JP2013088101A - Method of cooling air preheater in heating furnace - Google Patents

Method of cooling air preheater in heating furnace Download PDF

Info

Publication number
JP2013088101A
JP2013088101A JP2011232036A JP2011232036A JP2013088101A JP 2013088101 A JP2013088101 A JP 2013088101A JP 2011232036 A JP2011232036 A JP 2011232036A JP 2011232036 A JP2011232036 A JP 2011232036A JP 2013088101 A JP2013088101 A JP 2013088101A
Authority
JP
Japan
Prior art keywords
air
combustion
air preheater
burner
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011232036A
Other languages
Japanese (ja)
Other versions
JP5696641B2 (en
Inventor
Hidetaka Ageo
英孝 上尾
Satoru Masuko
悟 益子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2011232036A priority Critical patent/JP5696641B2/en
Publication of JP2013088101A publication Critical patent/JP2013088101A/en
Application granted granted Critical
Publication of JP5696641B2 publication Critical patent/JP5696641B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Air Supply (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of cooling an air preheater in a heating furnace, configured to prevent melting damage of the air preheater by supplying cooling air sufficient for the air preheater, even when an operating state of the heating furnace changes, in the heating furnace including a regenerative burner and a continuous combustion burner.SOLUTION: The air preheater 31 is cooled by discharging a heat-exchanged combustion exhaust gas discharged from the regenerative burner 11, to a flue 30 of an air preheater outlet side 31b, and allowing the combustion air supplied to the continuous combustion burner 12 to pass through the air preheater 31, in the heating furnace 10 including the regenerative burner 11 and the continuous combustion burner 12.In the cooling method, an amount of cooling air A0 necessary for cooling the air preheater 31 to its heatproof temperature or less, is calculated from an amount of combustion exhaust gas passing through the air preheater 31 and a combustion exhaust gas temperature of an air preheater inlet side 31a, and the combustion air preheated by the air preheater 31 is partially diffused to the atmosphere, when an actual measurement value A1 of the amount of combustion air supplied to the continuous combustion burner 12 is less than the amount of cooling air A0.

Description

本発明は、スラブ等の鋼片を加熱する加熱炉に備えられている空気予熱器の冷却方法に関し、特に、蓄熱式バーナと連続燃焼式バーナを併有する連続式加熱炉に備えられている空気予熱器の冷却方法に関する。 The present invention relates to a cooling method for an air preheater provided in a heating furnace for heating a steel piece such as a slab, and in particular, air provided in a continuous heating furnace having both a regenerative burner and a continuous combustion burner. The present invention relates to a method for cooling a preheater.

連続鋳造機によって鋳造されたスラブ等の鋼片は、連続式加熱炉により目標抽出温度まで加熱された後、熱間圧延機により所定の形状に成形される。鋼片の加熱を行う従来の連続式加熱炉の一例を図4に示す。連続式加熱炉50は、鋼片Sの装入口から抽出口に向けて順に予熱帯、加熱帯、均熱帯にゾーンニングされ、複数の連続燃焼式バーナ51が各ゾーンに設置されている。各ゾーンで発生した燃焼排ガスは、炉尻(装入口側)に備えられた煙道56を流れ、煙道56の末端に設置された煙突57から大気中に放出される。
煙道56の途中には、煙道56を流れる燃焼排ガスの廃熱を利用して、連続燃焼式バーナ51に供給される燃焼空気を予熱する空気予熱器54(エアレキュペレータ)が設置されている。燃焼空気は、燃焼空気供給系52の始端に設置された燃焼空気ブロワ55から燃焼空気供給系52に導入され空気予熱器54により予熱された後、流量制御弁53を経由して各連続燃焼式バーナ51に供給される。なお、図4では、描線が錯綜しないように、一部の連続燃焼式バーナのみ燃焼空気供給系を示しているが、その他の連続燃焼式バーナにも同様の燃焼空気供給系が接続されている。
A steel slab such as a slab cast by a continuous casting machine is heated to a target extraction temperature by a continuous heating furnace and then formed into a predetermined shape by a hot rolling mill. An example of a conventional continuous heating furnace for heating a steel piece is shown in FIG. The continuous heating furnace 50 is zoned in the order of the pre-tropical zone, the heating zone, and the soaking zone in order from the loading port of the steel slab S to the extraction port, and a plurality of continuous combustion burners 51 are installed in each zone. The combustion exhaust gas generated in each zone flows through a flue 56 provided at the furnace bottom (inlet side), and is released into the atmosphere from a chimney 57 installed at the end of the flue 56.
An air preheater 54 (air recuperator) that preheats combustion air supplied to the continuous combustion burner 51 using waste heat of combustion exhaust gas flowing through the flue 56 is installed in the middle of the flue 56. Yes. The combustion air is introduced into the combustion air supply system 52 from the combustion air blower 55 installed at the start end of the combustion air supply system 52 and preheated by the air preheater 54, and then each continuous combustion type via the flow control valve 53. It is supplied to the burner 51. In FIG. 4, only a part of the continuous combustion burners shows the combustion air supply system so that the drawn lines are not complicated, but similar combustion air supply systems are also connected to other continuous combustion burners. .

連続式加熱炉50では、空気予熱器54の耐熱温度(800〜900℃程度)を超える燃焼排ガスが空気予熱器54に流入して空気予熱器54が溶損するのを防止するため、空気予熱器54を冷却するための常温空気供給系58が、空気予熱器入側54aの煙道56に接続されている。冷却空気ブロワ59により常温空気供給系58に導入された常温空気は、空気予熱器入側54aに設置された温度計61の出力値と連動する流量調整弁60を経由して空気予熱器入側54aの煙道56に供給される。
しかし、こうした常温空気を用いて燃焼排ガスを希釈する方法の場合、燃焼排ガス温度が高くなるにつれて、燃焼排ガスを希釈するために必要となる常温空気量は増加する。その結果、容量の大きな冷却空気ブロワ59が必要となるだけでなく、常温空気量の増加による排ガス量の増加を考慮した煙突57の設計が必要となる。
In the continuous heating furnace 50, in order to prevent combustion exhaust gas exceeding the heat resistance temperature (about 800 to 900 ° C.) of the air preheater 54 from flowing into the air preheater 54 and melting the air preheater 54, the air preheater 50 is prevented. A room temperature air supply system 58 for cooling 54 is connected to the flue 56 of the air preheater inlet side 54a. The normal temperature air introduced into the normal temperature air supply system 58 by the cooling air blower 59 is supplied to the air preheater input side via the flow rate adjustment valve 60 that is linked to the output value of the thermometer 61 installed on the air preheater input side 54a. 54a is supplied to the flue 56.
However, in the method of diluting the combustion exhaust gas using such room temperature air, the amount of room temperature air required for diluting the combustion exhaust gas increases as the temperature of the combustion exhaust gas increases. As a result, not only the cooling air blower 59 having a large capacity is required, but also the design of the chimney 57 in consideration of the increase in the amount of exhaust gas due to the increase in the amount of room temperature air is required.

