no fluctuation in the temperature, combustion in the burner can be continued stably, and exhaust heat in the exhaust gas discharged from the furnace bottom of the heating furnace can be recovered without adversely affecting the slab charged in the furnace. In addition, the NOx concentration in the exhaust gas can be reduced to a preset value or less, and the effect in this field is great.

以下、本発明を適用した加熱炉のNOx抑制制御装置について、図面を参照して詳細に説明する。
(第1の実施形態)
先ず、第1の実施形態として、図1に示すような熱間圧延設備の連続式加熱炉1に本発明を適用した場合を例に挙げて説明する。
Hereinafter, a NOx suppression control device for a heating furnace to which the present invention is applied will be described in detail with reference to the drawings.
(First embodiment)
First, as a first embodiment, a case where the present invention is applied to a continuous heating furnace 1 of a hot rolling facility as shown in FIG. 1 will be described as an example.

この熱間圧延設備の連続式加熱炉(以下、加熱炉という。)1は、装入口1aから炉内に装入された被加熱材であるスラブ(鋳片)を、搬送手段であるウォーキングビーム(図示せず。)によって搬送しながら、炉内の予熱帯、加熱帯、均熱帯を順次通過する間に、バーナによって所定温度まで加熱するものである。なお、所定温度まで加熱されたスラブは、加熱炉1の抽出口1bから抽出された後、次工程の圧延ライン(図示せず。)へと送られる。   A continuous heating furnace (hereinafter referred to as a heating furnace) 1 of this hot rolling facility is a walking beam that is a conveying means for transferring a slab (slab) that is a material to be heated, which is charged into the furnace from the charging port 1a. (Not shown). While passing through the pre-tropical zone, heating zone, and soaking zone in the furnace in sequence, the burner is heated to a predetermined temperature. The slab heated to a predetermined temperature is extracted from the extraction port 1b of the heating furnace 1 and then sent to a rolling line (not shown) in the next step.

加熱炉1には、炉内を連続的に加熱する連続燃焼バーナ2が複数設置されている。この連続燃焼バーナ2は、例えば、加熱炉1の上部に炉幅、炉長方向に並んで配置されるものである。なお、連続燃焼バーナ2としては、ルーフバーナ以外にも、加熱炉1の側部に配置されるサイドバーナや、加熱炉1の上部又は下部に炉長方向に沿って配置される軸流バーナなどを挙げることができ、これらの連続燃焼バーナ2を1種又は2種以上用いることができる。   The heating furnace 1 is provided with a plurality of continuous combustion burners 2 for continuously heating the inside of the furnace. For example, the continuous combustion burner 2 is arranged in the upper part of the heating furnace 1 so as to be aligned in the furnace width and furnace length directions. In addition to the roof burner, the continuous combustion burner 2 includes a side burner arranged at the side of the heating furnace 1, an axial flow burner arranged along the furnace length direction at the upper or lower part of the heating furnace 1, and the like. These continuous combustion burners 2 can be used singly or in combination of two or more.

加熱炉1は、その排熱回収設備として、炉内の燃焼排ガスを炉尻側から排出する排気系3と、排気系3から排出される燃焼排ガスを大気中に排出する1本の煙突4と、排気系3から排出される燃焼排ガスの排熱を回収して燃焼空気を予熱する熱交換手段であるレキュペレータ5とを備えている。   The heating furnace 1 has, as its exhaust heat recovery equipment, an exhaust system 3 that exhausts combustion exhaust gas in the furnace from the furnace bottom side, and a single chimney 4 that exhausts combustion exhaust gas discharged from the exhaust system 3 into the atmosphere. And a recuperator 5 which is a heat exchange means for recovering the exhaust heat of the exhaust gas discharged from the exhaust system 3 and preheating the combustion air.

また、レキュペレータ5は、排気系3から排出される燃焼排ガスの排熱を回収し、燃焼空気ファン(ブロア)6により冷空気配管7を通して導入された燃焼空気を予熱した後、予熱燃焼空気配管8を通して連続燃焼バーナ2に供給する。   The recuperator 5 collects exhaust heat of the combustion exhaust gas discharged from the exhaust system 3, preheats the combustion air introduced through the cold air pipe 7 by the combustion air fan (blower) 6, and then preheats the combustion air pipe 8. To the continuous combustion burner 2.

以上のような構造を有する加熱炉1の排熱回収設備では、レキュペレータ5が排気系3から排出される燃焼排ガスの排熱を回収して連続燃焼バーナ2に供給される燃焼空気を予熱することにより、加熱炉1の炉尻から排出される燃焼排ガスからの排熱回収を行うことができる。   In the exhaust heat recovery facility of the heating furnace 1 having the above structure, the recuperator 5 recovers exhaust heat of the combustion exhaust gas discharged from the exhaust system 3 and preheats the combustion air supplied to the continuous combustion burner 2. Thus, exhaust heat recovery from the combustion exhaust gas discharged from the furnace bottom of the heating furnace 1 can be performed.

ところで、このような加熱炉1の排熱回収設備では環境対策としてNOx濃度が設定値(例えば法規制による規制値など。) を超えないように、NOxの発生を抑制する必要がある。すなわち、このような低NOx化の背景として、条例等によるNOx濃度の規制強化や、排出されるNOxの総量規制などがある。   By the way, in such an exhaust heat recovery facility of the heating furnace 1, it is necessary to suppress the generation of NOx as an environmental measure so that the NOx concentration does not exceed a set value (for example, a regulation value according to legal regulations). That is, as a background of such low NOx, there is a strict regulation of NOx concentration by regulations or the like, a total amount control of exhausted NOx, and the like.

そこで、本発明では、NOx濃度がそのような設定値を下回ることが困難な場合には、上述した加熱炉1の炉尻から排出される燃焼排ガスからの排熱回収に優先して、連続燃焼バーナ2に供給される燃焼空気の温度を下げることによりNOxの低減を図ることとした。   Therefore, in the present invention, when it is difficult for the NOx concentration to fall below such a set value, continuous combustion is prioritized over the recovery of exhaust heat from the combustion exhaust gas discharged from the furnace bottom of the heating furnace 1 described above. It was decided to reduce NOx by lowering the temperature of the combustion air supplied to the burner 2.

具体的に、本発明は、レキュペレータ5によって予熱された予熱燃焼空気を外部に排出するための排気弁9を介設した排気配管9a(排気手段)と、レキュペレータ5からの予熱燃焼空気に予熱されていない空気(外気)を供給するための供給弁10を介設したバイパス配管(供給手段)14と、加熱炉1の炉尻から排出される燃焼排ガス中のNOx濃度を測定するためのNOx計(測定手段)11と、連続燃焼バーナ2に供給される燃焼空気の温度を制御するための制御部(制御手段)12とを備えている。   Specifically, the present invention is preheated by exhaust pipe 9a (exhaust means) provided with an exhaust valve 9 for discharging preheated combustion air preheated by the recuperator 5 to the outside, and preheated combustion air from the recuperator 5. A bypass pipe (supply means) 14 provided with a supply valve 10 for supplying non-air (outside air) and a NOx meter for measuring the NOx concentration in the combustion exhaust gas discharged from the furnace bottom of the heating furnace 1 (Measuring means) 11 and a controller (control means) 12 for controlling the temperature of the combustion air supplied to the continuous combustion burner 2 are provided.

排気配管9aは、予熱燃焼空気配管8の中途部に設けられている。更に、排気弁9は、流量調整弁であり、流量指示調節計13を介して制御部12と接続されている。また、バイパス配管14は、レキュペレータ5を迂回して予熱燃焼空気配管8に排気管9aの接続部よりも後段の位置で接続されており、燃焼空気ファン6によって導入された予熱されていない空気(外気)の一部を予熱燃焼空気配管8内に供給することが可能となっている。また、このバイパス配管14に介設されている供給弁10は、流量調整弁であり、流量指示調節計15を介して制御部12と接続されている。NOx計11は、排気系3のレキュペレータ5よりも後段の位置に配置されて、この排気系3を流れる燃焼排ガス中のNOx濃度を測定し、その測定データを逐次制御部12に出力する。   The exhaust pipe 9 a is provided in the middle part of the preheating combustion air pipe 8. Further, the exhaust valve 9 is a flow rate adjusting valve, and is connected to the control unit 12 via the flow rate indicating controller 13. Further, the bypass pipe 14 bypasses the recuperator 5 and is connected to the preheated combustion air pipe 8 at a position subsequent to the connection portion of the exhaust pipe 9a, and the unpreheated air introduced by the combustion air fan 6 ( Part of the outside air) can be supplied into the preheated combustion air pipe 8. The supply valve 10 provided in the bypass pipe 14 is a flow rate adjusting valve, and is connected to the control unit 12 via a flow rate indicating controller 15. The NOx meter 11 is arranged at a position subsequent to the recuperator 5 of the exhaust system 3, measures the NOx concentration in the combustion exhaust gas flowing through the exhaust system 3, and outputs the measurement data to the sequential control unit 12.