他方、特許文献1では、予熱帯に蓄熱式バーナ、加熱帯及び均熱帯に連続燃焼式バーナを設置した加熱炉において、蓄熱式バーナから排出される熱交換後の低温燃焼排ガスを空気予熱器入側の燃焼排ガス中に導入する方法が開示されている。この方法では、燃焼排ガスを希釈する常温空気の代わりに、蓄熱式バーナから排出される低温燃焼排ガスを使用する。そのため、必要以上に排ガス量が増加することもなく、加熱炉の操業条件への影響を最小限に止めることができる。しかし、加熱炉から煙道に流れる燃焼排ガスの温度が低く燃焼排ガスの冷却が不要な場合でも、蓄熱式バーナから排出される熱交換後の低温燃焼排ガスの全量が空気予熱器入側の燃焼排ガス中に導入されるため、燃焼排ガス温度がさらに低下し、空気予熱器による熱交換効率が低下するという問題がある。 On the other hand, in Patent Document 1, in a heating furnace equipped with a regenerative burner in the pretropical zone, a heating zone and a continuous combustion burner in the soaking zone, the low-temperature combustion exhaust gas after heat exchange discharged from the regenerative burner enters the air preheater. A method of introducing into the side flue gas is disclosed. In this method, low-temperature combustion exhaust gas discharged from a regenerative burner is used instead of room temperature air for diluting combustion exhaust gas. Therefore, the amount of exhaust gas does not increase more than necessary, and the influence on the operating conditions of the heating furnace can be minimized. However, even if the temperature of the flue gas flowing from the furnace to the flue is low and cooling of the flue gas is not required, the total amount of the low-temperature flue gas after heat exchange discharged from the regenerative burner is the flue gas on the inlet side of the air preheater Since it is introduced into the exhaust gas, there is a problem that the temperature of the combustion exhaust gas further decreases and the heat exchange efficiency by the air preheater decreases.

そこで、特許文献2では、蓄熱式バーナと連続燃焼式バーナを併有する加熱炉において、蓄熱式バーナから排出される熱交換後の低温燃焼排ガスを導入する系統を空気予熱器の入側と出側のそれぞれに設置し、そのいずれかの系統又は両方の系統に流量調整手段を設ける発明が開示されている。特許文献2には、この発明の効果として、空気予熱器を通過する燃焼排ガスの温度が空気予熱器の耐熱温度を超えないように燃焼排ガスの冷却を行うだけでなく、燃焼排ガスの過剰な冷却を防止して熱損失の低下を抑制することができると記載されている。 Therefore, in Patent Document 2, in a heating furnace having both a regenerative burner and a continuous combustion burner, a system for introducing low-temperature combustion exhaust gas after heat exchange discharged from the regenerative burner is referred to as an inlet side and an outlet side of an air preheater. The invention is disclosed in which a flow rate adjusting means is provided in each of the two systems and in both systems. In Patent Document 2, as an effect of the present invention, not only is the combustion exhaust gas cooled so that the temperature of the combustion exhaust gas passing through the air preheater does not exceed the heat resistance temperature of the air preheater, but also the combustion exhaust gas is excessively cooled. It is described that it is possible to prevent the heat loss from being reduced.

特開平8−199231号公報JP-A-8-199231 特開2002−81641号公報JP 2002-81641 A

特許文献1や特許文献2などに記載されている、蓄熱式バーナと連続燃焼式バーナを併有する加熱炉では、空気予熱器を通過する燃焼排ガス量は、連続燃焼式バーナで生成された燃焼排ガスの全量と蓄熱式バーナで生成された燃焼排ガスの一部(蓄熱器による熱交換が行われなかった分で、通常10〜20%)の和となる。一方、空気予熱器を通過する燃焼空気は、連続燃焼式バーナで使用される空気量のみである。そのため、加熱炉の運転状態によって、空気予熱器を通過する燃焼排ガス量と燃焼空気量の比率が変動する。特に、連続燃焼式バーナの燃焼量が少なく蓄熱式バーナの燃焼量が多い運転状態の場合、空気予熱器を通過する燃焼排ガス量に比べて、冷却作用のある燃焼空気量(冷却空気量)が少ないため、空気予熱器の冷却が不十分となる。 In a heating furnace having both a regenerative burner and a continuous combustion burner described in Patent Document 1, Patent Document 2, etc., the amount of combustion exhaust gas passing through the air preheater is the combustion exhaust gas generated by the continuous combustion burner. And a part of the combustion exhaust gas generated by the regenerative burner (usually 10 to 20%, since heat exchange by the regenerator was not performed). On the other hand, the combustion air passing through the air preheater is only the amount of air used in the continuous combustion burner. Therefore, the ratio of the amount of combustion exhaust gas passing through the air preheater and the amount of combustion air varies depending on the operating state of the heating furnace. In particular, in the operating state where the combustion amount of the continuous combustion burner is small and the combustion amount of the regenerative burner is large, the amount of combustion air (cooling air amount) having a cooling action is smaller than the amount of combustion exhaust gas passing through the air preheater. Since there are few, cooling of an air preheater becomes inadequate.

表1は、上記知見を裏付けるために実施したシミュレーション結果を示したものである。本シミュレーションでは、連続燃焼式バーナの燃焼量が定格燃焼流量(8,000Nm/h)の50%負荷時において、蓄熱式バーナの燃焼量が定格燃焼流量(20,000Nm/h)の30〜80%と変化した各ケースについて、通過排ガス量(空気予熱器を通過する燃焼排ガス量)に対する通過空気量(空気予熱器を通過する燃焼空気量)の比率を計算した。なお、通過空気量は連続燃焼式バーナの燃焼空気量に等しく、通過排ガス量は、連続燃焼式バーナの燃焼排ガス量に蓄熱式バーナの燃焼排ガス量の10%(エスケープ率)を加えたものである。 Table 1 shows the results of simulation conducted to support the above findings. In this simulation, 30 in 50% load of the combustion amount is rated combustion rate of continuous combustion burner (8,000Nm 3 / h), the amount of combustion regenerative burner rated combustion rate (20,000Nm 3 / h) For each case changed to ˜80%, the ratio of the passing air amount (combustion air amount passing through the air preheater) to the passing exhaust gas amount (combustion exhaust gas amount passing through the air preheater) was calculated. The passing air amount is equal to the combustion air amount of the continuous combustion burner, and the passing exhaust gas amount is obtained by adding 10% (escape rate) of the combustion exhaust gas amount of the regenerative burner to the combustion exhaust gas amount of the continuous combustion burner. is there.

Figure 2013088101
Figure 2013088101

同表より、蓄熱式バーナの燃焼負荷が増加するにつれて、通過排ガス量に対する通過空気量の比率が低下することがわかる。即ち、蓄熱式バーナと連続燃焼式バーナを併有する加熱炉において、従来の方法で空気予熱器を冷却した場合、加熱炉の運転状態によっては、空気予熱器の冷却が不十分となるおそれがある。 From the table, it can be seen that the ratio of the passing air amount to the passing exhaust gas amount decreases as the combustion load of the regenerative burner increases. That is, in a heating furnace having both a regenerative burner and a continuous combustion burner, when the air preheater is cooled by a conventional method, the air preheater may be insufficiently cooled depending on the operation state of the heating furnace. .

本発明はかかる事情に鑑みてなされたもので、蓄熱式バーナと連続燃焼式バーナを併有する加熱炉において、加熱炉の運転状態が変動しても、空気予熱器に十分な冷却空気を供給して空気予熱器の溶損を防止することができる、加熱炉における空気予熱器の冷却方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and in a heating furnace having both a regenerative burner and a continuous combustion burner, sufficient cooling air is supplied to the air preheater even if the operating state of the heating furnace fluctuates. It is an object of the present invention to provide a cooling method for an air preheater in a heating furnace, which can prevent the air preheater from being melted.

上記目的を達成するため、本発明は、蓄熱式バーナと連続燃焼式バーナとを併有する加熱炉で、該加熱炉の炉尻からの燃焼排ガスを、空気予熱器を介設した煙道を通して外部に排出すると共に、前記蓄熱式バーナから排出される熱交換後の燃焼排ガスを前記空気予熱器の出側の煙道に排出し、更に、前記連続燃焼式バーナに供給する燃焼空気を前記空気予熱器に通して該空気予熱器を冷却する方法において、
前記空気予熱器をその耐熱温度以下に冷却するために必要な冷却空気量A0を、前記空気予熱器を通過する燃焼排ガス量と前記空気予熱器の入側の燃焼排ガス温度より算出し、
前記連続燃焼式バーナに供給される燃焼空気量を測定して、その実測値A1が前記冷却空気量A0未満である際、前記空気予熱器によって予熱された燃焼空気の一部を大気放散することを特徴としている。その際、大気放散する前記燃焼空気の容量A2は(A0−A1)以上であることが望ましい。
In order to achieve the above object, the present invention is a heating furnace having both a regenerative burner and a continuous combustion burner. The flue gas from the bottom of the heating furnace is externally passed through a flue having an air preheater. And the exhaust gas after the heat exchange discharged from the regenerative burner is discharged to the flue on the outlet side of the air preheater, and the combustion air supplied to the continuous combustion burner is further heated to the air preheater. In a method for cooling the air preheater through a vessel,
The amount of cooling air A0 required to cool the air preheater below its heat resistant temperature is calculated from the amount of flue gas passing through the air preheater and the flue gas temperature on the inlet side of the air preheater,
The amount of combustion air supplied to the continuous combustion burner is measured, and when the measured value A1 is less than the cooling air amount A0, part of the combustion air preheated by the air preheater is diffused into the atmosphere. It is characterized by. At that time, it is desirable that the volume A2 of the combustion air dissipating into the atmosphere is (A0-A1) or more.

本発明では、予熱された燃焼空気の一部を大気放散して新たな燃焼空気(冷却空気)が空気予熱器に供給されることにより、空気予熱器を冷却する冷却空気量の増大を図っている。具体的には、空気予熱器を通過する燃焼排ガス量と燃焼排ガス温度に基づいて、空気予熱器をその耐熱温度以下に冷却するために必要な冷却空気量A0を算出し、連続燃焼式バーナに供給される燃焼空気量が冷却空気量A0未満であるとき、予熱された燃焼空気の一部を大気放散する。これにより、燃焼空気供給系の圧力が低下し、冷却作用のある新たな燃焼空気が空気予熱器に供給される。 In the present invention, a part of the preheated combustion air is diffused into the atmosphere, and new combustion air (cooling air) is supplied to the air preheater, thereby increasing the amount of cooling air for cooling the air preheater. Yes. Specifically, based on the amount of combustion exhaust gas passing through the air preheater and the temperature of the combustion exhaust gas, the amount of cooling air A0 required to cool the air preheater to the heat resistant temperature or less is calculated, and the continuous combustion burner is calculated. When the supplied combustion air amount is less than the cooling air amount A0, part of the preheated combustion air is released into the atmosphere. As a result, the pressure of the combustion air supply system decreases, and new combustion air having a cooling action is supplied to the air preheater.

なお、空気予熱器を冷却する際の空気予熱器温度の下限値は、(耐熱温度−50℃)程度とすることが望ましい。空気予熱器の温度がこれより低下すると、廃熱回収上、不利になるためである。また、本明細書における「排ガス量」及び「空気量」は、それぞれ単位時間当たりの排ガス量及び空気量のことである。 In addition, as for the lower limit of the air preheater temperature at the time of cooling an air preheater, it is desirable to set it as the (heat-resistant temperature -50 degreeC) grade. This is because if the temperature of the air preheater is lower than this, it is disadvantageous for waste heat recovery. In addition, “exhaust gas amount” and “air amount” in this specification are an exhaust gas amount and an air amount per unit time, respectively.