制御部12は、加熱炉1の各部の制御を行うメインコンピュータ、或いはこのメインコンピュータに接続された又は独立したコンピュータからなり、NOx計11から測定データが入力されると、内部に記録された制御プログラムに従って、NOx濃度が予め設定された設定値を超えたか否かの判定を行い、NOx濃度が設定値を超えたときには後述する連続燃焼バーナ2に供給される燃焼空気の温度を下げるための制御を行う。   The control unit 12 includes a main computer that controls each part of the heating furnace 1, or a computer connected to or independent from the main computer. When measurement data is input from the NOx meter 11, the control unit 12 records therein. In accordance with the program, it is determined whether or not the NOx concentration exceeds a preset set value, and when the NOx concentration exceeds the set value, control for lowering the temperature of combustion air supplied to the continuous combustion burner 2 described later. I do.

以上のような構造を有する加熱炉1では、NOx計11が測定したNOx濃度が設定値を超えたときに、制御部12からの指示に従って、流量指示調節計13が排気弁9の開度を制御することによって、予熱された燃焼空気の一部を排気配管9aから外部に排出することにより、予熱燃焼空気配管8を流れる予熱燃焼空気の流量を調整する。一方、制御部12からの指示に従って、流量指示調節計15が供給弁10の開度を制御することによって、排気弁9から外部に排出された予熱燃焼空気に応じた量、すなわち同量の予熱されていない冷空気(燃焼空気ファン6から供給された外気)がバイパス配管14から予熱燃焼空気配管8に供給されるように、該バイパス配管14に流れる冷空気の流量を調整する。これにより、レキュペレータ5からの予熱燃焼空気が冷空気によって希釈されるため、例えば図3に示すように、連続燃焼バーナ2に供給される燃焼空気の温度を下げることができ、その結果、NOxの発生を抑制ずることができる。   In the heating furnace 1 having the above structure, when the NOx concentration measured by the NOx meter 11 exceeds the set value, the flow rate indicating controller 13 controls the opening degree of the exhaust valve 9 in accordance with an instruction from the control unit 12. By controlling, a part of the preheated combustion air is discharged from the exhaust pipe 9a to adjust the flow rate of the preheated combustion air flowing through the preheated combustion air pipe 8. On the other hand, when the flow rate indicating controller 15 controls the opening degree of the supply valve 10 in accordance with the instruction from the control unit 12, the amount corresponding to the preheated combustion air discharged to the outside from the exhaust valve 9, that is, the same amount of preheat. The flow rate of the cold air flowing through the bypass pipe 14 is adjusted so that cold air (outside air supplied from the combustion air fan 6) that has not been supplied is supplied from the bypass pipe 14 to the preheated combustion air pipe 8. As a result, the preheated combustion air from the recuperator 5 is diluted with cold air, so that the temperature of the combustion air supplied to the continuous combustion burner 2 can be lowered, for example, as shown in FIG. Generation can be suppressed.

次に、制御部12における上記排気配管9aからの予熱燃焼空気量及びバイパス配管14からの冷空気量の制御について、さらに詳細に説明する。
制御部12において、先ず、NOx計11の測定値を入力すると予め設定された時間内(例えば1時間)における平均値を算定し、この平均値が設定値を超えた際、この差(ΔNOx)を求め、次に、この差(ΔNOx)から図4(予め求めたNOx低減量と冷風混合率の関係を示す図)を基にして冷風混合率を算出する。そして、連続燃焼バーナー2で使用している全体の燃焼空気量に算出した冷風混合率を乗じて冷風混合量を求める。
Next, the control of the preheated combustion air amount from the exhaust pipe 9a and the cold air amount from the bypass pipe 14 in the control unit 12 will be described in more detail.
In the control unit 12, first, when the measured value of the NOx meter 11 is inputted, an average value within a preset time (for example, 1 hour) is calculated, and when this average value exceeds the set value, this difference (ΔNOx) Next, from this difference (ΔNOx), the cold air mixing rate is calculated based on FIG. 4 (a diagram showing the relationship between the NOx reduction amount and the cold air mixing rate determined in advance). Then, the amount of cold air mixed is obtained by multiplying the total amount of combustion air used in the continuous combustion burner 2 by the calculated cold air mixing ratio.