本発明に係る加熱炉における空気予熱器の冷却方法では、連続燃焼式バーナに供給される燃焼空気量が、空気予熱器をその耐熱温度以下に冷却するために必要な冷却空気量未満であるとき、予熱された燃焼空気の一部を大気放散する。これにより、冷却作用のある新たな燃焼空気が空気予熱器に供給されるので、加熱炉の運転状態が変動しても、空気予熱器の溶損を防止することができる。 In the method for cooling an air preheater in a heating furnace according to the present invention, when the amount of combustion air supplied to the continuous combustion burner is less than the amount of cooling air required to cool the air preheater to its heat resistant temperature or lower. , Dissipate some of the preheated combustion air to the atmosphere. As a result, new combustion air having a cooling action is supplied to the air preheater, so that the air preheater can be prevented from being melted even if the operating state of the heating furnace fluctuates.

本発明の一実施の形態に係る加熱炉における空気予熱器の冷却方法が適用される加熱炉の模式図である。It is a schematic diagram of the heating furnace to which the cooling method of the air preheater in the heating furnace which concerns on one embodiment of this invention is applied. 同空気予熱器の冷却方法の手順を説明するためのフローチャートである。It is a flowchart for demonstrating the procedure of the cooling method of the air preheater. 空気予熱器入側の燃焼排ガス温度と空気予熱器をその耐熱温度以下に冷却するために必要な冷却空気量との関係を示す特性線図の一例である。It is an example of the characteristic diagram which shows the relationship between the combustion exhaust gas temperature of an air preheater entrance, and the amount of cooling air required in order to cool an air preheater to the heat resistant temperature or less. 従来の連続式加熱炉の模式図である。It is a schematic diagram of the conventional continuous heating furnace.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態に付き説明し、本発明の理解に供する。 Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.

本発明の一実施の形態に係る加熱炉における空気予熱器の冷却方法が適用される加熱炉10の模式図を図1に示す。なお、図1では、描線が錯綜しないように、一部の蓄熱式バーナのみ燃焼空気供給系を示しているが、その他の蓄熱式バーナにも同様の燃焼空気供給系が接続されている。また、図示していないが、各蓄熱式バーナと各連続燃焼式バーナには燃料供給系を介して燃料が供給されている。 The schematic diagram of the heating furnace 10 to which the cooling method of the air preheater in the heating furnace which concerns on one embodiment of this invention is applied is shown in FIG. In FIG. 1, only a part of the regenerative burners shows the combustion air supply system so that the drawn lines are not complicated, but the same combustion air supply system is also connected to the other regenerative burners. Although not shown, fuel is supplied to each heat storage burner and each continuous combustion burner via a fuel supply system.

加熱炉10は、鋼片Sの装入口から抽出口に向けて順に予熱帯、加熱帯、均熱帯にゾーンニングされた連続式加熱炉である。本加熱炉10では、均熱帯に設置されたバーナの一部が連続燃焼式バーナ12とされ、それ以外の全てのバーナ、即ち、予熱帯と加熱帯に設置された全てのバーナ並びに均熱帯に設置された残りのバーナが蓄熱式バーナ11とされている。装入口から加熱炉10内に装入された鋼片Sは、図示しない搬送装置によって抽出口に向けて搬送される間に、蓄熱式バーナ11及び連続燃焼式バーナ12により目標抽出温度まで加熱される。 The heating furnace 10 is a continuous heating furnace that is zoned in the order of a pretropical zone, a heating zone, and a soaking zone in order from the loading port of the steel slab S to the extraction port. In this heating furnace 10, a part of the burner installed in the soaking zone is a continuous combustion burner 12, and all the other burners, that is, all the burners installed in the pre-tropical zone and the heating zone, and the soaking zone are used. The remaining burner installed is a heat storage burner 11. The steel piece S charged into the heating furnace 10 from the charging port is heated to the target extraction temperature by the regenerative burner 11 and the continuous combustion burner 12 while being transferred toward the extraction port by a transfer device (not shown). The

予熱帯、加熱帯、及び均熱帯で発生した燃焼排ガス(連続燃焼式バーナ12で生成された燃焼排ガスの全量と蓄熱式バーナ11で生成された燃焼排ガスの一部)は、炉尻(装入口側)に設けられた煙道30を流れ、煙道30の末端に設置された煙突32から大気中に放出される。煙道30の途中には、煙道30を流れる燃焼排ガスの廃熱を利用して、連続燃焼式バーナ12に供給される燃焼空気を予熱する空気予熱器31が設置されている。空気予熱器入側31aの煙道30には、空気予熱器31を通過する燃焼排ガスの温度を測定するための温度計26が設置されている。 Combustion exhaust gas generated in the pre-tropical zone, heating zone, and soaking zone (total amount of combustion exhaust gas generated by the continuous combustion burner 12 and part of the combustion exhaust gas generated by the regenerative burner 11) It flows through the flue 30 provided on the side) and is discharged into the atmosphere from a chimney 32 installed at the end of the flue 30. An air preheater 31 that preheats combustion air supplied to the continuous combustion burner 12 using waste heat of combustion exhaust gas flowing through the flue 30 is installed in the middle of the flue 30. A thermometer 26 for measuring the temperature of the combustion exhaust gas passing through the air preheater 31 is installed in the flue 30 on the air preheater inlet side 31a.

連続燃焼式バーナ12には、燃焼空気供給系14を介して燃焼空気が供給される。燃焼空気供給系14の始端には、大気を吸引して、吸引した空気(燃焼空気)を連続燃焼式バーナ12に送給する燃焼空気ブロワ16が設置されている。燃焼空気ブロワ16から燃焼空気供給系14に導入された燃焼空気は、空気予熱器31により予熱された後、燃焼空気流量制御弁21を経由して各連続燃焼式バーナ12に供給される。また、空気予熱器31と燃焼空気流量制御弁21との間の燃焼空気供給系14には、空気予熱器31により予熱された燃焼空気を大気放散するための放散流量制御弁23と、予熱された燃焼空気の容量を測定するための流量計24が設けられている。 Combustion air is supplied to the continuous combustion burner 12 via a combustion air supply system 14. A combustion air blower 16 that sucks the atmosphere and supplies the sucked air (combustion air) to the continuous combustion burner 12 is installed at the start end of the combustion air supply system 14. The combustion air introduced into the combustion air supply system 14 from the combustion air blower 16 is preheated by the air preheater 31 and then supplied to each continuous combustion burner 12 via the combustion air flow rate control valve 21. The combustion air supply system 14 between the air preheater 31 and the combustion air flow rate control valve 21 is preheated with a diffusion flow rate control valve 23 for releasing the combustion air preheated by the air preheater 31 to the atmosphere. A flow meter 24 for measuring the volume of the combustion air is provided.

蓄熱式バーナ11は、二基の蓄熱式バーナ11を一組として使用し、一組の蓄熱式バーナ11の一方と他方を交互に燃焼させる交番燃焼方式により鋼片Sを加熱する。各蓄熱式バーナ11は、燃焼排ガスの廃熱を蓄熱するための蓄熱体(図示省略)を備えている。一方の蓄熱式バーナ11の燃焼により発生した燃焼排ガスが他方の蓄熱式バーナ11の蓄熱体を通過することにより、燃焼排ガスの廃熱が当該蓄熱体に蓄熱される。他方の蓄熱式バーナ11が燃焼する際、燃焼空気が当該蓄熱体を通過することにより燃焼空気が予熱される。 The regenerative burner 11 uses two regenerative burners 11 as a set, and heats the steel piece S by an alternating combustion method in which one of the regenerative burner 11 and the other are burned alternately. Each heat storage burner 11 includes a heat storage body (not shown) for storing waste heat of combustion exhaust gas. When the combustion exhaust gas generated by the combustion of one heat storage burner 11 passes through the heat storage body of the other heat storage burner 11, the waste heat of the combustion exhaust gas is stored in the heat storage body. When the other regenerative burner 11 burns, the combustion air is preheated by passing the combustion air through the heat accumulator.

蓄熱式バーナ11は、燃焼空気供給系13に加えて燃焼排ガス排出系17を備えている。燃焼空気は、燃焼空気供給系13の始端に設けられた燃焼空気ブロワ15から燃焼空気供給系13に導入され、燃焼空気流量制御弁22を経由して蓄熱式バーナ11に供給される。燃焼空気ブロワ15と燃焼空気流量制御弁22との間の燃焼空気供給系13には、蓄熱式バーナ11に供給される燃焼空気量を測定するための流量計25が設けられている。 The heat storage burner 11 includes a combustion exhaust gas discharge system 17 in addition to the combustion air supply system 13. The combustion air is introduced into the combustion air supply system 13 from the combustion air blower 15 provided at the starting end of the combustion air supply system 13, and is supplied to the regenerative burner 11 via the combustion air flow rate control valve 22. The combustion air supply system 13 between the combustion air blower 15 and the combustion air flow rate control valve 22 is provided with a flow meter 25 for measuring the amount of combustion air supplied to the regenerative burner 11.

蓄熱式バーナ11で生成された燃焼排ガスの大半(80〜90%程度)は、燃焼排ガス排出系17の途中に設置された燃焼排ガスファン18により吸引され、蓄熱体に廃熱を供給した後、燃料排ガス流量制御弁20を経由し、空気予熱器出側31bの煙道30に排出される。本加熱炉10では、蓄熱式バーナ11から排出される熱交換後の低温燃焼排ガスの全量を空気予熱器出側31bの煙道30に排出するので、空気予熱器入側31aの煙道30を流れる燃焼排ガスが過剰に冷却されることがなく、空気予熱器31による熱交換効率の低下を防止することができる。
一方、蓄熱式バーナ11で生成された残りの燃焼排ガスは、連続燃焼式バーナ12で生成された燃焼排ガスと共に煙道30を流れ、空気予熱器31を通過した後、煙突32から大気中に放出される。
Most of the combustion exhaust gas (about 80 to 90%) generated by the heat storage burner 11 is sucked by the combustion exhaust gas fan 18 installed in the middle of the combustion exhaust gas discharge system 17 and supplies waste heat to the heat storage body. Via the fuel exhaust gas flow rate control valve 20, it is discharged to the flue 30 on the air preheater outlet 31b. In the main heating furnace 10, the entire amount of the low-temperature combustion exhaust gas after heat exchange discharged from the regenerative burner 11 is discharged to the flue 30 on the air preheater outlet 31b, so that the flue 30 on the air preheater inlet 31a is The flowing combustion exhaust gas is not excessively cooled, and a decrease in heat exchange efficiency by the air preheater 31 can be prevented.
On the other hand, the remaining combustion exhaust gas generated by the regenerative burner 11 flows through the flue 30 together with the combustion exhaust gas generated by the continuous combustion burner 12, passes through the air preheater 31, and then is released from the chimney 32 into the atmosphere. Is done.

本加熱炉10は、連続燃焼式バーナ12に供給される燃焼空気量が、空気予熱器31をその耐熱温度以下に冷却するために必要な冷却空気量未満であるとき、空気予熱器31によって予熱された燃焼空気の一部を大気放散するための制御部27を備えている。制御部27には、連続燃焼式バーナ12に供給される燃焼空気量を測定する流量計24、蓄熱式バーナ11に供給される燃焼空気量を測定する流量計25、空気予熱器入側31aにおける燃焼排ガス温度を測定する温度計26、及び燃焼空気供給系14からの大気放散量を測定する流量計25aの各出力が入力されると共に、予熱された燃焼空気の大気放散量を制御するための制御信号が放散流量制御弁23に出力される。 The present heating furnace 10 is preheated by the air preheater 31 when the amount of combustion air supplied to the continuous combustion burner 12 is less than the amount of cooling air required to cool the air preheater 31 below its heat resistant temperature. A control unit 27 is provided to dissipate a part of the combustion air that has been discharged. The control unit 27 includes a flow meter 24 that measures the amount of combustion air supplied to the continuous combustion burner 12, a flow meter 25 that measures the amount of combustion air supplied to the regenerative burner 11, and an air preheater inlet 31a. Outputs of a thermometer 26 for measuring the temperature of the combustion exhaust gas and a flow meter 25a for measuring the amount of atmospheric emission from the combustion air supply system 14 are input and for controlling the amount of atmospheric emission of the preheated combustion air. A control signal is output to the diffusion flow rate control valve 23.