そして、この冷風混合量に相当する予熱燃焼空気を排気管9aから外部へ排出されるように流量指示調節計13に排気弁9の開度指令を出力すると共に、バイパス配管14から上記冷風混合量の冷空気が予熱燃焼空気配管8に供給されるように流量指示調節計15に開度指令を出力する。これにより、排気弁9がその開度だけ開放して予熱燃焼空気が排気管9aから外部へ放出され、冷空気がバイパス配管14を通して予熱燃焼空気配管8に供給される。上記のように、排出される予熱燃焼空気と冷空気は同量であるために、燃焼に必要な空気量は確保される。   Then, an opening degree command for the exhaust valve 9 is output to the flow rate indicating controller 13 so that the preheated combustion air corresponding to the cold air mixing amount is discharged from the exhaust pipe 9a to the outside, and the cold air mixing amount is supplied from the bypass pipe 14. An opening degree command is output to the flow rate indicating controller 15 so that the cold air is supplied to the preheated combustion air pipe 8. As a result, the exhaust valve 9 is opened by its opening, and preheated combustion air is discharged from the exhaust pipe 9 a to the outside, and cold air is supplied to the preheated combustion air pipe 8 through the bypass pipe 14. As described above, since the preheated combustion air and the cold air that are discharged are the same amount, the amount of air necessary for combustion is ensured.

また、燃焼空気ファン6の送風量制御は、上記制御部12から指示で行われるようにすることが好ましい。つまり、上記燃焼空気ファン6からの送風量が上記演算した冷風混合量だけ増加するように、該燃焼空気ファン6の回転数の増速指令を燃焼空気ファン6の駆動部(図示せず。)に出力するようにする。すなわち、排気管9aから外部に排出した空気量だけ燃焼空気ファンの吐出風量が増加し、ファンの吐出圧力が低下するので、燃焼に必要な空気量と圧力が維持されるように燃焼空気ファンの制御を行っている。   Moreover, it is preferable that the air flow control of the combustion air fan 6 is performed by an instruction from the control unit 12. That is, a command for increasing the rotational speed of the combustion air fan 6 is sent to the drive unit (not shown) of the combustion air fan 6 so that the amount of air blown from the combustion air fan 6 is increased by the calculated amount of cold air mixed. Output to. That is, the amount of air discharged from the combustion air fan is increased by the amount of air discharged to the outside from the exhaust pipe 9a, and the discharge pressure of the fan is decreased, so that the air amount and pressure required for combustion are maintained so that the air amount and pressure required for combustion are maintained. Control is in progress.

以上のように、本発明では、加熱炉1の炉尻から排出される燃焼排ガス中のNOx濃度が設定値を超える場合に連続燃焼バーナ2に供給される燃焼空気の温度を下げることによってNOx発生の抑制を図ることが可能となる。   As described above, in the present invention, NOx is generated by lowering the temperature of the combustion air supplied to the continuous combustion burner 2 when the NOx concentration in the combustion exhaust gas discharged from the furnace bottom of the heating furnace 1 exceeds the set value. Can be suppressed.

(第2の実施形態)
次に、第2の実施形態として、図2に示すような熱間圧延設備の連続式加熱炉21に本発明を適用した場合を例に挙げて説明する。
(Second Embodiment)
Next, as a second embodiment, a case where the present invention is applied to a continuous heating furnace 21 of a hot rolling facility as shown in FIG. 2 will be described as an example.

この加熱炉21には、上記第1の実施形態と同様に、炉内を連続的に加熱する連続燃焼バーナ22と、炉内で燃焼と排気とを交互に繰り返しながら、排気時に燃焼排ガスの排熱を蓄熱体によって蓄熱回収し、燃焼時に蓄熱体に蓄熱された熱によって燃焼空気を予熱する蓄熱式バーナ(リゼネバーナ)23とが設置されている。   As in the first embodiment, the heating furnace 21 includes a continuous combustion burner 22 that continuously heats the inside of the furnace, and combustion and exhaust in the furnace alternately. There is installed a regenerative burner (regenerative burner) 23 that regenerates heat with a heat storage body and preheats combustion air with heat stored in the heat storage body during combustion.