次に、上記構成を有する加熱炉10における空気予熱器31の冷却方法について説明する。図2に、空気予熱器31の冷却方法の手順を説明するためのフローチャートを示す。
(ST00)蓄熱式バーナ11及び連続燃焼式バーナ12に使用される燃料(例えばコークス炉ガス)の燃料組成に基づいて、理論燃焼空気量Lと理論湿り燃焼排ガス量G0を予め計算しておく。
(ST10)制御部27において、流量計24より得られた連続燃焼式バーナ12に供給される燃焼空気量Air1と、図示しない燃料供給系に設置された流量計より得られた連続燃焼式バーナ12に供給される燃料の容量COG1に基づいて、連続燃焼式バーナ12で生成される燃焼排ガス量G1が(1)式より算出される。
G1=G01×COG1 ・・・・(1)
ここで、G01は、連続燃焼式バーナ12で生成される理論湿り燃焼排ガス量であり、(2)式で与えられる。
G01=G0+(Air1/(COG1×L)−1)×L ・・・・(2)
Next, the cooling method of the air preheater 31 in the heating furnace 10 having the above configuration will be described. In FIG. 2, the flowchart for demonstrating the procedure of the cooling method of the air preheater 31 is shown.
(ST00) Based on the fuel composition of the fuel (for example, coke oven gas) used in the regenerative burner 11 and the continuous combustion burner 12, the theoretical combustion air amount L 0 and the theoretical wet combustion exhaust gas amount G0 w are calculated in advance. deep.
(ST10) In the control unit 27, the combustion air amount Air1 supplied to the continuous combustion burner 12 obtained from the flow meter 24 and the continuous combustion burner 12 obtained from a flow meter installed in a fuel supply system (not shown). The combustion exhaust gas amount G1 generated by the continuous combustion burner 12 is calculated from the equation (1) based on the capacity COG1 of the fuel supplied to.
G1 = G0 w 1 × COG1 (1)
Here, G0 w 1 is the theoretical wet combustion exhaust gas amount generated by the continuous combustion burner 12, and is given by equation (2).
G0 w 1 = G0 w + (Air1 / (COG1 × L 0 ) −1) × L 0 (2)

(ST11)制御部27において、流量計25より得られた蓄熱式バーナ11に供給される燃焼空気量Air2と、図示しない燃料供給系に設置された流量計より得られた蓄熱式バーナ11に供給される燃料の容量COG2に基づいて、蓄熱式バーナ11で生成される燃焼排ガス量G2が(3)式より算出される。
G2=G02×COG2 ・・・・(3)
ここで、G02は、蓄熱式バーナ11で生成される理論湿り燃焼排ガス量であり、(4)式で与えられる。
G02=G0+(Air2/(COG2×L)−1)×L ・・・・(4)
(ST12)制御部27において、空気予熱器31を通過する燃焼排ガス量Gが(5)式より算出される。なお、式中のエスケープ率は、蓄熱式バーナ11で生成される燃焼排ガスのうち、燃焼排ガス排出系17に吸引されず、煙道30を流れる燃焼排ガス量の割合(10〜20%程度)のことである。
G=G1+G2×エスケープ率 ・・・・(5)
(ST11) In the control unit 27, the combustion air amount Air2 supplied to the regenerative burner 11 obtained from the flow meter 25 and the regenerative burner 11 obtained from a flow meter installed in a fuel supply system (not shown) are supplied. The amount of combustion exhaust gas G2 generated by the regenerative burner 11 is calculated from the equation (3) based on the capacity COG2 of the fuel to be produced.
G2 = G0 w 2 × COG2 (3)
Here, G0 w 2 is a theoretical wet flue gas volume generated in the regenerative burner 11 is given by equation (4).
G0 w 2 = G0 w + (Air2 / (COG2 × L 0 ) −1) × L 0 (4)
(ST12) In the control unit 27, the amount of combustion exhaust gas G passing through the air preheater 31 is calculated from the equation (5). The escape rate in the equation is the ratio (about 10 to 20%) of the amount of combustion exhaust gas flowing through the flue 30 without being sucked into the combustion exhaust gas exhaust system 17 among the combustion exhaust gas generated by the regenerative burner 11. That is.
G = G1 + G2 × escape rate (5)

(ST13)温度計26により測定された空気予熱器入側31aの燃焼排ガス温度TGが制御部27に入力される。
(ST14)空気予熱器入側の燃焼排ガス温度と空気予熱器を冷却するために必要な冷却空気量との関係を表した特性線図を用いて、空気予熱器31を通過する燃焼排ガス量Gと空気予熱器入側31aの燃焼排ガス温度TGより、空気予熱器31をその耐熱温度以下に冷却するために必要な冷却空気量A0が制御部27において決定される。
図3は、空気予熱器を通過する燃焼排ガス量をパラメータとして、空気予熱器入側の燃焼排ガス温度を横軸に、空気予熱器をその耐熱温度以下に冷却するために必要な冷却空気量を縦軸にとった特性線図の一例である。連続燃焼式バーナ12の燃焼空気量が同図の特性線の上側の領域にある場合、空気予熱器31をその耐熱温度以下に冷却するために必要な冷却空気量は燃焼空気のみで満足されていることを示している。一方、連続燃焼式バーナ12の燃焼空気量が同図の特性線の下側の領域にある場合、予熱した燃焼空気の一部を大気放散して新たな冷却空気を確保する必要がある。
(ST13) The combustion exhaust gas temperature TG of the air preheater inlet side 31a measured by the thermometer 26 is input to the control unit 27.
(ST14) The amount of combustion exhaust gas G passing through the air preheater 31 using a characteristic diagram showing the relationship between the combustion exhaust gas temperature on the inlet side of the air preheater and the amount of cooling air necessary for cooling the air preheater From the combustion exhaust gas temperature TG on the inlet side 31a of the air preheater, the control unit 27 determines the cooling air amount A0 required to cool the air preheater 31 to the heat resistant temperature or lower.
FIG. 3 shows the amount of combustion exhaust gas passing through the air preheater as a parameter, the combustion exhaust gas temperature on the inlet side of the air preheater as the horizontal axis, and the amount of cooling air necessary for cooling the air preheater to the heat resistant temperature or less. It is an example of the characteristic diagram which took the vertical axis | shaft. When the combustion air amount of the continuous combustion burner 12 is in the upper region of the characteristic line in the figure, the amount of cooling air necessary for cooling the air preheater 31 below its heat resistant temperature is satisfied only by the combustion air. It shows that. On the other hand, when the amount of combustion air of the continuous combustion burner 12 is in the region below the characteristic line in the figure, it is necessary to dissipate a part of the preheated combustion air to the atmosphere to ensure new cooling air.

(ST15)連続燃焼式バーナ12に供給される燃焼空気量A1は、燃焼空気量(実測値)Air1として既に制御部27に取り込まれている。
(ST16)制御部27において、連続燃焼式バーナ12に供給される燃焼空気量A1と空気予熱器31を冷却するために必要な冷却空気量A0が比較される。
(ST17)A1≧A0である場合、現状が維持される。一方、A1≧A0でない場合、即ち、A0がA1より大きい場合、制御部27において、空気予熱器31によって予熱された燃焼空気の大気放散量A2が(A0−A1)として算出される。
(ST15) The combustion air amount A1 supplied to the continuous combustion burner 12 is already taken into the control unit 27 as the combustion air amount (actual measurement value) Air1.
(ST16) In the control unit 27, the amount of combustion air A1 supplied to the continuous combustion burner 12 and the amount of cooling air A0 required for cooling the air preheater 31 are compared.
(ST17) When A1 ≧ A0, the current state is maintained. On the other hand, when A1 ≧ A0 is not satisfied, that is, when A0 is larger than A1, the control unit 27 calculates the atmospheric emission amount A2 of the combustion air preheated by the air preheater 31 as (A0−A1).

(ST18)制御部27から放散流量制御弁23に向けて制御信号が出力され、放散流量制御弁23が開き、予熱された燃焼空気からA2が大気中に放出される。予熱された燃焼空気の一部が大気放散されることにより、燃焼空気供給系14内の圧力が低下し、新たな冷却空気(冷却作用のある燃焼空気)が燃焼空気ブロワ16から燃焼空気供給系14に供給され、空気予熱器31を冷却する。 (ST18) A control signal is output from the control unit 27 toward the diffusion flow rate control valve 23, the diffusion flow rate control valve 23 is opened, and A2 is released into the atmosphere from the preheated combustion air. When a part of the preheated combustion air is diffused into the atmosphere, the pressure in the combustion air supply system 14 decreases, and new cooling air (combustion air having a cooling action) is supplied from the combustion air blower 16 to the combustion air supply system. 14 to cool the air preheater 31.

なお、上記実施の形態では、連続燃焼式バーナ12の燃焼排ガス量を算出した後に蓄熱式バーナ11の燃焼排ガス量を算出したが、逆でもよいことは言うまでもない。 In the above embodiment, the combustion exhaust gas amount of the regenerative burner 11 is calculated after calculating the combustion exhaust gas amount of the continuous combustion burner 12, but it goes without saying that the reverse may be possible.

以上、本発明の一実施の形態について説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、上記実施の形態では、加熱炉の均熱帯の一部のみに連続燃焼式バーナを使用したが、均熱帯のバーナを全て連続燃焼式バーナとしてもよいし、あるいは予熱帯や加熱帯のバーナの一部を連続燃焼式バーナとしてもよい。要は、蓄熱式バーナと連続燃焼式バーナを併有する加熱炉であればよく、蓄熱式バーナと連続燃焼式バーナの配置や比率を限定するものではない。
また、上記実施の形態では、燃焼空気の大気放散量A2を(A0−A1)としたが、(A0−A1)以上としてもよい。但し、その際、空気予熱器の温度が(耐熱温度−50℃)以上となるようにすることが望ましい。
Although one embodiment of the present invention has been described above, the present invention is not limited to the configuration described in the above-described embodiment, and is within the scope of matters described in the claims. Other possible embodiments and modifications are also included. For example, in the above embodiment, the continuous combustion burner is used only for a part of the soaking zone of the heating furnace. However, all the soaking zone burners may be used as the continuous burning burner, or the pre-tropic zone or the heating zone burner. A part of this may be a continuous combustion burner. In short, any heating furnace having both a regenerative burner and a continuous combustion burner may be used, and the arrangement and ratio of the regenerative burner and the continuous combustion burner are not limited.
Moreover, in the said embodiment, although atmospheric emission amount A2 of combustion air was set to (A0-A1), it is good also as (A0-A1) or more. However, at that time, it is desirable that the temperature of the air preheater be equal to or higher than (heat-resistant temperature -50 ° C).

10:加熱炉、11:蓄熱式バーナ、12:連続燃焼式バーナ、13、14:燃焼空気供給系、15、16:燃焼空気ブロワ、17:燃焼排ガス排出系、18:燃焼排ガスファン、20:燃料排ガス流量制御弁、21、22:燃焼空気流量制御弁、23:放散流量制御弁、24、25、25a:流量計、26:温度計、27:制御部、30:煙道、31:空気予熱器、31a:空気予熱器入側、31b:空気予熱器出側、32:煙突、S:鋼片 10: heating furnace, 11: regenerative burner, 12: continuous combustion burner, 13, 14: combustion air supply system, 15, 16: combustion air blower, 17: combustion exhaust gas discharge system, 18: combustion exhaust gas fan, 20: Fuel exhaust gas flow rate control valve, 21, 22: Combustion air flow rate control valve, 23: Emission flow rate control valve, 24, 25, 25a: Flow meter, 26: Thermometer, 27: Control unit, 30: Flue, 31: Air Preheater, 31a: Air preheater inlet side, 31b: Air preheater outlet side, 32: Chimney, S: Steel slab

Claims (2)