連続燃焼バーナ22は、上記第1の実施形態と同様であるため、ここでは説明を省略するものとする。また、蓄熱式バーナ23は、蓄熱体を備えた一対のバーナを加熱炉21の側部に対向配置されてなり、これら一対のバーナが燃焼と排気とを交互に繰り返しながら、一方のバーナの燃焼により発生した燃焼排ガスを他方のバーナの蓄熱体に通過させることによって、その燃焼排ガス中の顕熱を蓄熱体に蓄熱し、他方のバーナが燃焼する際にこの蓄熱体に燃焼空気を通過させることによって燃焼空気を予熱するようになされている。この蓄熱式バーナ23は、加熱炉21の予熱帯及び加熱帯の側部において、スラブの搬送路を挟んだ上部側と下部側とにそれぞれ設置されている。なお、蓄熱式バーナ23は、上述した配置に限らず、予熱帯、加熱帯、均熱帯の何れかの側部に任意に設置することができる。   Since the continuous combustion burner 22 is the same as that of the first embodiment, the description is omitted here. The regenerative burner 23 includes a pair of burners provided with heat accumulators arranged opposite to the side of the heating furnace 21, and the pair of burners alternately repeat combustion and exhaust, while burning one of the burners. By passing the combustion exhaust gas generated by the above to the heat storage body of the other burner, the sensible heat in the combustion exhaust gas is stored in the heat storage body, and when the other burner burns, the combustion air is passed through this heat storage body In this way, the combustion air is preheated. The regenerative burner 23 is installed on the upper side and the lower side of the heating furnace 21 on both sides of the pre-tropical zone and the heating zone, with the slab conveying path interposed therebetween. The regenerative burner 23 is not limited to the above-described arrangement, and can be arbitrarily installed on any side of the pre-tropical zone, heating zone, and soaking zone.

加熱炉21は、その排熱回収設備として、誘引ファン27を介設し、蓄熱式バーナ23の燃焼排ガスを煙突26近傍の後述する第2の排気系25に導入するための第1の排気系24と、炉内の燃焼排ガスを炉尻側から煙突26に導入するための第2の排気系25とを有し、更に、第2の排気系25には前記同様に炉圧制御手段である炉圧ダンパ28と、熱交換手段であるレキュペレータ29とを備えている。   The heating furnace 21 includes an induction fan 27 as an exhaust heat recovery facility, and a first exhaust system for introducing the combustion exhaust gas of the heat storage burner 23 into a second exhaust system 25 described later in the vicinity of the chimney 26. 24 and a second exhaust system 25 for introducing the combustion exhaust gas in the furnace from the furnace bottom side to the chimney 26, and the second exhaust system 25 is a furnace pressure control means as described above. A furnace pressure damper 28 and a recuperator 29 as heat exchange means are provided.

さらに、本実施態の連続燃焼バーナ22に供給する燃焼用空気の供給系統は、上記第1の実施形態と同様であるため、ここでは説明を省略するものとする。また、蓄熱式バーナ23の燃焼用空気の供給系統は、燃焼空気ファン30からの燃焼用空気がレギュベレータ29に供給される前に、該燃焼空気ファン30からの燃焼用空気の一部を配管(図示せず。)で分岐して各々の蓄熱式バーナ23に供給している。この際、この配管には流量調整弁(図示せず。)によって分岐燃焼用空気量が目標値になるように制御されている。   Further, since the combustion air supply system supplied to the continuous combustion burner 22 of the present embodiment is the same as that of the first embodiment, description thereof will be omitted here. Further, the combustion air supply system of the regenerative burner 23 is configured to pipe a part of the combustion air from the combustion air fan 30 before the combustion air from the combustion air fan 30 is supplied to the regulator 29 ( (It is not shown in the figure.) Is branched and supplied to each regenerative burner 23. At this time, this pipe is controlled by a flow rate adjusting valve (not shown) so that the amount of air for branch combustion becomes a target value.