蓄熱式バーナと連続燃焼式バーナとを併有する加熱炉で、該加熱炉の炉尻からの燃焼排ガスを、空気予熱器を介設した煙道を通して外部に排出すると共に、前記蓄熱式バーナから排出される熱交換後の燃焼排ガスを前記空気予熱器の出側の煙道に排出し、更に、前記連続燃焼式バーナに供給する燃焼空気を前記空気予熱器に通して該空気予熱器を冷却する方法において、
前記空気予熱器をその耐熱温度以下に冷却するために必要な冷却空気量A0を、前記空気予熱器を通過する燃焼排ガス量と前記空気予熱器の入側の燃焼排ガス温度より算出し、
前記連続燃焼式バーナに供給される燃焼空気量を測定して、その実測値A1が前記冷却空気量A0未満である際、前記空気予熱器によって予熱された燃焼空気の一部を大気放散することを特徴とする加熱炉における空気予熱器の冷却方法。
In a heating furnace that has both a regenerative burner and a continuous combustion burner, flue gas from the bottom of the reheating furnace is discharged outside through a flue with an air preheater, and discharged from the regenerative burner. The exhaust gas after heat exchange is discharged to the flue on the outlet side of the air preheater, and the combustion air supplied to the continuous combustion burner is passed through the air preheater to cool the air preheater. In the method
The amount of cooling air A0 required to cool the air preheater below its heat resistant temperature is calculated from the amount of flue gas passing through the air preheater and the flue gas temperature on the inlet side of the air preheater,
The amount of combustion air supplied to the continuous combustion burner is measured, and when the measured value A1 is less than the cooling air amount A0, part of the combustion air preheated by the air preheater is diffused into the atmosphere. A method for cooling an air preheater in a heating furnace.
請求項1記載の加熱炉における空気予熱器の冷却方法において、大気放散する前記燃焼空気の容量A2は(A0−A1)以上であることを特徴とする加熱炉における空気予熱器の冷却方法。 The method for cooling an air preheater in a heating furnace according to claim 1, wherein the volume A2 of the combustion air that is diffused into the atmosphere is (A0-A1) or more.
JP2011232036A 2011-10-21 2011-10-21 Cooling method of air preheater in heating furnace Active JP5696641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011232036A JP5696641B2 (en) 2011-10-21 2011-10-21 Cooling method of air preheater in heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011232036A JP5696641B2 (en) 2011-10-21 2011-10-21 Cooling method of air preheater in heating furnace

Publications (2)

Publication Number Publication Date
JP2013088101A true JP2013088101A (en) 2013-05-13
JP5696641B2 JP5696641B2 (en) 2015-04-08

Family

ID=48532182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011232036A Active JP5696641B2 (en) 2011-10-21 2011-10-21 Cooling method of air preheater in heating furnace

Country Status (1)

Country Link
JP (1) JP5696641B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112097534A (en) * 2020-09-15 2020-12-18 法孚斯坦因冶金技术(上海)有限公司 Digital single heat accumulating type heating furnace

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527312A (en) * 1975-07-08 1977-01-20 Ishikawajima Harima Heavy Ind Co Ltd Recuperater protection apparatus
JPS58189159U (en) * 1982-06-11 1983-12-15 住友金属工業株式会社 Heat treatment furnace with air supply control device
JPH04129696U (en) * 1991-05-08 1992-11-27 大同特殊鋼株式会社 Heat exchanger protection device
JPH06337113A (en) * 1993-05-28 1994-12-06 Toshiba Corp Controller for heating furnace
JPH08199231A (en) * 1995-01-23 1996-08-06 Nippon Steel Corp Operation of heating furnace
JPH0953117A (en) * 1995-08-16 1997-02-25 Nippon Steel Corp Method for controlling combustion of heating furnace
JP2002081641A (en) * 2000-09-01 2002-03-22 Nkk Corp Heating furnace and method of cooling air preheater in heating furnace
JP2005337630A (en) * 2004-05-28 2005-12-08 Nippon Steel Corp Furnace pressure control method for heating furnace
JP2010060156A (en) * 2008-09-01 2010-03-18 Nippon Steel Corp NOx SUPPRESSION CONTROLLING DEVICE OF HEATING FURNACE

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527312A (en) * 1975-07-08 1977-01-20 Ishikawajima Harima Heavy Ind Co Ltd Recuperater protection apparatus
JPS58189159U (en) * 1982-06-11 1983-12-15 住友金属工業株式会社 Heat treatment furnace with air supply control device
JPH04129696U (en) * 1991-05-08 1992-11-27 大同特殊鋼株式会社 Heat exchanger protection device
JPH06337113A (en) * 1993-05-28 1994-12-06 Toshiba Corp Controller for heating furnace
JPH08199231A (en) * 1995-01-23 1996-08-06 Nippon Steel Corp Operation of heating furnace
JPH0953117A (en) * 1995-08-16 1997-02-25 Nippon Steel Corp Method for controlling combustion of heating furnace
JP2002081641A (en) * 2000-09-01 2002-03-22 Nkk Corp Heating furnace and method of cooling air preheater in heating furnace
JP2005337630A (en) * 2004-05-28 2005-12-08 Nippon Steel Corp Furnace pressure control method for heating furnace
JP2010060156A (en) * 2008-09-01 2010-03-18 Nippon Steel Corp NOx SUPPRESSION CONTROLLING DEVICE OF HEATING FURNACE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112097534A (en) * 2020-09-15 2020-12-18 法孚斯坦因冶金技术(上海)有限公司 Digital single heat accumulating type heating furnace

Also Published As

Publication number Publication date
JP5696641B2 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
JP4661993B1 (en) Boiler system
JP6423102B2 (en) Industrial furnace and its heat utilization method
EP2492594A1 (en) Combustion facility using heat accumulation type burners and combustion method for heat accumulation type burners
JP5696641B2 (en) Cooling method of air preheater in heating furnace
KR101032829B1 (en) control method for waste gas and heat exchanger by using heat recovery system of reheating furnace
KR101108617B1 (en) Combustion waste gas heat recovery system in reheating furnace
JP6595403B2 (en) Waste heat recovery device and waste heat recovery method
JP7142750B1 (en) Combustion equipment and its control method
JP2013087958A (en) Heat medium boiler
JP5211943B2 (en) Heating furnace exhaust equipment
JP2012184878A (en) Regenerative burner furnace and method for operating the same
JP2010060156A (en) NOx SUPPRESSION CONTROLLING DEVICE OF HEATING FURNACE
JP6341188B2 (en) Furnace temperature control method and furnace temperature control apparatus for heating furnace
JP4903083B2 (en) Combustion control method for regenerative burner furnace
JP5408150B2 (en) Boiler system
JP5003019B2 (en) Steel manufacturing method using continuous heating furnace
JPH0953117A (en) Method for controlling combustion of heating furnace
JP2002081641A (en) Heating furnace and method of cooling air preheater in heating furnace
JP5441017B2 (en) Boiler system
JP4082092B2 (en) Thermal insulation method for hot stove
JPH1150138A (en) Reconstruction of heating furnace and heating furnace
JP3958942B2 (en) Exhaust gas circulation system for regenerative burner
JP2010196132A (en) Method for controlling temperature in furnace width direction in heating furnace having heat storage type burner
JP2017141493A (en) Heating apparatus for steel material
JPH09111350A (en) Continuous heating furnace and operation thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150126

R151 Written notification of patent or utility model registration

Ref document number: 5696641

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350