NOx計35は、第1の排気系24の合流位置と煙突26の間の第2の排気系25に配置されて、この煙突26に流入する燃焼排ガス中のNOx濃度を測定し、その測定データを制御部36に入力する。   The NOx meter 35 is disposed in the second exhaust system 25 between the joining position of the first exhaust system 24 and the chimney 26, measures the NOx concentration in the combustion exhaust gas flowing into the chimney 26, and the measurement data Is input to the control unit 36.

制御部36は、上記第1の実施形態と同様に、加熱炉21の各部の制御を行うメインコンピュータ、或いはこのメインコンピュータに接続された又は独立したコンピュータからなり、NOx濃度の一定時間平均値が設定値を超えた際、この差(△NOx)を求め、炉全体の燃焼量に対する連続燃焼バーナ22の燃焼量割合で徐した量から連続燃焼バーナ22のNOx低減量を求め、上記第1の実施形態と同様の制御を行う。   As in the first embodiment, the control unit 36 includes a main computer that controls each part of the heating furnace 21, or a computer connected to or independent of the main computer. When the set value is exceeded, the difference (ΔNOx) is obtained, and the NOx reduction amount of the continuous combustion burner 22 is obtained from the amount gradually reduced by the combustion amount ratio of the continuous combustion burner 22 with respect to the combustion amount of the entire furnace. The same control as in the embodiment is performed.

NOx計35の測定値を入力すると予め設定された時間内(例えば1時間)における平均値を算定し、この平均値が基準値を超えた際、この差(ΔNOx)を求め、この差(ΔNOx)から連続燃焼バーナ22に供給する燃焼空気の温度低下量(ΔT)を算出し、この温度低下量(ΔT)となるように排気配管33aから大気中に排出する予熱燃焼空気量とバイパス配管38を通して予熱燃焼空気配管32に供給する冷空気(外気)量を演算し、この演算した両空気量を流量指示調節計37、39に出力して、排気弁33、供給弁34の開度を制御する。   When the measured value of the NOx meter 35 is input, an average value within a preset time (for example, 1 hour) is calculated, and when this average value exceeds the reference value, this difference (ΔNOx) is obtained, and this difference (ΔNOx ) To calculate the temperature drop amount (ΔT) of the combustion air supplied to the continuous combustion burner 22, and the amount of preheated combustion air discharged from the exhaust pipe 33a to the atmosphere and the bypass pipe 38 so as to be the temperature drop amount (ΔT). The amount of cold air (outside air) supplied to the preheated combustion air piping 32 is calculated, and the calculated amounts of both air are output to the flow rate indicating controllers 37 and 39 to control the opening degree of the exhaust valve 33 and the supply valve 34. To do.

そして、排気配管a33から予熱燃焼空気を外気に排出し、この排出された予熱燃焼空気量と同等の量の予熱されていない冷空気(外気)がバイパス配管38から予熱燃焼空気配管32に供給される。これにより、連続燃焼バーナ22に供給される燃焼空気の温度を下がり、NOxの発生を抑制することができる。   Then, the preheated combustion air is discharged from the exhaust pipe a33 to the outside air, and the amount of preheated cold air (outside air) equivalent to the discharged amount of preheated combustion air is supplied from the bypass pipe 38 to the preheated combustion air pipe 32. The Thereby, the temperature of the combustion air supplied to the continuous combustion burner 22 can be lowered, and the generation of NOx can be suppressed.

なお、本発明は、上述した熱間圧延設備の連続式加熱炉1、21に限らず、少なくとも連続燃焼バーナを備えた加熱炉において適用することが可能である。また、前記制御部12、36においては、NOx計35で測定したNOx濃度と設定値の差(ΔNOx)を求め、この差(ΔNOx)を基にして排気弁9、33、供給弁10、34の開度を制御するようにしたが、これに限定されることなく、予め、5〜10分時間ピッチでステップ的に所定量(好ましくは、燃焼空気ファン定格風量の10%程度の風量)毎に排気弁9、33、供給弁10、34の開度制御を前記測定NOX濃度が設定値以下になるまで繰り返し行ってもよい。   The present invention can be applied not only to the above-described continuous heating furnaces 1 and 21 of the hot rolling equipment, but also to a heating furnace having at least a continuous combustion burner. The control units 12 and 36 obtain the difference (ΔNOx) between the NOx concentration measured by the NOx meter 35 and the set value, and the exhaust valves 9 and 33 and the supply valves 10 and 34 are based on this difference (ΔNOx). However, the present invention is not limited to this, and it is not limited to this, but in advance at predetermined intervals (preferably about 10% of the rated air volume of the combustion air fan) step by step with a pitch of 5 to 10 minutes. In addition, the opening control of the exhaust valves 9 and 33 and the supply valves 10 and 34 may be repeated until the measured NOX concentration becomes a set value or less.

は、第1の実施形態として示す加熱炉の排熱回収設備の模式図である。These are the schematic diagrams of the waste heat recovery equipment of the heating furnace shown as 1st Embodiment. は、第2の実施形態として示す加熱炉の排熱回収設備の模式図である。These are the schematic diagrams of the waste heat recovery equipment of the heating furnace shown as 2nd Embodiment. は、予熱燃焼空気を冷空気で希釈する希釈率と連続燃焼バーナに供給される予熱燃焼空気の温度の関係を示すグラフである。These are the graphs which show the relationship between the dilution rate which dilutes preheating combustion air with cold air, and the temperature of the preheating combustion air supplied to a continuous combustion burner. は、希釈率とNOx低減量との関係を示すグラフである。These are graphs showing the relationship between the dilution rate and the NOx reduction amount.

符号の説明Explanation of symbols

1、21:加熱炉
2、22:連続燃焼バーナ
3、25:排気系
4、26:煙突
5、29:レキュペレータ(熱交換手段)
6、30:燃焼空気ファン
8、32:予熱燃焼空気配管
9、33:排気弁
9a、33a:排気配管(排気手段)
10、34:供給弁
11、35:NOx計(NOx測定手段)
12、36:制御部(制御手段)
14、31:バイパス配管(供給手段)
23:蓄熱式バーナ
1, 2: Heating furnace
2, 22: Continuous combustion burner
3, 25: Exhaust system
4, 26: Chimney
5, 29: Recuperator (heat exchange means)
6, 30: Combustion air fan
8, 32: Preheated combustion air piping
9, 33: Exhaust valve
9a, 33a: Exhaust piping (exhaust means)
10, 34: Supply valve
11, 35: NOx meter (NOx measuring means)
12, 36: Control unit (control means)
14, 31: Bypass piping (supply means)
23: Regenerative burner

Claims (2)

炉内を連続的に燃焼する連続燃焼バーナを備えた加熱炉と、該加熱炉の炉尻から排出される燃焼排ガスの排熱を回収して前記連続燃焼バーナに供給される燃焼空気を予熱する熱交換手段と、該熱交換手段で排熱を回収した後の前記燃焼排ガスを大気中に放散する煙突を有する加熱炉において、
前記熱交換手段によって予熱された予熱燃焼空気の一部を外部に排出する排気手段と、
前記連続燃焼バーナに供給する予熱燃焼空気中に予熱されていない冷空気を供給する供給手段と、
前記加熱炉から排出される燃焼排ガス中のNOx濃度を測定するNOx測定手段と、
前記NOx測定手段で測定したNOx濃度が予め設定した設定値を超えたときに、前記連続燃焼バーナに供給される燃焼空気の温度を下げるために、前記排気手段が前記予熱された燃焼空気の一部を外部に排出すると共に、該外部に排出した予熱燃焼空気に対応した量の前記冷空気を前記供給手段により前記連続燃焼バーナに供給する予熱燃焼空気中に供給するための制御を行う制御手段を設けたことを特徴とする加熱炉のNOx抑制制御装置。
A heating furnace having a continuous combustion burner that continuously burns in the furnace, and recovering exhaust heat of combustion exhaust gas discharged from the bottom of the heating furnace to preheat the combustion air supplied to the continuous combustion burner In a heating furnace having a heat exchange means and a chimney for dissipating the combustion exhaust gas after the exhaust heat is recovered by the heat exchange means into the atmosphere,
Exhaust means for discharging a part of the preheated combustion air preheated by the heat exchange means to the outside;
Supply means for supplying cold air that is not preheated into preheated combustion air supplied to the continuous combustion burner;
NOx measuring means for measuring NOx concentration in the combustion exhaust gas discharged from the heating furnace;
When the NOx concentration measured by the NOx measuring means exceeds a preset value, the exhaust means is used to reduce the temperature of the combustion air supplied to the continuous combustion burner. And a control means for controlling the supply of the cold air in an amount corresponding to the preheated combustion air discharged to the outside into the preheated combustion air supplied to the continuous combustion burner by the supply means A NOx suppression control device for a heating furnace, characterized by comprising:
前記NOx測定手段により測定したNOx濃度と予め設定した設定値の差に応じて、前記予熱燃焼空気の排出量を決定することを特徴とする請求項1に記載の加熱炉のNOx抑制制御装置。   2. The NOx suppression control device for a heating furnace according to claim 1, wherein the exhaust amount of the preheated combustion air is determined in accordance with a difference between the NOx concentration measured by the NOx measuring means and a preset set value.
JP2008223723A 2008-09-01 2008-09-01 NOx SUPPRESSION CONTROLLING DEVICE OF HEATING FURNACE Withdrawn JP2010060156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008223723A JP2010060156A (en) 2008-09-01 2008-09-01 NOx SUPPRESSION CONTROLLING DEVICE OF HEATING FURNACE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008223723A JP2010060156A (en) 2008-09-01 2008-09-01 NOx SUPPRESSION CONTROLLING DEVICE OF HEATING FURNACE

Publications (1)

Publication Number Publication Date
JP2010060156A true JP2010060156A (en) 2010-03-18

Family

ID=42187155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008223723A Withdrawn JP2010060156A (en) 2008-09-01 2008-09-01 NOx SUPPRESSION CONTROLLING DEVICE OF HEATING FURNACE

Country Status (1)

Country Link
JP (1) JP2010060156A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026606A (en) * 2010-07-21 2012-02-09 Chugoku Electric Power Co Inc:The Waste monitoring device
JP2013088101A (en) * 2011-10-21 2013-05-13 Nippon Steel & Sumitomo Metal Corp Method of cooling air preheater in heating furnace
JP2013139966A (en) * 2012-01-05 2013-07-18 Nippon Steel & Sumitomo Metal Corp Method and device for automatically controlling nox in heating furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026606A (en) * 2010-07-21 2012-02-09 Chugoku Electric Power Co Inc:The Waste monitoring device
JP2013088101A (en) * 2011-10-21 2013-05-13 Nippon Steel & Sumitomo Metal Corp Method of cooling air preheater in heating furnace
JP2013139966A (en) * 2012-01-05 2013-07-18 Nippon Steel & Sumitomo Metal Corp Method and device for automatically controlling nox in heating furnace

Similar Documents

Publication Publication Date Title
EP2450534B1 (en) Oxyfuel boiler and a method of controlling the same
JP5417068B2 (en) Oxyfuel boiler and control method for oxygen fired boiler
JP4661993B1 (en) Boiler system
JP6490466B2 (en) Waste treatment facility and method of operating waste treatment facility
JP2011247553A (en) Oxygen combustion boiler
WO2016208717A1 (en) Denitration device and denitration method
CN102816902A (en) Smoke evacuation system of horizontal type annealing furnace
JP2010002079A (en) Boiler and control method of boiler
JP2010060156A (en) NOx SUPPRESSION CONTROLLING DEVICE OF HEATING FURNACE
US8707702B2 (en) Method and device for utilizing heat transported by a discontinuous flow of exhaust gases
JP6323286B2 (en) Exhaust heat recovery equipment for heating furnace and exhaust heat recovery method for heating furnace
KR101108617B1 (en) Combustion waste gas heat recovery system in reheating furnace
KR20150135310A (en) Method for combustion of a low-grade fuel
JP4757596B2 (en) Thermal storage burner device and its operation method
JP5211943B2 (en) Heating furnace exhaust equipment
JP2936449B2 (en) Furnace operation method of heating furnace provided with regenerative alternating combustion burner system
JP2001026816A (en) Operation of continuous heating furnace
CN104359314B (en) The energy-saving heating furnace system of a kind of Mist heat recovering and flue gas waste heat recovery method
JP2007002768A (en) High moisture gas turbine system and its control device and control method
JP2013139966A (en) Method and device for automatically controlling nox in heating furnace
JP2016005830A (en) Flue gas treatment apparatus, and operational method of flue gas treatment apparatus
CN204619705U (en) A kind of ventilation air methane oxidized apparatus
JP7254438B2 (en) Operation method of waste disposal facility and waste disposal facility
JP2008114187A (en) Heating temperature adjustment method and temperature control system
CN104906928A (en) Ventilation air methane oxidation device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111101